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ABSTRACT

Gravitational Wave (GW) Astronomy is maturing into an integral part of multi-
messenger astronomy as, to this date, 50 events have been detected, including some
with observed counterparts. However, until now all were measured by the same tech-
nique of ground based interferometry. The Brazilian Gravitational Wave Detector
Mario Schenberg, a resonant mass antenna whose project started in 2000, has the
prospect of contributing to the advancement of the field by providing an additional
way to observe gravitational radiation. The antenna was disassembled and relocated
after the last engineering run and another upgrade is being considered. In the mean-
time, work is being done with what is now known about GWs and this detector.
This work contributes to this effort by providing an investigation of the behavior
that is seen in the frequencies of the resonant mass’ quadrupole modes. Here are
shown results from FEM simulations of deformed models and heterogeneous models
of the antenna. These could be possible explanations for a known anomaly in the
frequency structure of the detector. Additionally, a mathematical model of calcu-
lating the sensitivity curve of the instrument is presented. A new estimate for the
curve is shown with data gathered during the preparation of this work.

Palavras-chave: Gravitational Waves. Detector. Finite Element Methods. Vibration
modes.
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APRIMORAMENTO DO CÁLCULO DA CURVA DE
SENSIBILIDADE E ARRANJO DAS FREQUÊNCIAS DO

DETECTOR DE OG SCHENBERG

RESUMO

A Astronomia de Ondas Gravitacionais (OG) vêm se estabelecendo como parte
importante da astronomia multi-mensageira visto que, até hoje, 50 eventos foram
detectados, incluindo alguns cujas contrapartes foram observadas. Entretanto, até
agora todos foram medidos pela única técnica de interferometria em solo. O de-
tector de Ondas Gravitacionais brasileiro Mario Schenberg, uma antena de massa
ressonante cujo projeto começou em 2000, tem a possibilidade de contribuir para o
avanço desse campo por possibilitar uma maneira adicional de se observar a radi-
ação gravitacional. A antena foi desmontada e realocada após a última corrida de
engenharia e mais uma modernização vem sendo considerada. No meio tempo, tra-
balhos estão sendo realizados com o que já se sabe sobre OGs e sobre esse detector.
Essa obra contribui com esse esforço ao providenciar uma investigação do compor-
tamento que é visto nas frequências dos modos quadupolares da massa ressonante.
Aqui serão mostrados resultados de simulações de MEF de modelos deformados e
modelos heterogêneos da antena. Estas poderiam ser possíveis explicações para uma
anomalia identificada nos arranjos de frequência do detector. Adicionalmente, um
modelo matemático para se calcular a curva de sensibilidade do instrumento é mos-
trado. Uma nova estimativa para a curva é mostrada a partir de dados coletados
durante a realização deste trabalho.

Palavras-chave: Gravitational Waves. Detector. Finite Element Methods. Vibration
modes.
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1 INTRODUCTION

The field of Gravitational Wave (GW) Astronomy is a novelty no more. Six years
have already passed from the first detection of gravitational waves (ABBOTT et al.,
2016) and 50 events have been detected until now. So far, all sources of gravitational
radiation were from binary coalescences of compact objects and the catalog contains
detections of types BH-BH (Black Hole - Black Hole), BH-NS (Black Hole - Neutron
Star) and NS-NS. Direct evidence was found for previously unobserved compact
objects such as an intermediate mass black holes and the candidate for the heaviest
known neutron star. Therefore, GW astronomy has already established a foothold
as a way to study astrophysical objects. Furthermore, it is also being used as a way
to evaluate GR and alternative theories of gravitation (FERREIRA, 2019; ALBERT et

al., 2019).

It is in this scenario that the Mario Schenberg Gravitational Wave Antenna cur-
rently exists in. The Schenberg is a Brazilian cryogenic spherical resonant mass GW
detector of the latest generation, developed in parallel of its “sister” antenna from
the Netherlands, the MiniGRAIL. The project officially started in 2000 and so far
had a number of engineering runs, with upgrades on several of its systems in be-
tween. In theory, this detector has a project strain sensitivity of h ∼ 10−22 /

√
Hz

at 3.2 kHz (TOBAR et al., 2000; AGUIAR et al., 2002; AGUIAR et al., 2004; AGUIAR et

al., 2008; AGUIAR et al., 2012; OLIVEIRA; AGUIAR, 2016). So far, this experiment has
reached a sensitivity of h ∼ 10−20 /

√
Hz in its last run, but have not yet detected

gravitational waves (OLIVEIRA; AGUIAR, 2016).

Matter of fact, all detections so far were made by ground based interferometers
(LIGO and VIRGO). Schenberg, which is supposed to be the state-of-the-art for
resonant mass detectors, was surpassed by one of aLIGO’s interferometers during
its O3 run, with a strain sensitivity h ∼ 10−22 /

√
Hz around 3kHz (BUIKEMA et al.,

2020)).

Given this and considering that reaching maximum available performance will re-
quire the research and development of a multitude of technologies and techniques, it
is possible to become skeptic in relation to this project. To evaluate how much this
effort is worth, there is a work in progress that tries to estimate how many, if any,
of the events detected by the O2 and O3 runs of the LIGO-VIRGO collaboration
would also be registered in an updated Schenberg’s readout (AGUIAR, 2021).

But to either match or surpass the capabilities of the current network of ground-
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based laser interferometers, a resonant mass observatory would require a collection
of antennas of different sizes (commonly called a “xylophone” arrangement) each
with their respective instrumentation and while also improving upon the current
state-of-the-art.

Although the situation seems dire, there are plenty of reasons to keep working in
this field. The most important aspect, perhaps, is the convergence of evidence that
a detection by something else than a ground based interferometer would bring upon
science. Since they don’t share the same idiosyncrasies and should be affected only
by independent systematic errors, a simultaneous and matching observation by dif-
ferent techniques would strengthen our confidence in both (SCHICKORE, 2018). If,
however, the nature of the signal measured by this other detector differs from the
interferometers’, it would suggest that either our understanding of the theory behind
GW detection is lacking or a new physics is needed. And since LISA’s, a space-base
interferometer, launch date is more than a decade away; and with the SKA, a radiote-
lescope capable of using a pulsar timing array, also years away, it becomes apparent
that, being the best candidate of its class of resonant mass detectors, Schenberg
has the real possibility of being the second type of instrument capable of directly
measure gravitational radiation, after only ground based interferometers.

And the second point to be made is that such challenge motivates the advancement
of the several associated technologies that are part of Schenberg’s systems. For in-
stance, the development of parametric transducers of high electric and mechanical
quality factors; constructing a chamber capable of reaching high vacuum while pro-
viding vibration isolation and interfacing with the cryogenics; ways of acquiring and
processing data; and so on. The cryogenic system deserves special consideration,
since the operational antenna will probably be the heaviest known object to be kept
at < 1 K.

Lastly, the full scope of the resonant mass technique is not yet totally explored.
There is a recent proposal to use the Moon as a natural GW antenna (HARMS et

al., 2021). Perhaps the insights gained here from the lab scale will prove fruitful for
those other projects.

The antenna is currently out of commission, after being moved out of the Low
Temperature Laboratory at the University of São Paulo (LESBT/IFUSP) and into
the National Institute for Space Research (INPE) after the run of 2015. It was not
yet assembled, as data from the last run is analyzed and a system upgrade is being
taken into consideration and developed.

2



In this work, I present an exploration of the behaviors of the quadrupole modes
of vibration and discuss possible explanations for a yet not explained experimental
result. Finally, with data gathered during the writing of this volume, I include an
updated version of the sensitivity curve.
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2 GRAVITATIONAL WAVES

Although the discussion over the idea that gravity could have a finite speed of
propagation predates Einstein, it was his theory of General Relativity (GR) from
1915 that first introduced the concept of gravitational waves as we know today
(CERVANTES-COTA et al., 2016). At first, GWs were considered just an artifact of the
mathematical framework of the theory, as the wave equation was found to be a valid
solution of the field equations but with no other physical meaning. This chapter will
bring an overview of the mathematical framework around GWs and some properties
of this object. Latter on the next chapter this will be used to describe how radiation
interacts with matter and how it can be measured.

2.1 Linearized gravity

The first step to obtain the gravitational wave equation is to consider the Einstein
Field Equations (MAGGIORE, 2008):

Rµν −
1
2Rgµν = 8πG

c4 Tµν = Gµν (2.1)

They comprise 10 non-linear coupled differential equations, that are remarkably dif-
ficult to solve. Analytical solutions are generally produced considering special cases,
while Numerical Relativity deals with other situations, if sufficient computational
power exists. So, following the spirit of the first approach, some assumptions will be
made to simplify this problem.

The goal here is just to show the existence of a valid wave-like solution for the field
equations on the most simple scenario: flat space, away from any distribution of
mass and energy. At the moment, there is no consideration about the mechanism
of gravitational wave generation. Also, without any effects of propagation through
cosmological scales.

The metric gµν that describes a local spacetime where a small perturbation occurs
on top of a flat spacetime can be written as:

gµν = ηµν + hµν (2.2)

Where ηµν = diag[−1, 1, 1, 1] is the Minkowski metric and |hµν | � 1 is perturbative
term. Using this to write the connection, its terms consisting of derivatives of the

5



Minkowski will vanish. The terms that remain are:

Γµνρ = 1
2η

µσ(hσρ,ν + hσν,ρ − hνρ,σ) (2.3)

With the connection, it is now possible to write the Riemman tensor. Also, let’s
already suppress terms of order O(h2) and above.

Rµνρσ = 1
2 (∂ν∂ρhµσ + ∂µ∂σhνρ − ∂ν∂σhµρ − ∂µ∂ρhνσ) (2.4)

Contract it with ηµρ to get Ricci’s tensor:

Rνσ = 1
2 (∂ν∂ρhρσ + ∂ρ∂σhνρ − ∂ν∂σh− ∂ρ∂ρhνσ) (2.5)

And analogously, the Ricci scalar:

R = ∂ν∂ρh
ρ
ν − ∂ρ∂ρh (2.6)

Substituting (2.5) and (2.6) into (2.1) we arrive at an expression for the Einstein
tensor depending on the derivatives of the perturbative part of the metric:

Gνσ = Rνσ −
1
2ηνσR

Gνσ = 1
2 (∂ν∂ρhρσ + ∂ρ∂σhνρ − ∂ν∂σh− ∂ρ∂ρhνσ − ηνσ∂µ∂ρhρµ + ηνσ∂

ρ∂ρh) (2.7)

The equations of motion that follows from this are at linearly dependent of h and its
derivatives, with no terms of higher orders, hence why it’s called a linearized theory.

To rewrite this expression in a more fashionable manner, it is possible to substitute
hµν by another metric function hµν defined as

h
µν = hµν − 1

2η
µνh (2.8)

easy to verify that

h = −h (2.9)

which will then allow the Equation (2.7) to be written as

Gνσ = −1
2
(
∂ρ∂ρhνσ + ηνσ∂

µ∂ρh
ρ
µ − 2∂ν∂ρhρσ

)
(2.10)
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It is possible to arrive at an even more compact form. Since no assumption was
made about the choice of gauge yet, there is the freedom to choose h so ∂βhαβ = 0,
which is called Lorentz or De Donder gauge. The mathematical justification for this
freedom can be found in Maggiore (2008). This choice reduces our degrees of freedom
from 10 to 6.

In this gauge, the field Equations (2.10) become:

Gµν = −1
2∂

ρ∂ρhµν

or using the d’Alambertian operator notation �2 = ∂ρ∂ρ

Gµν = −1
2�

2hµν = 8πG
c4 Tµν

and therefore

�2hµν = −16πG
c4 Tµν (2.11)

As stated in the beginning, it is going to be considered a situation far from mass
and energy distributions, where Tµν = 0. So

�2hµν = 0 (2.12)

Furthermore, when outside a source, ∂βhαβ = 0 can become invariant, depending
on the chosen coordinate transformation. Let a transformation of type

xµ → x′µ = xµ + ξµ (2.13)

chosen so that �2ξµ = 0. Thus, by the definition of tensor transformation,

hµν → h′µν = hµν − (∂νξµ + ∂µξν), (2.14)

assuming ∂ξ is at most of the same order of h. Additionally, lets’ say that ξ satisfies:

�2ξµν = ∂µξν + ∂νξµ − ηµν∂ρξρ = 0 (2.15)

So, under transformation, h will be

hµν → h
′
µν = hµν − (∂νξµ + ∂µξν − ηµν∂ρξρ) (2.16)
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And the derivative will contain:

∂νhµν → ∂νh
′
µν = ∂νhµν −�2ξµ (2.17)

Therefore, depending on the choice of ξ, this is invariant.

When the trace is chosen to be zero hρρ = h = 0 the consequence is that h = h

and the bar can be dropped from here on now. Also, the static part is gone ∂0h00 =
h00 = 0. Lastly, the remaining time cross components are zero h0i = 0. This plus de
Donder gauge is the transverse-traceless gauge (noted as TT).

In this gauge we can write the d’Alambertian in a more explicit and very familiar
form:

�2hTTµν = − 1
c2∂

2
0h

TT
ij +∇2hTTij = 0 (2.18)

Which is a wave equation. In the next section a solution will be provided and some
of its properties will be examined.

2.2 Wave equation

Let’s assume that the metric perturbation tensor hµν will be projected to the TT
gauge and a coordinate system will be chosen such that ẑ coincides with direction of
propagation, meaning ki = kẑ. Also, consider a plane normal to n̂ = (0, 0, 0, k/ω),
therefore parallel to the propagation.

In the TT gauge, Equation (2.18) has a plane wave solution of form

hTTij (x) = eij(k)eikx (2.19)

where eij is the polarization tensor and the wave vector is kµ = (ω/c, 0, 0, k), or in
the matricial form:

hTTij (t, z) =


hxx hxy 0
hyx −hyy 0
0 0 0

 (2.20)

Since h is traceless, hxx + hyy = 0, and since it is symmetric, hxy = hyx, so

hTTij (t, z) =


h+ h× 0
h× −h+ 0
0 0 0

 e−iω(t−z/c) (2.21)

This is the equation of a planar wave, propagating along ẑ, tensorial in nature and
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with 2 polarizations (h+ and h×).

To get the TT gauge from an arbitrary system, we’ll use a projection operation. Let
us define the following tensor,

Pij(n̂) = δij − ninj (2.22)

that is symmetric and transverse (niPij(n̂) = niδij −nininj = 0) with trace Pii = 2.
This tensor acts as a project operator: PijPjk = Pik. Now, defining another tensor:

Λij,kl(n̂) = PikPjl −
1
2PijPkl (2.23)

Λij,kl(n̂) = δikδjl −
1
2δijδkl − njnlδik − ninkδjl

+ 1
2nknlδij + 1

2ninjδkl + 1
2ninjnknl (2.24)

It is symmetric, if considering simultaneous exchange i ⇐⇒ j, k ⇐⇒ l. It is trans-
verse to all indices (niΛij,kl = njΛij,kl = nkΛij,kl = nlΛij,kl = 0) and traceless
Λii,kl = Λij,kk = 0.

Now, the transverse traceless gauge can be obtained by projecting any given h

(MAGGIORE, 2008):
hTTij = Λij,klhkl (2.25)

The use of this gauge allows to easily construct the equations of plane-waves with
the classical separation of time and spatial coordinates to denote propagation.

2.2.1 Wave generation

It is natural to reach for inspiration in another classical field theory that has already a
well-developed framework in order to study the generation and propagation of waves.
And there are plenty of parallels between gravitational waves and its electromagnetic
counterpart.

Here, we’ll use the method of finding a suitable Green’s function that solves a dif-
ferential equation with boundary conditions, as commonly done in electrodynam-
ics (JACKSON, 1999). Considering �2

x the d’Alambertian in respect to x , then If
G(x− x′) satisfies

�2
xG(x− x′) = δ4(x− x′) (2.26)
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then it can be shown that eq. (2.11) has a solution (MAGGIORE, 2008)

hµν(t, x) = 4G
c4

∫
d4x′G(x− x′)Tµν(x′) (2.27)

Since this is a problem that involves the propagation of the causal effect of a source
over a field, it is suitable to impose the boundary condition that G is a retarded
Green function:

G(x− x′) = 1
4π|x− x′|

δ4(ct− ctret) (2.28)

where tret = t− |x−x′|
c

is the retarded time.

Substituting this into eq. (2.27), we’ll arrive at:

hµν(t,x) = 4G
c4

∫
d3x′

1
|x− x′|

Tµν(tret,x′) (2.29)

It is apparent in this equation that any change in the source term will mean a change
in the metric field only after a finite amount of time.

Now, using (2.25) and projecting (2.29) into the TT gauge

hTTµν (t,x) = 4G
c4 Λij,kl(n̂)

∫
d3x′

1
|x− x′|

Tµν (tret,x′) (2.30)

Comparing eq. 2.30 with the analogous solutions for the case of the electromagnetic
field (JACKSON, 1999) their similarities will become evident:

E(t,x) = 1
4πε0

∫
d3x′

1
|x− x′|

(
−∇′ρ(tret,x′)−

1
c2
∂J(tret,x′)

∂t′

)
(2.31)

B(t,x) = µ0

4π

∫
d3x′

1
|x− x′|

(∇× J(tret,x′)) (2.32)

In both cases, the equation relates a field to a source but imposes a finite speed
of information propagation. Their main difference lies in the order of the tensors.
Besides that, both fields magnitudes follow a 1/r2 relation in respect to the distance
from the source.

In the case of electromagnetism, a change in charge density distribution will cause a
variation on the field, and this variation propagates at c. In the case of gravitation, a
change in mass density distribution (or energy-momentum, in the most general case)
will cause a change in the spacetime curvature. And this information also propagates
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at c.

But in the more specific case of what can generate a wave, there is a crucial difference.
In EM, a dipole can exist, and a changing dipole (rotating, for example) will produce
an alternating field that will propagate as a wave, which when far from the source
can be simplified to the planar wave equation. More complex charge distributions,
such as quadrupoles and beyond also will be accounted for.

Mass, however, doesn’t form dipoles. There is no anti-mass, capable of creating
repulsive gravity field, that will pair up with mass to form a dipole. There is even a
justification involving the nature of the force carrier. A photon has helicity of ±1,
which has the implication of allowing the existence of dipoles. But gravitons have
helicity ±2, that allows quadrupoles.

An example of a distribution of mass that has a quadrupole moment is a binary
system. There are two bodies with mass going around but always on opposing sides
through their baricenter, always leaving a region of no mass that follows their trail.

The energy-momentum tensor components can be described by (MISNER et al., 1973)

T00 = (ρ+ p)v0v0 − p (2.33a)

T0j = Tj0 = ρvj (2.33b)

Tij = ρvivj + pδij (2.33c)

Now, considering a non-relativistic mass distribution, where the pressure component
is insignificant compared to the rest mass terms:

T00 ≈ ρv0v0 = ρ0c
2 + ρ0v

2/2 (2.34a)

Tij ≈ ρvivj = ρ0c
2 + ρ0vivj (2.34b)

substituting it into Equation (2.29) will result in

hij(t,x) = 2G
rc4

∂2

∂t2

∫
ρxixjd3x (2.35)

Consider the expression for the quadrupole moment of a mass distribution:

Iij =
∫
ρxixjd3x (2.36)
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Lets define the reduced quadrupole moment as

Iij =
∫
T00(xixj − δijx2

k) d3x (2.37)

To write it in the TT gauge, we use the Lambda tensor

ITTij = Λij,klIkl (2.38)

(2.39)

to arrive at

ITTij = PilPjmIlm −
1
2PijPlmIlm (2.40)

using (2.36) and (2.34) and comparing with (2.35)

hij(t,x) = 2G
rc4 Ï

TT
ij (tret,x′) (2.41)

Finally, this last equation provides a relation between perturbation and source. Of
course, the exact waveform properties such as the power spectral density and polar-
ization will be dependent on the nature of the source. For some cases, binaries during
the inspiral, for example, there are Post Newtonian approximations that were capa-
ble of generating templates of gravitational waves. However, for the most complex
systems, for instance the merger of those same objects, it becomes necessary to use
Numerical Relativity to calculate the waveform. In Schenberg’s case, the sources of
interest, i.e. the ones that lies inside its band, are mostly the coalescence of low-mass
compact object binaries. So far no burst-like signal has ever been detected, so the
jury is still out on neutron starquakes and other astrophysical events that could be
detected by the antenna.

2.2.2 Interaction with matter

In General Relativity, any particle follows a trajectory in spacetime called its world
line. The behavior of this path depends on the metric of the spacetime in which this
curve is inscribed. Something that effects the metric will, consequentially, also act
upon the dynamics of the particle.

As we’re interested in studying how a detector would work, that means that we
are interested in the weak field regimen, far from any source. In this situation, an
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expression for effective force density can be found in Ashby e Dreitlein (1975) and
is as follows:

fGWi = 1
2ρ
∂2hij
∂t2

xj (2.42)

In the following chapter this equation will be used to describe how a resonant mass
detector can respond to a gravitational wave.

2.3 Spherical amplitudes

In this section, the tensor hµν will be rewritten in a form that will be useful later.
First, consider that force in Equation (2.42) is defined as a gradient of a scalar
potential φ:

fGWi = ∇iΦ(x, t) (2.43)

and comparing with the equation that relates it with hij:

∇iΦ(x, t) = ∇i

(
1
4ρ
∂2hjk
∂t2

xjxk

)

φ(x, t) = 1
4ρ
∂2hij
∂t2

xixj (2.44)

Now, we’ll use the spherical harmonics to form a basis and write the potential as a
combination of this basis (MERKOWITZ, 1995). Consider the real spherical harmonics
Y2m, as these form an orthonormal basis. And let the five spherical amplitudes hm,
m = 1, . . . 5 be such that

ḧijxixj =
√

2π
15 r

2ḧm(t)Y2m(θ, φ) (2.45)

Finally, its only necessary to write an expression that relates the wave equation
written in the frame of the lab to the more convenient notation of the spherical
amplitudes. So, the following matrix transforms the components h+ and h× of the
wave into these five spherical amplitudes:

h1(t)
h2(t)
h3(t)
h4(t)
h5(t)


=



1
2(1 + cos2 β) cos 2γ cos β sin 2γ
−1

2(1 + cos2 β) sin 2γ cos β cos 2γ
−1

2 sin 2β sin γ sin β cos γ
1
2 sin 2β cos γ sin β sin γ
√

3
2 sin2 β 0


·

h+(t)
h×(t)

 (2.46)

Where β and γ are the polar and azimuthal angles in the detector’s frame, respec-
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tively.
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3 RESONANT MASS GRAVITATIONAL WAVE DETECTORS

During the decades following GR’s publication, arguments were thrown back and
forth and in the 1950s a consensus was being reached that GWs were in fact a phys-
ical phenomenon. The discussion then shifted towards which observables would be
produced and how they would be detected. Weber proposed and built the first de-
tector during the 1960s (WEBER, 1960). It was a bar-shaped resonant mass detector
that was supposed to, but failed to, directly detect gravitational waves.

The observation of radio signals from the now known as Hulse-Taylor pulsar in 1974
was the 1st indirect evidence for GW. The source of the signal was a binary system
of a neutron star and a pulsar, which emitted periodic pulses with great regularity,
effectively allowing to track their orbital period with astonishing precision. This
allowed to observe an orbital decay that strongly agreed with GR’s prediction of
generation of gravitational wave radiation (HULSE; TAYLOR, 1975).

After this results, the following decades experienced a rush to detect GWs directly.
Most of the effort was concentrated in two types of detectors: resonant mass antennas
and ground based interferometers. Both had since many generations and iterations,
in which their technology was constantly upgraded.

The resonant mass detectors started out as cylindrical bars, kept at room tempera-
ture, with a belt of piezoelectric gauges to detect its strain. At the present moment,
these detectors use a different, more capable, geometry and have much more sensitive
ways to detect the vibrations of the antenna.

In this chapter I’ll present the theory behind resonant mass detectors, starting with
a general overview and going up to the specific case of a spherical body.

3.1 Sphere eigenfunctions

The basis of the theoretical framework behind the resonant mass detectors starts
with the theory of small, linear vibrations in elastic bodies. For a body of an arbitrary
geometry, defined as mass distribution ρ(x), Young’s modulus E and Poisson’s ratio
ν, let u(x) be the displacement on the surface. For small amplitudes, the equations
of motion for an elastic body driven by a force density f is (LANDAU, 1981):

ρü− µ∇2u− (λ+ µ)∇(∇ · u) = f(x, t) (3.1)
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Where λ, µ are the Lamé coefficients, defined as

λ = νE

(1 + ν)(1− 2ν) ; (3.2a)

µ = E

2(1 + ν) (3.2b)

Since here we are considering the interaction of the gravitational wave with the
body, the force density is given by (2.42). Therefore,

ρüi − µ∇2ui − (λ+ µ)∇(∇ · ui) = 1
2ρ
∂2hij
∂t2

xj (3.3)

Until now, no assumptions were made about the nature of the body. But in order to
find a fashionable solution to these equations, from here onward some considerations
will be taken. First, the geometry of the detector of interest is based on a sphere.
So, to proceed, we’ll find the solutions of the unforced case for a spherical body.

ρü− µ∇2u− (λ+ µ)∇(∇ · u) = 0 (3.4)

For such spherical body, the displacement can be written as a separation of a time
dependent and spatial dependent parts (MERKOWITZ; JOHNSON, 1995):

u(x, t) =
∑
m

am(t)Ψm(x) (3.5)

where the indexm indicates the different modes. So each mode of vibration will have
a different associated amplitude am. The spatial part Ψm is defined as the solution
of (3.1) in the case of a free, unforced sphere:

ρü− µ∇2u− (λ+ µ)∇(∇ · u) = 0

ρ
∑
m

ämΨm − µ
∑
m

am∇2Ψm − (λ+ µ)
∑
m

am∇(∇ ·Ψm) = 0

−ω2ρ
∑
m

amΨm − µ
∑
m

am∇2Ψm − (λ+ µ)
∑
m

am∇(∇ ·Ψm) = 0

assume each ψm is solution of

−ω2ρΨm − µ∇2Ψm − (λ+ µ)∇(∇ ·Ψm) = 0 (3.6)

Where ω is the frequency of resonance. At first let’s assume that the system is
degenerate, latter on the solution will include the non-degenerate case with ωm. The
spatial component Ψ will define which regions of the body suffers more or less of the
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displacement for a given mode, the temporal component am comprises the oscillation
of that mode. For this system of m equations, the eigenfunction Ψm of a sphere can
be written in terms of the spherical harmonics Ym (MERKOWITZ, 1995):

Ψlm(r, θ, φ) = [αl(r)r̂ + βl(r)R∇]Ylm(θ, φ) (3.7)

in this work, only interested in l = 2, so Psi is defined as

Ψm(r, θ, φ) = [α2(r)r̂ + β2(r)R∇]Y2m(θ, φ) (3.8)

When l = 2 these are called the quadrupole modes. And they are of interest as they
are the only ones excited by gravitational radiation1, if GR is the correct theory of
gravitational. In Figure 3.1 a visualization of the five quadrupole modes is presented.
The condition of normalization must also be satisfied:

∫
V

Ψm(x) ·Ψn(x) d3x = Nmδmn (3.9)

And the terms α, β in Equation (3.8) are called the radial eigenfunctions. They are
as follows:

α(r) = p1R
∂j2(qr)
∂r

+ 6p2
R

r
j2(kr) (3.10a)

β(r) = p1j2(qr) + 6p2
∂rj2(kr)
∂qr

(3.10b)

The function j2 is the Bessel function of order two, that is written as

jl(x) =
(

1
x

d
dx

)l (sin x
x

)
(3.11a)

j2(x) =
( 3
x3 −

1
x

)
sin x− 3 cosx

x2 (3.11b)

while the coefficients k and q are defined as:

q2 = ρ
ω2

0
λ+ 2µ (3.12a)

k2 = ρ
ω2

0
µ

(3.12b)

1Caveat: the prolate-oblate mode, Y20, is not excited directly.
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Where ω0 is the frequency in the case of the of the degenerate system. Finally, the
coefficients p1 and p2 are such that the following boundary condition is satisfied:

p1
d
dr

(
j2(qr)
r

)
+ p2

(
5
r2 −

k2

2 −
1
2

d
dr

)
j2(kr) = 0 (3.13a)

p1

(
6
r2 −

k2

2 −
2
r

d
dr

)
j2(qr) + 6p2

d
dr

(
j2(kr)
r

)
= 0 (3.13b)

Figure 3.1 - Composition showing a representation of each of the 5 quadrupole modes of
the sphere. These images were created from a FEM simulation of a homo-
geneous solid sphere. Each element is a superposition of two frames, half a
period apart, so it captures the instants of maximum deformation. The color
scale indicates the amplitude of deformation in respect to the body at rest;
blue and red means zero and maximum deformation respectively. From left
to right, m = −2,−1, . . . , 2.

SOURCE: From the author.

3.2 Effective force

In this section we will formulate how the interaction mentioned in Section 2.2.2 will
relate to the force acting upon an elastic body. From Equation (3.5), given that the
limit of small vibration is being considered, it is possible to assume that the time
component is of type

am(t) = Am exp(iωmt) (3.14)

so

äm = −ω2
mam (3.15)
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If substituted back into the forced condition Equation (3.1):

ρü− µ∇2u− (λ+ µ)∇(∇ · u) = f(x, t) (3.16)

ρ
∑
m

ämΨm − µ
∑
m

am∇2Ψm − (λ+ µ)
∑
m

am∇(∇ ·Ψm) = f

using the result of Eq. (3.6)

ρ
∑
m

ämΨm −
∑
m

am(µ∇2Ψm + (λ+ µ)∇(∇ ·Ψm)︸ ︷︷ ︸
−ρω2

mΨm

) = f

ρ
∑
m

(äm + ω2
mam)Ψm = f (3.17)

now multiplying Ψn and integrating in d3x

ρ
∑
m

(äm + ω2
mam)

∫
V

Ψm ·Ψn d3x =
∫
V

f ·Ψn d3x (3.18)

using the normalization condition (3.9)

äm + ω2
mam = 1

ρN

∫
V

f ·Ψm d3x (3.19)

And without loss of generality, it’s possible to add a damping term

äm + 1
τ
ȧm + ω2

mam = 1
ρN

∫
V

f ·Ψm d3x (3.20)

From Equation (3.19), one can see that the effective force of a gravitational wave
that is exciting the m-th mode of a body is:

F eff
m ≡

∫
V

fGW ·Ψm d3x (3.21)

It is now possible to compare it to the expression for force density (2.42) and Ψm

(3.8). Furthermore, using (2.45) to write in spherical harmonics basis we finally
arrive at

F eff
m (t) =

√
4π
15ρḧm(t)R4[p1j2(qR) + 3P2j2(kR)] (3.22)
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or

F eff
m (t) = 1

2 ḧmmSχR (3.23)

Where mS is the mass of the sphere and χ is a coupling factor depending on the
Poisson’s ratio (MERKOWITZ, 1995). Which will be handy expressions to relate the
effective force, as will appear in the equations of motion, with the passing gravita-
tional wave.

3.3 Equations of motion

Equation (3.5) describes the displacement of the surface of the sphere, and latter on
expressions that relate it to the spherical harmonics have been shown. Unfortunately,
describing the motion of the points on the sphere is not enough for our purposes,
as it is necessary to describe also what happens with the coupled resonators as well.
There are already well-developed techniques for solving N coupled oscillators with
small deviations from equilibrium – as would be this case (GOLDSTEIN, 1980).

3.3.1 Linear systems of differential equations

From here on now, the following notation will be adopted. Double underscore to rep-
resent matrices, A, and single underscore, vectors, v. We try to write the equations
of motion in a matricial form of type similar to

T η̈ + V η = 0 (3.24)

for which the solution is guessed to be

η = Cae−iωt (3.25)

Substituting this solution into (3.24)

− ω2Ta+ V a = 0 (3.26)

Here lie N coupled linear equations, that only can have non-trivial solution if its
determinant vanishes

det
(
−ω2T + V

)
= 0 (3.27)

Furthermore, it is possible to apply a change of coordinates η → η′ so that T → δ.
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Also, calling ω2 = λ we’ll read
V a = λa (3.28)

It is known that finding the eigenvalues and eigenvectors of this equation is a way
of solving the original system of equations. And without loss of generality, a more
general solution that would also be including a complex part could also be used. Of
course, the solution that describes the motion involves only the real part.

ηi = aik(C+
k e

+iωkt + C−k e
−iωkt) (3.29)

3.3.2 Model matrix

Now back to the original problem, there are j transducers, each with 2 resonators,
coupled to the surface of the vibrating sphere. Let r̂j be radial vector of the sphere,
which would also be parallel to the longitudinal direction of a transducer installed
at a given position. From (3.5), the radial displacement of the surface of the sphere
is

zj(t) = r̂j ·
∑
m

Am(t)Ψm (3.30)

The resonator Rj1, at position rj, will be displaced zj + qj1 and resonator 2 will
displace zj + qj1 + qj2, as seen in fig 3.2. Since each transducer is located at a

Figure 3.2 - Body diagram of a system of a two mode resonant transducer coupled to the
surface of a vibrating sphere.

m1 m2
zj

zj + qj1

zj + qj1 + qj2

k1 k2

FN
1 FN

2

SOURCE: From the author.

position (θj, φj), and each mode m contributes differently to the displacement of a
point u(θ, φ) ∝ ∑

m Ym(θ, φ) each transducer is excited by a different combination
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of the modes. It is possible to denote the relation between the influence of the m-th
mode and j-th transducer as a pattern matrix Bmj (JOHNSON; MERKOWITZ, 1993).

α(R)Bmj = r̂j ·Ψm(x̂j) (3.31)

Where α is the radial eigenfunction defined in (3.10a) evaluated at the surface r = R.
Using the definition of Ψ (3.8), it simplifies to:

Bmj = Ym(θj, ψj) (3.32)

For the TIGA arrangement2, the following relations are true:

BBT = 3
2πI (3.33a)

B1 = 0 (3.33b)

BTB = 3
2πI −

1
4π1 (3.33c)

3.3.3 Equations of motion for sphere and resonators

The complete system of equations, that describe the motions of sphere and all res-
onators, derived using elasticity theory and notated using the pattern matrix is
(COSTA, 2006)


mSI 0 0

mR1αB
T mR1I 0

mR2αB
T mR2I mR2I

 ·

Ä(t)
q̈1(t)
q̈2(t)

+


HSI −HR1αB 0

0 HR1I −HR2I

0 0 HR2I

 ·

Ȧ(t)
q̇1(t)
q̇2(t)



+


kSI −kR1αB 0
0 kR1I −kR2I

0 0 kR2I

 ·

A(t)
q1(t)
q2(t)

 =


I −αB 0
0 I −I
0 0 I

 ·

F S(t)
F1

N(t)
F2

N(t)


(3.34)

Where mS is the mass of the sphere; mR1 is the mass of the 1st resonator; mR2 is
the mass of the 2nd resonator; A is the vector of amplitudes of the modes of the
sphere; q1 and q2 are the vectors of displacements of each type of resonators; HX

are the respective dampening coefficients and kX are the elastic coefficients. α is
the radial eigenfunction evaluated at the surface, B is the pattern matrix Bmj. F S

are the forces acting on the sphere, FN
i are the forces due to noises acting on the

2see Section 3.6
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resonators. This system may be represented in the more compact fashion:

Xω̈(t) + Y ω̇(t) + Zω(t) = WF (t) (3.35)

3.4 Equations’ solution

Starting with Equation (3.35) and multiplying all by X−1, we arrive at:

ω̈(t) +Hω̇(t) +Kω(t) = PF (t) (3.36)

It is possible to designate a matrix D given by the diagonalization of K, where the
pair U and U † are hermitian matrices (UU † = U †U = I).

D = UKU † (3.37)

The elements of the diagonal matrix D are the eigenvalues of K. Let’s also define
the normal coordinates ξ:

ξ(t) = U †ω(t) (3.38)

ω(t) = Uξ(t) (3.39)

Now, if we multiply (3.36) by U †, it becomes

U †ω̈(t) + U †Hω̇(t) + U †Kω(t) = U †PF (t) (3.40)

using definitions (3.37) and (3.38):

ξ̈(t) + U †HUξ̇(t) +Dξ(t) = U †PF (t) (3.41)

Applying a Fourier transform to take from time into frequency domain:

−ω2ξ̃(ω) + iωU †HUξ̃(ω) +Dξ̃(ω) = U †PF̃ (ω) (3.42)(
−ω2I + iωU †HU +D

)
ξ̃(ω) = U †PF̃ (ω) (3.43)

And defining a matrix J−1 to aggregate the terms

J−1(ω)ξ̃(ω) = U †PF̃ (ω) (3.44)
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Multiply by J and U

Uξ̃(ω) = UJ(ω)U †PF̃ (ω) (3.45)

and coming back from the normal coordinates

ω̃(ω) = UJ(ω)U †PF̃ (ω) (3.46)

Here, the reverse Fourier can be used to obtain w(t), that will be the solutions to
the equations of motion. They should be on the form

ω(t) = Q(ω)F (t) (3.47)
Ä(t)
q̈1(t)
q̈2(t)

 = Q(ω)


F S(t)
F1

N(t)
F2

N(t)

 (3.48)

Where the components q2 – the ones that will be measured – are explicitly expressed.

3.4.1 Mode channels

The displacement of the second resonators q2, despite being the quantity that will be
measured, does not have a direct correlation with the incident gravitational waves.
A much more direct comparison could be made if the measured quantity was related
to the spherical modes. Thus, here are defined the mode channels:

gm ≡ Bmjqj2 (3.49)

or

g = Bq

These are quantities that groups all resonators excited by a given mode.

24



3.5 Transfer function

To relate the displacement to the forces that cause them, we will need to describe
the transfer function of the system. Using only the last components from (3.48):

q̃2(ω) = Q̃3(ω)


F̃ S(ω)
F̃1

N(ω)
F̃2

N(ω)

 (3.50)

or

q̃2(ω) = Q̃3S(ω)F̃ S(ω) + Q̃31N(ω)F̃1
N(ω) + Q̃32N(ω)F̃2

N(ω) (3.51)

and rewriting them in terms of mode channels (3.49)

g̃(ω) = ξ̃(ω)F̃ S(ω) + Ω1(ω)F̃1
N(ω) + Ω2(ω)F̃2

N(ω) (3.52)

In this equation, g̃(ω) are the mode channels; ξ̃(ω) is the transfer function of the
detector in regard to the F̃ S(ω) effective forces acting on the sphere. The relations
of the responses to noises acting on the resonators and the forces are Ωi(ω) and
F̃i
N(ω).

From Equation (3.52), if we ignore the contribution from noises now, we have:

g̃(ω) = ξ(ω)F̃(ω) (3.53)

As the forces can be written in terms of the modes (eq. 3.23)

F̃ eff
m (ω) = −1

2ω
2mSχRh̃m(ω) (3.54)

Substituting (3.53):
g̃(ω) = −1

2ω
2mSχRξ(ω)h̃(ω) (3.55)

Rewriting to find an expression of h̃ in terms of g̃:

h̃(ω) = − 2
ω2mSχR

ξ−1(ω)g̃(ω) (3.56)

The last step necessary to finally write hm(t) in relation to gm(t) is to apply the
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inverse Fourier transform. Hence, it is possible to write an equation of form:

hm(t) = Ξmngn(t) (3.57)

In the same fashion, it would be possible to write a transfer function of a noisy
detector as well, adding the contribution of the terms Ωi.

3.6 TIGA

After finding a way to measure the displacement of the surface of the detector, the
next step is to determine where to install the transducers and how many there should
be.

At first glance, one can be tricked by a “the more, the merrier” approach and try
to fit as many transducers as possible on the surface to try to produce the highest
resolution picture of the vibrations on the surface. But only a special set of the
vibrations of the sphere are interesting for our purposes, that being the quadrupole
modes of vibration.

A solid sphere has five purely radial quadrupole modes of vibration, and their func-
tions form an orthogonal base so that a spheric detector can also be considered
equivalent to five independent bar detectors. To monitor these, at least five trans-
ducers will be required. But since transducers are harmonic oscillator themselves,
choosing a great number of them will imply in cross-coupling their equations of
motions to the sphere and to each order. The analysis of the problem will become
increasingly harder and the final spectrum turns out too complicated to be properly
understood.

Depending on their position, a transducer might “see” the excitation of one or multi-
ple modes. As they are pushed and pulled following the displacement of the surface,
is evidence from Figure 3.1 that a region where a transducer is installed might be on
the blind spot of a mode. Methods were developed to solve the inverse problem, that
is, given the signal from multiple transducers that each are coupled to a combination
of the quadrupole modes vibrations, find the direction and polarization of a gravi-
tational wave that produced that excitation (LOBO, 1995; MERKOWITZ; JOHNSON,
1997). A single spherical detector can determine the direction, but cannot ascertain
where the source is located between the two antipodal regions in the sky.

Turns out that six transducers in a Truncated Icosahedron (TI) arrangement pro-
duces a convenient basis given the number of symmetries, a not so complex frequency
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Figure 3.3 - Truncated Icosahedron.

SOURCE: Wikimedia Commons (2005).

structure and is a shape not far from a sphere (MERKOWITZ; JOHNSON, 1995).

The truncated icosahedron is a solid made up of 12 regular pentagonal faces and 20
regular hexagonal faces (as represented in Figure fig:ti). The Truncated Icosahedron
Gravitational wave Antenna (TIGA) is defined as a body with transducers plugged
in holes located where the centers of the pentagonal faces of a circumscribed TI
would be.

In the case of Schenberg, there are six transducers located following the map on
Figure 3.4.
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Figure 3.4 - Map of the positions of the holes on the surface of the antenna, using Lam-
bert projection. Filled circles are the location where the 3.2khz parametric
transducers are installed, following a TIGA arrangement. Unfilled circles are
either empty or have transducers tuned to other modes, which are ignored in
this work.

SOURCE: From the author.
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4 THE MARIO SCHENBERG GW ANTENNA

4.1 Description of the antenna

The design of the antenna is a body of aluminium bronze (CuAl6%) based on a
sphere of 325 mm with a central, cylindrical through hole along its vertical axis,
which around its midpoint a small conical section serves as a load bearing face
through were the body is suspended. Around its surface, 9 blind holes, located
according to the description in Section 3.6. A render of the instrument can be seen
in Figure 4.1

In those holes, 6 parametric transducers are installed. They are shaped roughly
as a hollow cylindrical body. Its base has a diameter that enters snugly in the
holes, so that the transducer is shrink-fit as the detector goes cryogenic. The mid-
section has a turned down diameter and “speed holes” in order to make a spring
that moves purely longitudinally. The membrane covers the top of the body and is
clamped by the screws’ action between the cap and the body. The features of the
cap include a depression and conical post that forms a microwave cavity along with
the membrane. Two holes in the cap allows for the pumping in and sensing of the

Figure 4.1 - Render of the assembled Schenberg detector.

SOURCE: Aguiar et al. (2004)
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microwave radiation. The transducer is composed entirely of pieces of niobium (body,
membrane, cap and screws). The top part of the transducer is what is represented
by the mass m1 in the mathematical model (and Figure 3.2) and the membrane
is m2. The intended operating temperature is 15 mK, achievable with the help of
a dilution refrigerator. The antenna is installed suspended by a vibration isolation
system, inside a vacuum chamber, which is also has its own isolation from the ground.

4.2 Previous models

It’s a well established result that the spherical harmonics of order l = 2
(quadrupoles) are comprised of five orthonormal functions, being two pairs and
a singlet, all degenerate (same energy, same frequency) (JACKSON, 1999). For a real
elastic body with a geometry that deviates from the ideal sphere the structure of
these frequencies is not guaranteed to be as simple.

Finding the natural modes of vibration for bodies of complex geometry is an ardu-
ous task, if someone wants to find an analytical solution directly from the theory of
elasticity of continuous bodies (LANDAU, 1981). Luckily, there are numerical meth-
ods that can produce these results, as is the case of the Finite Element Method
(FEM). This approach consists of approximating a continuous body by a collection
of elements distributed along a mesh and modeling how these elements will interact
with its neighbors.

Previous works used FEM with models constructed from the engineering drawings
of the antenna and definitions of materials properties are found in the literature
(BORTOLI, 2011; BORTOLI et al., 2021). Degeneracy breaking was predicted when
geometrical features of the antenna were introduced to the spherical body (Figure
4.2). Also, a preferential direction was observed in the orientation of the basis of the
modes, since the body lost spherical symmetry while keeping cylindrical symmetry.

The values for the quadrupole modes of the 3 described simulated cases are listed
in Table 4.2. A small allowance has to be considered for the errors that arise from
the discretization of the continuous body. The results can differ slightly for the same
model if the meshing parameters are changed.

In column a), for instance, all the frequencies are virtually the same, which is ex-
pected for an ideal sphere. In column b), the same applies. Possibly, the mass lost
when drilling the holes was not enough to make a visible difference.

The frequencies in column c) are grouped into two degenerate pairs and an isolated
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Table 4.1 - Results from Bortoli (2011). Values from Schenberg’s FEM simulations to find
the frequencies of natural modes of vibration. The modes corresponding to
quadrupoles were identified and the values for their frequencies were tran-
scribed here. Columns a), b) and c) corresponds to different geometric features
of the model (see fig. 4.2). The last column shows the measured quadrupole
frequencies from the first commissioning run (AGUIAR et al., 2004).

a) Solid sphere b) Sphere with holes c) Sphere with holes Suspended
(simulated) for transducers for transducers and antenna w/o

(simulated) suspension (simulated) transducers
(experimental)

3157.87 3159.38 3117.93 3172.50
3157.95 3159.49 3118.23 3183.00
3158.06 3159.55 3138.27 3213.60
3158.21 3159.65 3138.45 3222.90
3158.32 3159.84 3155.59 3240.00

SOURCE: Bortoli (2011), Aguiar et al. (2004)

mode. If we compare the exaggerated representation of the spherical harmonics
from Figure 3.1 and the mass distributions of the body model c) in Figure 4.2 we’ll
start to make some sense of why this grouping happens, at least from a qualitative
standpoint.

4.2.1 A qualitative example

To help keep in mind that these bodies are not perfectly modeled by the spherical
harmonic functions anymore and to choose a set of characters that allow a more
direct pictorial representation of the underlying physics, from now on I’ll be using
the following notation to symbolize the quadrupole modes of quasi-spheric bodies1.
Since there is rotational symmetry around the vertical axis, I’ll designate it a north-
south axis and use words such as “equator”, “northern” and “southern hemispheres”
and other geographical terms when suitable. For m = ±2: ⊕ and ⊕′; for m = ±1:⊗ and ⊗′; finally, for m = 0: ⊙. The primed symbol denotes a rotation around the
vertical (π/2, a priori). To represent a mode that could not be identified I’ll use©?.

Assuming the holes on the surface are perfectly located and drilled, there should be
no practical distinction on the mass distribution to define a plane that bisects the
body (c) of Figure 4.2 into “oriental” and “occidental” hemispheres. Therefore, the

1I’ll use this terminology when describing any body that is derived from a solid sphere within
a limited number of operations, while still mantaining overall roundness
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Figure 4.2 - Isometric rendering of the section of three quasi-spheric bodies with different
features studied in a previous work.

SOURCE: Adapted from Bortoli (2011).

non-prime and prime modes are still degenerate.

Each mode frequency is more sensitive to the participation of a mass element where
their displacement is greater. For modes ⊕ and ⊕′, corresponding to the modes
Y2±2, the solutions for radial displacement in respect to the spherical coordinates
angles are

Y −2
2 (θ, φ) = 1

4

√
15
2π · e

−2iφ · sin2 θ (4.1)

Y 2
2 (θ, φ) = 1

4

√
15
2π · e

2iφ · sin2 θ (4.2)

Averaging the variation along φ, these modes will have no displacement when θ = 0
and maximum for θ = π/2. Both functions are also symmetric in respect to θ = π/2
in the range (0, π), because of sin2 θ.

For modes ⊗ and ⊗′, corresponding to the modes Y2±1, the solutions for radial
displacement in respect to the spherical coordinates angles are
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Y −1
2 (θ, φ) = 1

2

√
15
2π · e

−iφ · sin θ · cos θ (4.3)

Y 1
2 (θ, φ) = −1

2

√
15
2π · e

iφ · sin θ · cos θ (4.4)

Averaging the variation along φ, these modes will have no displacement when θ =
π/2 and maximum for its absolute value for θ = π/4, 3π/4.

For modes ⊙ corresponding to the mode Y20, the solutions for radial displacement
in respect to the spherical coordinates angles is

Y 0
2 (θ, φ) = 1

4

√
5

2π ·
(
3 cos2 θ − 1

)
(4.5)

Other than no dependence of phi, this mode has maximum displacement when θ = 0
and maximum for its absolute value for θ = π/4, 3π/4.

Not only that, but their derivatives in respect to θ around 0 will would indicate that
even as modes m = 1 and 2 have a node around 0, for any value & 0 the behavior
is already different enough to warrant a degeneracy break.

If these intuitions are correct, a small conical cut from the surface to the center (in-
dependent of Γandφ) of a once perfect solid sphere would break degeneracy between
2, 1 and 0. That would also be the case if an inverted conical trunk was added some-
where on the surface. In both cases, a preferential axis of symmetry would appear,
aligning the θ = 0 axis from the harmonics to the revolution axis.

As a conjecture, any small deformation, adding or removing mass in such a way that
spherical symmetry is lost, but cylindrical symmetry is maintained would produce
a similar effect on the frequency structure.

Running a quick simulation indicates that this is the case. From a model of the solid
CuAl sphere from Figure 4.2 (a) a model was generated. The simulated material
now is slightly different, but still is the accepted range of values for this alloy, hence
why the values differ from Table 4.2. Only the arrangement of the frequencies is of
interest in this section. The render of this model and of some of its modes is shown
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in Figure 4.3. The results for the values of the frequencies for the five quadrupole
modes are in Table 4.2.

Figure 4.3 - Representation of the quadrupole modes in a FEM simulated quasi-sphere
with a conical plug removed.

SOURCE: From the author.

Table 4.2 - Frequencies of quadrupole modes of a CuAl6% quasi-sphere with azimuthal
symmetry. As stated previously, a small allowance must be made for the dis-
cretization errors and should consider f⊕ = f⊕′ and f⊗ = f⊗′ .

Mode Frequency (Hz)⊕ 3268.1⊕′ 3268.8⊗ 3277.6⊗′ 3277.6⊙ 3285.1

SOURCE: From the author

With this in mind, it should be no surprise that the addition of the vertical through
hole would at least break the frequency structure into the 2 + 2 + 1 grouping as the
simulations by Bortoli (2011) had already shown.

No assertion can be made here on the ordering of these groups.

4.3 Challenges for the Schenberg project

The sensitivity curves calculated so far for the detector consider an analytic model
that assumes the antenna as a solid sphere. These calculations consider the coupling
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of the five degenerate modes to single-mode resonant transducer of the same fre-
quency (MERKOWITZ; JOHNSON, 1995) or to two-mode resonant transducer (COSTA,
2006).

In the latter case, these couplings produce a structure of frequencies comprised of
17 resonant frequencies centered around the sphere quadrupole frequency. Much
work was also done to study the effect of noise sources and how they are added
to the signal (ANDRADE, 2001; ANDRADE et al., 2004; FRAJUCA et al., 2004) and
what would this mean for the determination of the properties of the gravitational
radiation (MERKOWITZ; JOHNSON, 1997).

However, there is a problem that arises when trying to match the frequency arrange-
ments from the models cited above with what was measured so far. The analytical
model for the isolated antenna, that assumes degenerate quadrupole modes, assumes
the resonant frequency at 3206.3 Hz (COSTA, 2006)). The FEM model from Bor-
toli (2011) predicts modes at (3117.93, 3118.23, 3138.27, 3138.45, 3155.59)Hz, which
averages at 3133.69 Hz and has the 2 + 2 + 1 characteristic structure. The data
from Aguiar et al. (2008), however, indicates that the resonant frequencies of the
quadrupoles of the antenna are (3172.50, 3183.00, 3213.60, 3222.90, 3240.00)Hz with
〈f〉 = 3206.4 Hz. And not only all values are different, be no pattern can be seen in
the distribution of the frequencies.

Furthermore, work by Gottardi et al. (2007) on the results obtained by MiniGRAIL
identified the resonant modes of the antenna coupled to the transducers, but without
explanation on how they were structured. Although the number of detected modes
was right, given the number of transducers installed in that situation, the explana-
tion for how they were distributed position was not conclusive. The paper indicated
that the root cause was the cross-coupling between the transducers, whose tuning
differed ever so slightly, but did not propose a model capable of reproducing those
results. Despite being a sound argument from a physics perspective, there is reason
to believe that perhaps there is at least another effect at play here.

On the next chapter, this problem will be addressed with models that could explain,
at least partially, this behavior.
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5 A NEW MODEL

As the data indicates, the five modes of the antenna seem to be non-degenerate
(AGUIAR et al., 2008). As shown in Section 4.2, allowing the mass distribution for
breaking the spherical symmetry did affect the distribution of the frequencies. Per-
haps, it is a good idea to keep the concept of breaking symmetries.

As was done before with θ, it is worth considering what’s the role of φ in the spherical
harmonics equations.

The easiest bit to consider is that

dY 0
2

dφ = 0 (5.1)

For the modes m = ±1, the dependence in φ in these two modes differs since:

Y −1
2 (θ, φ) ∝ e−iφ (5.2)

Y 1
2 (θ, φ) ∝ eiφ (5.3)

And since the sphere eigenfunctions are dependent on the harmonics, and we’re
trying to understand how a different mass distribution will affect differently the
modes of oscillation, it serves at least as an indication that, a break of symmetry in
φ could result, given the equations of motion, in breaking their pair degeneracy.

There is no indication of how the modes from the empirical results are ordered. But,
from now on, I’ll assume that the two lower and two middle frequencies are the two
duplets (equatorial ⊕ and oblique ⊗, for simplicity) and the highest is the singlet
(prolate-oblate ⊙).

In the rest of this chapter, two main hypotheses will be considered. To produce
a mass distribution that lost azimuthal symmetry, perhaps either the geometry is
still symmetric, but the material is inhomogeneous or the geometry itself. is not
symmetric , therefore, from the start may not be able to consider homogeneity

5.1 Influence of variations of the material properties

One of the main assumptions made when modeling the antenna is that the physical
properties of the material are homogeneous and isotropic. However, this is just a
simplification that allows us to develop the theory of elastic bodies in a much simpler
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way. So, when the models are not capable of reproducing the results obtained from
experiment perhaps it’s time to challenge this assumption.

The body of the antenna was made from a bronze monolith that was cast and then
machined. Both of these processes have precedents of suffering from effects that
produces non-homogeneous materials. As the material is poured into the crucible, the
molten metal cools differentially in different points of the pour. The regions that are
closer to the walls and bottom of the crucible will exchange heat differently from the
top, that is exposed to air. As solubility is a property dependent on the temperature,
the kernels of the crystalline structure have a slightly altered composition from the
exterior frontiers of the grain (while also depending on the position in the body).
Furthermore, gravity also plays a role in the way the composition vary vertically.
The freezing of the liquid also introduces strains between the regions – and that
would change in posterior heat treatments (CAMPBELL, 2015).

Although the formation of bubbles and cracks are also well known defect of the
casting process, there is no evidence to consider that this is the culprit. The high
mechanical factor that was measured, in addition to no sight of porosity in the
machined surfaces led us to believe that a good stock was obtained from the pour.

The machining could also cause the work hardening of the regions near the surface
of the body, specially considering that it is composed of an alloy of copper, a metal
well known for suffering from this problem (CALLISTER; RETHWISCH, 2014).

Following this rationale, there are two ways to proceed. The first would be to try and
sample pieces from several spots of the original stock for their physical properties
through metallurgical analysis. There are several challenges here. First, there is the
feasibility of conducting this research given the timetable of this work and the assets
in our laboratory. And then there are the limitations of conducting non-destructive
measurements of the antenna or being restrained by the samples that could be
sacrificed.

The other route would be to try to model the effects of a heterogeneous body in
the final antenna. Even if little information could be retrieved from this model on
the exact nature of the distribution of the mechanical parameters around the body,
a toy model of sorts could at least suggest if this would be a feasible explanation
for the problem of the frequencies’ distribution. And that was chosen and will be
presented in the next section.
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5.1.1 Heterogeneous model simulation

A realistic model of how the properties could vary given the manufacturing history
of the detector would be a difficult challenge to overcome. The first step would
involve modeling a cylindrical stock of cast aluminium bronze and how the chemical
and physical properties would evolve during cooling and crystallization. This stock
would then be reduced to a quasi-spherical body, in a way that could introduce
work hardening. Given that there is no reason to pursue this level of detail before
either a qualitative evaluation or exhausting other possible explanations, the model
simulated here is simple, albeit unrealistic.

Instead of considering a model containing a gradient of a given property, these simu-
lations introduces different regions with a discontinuous interface, each homogeneous
in themselves. To do this, I’ll start with the model that was drawn previously in
SolidWorks by Bortoli (2011). The body of the antenna was sliced into eight octants,
following the cartesian XYZ planes at the origin, as shown in Figure 5.1.

Figure 5.1 - Drawing of the sliced antenna body.

SOURCE: From the author.

For the simulation, the body was composed of combinations of slices that were
attributed different materials. All were derived from a base material of Poisson’s
ratio 0.3 and density of 8077.5 kg/m3, the only changing parameter was the Young’s
module.
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The objective was to obtain mode frequencies as close as possible to the 2004’s
results. So, in each step a change was introduced to the Young’s module of one or
more octants that I believed would lead closer to the goal.

Eventually, all quadrupole modes’ frequencies obtained were within 1% of the desired
frequency, as shown in 5.1. As this exercise was more qualitative in nature, no further
effort was spent in fine-tuning nor in exploring changes in other material properties
or chopping the body in more parts.

The lesson that can be extracted here is that the explanation for the frequency
arrangement of the quadrupoles of the quasi-sphere could be, at least in part, due
to a heterogeneous material. The confirmation of this hypothesis would require the
metallurgical analysis of some samples of the stock and computational power to
produce a higher resolution FEM model capable of including a more realistic elastic
body.

If confirmed, perhaps a revised sensitivity curve would be required. It should allow
for corrections in ρ(r), λ(r) and µ(r). From the equations of motion that where
shown in Chapter 3, this will influence the elements of matrices M , K and C, that
are themselves linked to the transfer function of the equipment.

5.1.2 Density of the sphere

Another issue encountered as these models were constructed was the fact that the
value of density of CuAl6% is inconsistent between publications and was never prop-
erly verified. Some examples of the values used range from 7073 kg/m3 to 8077 kg/m3

(ANDRADE, 2001; BORTOLI, 2011).

It would be cumbersome to do any weight measurements on the> 1ton body. Luckily
many other parts were produced from stock from the same pour. If we assume that
the composition is about the same across all castings, it would be possible to produce
a good estimation of the density of the antenna.

Here, a frame on top of a scale suspended a piece of aluminium bronze through a steel
wire of negligible volume. As a vessel with water was introduced to envelope the body
and water was displaced, a difference was registered on the scale. Figure 5.2 shows a
picture of the process. Using Archimedes’ principle and averaging out measurement
from multiple pieces, the calculated value for density is ρ = (7.96± .02)g/cm3.
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Table 5.1 - Frequency of quadrupole modes in a heterogeneous quasi-sphere. Results of
FEM simulations of the antenna body divided into octants of different materi-
als. In each row, a different body was simulated. The letters indicate which com-
binations of materials were chosen for the octants. The position of the letter in-
dicates the position of the octant, starting of top-left-front octant and spiraling
downward. The Poisson’s ratio is 0.3 and density of 8077.5 kg/m3, the Young’s
moduli are named as neutral = 1.345×1011 Pa; stronger = 1.4×1011 Pa; weaker
= 1.3× 1011 Pa; Weakest = 1.25× 1011 Pa. The color of the cell indicates pro-
portional difference from the 2004 empirical results. Green means closer, red
means worse. The undivided model is the benchmark "classical" FEM model.

2004 results 3172.49 3183.00 3213.62 3222.90 3240.00
undivided model 3225.4 3226.4 3254.6 3255.1 3269.6
nnnnnnnn 3230.2 3231 3255.2 3255.6 3267.9
snnnnnnw 3232.1 3232.5 3256.8 3258.1 3269.9
swnnnnnn 3231.6 3232 3254.6 3259.3 3269.8
sswnnnnn 3239.0 3240.1 3264.8 3266.8 3278.6
wwwwsnnn 3214.1 3215.3 3235.3 3238.4 3248.3
wwwwsnnw 3205.9 3207 3229.5 3231.3 3242.2
Wwwwsnnw 3198.9 3199.7 3221.6 3223.3 3233.5
WWwwsnnw 3192.7 3193.6 3214.5 3215.5 3225.5
WWwwwwns 3184.9 3186.3 3207 3212.2 3221.6

SOURCE: From the author.

5.2 Influence of variations of the geometry

Other than changing the properties of the material, a mass distribution will change
if the position of the mass elements change, i.e. if the body has a different geometry.

This section challenges the assumption that the body of the antenna is derived from
an ideal sphere on which surface features were added. As discussed in 4.2.1, adding
holes or bumps in the surface is enough to break degeneracy. Now, the goal is to use
these features to fine tune the quadrupoles frequencies to match a desired set.

To try and reproduce the results from 2004, an arbitrary mass distribution was con-
structed that behaved the same – in terms of frequency arrangement of quadrupole
modes – to the empirical results.

5.2.1 Arbitrary round shape

In this first attempt I won’t bother with the practicality aspect of the model. The
goal here, other than obtained the desired frequencies, is to develop the sensibility
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Figure 5.2 - Picture and diagram of the process for determining density. A sample of the
CuAl alloy was suspended from a wire of negligible mass and volume, con-
nected to a frame that sits atop a scale. As a bucket of water is inserted
beneath then submerges the sample, the scale should register the weight of
displaced liquid.

SOURCE: From the author.

of how different geometries impart different responses in frequency.

The rule of thumb to follow in order to tune the quasi-sphere is that, as each
quadrupole has regions where deformation is maximum and minimum, changing
the amount of mass in these regions will have much or no impact, respectively. As
in, a mode can be “sensitive” to the presence of mass in a region and “blind” to
another. And as would be expected from all spring-mass models, adding mass will
lower that frequency, removing mass will raise it.

An extra consideration has to be made in regions that will affect the behavior of
multiple modes.

At the time, as I was exploring alternative mechanical coefficients as a way to change
the arrangement of frequencies, these simulations was done using a material slightly
different from the one used by Bortoli (2011), hence the difference from the results
of similar geometry presented on Table 4.2. Since the objective of this work is to
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explore the behavior of the frequencies in a macro scale, it is safe to proceed and the
results can be compared taking this into account. With this in mind, let’s start with
a solid sphere of CuAl6%, 65cm in diameter. Then, the central hole and flanges were
added. Followed by bands of a straight profile and cylinders normal to the surface.
These steps are shown in Figure 5.3 and the results in 5.4.

Figure 5.3 - Process of adjusting frequencies for quasi-sphere. a) Started with sphere, b)
added central hole, c) added flanges to central hole, d) band on the equator,
e) disc on the equator, f) disc on the opposite side and lower hemisphere, g)
band on the upper hemisphere. Primed indexes are the respective views with
section. * is rotated around the vertical axis to show detail. The results are
presented in Table 5.2.

SOURCE: From the author.

It was not difficult to develop an art that allowed to quickly reach the desired stage.
The simulated mode frequencies for each step are presented in Table 5.2. The solid
presented in step g has the frequency arrangement that approximates the most the
experimental results.

5.2.2 Alternative round shapes

To indicate that the geometry obtained in the previous section was not special, that
its, to show that there are multiple quasi-spherical geometries that could have the
same quadrupole modes frequency distribution, two additional models were pro-
posed.

As the same as before, both went through an iterative process where changes that
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Table 5.2 - Frequencies of quadrupole modes in the process of adjusting frequencies for
quasi-sphere. Reference Figure 5.3. Each step I tried to get closer to the 5
modes of 2004 The color of the cell indicates deviation from 2004 empirical re-
sults. Green means closer, red means worse. Undivided model is the benchmark
"classical" model from previous works, although considering another alloy.

a) 3276.6 3277 3277.1 3277.5 3277.7
b) 3243.7 3244.6 3261.6 3261.9 3275
c) 3175.8 3176.2 3220.1 3220.8 3241.7
d) 3177.5 3177.8 3220.4 3220.9 3241.4
e) 3176.4 3176.8 3220.9 3221.2 3242.3
f) 3171.2 3176.2 3220 3221.3 3240.6
g) 3170.2 3175.8 3218.5 3221.2 3240.1
Results 2004 3172.49 3183 3213.62 3222.9 3240

SOURCE: From the author.

brought it closer to the desired specifications were incrementally added.

The two models are called “sea mine” – arrays of cylinders glued to the surface as
the spikes of a sea mine – and “ribs” – protrusions of semicircular profile that go
around circles parallel to the plane of the equator. Both are represented in Figure
5.5.

It is worth mentioning that the choice of meshing has an effect on the simulated
frequency values, as is seen in Figure 5.6. In conclusion, it is possible to chose
multiple geometries that deviates from the original design of the antenna and that
has the same (or almost) quadrupole modes frequencies as measured empirically.
Therefore, it is reasonable to consider that perhaps the shape of the physical antenna
is not exactly as designed and this would explain (at least partially) the frequency
arrangement that is observed.

5.2.3 Ellipsoidal shapes

The models presented in the previous section were useful for giving an insight of
what could be the root cause of the difference between the frequency arrangement
of simulated original model and the measured results. But those models weren’t a
realistic representation of what could have happened with the antenna.

To search for possible culprits, one must understand how the antenna was machined.
The initial bronze cylinder was turned down in a vertical lathe to a hemisphere. Here,
the usual limitations on the tolerances achievable by the machine apply, so the final
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Figure 5.4 - Frequencies distribution of the models presented in Figure 5.3 and compari-
son with the adapted FEM model (BORTOLI, 2011) and experimental results
(AGUIAR et al., 2004).

SOURCE: From the author.

result will only be as spherical as the setup allows. Later, the piece is flipped, so the
hemisphere is being held and the rest of the cylinder is machined down. Flipping
a piece in such manner can introduce offset and misalignment errors between the
actual and former revolution axis. These will be minimized by the machinist, but
never eliminated.

To create a model that might simulate these and other manufacturing limitations,
I’ll assume that the body of the antenna can be approximated by an ellipsoid. To
include the possibility of breaking the most symmetries, some cases will consider
that all axes have different lengths (a 6= b 6= c).

The CAD model was reconstructed using two arcs of ellipses, drawn concentrically in
two perpendicular planes in such way that the plane defined by the axis of the ellipsis
is orthogonal to the first two. In the third plane, another arc of ellipsis, concentric
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Figure 5.5 - “Sea mine” and “ribs” models.

SOURCE: From the author.

and connecting the first two arcs. Using an interpolation function (“loft”) of the
software, a quarter of the ellipsoid was build. With some mirror operations and
steps to recreate the remaining features of the body, and this model of the antenna
was finally achieved. Furthermore, the system of coordinates comprised of planes of
the ellipses could be misaligned in relation to the ẑ axis. Figure 5.7 shows a sketch
of the model. To change the shape of the ellipsoid, it is only needed to change the
length of the ellipses axes and everything else is automatically recalculated.

Again, the technique was to evolve the model to get closer to the results from the
2004 experiment. The results of the FEM simulation are presented in Table 5.2.3.

Once more, it was not difficult to change the geometries through trial and error until
one satisfies the frequency distribution. And, in the end, despite the fact that the
final shape is unrealistic, and such exaggerated deformation would already be known,
this result makes necessary to quantify how much the physical antenna deviates from
the spherical model.

5.2.3.1 Measurements of sphericity of the antenna

A spherometer, a piece of equipment devised to measure a radius of curvature, was
built to verify how aspheric is the body of the antenna (Figure 5.8). If the man-
ufacturing produced a piece perfectly true to the original design, the spherometer
should register a radius of 325.00mm at any point, supposing the surface features
are avoided.

The construction of the spherometer is straightforward. A square “C” frame touches
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Figure 5.6 - Frequencies distribution of the “sea mine” and “ribs” models as simulated by
FEM. 3 runs for each, accounting different meshing parameters.

SOURCE: From the author.

the surface of the sphere in two points, and a depth micrometer located at the
arch’s midpoint is able to measure the sagitta of the curve, as represented in Figure
5.9. Once that is known, it is possible to use some simple geometric relations to
determine the radius of that arc. From Pythagoras theorem, the following equation
is derived:

R = 1
2

(
(d/2)2

g + z − h
+ g + z − h

)
(5.4)

With the spherometer in hands, the radius of curvature was measured around the
antenna. Due to the existence of the holes and flanges, not all regions of the sphere
were suitable. Also, the body is supported on a pedestal that restricts the access to
the southern hemisphere.

Since the objective of this measurement is to first establish the average sphericity of
the antenna and not to construct an exact map of its topology, the location of the
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Figure 5.7 - Ellipsoid model of the antenna.

SOURCE: From the author.

points is not exact. It was enough to distribute them as evenly as possible around
the surface. They are located around three circles parallel to the equator (Top:
∼ +10◦, near the holes on near the equator, Mid: ∼ +52◦, near the northern holes,
and Bottom: ∼ −45◦ as far as the pedestal would allow). In each circle, 6 points,
following the meridians defined by the holes on the surface (around 60◦ between
each other).

Another test for sphericity is that the value for curvature at a point should not vary
with the orientation of the instrument. Hence, for each point, the radius was mea-
sured twice, rotating the spherometer circa 90◦ around the normal of the sphere. In
tables 5.2.3.1 and 5.2.3.1 the arrow symbols show the alignment of the spherometer
and the local cardinal directions on the surface (l: north-south and so on). The
choice of the directions was limited by the presence of the surface features and the
pedestal.

Much care was taken during measurement to guarantee that the instrument was
as normal as possible from the surface, without introducing any bend or twist. To
hold the instrument against the piece, without causing a sag, the arch was held with
multiple pieces of adhesive tape, always kept taut and consistent between measure-
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Table 5.3 - Parametric model of ellipsoid shaped antenna. A, B and C are the length of
the semiaxes, in mm. θ is the angle of between the axis of length A and the
vertical.

A B C θ Modes
(mm) (mm) (mm) (deg)

⊕ ⊕′ ⊗ ⊗′ ⊙
2004 - - - - 3172.5 3183.0 3213.6 3222.9 3240.0
data

El
lip

so
id
al

m
od

el
s

325 325 325 0 3225.4 3226.4 3254.6 3255.1 3269.6
330 325 325 0 3220.7 3221.3 3232.5 3233.3 3241.8
330 330 325 0 3197.3 3198.7 3211.3 3227.7 3233.8
330 330 325 5 3197.0 3199.3 3211.8 3228.3 3233.6
330 325 325 5 3220.4 3220.9 3232.4 3234.2 3241.8
330 325 320 5 3236.0 3236.4 3243.3 3256.6 3259.1
330 330 325 10 3196.1 3198.5 3212.1 3228.3 3234.5
330 325 325 10 3219.4 3219.6 3233.5 3233.7 3243.0
330 325 335 10 3172.5 3179.4 3190.5 3222.0 3226.8
330 325 332 10 3187.6 3191.7 3202.9 3224.9 3229.8

SOURCE: From the author.

ments.

Another issue was due to the geometry of the corner of the foot of the spherometer.
Since it was a straight edge that made contact only on one point against a curved
surface, some effort was spent to balance the instrument.

Also, as the thimble was rotated and the probe made contact with the surface, the
normal force was enough to lift one of the foots of the frame. So, the micrometer was
adjusted, so the ratchet would disengage with the smallest amount of force possible,
and the frame was pushed gently to be kept in place.

Using the data presented in Table 5.2.3.1 and the Equation (5.4), the radius of
curvature for each position and direction was calculated. These results are shown in
Table 5.2.3.1.

This experiment showed two new pieces of information. First, the antenna is much
more spheric than the cases being considered in the simulations made last section,
with a radius of curvature R = 323.3+.2

−.3 mm. And secondly, the value being consid-
ered for the radius in all previous work (325 mm) is wrong.
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Figure 5.8 - Photo of the spherometer.

SOURCE: From the author.

5.2.3.2 Simulation from empirical data

Now that the sphericity was measured, it is interesting to estimate how much of the
frequency arrangement can be explained by the geometry.

One simulation was made using the “worst” scenario data, that is, using the max-
imum and minimum measured radii (323.03, 323.50 mm) as the semimajor and
semiminor axis of the ellipsis, with the intermediate being the average (323.33 mm).

However, the results obtained were not reliable. As mentioned before, the choice of
mesh parameters will have an effect on the exact value of the resonant frequencies.
In this case, minor tweaking on the meshing, either increasing or decreasing the
resolution, was enough to change the distribution of frequencies more than when
changing the value of the radii up to the desired combination.

Therefore, although it seems safe to assume that due to the imperfections of the
surface some variation is introduced in the way the frequencies are arranged, it is
now possible to know how much, at least for now.
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Figure 5.9 - Diagram of a spherometer.

SOURCE: From the author.

5.3 Simulation of most correct model

Finally, in order to improve upon the values available in the literature, a new
simulation was done using the values measured and presented in this chapter.
Here, an antenna based on a sphere is considered, with radius 323.33 mm and
densityρ = (7.96± .02)g/cm3. Young modulus and Poisson’s ratio were unchanged.
Results are in Table 5.3.

The simulation was repeated after adding the model for transducers. As shown
in Table 5.7, 17 modes were found. The models were visually identified from the
animations generated by SolidWorks. This visualization rendered a model with ex-
aggerated deformation and color scale representing radial displacement. Since the
scale of deformations of surface and the secondary oscillators varies greatly, given
the mechanical advantage, some adjustment is required to provide an adequate level
of detail. From those there are three groups of quadrupole modes (3× (2 + 2 + 1))
and 2 modes where the surface of the sphere was still and all R1 and R2 oscillated
together. In one case, the membranes r2 traveled along their respective transducers
(in phase, φ = 0) and in the other, the membranes flexed against the movement of
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Table 5.4 - Readings of the micrometer for each position on the surface of the antenna.
Arrow symbols are alignment of the spherometer in respect to the local cardinal
directions on the surface (l: NS, ↔: EW, and so on). Latitudes of the point
can be Top (∼ +10◦), Mid ∼ +52◦ and Bottom ∼ −45◦. Columns are the
longitude.

h (mm) 0◦ 60◦ 120◦ 180◦ 240◦ 300◦

←→ 18.58 18.58 18.55 18.55 18.58 18.56
Top

←→ 18.58 18.56 18.55 18.58 18.53 18.56
l 18.57 18.55 18.54 18.58 18.55 18.55Mid ←→ 18.59 18.55 18.55 18.56 18.55 18.51

←→ 18.54 18.56 18.56 18.55 18.50 18.57
Bottom

←→ 18.55 18.58 18.57 18.53 18.58 18.58

SOURCE: From the author.

Table 5.5 - Calculated radius of curvature for each position on the surface of the antenna.
Arrow symbols are alignment of the spherometer in respect to the local cardinal
directions on the surface (l: NS, ↔: EW, and so on). Latitudes of the point
can be Top (∼ +10◦), Mid ∼ +52◦ and Bottom ∼ −45◦. Columns are the
longitude.

R (mm) 0◦ 60◦ 120◦ 180◦ 240◦ 300◦

←→ 323.45 323.45 323.29 323.29 323.45 323.34
Top

←→ 323.45 323.34 323.29 323.45 323.19 323.34
l 323.40 323.29 323.24 323.45 323.29 323.29Mid ←→ 323.50 323.29 323.29 323.34 323.29 323.08

←→ 323.24 323.34 323.34 323.29 323.03 323.40
Bottom

←→ 323.29 323.45 323.40 323.19 323.45 323.45

SOURCE: From the author.

the transducers (out of phase, φ = π).
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Table 5.6 - Frequencies of quadrupole modes of most accurate model of isolated quasi-
sphere.

323.33mm sphere mesh
fine finer finest Results 2004

M
od

es

⊕ 3177.4 3178.0 3179.7 3172.49 ©?

⊕′ 3178.0 3179.4 3180.2 3183.0 ©?

⊗ 3203.9 3202.5 3202.9 3213.62 ©?

⊗′ 3204.4 3203.3 3203.2 3222.9 ©?

� 3217.9 3219.3 3219.5 3240.0 ©?

SOURCE: From the author.

Table 5.7 - Frequencies of quadrupole modes of most accurate model of quasi-sphere with
transducers. Symbols denoted with ? indicate that a some ambiguity was
present in the identification of the mode. Symbols denoted with R indicate that
the harmonics were aligned with a system of coordinates rotated in respect to
the axis of the antenna. Modes were identified visually from the animations
rendered by SolidWorks

r2(φ = 0) 3147.2⊙ 3155.3⊕ 3161.9⊗ 3177.0⊕′ 3196.2⊗′ 3202.1⊕? 3213.4⊕′? 3217.3⊗? 3233.8⊗′? 3237.5⊙ 3250.6
r2(φ = π) 3361.9⊗R? 3367.7⊙R 3371.6⊕R? 3376.1⊗′R? 3381.4⊕′R? 3385.0

SOURCE: From the author.
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6 SENSITIVITY CURVE

Previous works have calculated the sensitivity curve for a TIGA arrangement based
on a sphere with degenerate quadrupole mode and containing six transducers, all
tuned to the frequency of the quadrupole. Merkowitz e Johnson (1995) considered
the transducer as a single oscillator. Costa (2006) expanded upon the previous one
by allowing transducers as a pair of coupled oscillators. Here, the quadrupole modes
are no longer considered degenerate, but rather, each one can vibrate at a unique
frequency. The introduction of this feature better reflects the reality of how oscil-
lators interact with one another, thus might produce a more faithful picture of the
frequencies arrangement and the behavior of the sensitivity curve. This allows the
use of empirical data (AGUIAR et al., 2004) to fix the frequencies of the quadrupole
modes.

6.1 Noises

In this section, a brief overview of the noises is given (COSTA, 2006). Thermal noise
occurs due to the thermal kinetic energy that the detector has due to its temperature.
The equipartition of energy dictates that the energy should be, on average, equally
divided into every degree of freedom. This includes the mechanic vibration of the
components of the instrument. Here kb is the Boltzmann constant, T the temperature
of the system, mi mass of the element, Qi its mechanical quality factor.

SThermal = 4kbTω
mi

Qi

N2/Hz (6.1)

The back action noise is a consequence of the electromagnetic coupling between
the source of microwaves and the cavity of the transducers. It is dependent on the
parameters of the pump, such as amplitude noise Sam ∼ −140 dBc/Hz, incident
power P 2

inc, pump frequency ωp (angular) or p (Hz), the cavity parameter df/dx,
quality factor Qe.

SBA = P 2
inc

2ω2
p

(
2Qe

fp

df
dx

)2

Sam N2/Hz (6.2)

Similar to the previous case, the phase noise is also dependent on the character-
istics of microwave source. This is a consequence of the pump not being perfectly
monochromatic. The phase noise of the pump is Spph ∼ −130 dBc/Hz.

Sphase = Spph

(
2π
ω

df
dx

)−2

m2/Hz (6.3)
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Lastly, series noise arises during the amplification of the signal. It depends on the
amplifier noise temperature Tamp.

Sseries = Lamp
(Tamp + T )kb

Pinc

(
2Qe

fp

df
dx

)−2

m2/Hz (6.4)

6.2 Model of the curve

From (3.52), the power spectral density Sg = g̃2 should be:

Sg(ω) = |ξ̃(ω)|2SFS (ω) + |Ω̃1(ω)|2SFN
1 (ω)|Ω̃2(ω)|2SFN

2 (ω) (6.5)

So, considering Equation (3.56)

h̃(ω) =
∣∣∣∣∣ 2
ω2mSχR

ξ−1(ω)
√
Sg(ω)

∣∣∣∣∣ (6.6)

Now, it is needed to find a way to find a expression for the PSD. Using (3.34),
rewrite it so the terms are

M ′ẍ+ C ′ẋ+K ′x = Pf (6.7)

where

x =


Ä(t)
q̈1(t)
q̈2(t)

 ; F =


F S(t)
F1

N(t)
F2

N(t)

 ; P =


I −αB 0
0 I −I
0 0 I

 (6.8)

Defining the ratios µ2 = MR1/Meff , ν2 = MS/Meff , it becomes:

M ′ =


mSI 0 0

mR1αB
T mR1I 0

mR2αB
T mR2I mR2I



M ′ = Meff


ν2I 0 0

µ2αBT µ2I 0
µ4αBT µ4I µ4I

 = MeffM (6.9)
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Next, let’s do the same for the matrix of elastic coefficients. Pay attention that,
difference from previous model, now kS comprises of multiple values

K ′ =


diag(kS) −kR1αB 0

0 kR1I −kR2I

0 0 kR2I



K ′ = Meffω
2
0


ν2diag

(
ω2

n

ω2
0

)
−µ2αB 0

0 µ2I −µ4I

0 0 µ4I

 = Meffω
2
0K (6.10)

And to the the dampening coefficients

C ′ =


diag(HS) −HR1αB 0

0 HR1I −HR2I

0 0 HR2I



C ′ = Meff
ω0

Q


ν2diag

(
ωn

ω0

)
−µ2 Q

QR1
αB B

0 µ2 Q
QR1

I −µ4 Q
QR2

I

0 0 µ4 Q
QR2

I

 = Meff
ω0

Q
C (6.11)

Therefore, the movement equations can be rewritten as

MeffMẍ+Meff
ω0

Q
Cẋ+Meffω

2
0Kx = PF (t) (6.12)

To proceed, let’s define the matrix N

N =


I/ν 0 0
0 I/µ 0
0 0 I/µ2

 (6.13)

Using it, define new matrices

Cy = (NMN)−1NCN (6.14a)

Ky = (NMN)−1NKN (6.14b)

P y = (NMN)−1NP (6.14c)

With a change of coordinates x = Ny, the system of equations will be rewritten in
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a diagonal form:

MeffNMNÿ +Meff
ω0

Q
NCNẏ +Meffω

2
0NKNy = NPf (6.15)

Now, substituting the matrices (6.14)

Meff ÿ + 2βMeffM
−1
y Cyy +Meffω

2
0M

−1
y Kyy = M−1

y P yf (6.16)

Denoting Cz = M−1
y Cy, Kz = M−1

y Ky and P z = M−1
y P y, the equations will be

Meff ÿ + 2βMeffCzy +Meffω
2
0Kzy = P zf (6.17)

now with the use of a modal matrix U and some algebraic manipulations, we can
diagonalize this matrix:

MeffU
−1ÿ + 2βMeffU

−1CzUU
−1ẏ +Meffω

2
0U
−1KzUU

−1y = U−1P zf (6.18)

with another change of coordinates z = U−1y, define the diagonal matrix D =
U−1KzU and take the Fourier transform

(−Meffω
2I + 2jβMeffωU

−1CzU +Meffω
2
0D)z̃ = U−1P zf (6.19)

the matrix D
D = U−1KzU (6.20)

Contains the eigenvalues from the matrix of the elastic coefficients. From these
values, the values of the frequencies of the resonant modes can be computed.

fn = ωn
2π (6.21)

These values are presented in Table 6.1.

However, the matrix of the dampening coefficients U−1CzU is not diagonal. And
not much more can be done with this approach.

So instead, there is another way to proceed. The response for each frequency can be
computed. To do this, we get back to the equations of motion

Meff(−ω2M + 2βjωC + ω2
0K)x = PF (ω) (6.22)
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Table 6.1 - Resonant frequencies of the system, in Hz, as given by the eigenvalues of the
diagonalized equation of motion and the valleys of the computed sensitivity
curves. The backaction column is singled out to emphasize its singular fre-
quency arrangement.

From eigenvalues From noise curves
Thermal Phase Serie Total Backa

3158.8 3158.7 3158.7 3158.7 3158.7 3161.6
3165.2 3165.0 3165.0 3165.0 3165.0 3169.7
3175.2 3175.1 3175.1 3175.1 3175.1 3187.6
3176.6 3176.4 3176.4 3176.4 3176.4 3187.9
3178.1 3178.0 3178.0 3178.0 3178.0 3191.0
3182.3 - - 3191.4
3191.8 3191.8 3191.8 3191.8 3191.8 3195.3
3195.1 3195.1 3195.1 3195.1 3195.1 3195.8
3210.5 3210.5 3210.5 3210.5 3210.5 3216.8
3215.2 3215.2 3215.2 3215.2 3215.2 3217.4
3221.6 3221.5 3221.5 3221.5 3221.5 3219.2
3231.3 - - 3219.7
3235.4 3235.2 3235.2 3235.2 3235.2 3232.0
3236.2 3236.0 3236.0 3236.0 3236.0 3237.9
3241.3 3241.1 3241.1 3241.1 3241.1 3250.6
3244.5 3244.4 3244.4 3244.4 3244.4
3253.7 3253.7 3253.7 3253.7 3253.7

SOURCE: From the author.

And define L so

L(ω)x = PF (ω) (6.23)

therefore

x = L−1PF (6.24)

In this manner, a relation of F and x is achieved:

x = H(ω)F (6.25)

Remember that we are most interested in the terms of q2 and FS, so, writing in an
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explicit form:

x =


Ã

q̃1

q̃2

 =


H11 H12 H13

H21 H22 H23

H31 H32 H33



F̃ S

F̃N
1

F̃N
2

 (6.26)

They are combined in the expression:

q̃2 = H31F̃ S (6.27)

Using the definition from Equation (3.23)

q̃2 = −1
2MSχRω

2H31h̃m (6.28)

using the matrix defined in (A.3), we arrive at a expression in terms of h in the
frame of the detector

q̃2 = −1
2MSχRω

2H31T V h̃ (6.29)

Let’s consider the expression for the signal to noise ratio (SNR) for a matched filter
that considers a signal h (USENKO, 2012)

ρ2 = 1
2π

∫
q̃GWH
R2 S−1

R2R2 q̃
GW
R2 dω (6.30)

The fluctuation dissipation theorem stays that, for a body with a temperature T ,
the spectral density of the Brownian noise of a resonator is

Sxx = 4kBT
ω2 Re(Y (ω)) (6.31)

We define the sensitivity curve of detector as the equivalent signal h that would be
equal to the output produced by thermal noise, that is, a SNR ρ = 1. Therefore

q̃GWH
R2 R33q̃

GW
R2 = 1 (6.32)

where R = S−1
xx . Here I’ll only be using adding the thermal noise. Adding the other

noise components will make harder to distinguish the frequencies’ arrangement,
which would be counterproductive to this work. So the results presented from now on
will be an best case scenario, with ideal, noiseless, amplifiers and pump. Substituting
the definition from Equation (6.29):

(
−1

2MSχRω
2
)2
H31

HTHV h̃
HR33H31T V h̃ = 1 (6.33)
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Now we write this equation in terms of the input variables. There is freedom to
add an angles φ in the frame of the observer, that allows the simplification of the
polarization terms, so h′× = 0 and h′+ =

√
h2

+ + h2
×. The non-zero terms that will

contribute to hS are

hS(w) = 1(
1
2MSχRw2

)√
(TvHHH

31R33H31Tv)11
(6.34)

If we now define
A = HH

31R33H31 (6.35)

averaging across all directions If we take the mean value of all directions of incoming
GW we obtain

THv ATv = Tr
(
A
)

(6.36)

That will be substituted in the previous equation so

(
−1

2MSχRw
2
)2
hS(w)2 (A11 + A22 + A33 + A44 + A55) = 1 (6.37)

Thus
hS(w) = 1(

1
2MSχRw2

)√
A11 + A22 + A33 + A44 + A55

(6.38)

Which is finally a way to compute the curve of strain sensitivity for a given spectrum.
The parameters used in the simulations are written in Table 6.2.

Evaluating the expression, each time considering only one of the noises and then
once with all their contributions. Their respective sensitivity curve are presented
in Figure 6.1. The curve indicates a working region around ∼ 10−19 /

√
Hz between

3160 and 3260Hz. A function to find the peaks was employed and 15 peaks were
detected in each curve. The values of their frequencies are presented in Table 6.1.

The dominating noise is the series noise, which almost corresponds to the total
designed sensitivity curve. The thermal, phase and backaction noises follow, each
with a decreasing contribution to the overall curve.

Comparing these frequencies obtained by the ones calculated by eigenvalues, they
match exactly for most of the curves. The backaction curve has a singular frequency
arrangement. For the remaining ones, the two values found only on the eigenvalues
column (3182.3 and 3231.3) do not have the slightest in indication in their curves.
It is not yet known with certainty what this could be, but perhaps they could be
the modes that produce no excitation on the surface of the sphere. In the simulation
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Table 6.2 - Simulation parameters.

Symbol value parameter
R 0.323m radius of sphere
MS 1124 kg mass of sphere
ρ 7960 kg/m3 density of sphere
f0n (3172.5, 3183.0, measured natural

3213.6, 3222.9, 3240.0)Hz frequencies
Q 106 mechanical quality factor
T 4.2K sphere temperature
Meff 281 kg effective mass
MR2 0.0000123 kg mass of second resonator
MR1

√
MeffMR2 kg mass of first resonator

ωR1 3206.3Hz natural frequency of first resonator
ωR2 3206.3Hz natural frequency of second resonator
QR1 105 quality factor of first resonator
QR2 104 quality factor of second resonator
F3T 3206.3Hz transducer frequency
Fpump 109 Hz pump frequency
βe 0.3 electric coupling factor
df/dx 7.26×1014 membrane frequency shift response
Pinc 5×10−11 W incident power
Tamp 8K amplifier noise temperature
Qe 3×105 electrical quality factor
Spm 10−13 phase noise spectral density
Sam 10−14 amplifier noise spectral density
Lamp 0.5 transducer-amplifier inverse coupling

SOURCE: From the author.
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referenced in Table 5.3 two of these were also detected.

Figure 6.1 - Schenberg designed sensitivity curve

.

SOURCE: From the author.

In conclusion, this new sensitivity curve shows features expected from the model
that includes a non-degenerate group of quadrupole modes, and is possibly a more
complete representation of the capabilities of the detector.
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7 CONCLUSIONS

In this work, progress was made in understanding how the quadrupole resonant
frequencies of the resonant mass depends on the properties of the mass distribution
of the body. This could provide an explanation, at least partial, for the measured
frequency arrangement of the Schenberg antenna. However, some ideas were not yet
considered, as for example, how the suspension couples with the quadrupole modes.
And, of course, there could be unknown unknowns that also could cause the observed
behavior.

To either confirm of discard this hypothesis, an experimental setup capable of mea-
suring the moments of the mass distribution would be required, perhaps with an ap-
paratus capable of rotating the antenna around any axis and registering the torque,
or pointing the position of the center of mass using statics. Both are not trivial given
the mass and of the body.

Additionally, the need for a more refined FEM simulation is justified. The measure-
ments of the radius of curvature shows an overall roundness of the body, but the
deviation from a perfect sphere should account for some of the splitting of the de-
generate pair of frequencies. Ideally, a high-resolution model would be reconstructed
from 3D measurements of the surface of the body. And metallurgical analysis from
samples could show how heterogeneous is the material and whether the simulation
should allow for variation of its mechanical properties. Overall, there’s the recom-
mendation for a commissioning that allows greater accountability, with verification
and validation steps all along the way.

In regard to the sensitivity curve, the revamped model is more in tune with the
physical reality of the frequencies’ arrangement, as it is now allowing non-degenerate
modes of the sphere. There is still space for improvement, as this model was not
derived from first principles but uses empirical data to describe the frequencies
of resonance. An avenue for improvement would be to use FEM to calculate the
frequencies from the high resolution measured geometry. With the same data we
could determine the effective mass of each mode, instead of using the one value
calculated for the degenerate modes of a sphere.

Finally, here are a set of recommendations for future resonant mass detectors. For
a tighter control on the sensitivity curve, one of the aspects of the project should
be the specification of the tolerances on the geometry of the body and mechanical
properties of the material. Additionally, care should be taken during commissioning
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to characterize and validate the model used to calculate the frequency arrangement.
Also, it was learned that perhaps it is feasible to fine tune the quadrupole frequencies,
and maybe this could be exploited to locate the resonant modes in order to either
widen the band or deepen the sensitivity curve.
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ANNEX A TABLES OF SPHERICAL HARMONICS AND DETEC-
TOR MATRIX

Y2−2(θ, ϕ) = 1
4

√
15
2π · e

−2iϕ · sin2 θ (A.1a)

Y2−1(θ, ϕ) = 1
2

√
15
2π · e

−iϕ · sin θ · cos θ (A.1b)

Y20(θ, ϕ) = 1
4

√
5
π
· (3 cos2 θ − 1) (A.1c)

Y21(θ, ϕ) = −1
2

√
15
2π · e

iϕ · sin θ · cos θ (A.1d)

Y22(θ, ϕ) = 1
4

√
15
2π · e

2iϕ · sin2 θ (A.1e)

Y1 =
√

1
2(Y22 + Y2−2) (A.2a)

Y2 =
√

1
2i(Y2−2 − Y22) (A.2b)

Y3 =
√

1
2i(Y21 + Y2−1) (A.2c)

Y4 =
√

1
2(Y2−1 − Y21) (A.2d)

Y5 = Y20 (A.2e)

Tv =
√

2



1
2(1 + cos2 θ) cos 2φ − cos θ sin 2φ
1
2(1 + cos2 θ) sin 2φ cos θ cos 2φ
−1

2 sin 2θ cosφ sin θ sinφ
−1

2 sin 2θ sinφ − sin θ cosφ
√

3
2 sin2 θ 0


 cos 2ψ sin 2ψ
− sin 2ψ cos 2ψ

 (A.3)
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