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Abstract—This paper presents a high-spatial-resolution dataset
with remote sensing images of the Brazilian Cerrado for land use
and land cover classification. The Biome Cerrado Dataset (Cerra-
Data) is a large database created from 150 scenes of the CBERS-
4A satellite. Images were created by merging the near-infrared,
green, and blue bands. Moreover, pan-sharpening was performed
between all the scenes and their respective panchromatic bands,
resulting in a final spatial resolution of two meters. A total of 2.5
million tiles of 256x256 pixels were derived from these scenes.
From this total, 50 thousand tiles were labeled. We also conducted
a few-shot learning experiment considering a training set with
only 100 samples, 11 deep neural networks (DNNs), and two
traditional machine learning (ML) algorithms, i.e., support vector
machine (SVM) and random forest (RF). Results show that the
DNN DenseNet-161 was the best model but its performance can
be improved if it is used only as a feature extractor, leaving the
classification task for the traditional ML algorithms. However,
by decreasing the size of the training set, smarter approaches are
needed. The labeled subset of CerraData as well as the source
code we developed to support this study are available on-line:
https://github.com/ai4luc/CerraData-code-data.

I. INTRODUCTION

The Cerrado, the second largest Brazilian biome, covers
23% of the national territory, extending over two million
square kilometers. It is characterized by typical phytophys-
iognomies in which woody plants have thick stems, a dark
tone, and are twisted but, in other cases, the branches can be
angled close to the ground and the tip facing upwards [2].
The term “Cerrado” has been used to refer to the biome,
a set of vegetation physiognomies, as well as to a specific
type of floristic composition that occurs in the formation of
savannas [3], as depicted in Fig. 1.

This biome is located in the tropical zone where climate
indirectly affects the characteristics and development of veg-
etation through the soil [2]. For almost all the Cerrado,
the climate is defined in two seasons: wet, occurring more
frequently between September and April, and dry, occurring
mainly between April and September. It is important to add
that at least 40% of the entire area has been converted into

pastures and extensive agricultural fields, specifically annual
crops such as soybeans and corn [4].

Hence, it is important to analyze the dynamics of land
use and land cover (LULC) using methods, techniques, and
also based on a robust dataset that offers diversity of data
for each class. Several previous studies do not use high-
spatial-resolution images set for classification using deep
learning (DL) and remote sensing techniques for some Earth
observation applications. Moreover, it is important that a
significant number of images (tiles) is used in order to have a
representative sample of a large biome like Cerrado.

In order to fulfil these gaps, we introduce a novel high-
spatial-resolution dataset with optical remote sensing images
of the Cerrado for LULC classification, aiming to facilitate
access to data ready to support machine learning (ML) and
DL models for classification and semantic segmentation. The
Biome Cerrado Dataset (CerraData) is a large database, a
total of 2.5 million tiles of 256x256 pixels, obtained from
150 scenes made by the Wide Panchromatic and Multispec-
tral Camera (WPM) of the China-Brazil Earth Resources-
4A (CBERS-4A) satellite.

Motivated by the success of DL algorithms and their appli-
cations to remote sensing tasks [5], an experimental evaluation
was conducted considering 50 thousand tiles from CerraData
and a few-shot learning setting. We compared the performance
of 11 deep convolutional neural networks (CNNs) [6] consid-
ering two learning methods: training from scratch and fine-
tuning the pre-trained model on ImageNet. We also compared
the results by using the top-performing CNNs as a feature ex-
tractor only for two traditional ML algorithms: support vector
machine (SVM) [7] and random forest (RF) [8]. Finally, we
stressed the few-shot learning aspect within our experiment.

II. RELATED WORK

In view of the great diversity of landscapes in the Cerrado,
many works select a small study area. Nogueira et al. [9]
put forward a dataset about the Cerrado, comprising the
Serra do Cipó region. It has 1,311 images of 64x64 pixels,



Fig. 1. Phytophysiognomies of the Cerrado biome. Adapted from: [1].

and five meters of spatial resolution, labeled as Agriculture,
Arboreal, Herbaceous, and Shrubby Vegetation, showing a
great diversity of landscapes and biodiversity. Tiles are formed
by the near-infrared (NIR), green (G), and red (R) bands from
the RapidEye satellite.

Lewis et al. [10] carried out a study on the Chapada dos
Veadeiros National Park, located in the Goiás state, Brazil,
aiming to classify eight native physiognomies. Sentinel-1
and 2 and Landsat-8 satellite images were used, considering
all bands to calculate the Normalized Difference Vegetation
Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and
Enhanced Vegetation Index 2 (EVI2). They used burned ar-
eas and also cloud covering masking has been considered
to remove these pixels from the images. Aside from that,
seven feature maps with 6,603 pixels with 20 meters spatial
resolution on 1,686 sites were processed by the RF algorithm.

Bendini et al. [11] proposed a method for hierarchical
classification taking into account the time series obtained from
186 observations with 8-day temporal resolution from En-
hanced Thematic Mapper Plus (ETM+) and Operational Land
Imager (OLI) cameras of the Landsat 7 and 8 satellites. These
data cover the regions of western Bahia, southeastern Mato
Grosso, and northeastern São Paulo which predominantly
belong to the Cerrado biome. Data are composed mainly
of Enhanced Vegetation Index (EVI) for biomass estimation
and, from this dataset, a dense time series is extracted over
cultivated areas.

On the other hand, Neves et al. [12] proposed a hierarchical
mapping of the Cerrado physiognomies found in the Brası́lia
Nacional Park, using a DL algorithm with eight different
datasets composed of vegetation index and images in the
visible spectrum. Three experiments were performed using
different amounts of images and regions (8,415, 10,269, and
7,641 images of 161x161 pixels, including those created
with data augmentation). The images were obtained from
the WorldView-2 satellite and have two meters of spatial
resolution.

In these previous studies, we may highlight that the spatial
and temporal resolution of satellite images is the main aspect

to create the datasets. However, regarding classification, it is
noted that the set of images with the finest spatial resolution
(less than three meters) ensures better accuracy, once this gives
the ML and DL models more features that better detail the veg-
etation of the biome, making it easier to distinguish types of
savanna or crops in agricultural areas, such as demonstrated in
Neves et al. [12]. Moreover, a higher number of images (tiles)
is beneficial since the Cerrado is a large biome, presenting to
the models more features about each class. We address both
of these issues in our research.

III. THE CERRADATA DATASET

1) Data Collection: CerraData has scenes from the Cerrado
biome which are shown in green color in Fig. 2. However,
we considered a study area delimited by the red line, cov-
ering the states Bahia (BA), Goiás (GO), Maranhão (MA),
Mato Grosso (MT), Tocantins (TO), and the unit Distrito
Federal (DF). We gathered 150 scenes without cloud covering,
each comprising one path/row in the study site, recorded
between early February 2020 to late February 2022 using the
WPM of the CBERS-4A satellite. This camera was chosen
due to the spatial resolution of the green, blue, and near-
infrared bands, which have eight meters of resolution, and due
to the panchromatic (PAN) band, since it can be combined
with other channels in order to improve the resolution even
more. In our case, the final spatial resolution is two meters.
Moreover, WPM provides orthorectified scenes, i.e., images
with radiometric and geometric correction of the system
refined by the use of control points and a digital model of
terrain elevation.

The data were preprocessed as follows. We merged the
spectral bands of near-infrared (0.77 - 0.89µm; NIR) to R
channel, green (0.52 - 0.59µm; G) to G channel, and blue
(0.45 - 0.52µm; B) to B channel, from its respective scene.
This false-color composition of NIR, G, and B bands was
chosen because it highlights the vegetation, in shades of red,
from the other objects in the scenes, such as water, soil,
and fire scars. Next, we applied pan-sharpening with the Hue
Saturation Value (HSV) method using the panchromatic (0.45
- 0.50µm; PAN) band, producing a final image with a spatial



Fig. 2. Study site.

resolution of two meters. After that, the high-spatial-resolution
multi-spectral scenes were cropped producing tiles of 256x256
pixels, preserving the geospatial information. Thus, we created
approximately 45 thousand tiles per scene. About 20 thousand
non-data tiles were removed, i.e., areas of the image with no
data. In the end, we created a large dataset with 2.5 million
usable tiles. All these processes were performed in Python,
except the pan-sharpening, which used the QGIS platform.

These unlabeled data are organized in sections, identified
by their origin states, due to data amount. Furthermore, we
organized another dataset from this big one containing five
LULC classes with 10 thousand tiles for each class, as
shown in Fig. 3. Details of such classes are: (i) Cultivated
Area: samples comprising pasture, agriculture, and planted
trees; (ii) Forest Formation: samples are characterized by the
predominance of arboreal formation and riparian forests; (iii)
Non-Forest Area: images of urban areas, mining, fire scars,
and dunes; (iv) Savanna Formation: samples of five different
phytophysiognomies, i.e., woodland savanna, typical savanna,
rupestrian savanna, shrub savanna, and vereda; and (v) Water:
river, small lakes, dams, and fish farming ponds.

The tiles were manually selected and annotated based on
visual support from the samples of Cerrado physiognomies
published by Neves et al. [12], as well as the descriptions of
vegetation types presented by Ribeiro and Walter [3]. This task
is time-consuming and requires a lot of attention. Each file is
named with data, position geography, and id, which refers to
the crop sequence. It took three months to complete all the
aforementioned steps: the first two to merge, pan-sharpening,
crop, and remove any non-data value in the images; and the
last for labeling, which required an entire month.

IV. FEW-SHOT LEARNING EXPERIMENT

The significant advances obtained by DL algorithms usually
depend on huge databases, demand considerable training time,
and make use of an expensive computing infrastructure con-
taining graphics processing units (GPUs). Thus, large models
are usually costly to train and tune not only in financial terms,

due to the cost of electricity and/or cloud computing time,
but also with respect to the environment, due to the carbon
footprint required to enable the hardware infrastructure [13].

Moreover, having an adequate amount of labeled data is
critical for developing high-performance ML and DL models.
However, data labeling is time-consuming and costly too, for
instance, it took a whole month to label 2% of CerraData (i.e.,
50 thousand out of 2.5 million tiles).

Therefore, training a model with a very small amount
of labeled training data is really relevant to address both
previous issues. This has been the goal of a subfield known
as few-shot learning where there is a very limited number of
samples with supervised information for a specific task, such
as classification [14]–[16].

Based on these previous motivations, we conducted an ex-
tensive experimental evaluation to assess the ability of ML and
DL models to learn from a few labeled samples and accurately
classify unseen data. These experiments were carried out on
50 thousand labeled tiles from CerraData and considering a
few-shot learning setting, in which only 20 samples for each
category were used for training.

Using the holdout method and random stratified sampling,
we split the 50 thousand labeled tiles from dataset into
training, validation, and test sets with 100, 100, and 49,800
tiles, respectively. For a fair comparison, the same splits were
used by all the evaluated models. F1-score and accuracy (Acc)
were chosen as performance measures. Five replications were
performed to ensure statistically sound results. The mean and
standard deviation of the performance measures for the test
set of all the replications were reported.

We compared the performance of 11 different CNNs: VGG-
11, VGG-16, ResNet-18, ResNet-50, SqueezeNet, DenseNet-
161, InceptionV3, ShuffleNetv2 1.0, ResNeXt-50, EfficientNet
B4, and ConvNeXt-Tiny [6], [17]–[19].

All these models were trained using the following hyper-
parameters: 100 epochs; early-stopping monitoring of the F1-
score of the validation split for 10 epochs with ∆ set to 0 (i.e.,
any amount of improvement reset the early-stopping counter);
batches of 32 images; and stochastic gradient descent (SGD)
optimizer with a learning rate of 0.001 and a momentum
of 0.9. In addition, two different learning strategies were
considered: (i) randomly initializing the weights, training from
scratch; and (ii) initializing the weights from the publicly
available ImageNet weights, in this case, fine-tuning the pre-
trained model in our new classification task. Also, as a pre-
processing step, all the images were normalized using the Z-
score normalization. When trained from scratch, the means and
standard deviations of the three RGB channels were computed
from the training and validation sets. Otherwise, ImageNet
statistics were used.

In addition to DNNs, we also tested the SVM and RF
classifiers [20]. Firstly, for feature extraction, we passed all the
images through the first layers of the best performing CNNs
in terms of F1-score. Then, the hyper-parameters of such
classifiers were tuned using a grid search on the validation
set. As for SVM, we varied the C hyper-parameter between



Fig. 3. Samples from each class.

10−1 and 103 and the Gamma between 10−4 and 100, both
in steps of powers of 10. Also, three different kernels were
considered: linear, polynomial of degree three, and Radial
Basis Function (RBF). As for RF, we varied the number of
trees in the forest between 100 to 103 in steps of powers of
10, the number of features used to split a node was searched
between 100%, 75%, 50%, 25%, square root and the log2 from
the total amount of features. Both Gini impurity and entropy
were tested as criteria to measure the quality of the splits.
Finally, after the models created by the different settings were
evaluated on the validation set, we took the best one according
to the F1-score and used it on the test set.

All the experiments were executed in nodes of the SDumont
supercomputer (V100 NVIDIA GPUs). We used the release
#22.04-py3 of the PyTorch container consisting of the Ubuntu
20.04 distribution, CUDA 11.6, and PyTorch 1.12.

V. RESULTS AND DISCUSSION

1) Best Features and Classifiers: Tables I and II present,
at the top, the results on the test set obtained by all 11 DNNs
considering the two learning strategies, from-scratch and fine-
tuning, respectively. The best DNN, considering the F1-score,
is highlighted with * while the second best is with **. We
also present, at the bottom, the results for the SVM and RF
classifiers with the features extracted by the two best CNNs.
The best result for all 15 ML/DL techniques is shown in bold.

Regarding the from-scratch strategy (Table I), we can clearly
observe that the DNN DenseNet-161 achieved the best F1-
score (76.07%) and Acc (76.13%), being approximately 2%
better than the second best, ResNet-18. It is also noted that
deeper models (e.g., VGG-16 and ResNet-50) underperformed
their shallow versions (e.g., VGG-11 and ResNet-18). Al-
though some approaches performed very well in terms of
F1-score and Acc, others presented a low mean and a high
standard deviation for both measures (e.g., VGG-11, VGG-
16, ResNet-50, ShuffleNetv2 1.0, and EfficientNet B4).

However, we can see improvements when we use CNNs as
feature extractors only and rely on classical ML algorithms
as classifiers. Enhancement of at least 2% were detected for
DenseNet-161 and almost 3% for ResNet-18. Especially, the
combination of DenseNet-161 as feature extractor and RF as
classifier reached the best result (78.18%).

TABLE I
PERFORMANCE ASSESSMENT: FROM-SCRATCH APPROACH.

Feature Classifier F1-score Acc
Extraction

VGG-11 DNN 45.50± 22.1 50.97± 18.9
VGG-16 DNN 51.68± 20.1 56.00± 17.5

ResNet-18** DNN 74.58± 3.09 74.86± 3.06
ResNet-50 DNN 59.44± 16.9 61.51± 14.5

SqueezeNet DNN 58.32± 7.10 62.23± 5.94

DenseNet-161* DNN 76.07± 1.55 76.13± 1.63
InceptionV3 DNN 64.81± 7.26 66.48± 5.45

ShuffleNetv2 1.0 DNN 49.57± 12.5 54.71± 9.51
ResNeXt-50 DNN 70.11± 3.65 70.66± 3.41

EfficientNet B4 DNN 49.10± 15.5 51.47± 12.6
ConvNeXt-Tiny DNN 54.77± 1.50 58.89± 1.14

DenseNet-161 RF 78.18± 1.31 78.13± 1.37
DenseNet-161 SVM 77.49± 1.87 77.47± 1.94

ResNet-18 RF 77.47± 3.20 77.42± 3.32
ResNet-18 SVM 77.22± 3.23 77.17± 3.39

As for the fine-tuning strategy (Table II), except for Shuf-
fleNetv2 and EfficientNet B4, all other methods presented
consistent results with great enhancement compared to the
from-scratch strategy. Among all 11 DNNs, VGG-16 has the
best F1-score (86.41%) followed by DenseNet-161 (86.38%).
Regarding Acc, they switch positions: DenseNet-161 was the
best (86.45%) and VGG-16 was the second best (86.38%).

We can also note that F1-score and Acc values are close to
each other for all models (except ShuffleNetv2), give out that
they are precise, have good recall, and correctly classify most
unseen data when knowledge from a general classification task
is transferred to a remote sensing classification task. Also, the
issue of high standard deviation values observed in the from-
scratch strategy is alleviated when pre-trained models are used.

We observe further that using the best CNNs as feature
extractors only and performing the classification with the clas-
sical ML algorithms was a good strategy. Even though the gaps
are small, the best result was achieved when DenseNet-161
extracted the features and SVM performed the classification.

Based on all these results, considering the CerraData and
the proposed experimental procedures, we may conclude: (i)
DenseNet-161 can be regarded as the best CNN among all the



TABLE II
PERFORMANCE ASSESSMENT: FINE-TUNING APPROACH.

Feature Classifier F1-score Acc
Extraction

VGG-11 DNN 83.84± 2.60 83.93± 2.66

VGG-16* DNN 86.41± 1.22 86.38± 1.17
ResNet-18 DNN 83.87± 1.91 83.98± 1.81
ResNet-50 DNN 85.94± 2.18 86.03± 2.11

SqueezeNet DNN 84.49± 2.82 84.51± 2.80

DenseNet-161** DNN 86.38± 1.45 86.45± 1.41
InceptionV3 DNN 77.85± 2.92 78.22± 2.65

ShuffleNetv2 1.0 DNN 15.16± 3.14 24.08± 5.90
ResNeXt-50 DNN 84.85± 2.08 84.89± 2.11

EfficientNet B4 DNN 56.42± 5.89 57.81± 5.43
ConvNeXt-Tiny DNN 86.04± 2.35 86.10± 2.32

VGG-16 RF 82.51± 1.05 82.95± 0.91
VGG-16 SVM 83.59± 0.97 83.87± 0.84

DenseNet-161 RF 86.16± 0.98 86.22± 0.90
DenseNet-161 SVM 86.57± 1.36 86.58± 1.30

DNNs evaluated, since it was the best in both metrics for the
from-scratch strategy, obtaining the highest Acc and second
best F1-score in the fine-tuning strategy, in addition to being
the most suitable feature extractor; (ii) using CNNs as feature
extractor only and classical ML algorithms as classifiers may
worth the effort; (iii) transfer learning by fine-tuning the CNNs
showed again to be a promising direction.

2) Limits of Learning from Few Samples: We also explored
the few-shot learning capabilities of the evaluated models by
varying the number of training samples, decreasing it until
reaching the minimum, i.e., 1 sample per class. In particular,
we evaluated the models that achieved the best results when
training from scratch (DenseNet-161+DNN and DenseNet-
161+RF) and also fine-tuning based on ImageNet (VGG-
16+DNN and DenseNet-161+SVM). They were tested with
smaller and smaller training sets, i.e., containing 20, 15, 10,
5, 4, 3, 2 samples, and, finally, only 1 sample per class.

Fig. 4. Few-shot stressing of the best evaluated models.

The results are presented in Fig. 4. As expected, the fewer
training examples, the worse the model performance, dropping
the F1-score, on average, from 81% (20 samples per class)
to 38% (1 sample per class). Moreover, by increasing the
training set size by a small amount (from 1 to 4 samples per
class), we could observe increases of almost 25% in the F1-
score. Despite the remarkable characteristics of the DNNs and
classical ML algorithms evaluated in this study, it is clear that
smarter strategies are important to obtain the maximum benefit
according to the few-shot learning philosophy.

3) Visualization Analysis: The difficulty level of a dataset
can also be grasped by visualizing the class separability of the
learned feature representations. Therefore, a common strategy
is to project the features learned by a DL model into a lower-
dimensional space, typically 2D or 3D, using a dimensionality
reduction method, like UMAP [21] or t-SNE [22].

As for feature extraction, we passed all the 50 thousand
labeled tiles through the first layers of the VGG-16+DNN
model, which achieved the highest F1-score among all 11
DNNs. Then, we used UMAP to project the original (high-
dimensional) feature space into the 2D space.

The projections of the feature spaces spanned by the VGG-
16+DNN models learned from training sets with 20, 4, and
1 samples per class, respectively, are plotted in Fig. 5. We
notice that these results are in agreement with those obtained
by varying the size of the training set (Fig. 4), in which
the more samples per class used for training, the better the
class separability, improving the classification performance.
Although the larger training set (i.e., 20 samples/class) yields
a feature space with tighter and more spaced groups, they
clearly overlap for most classes, showing that CerraData is a
challenging dataset.

VI. CONCLUSIONS

This paper presented CerraData, a high-spatial-resolution
dataset with satellite images covering the Brazilian Cerrado.
The motivation to develop this dataset was because we believe
that there is a lack of high-spatial-resolution benchmarks
particularly tailored to the Cerrado biome. Overall it has 2.5
million tiles providing a significant amount of images for
future approaches addressing remote sensing classification.

We performed an extensive few-shot learning experiment
with two settings: from-scratch and fine-tuning. Altogether, 11
DNNs were considered as feature extractors plus classifiers,
and the two best DNNs played the role of feature extrac-
tors, leaving the classification itself for two traditional ML
algorithms, i.e., RF and SVM. Results show that the DNN
DenseNet-161 was the best model but its performance can be
improved if it is used only as a feature extractor.

In the initial design of our few-shot learning experiment,
where we defined 20 samples per class in the training set, we
might say that, in general, these traditional supervised learning
algorithms (DNNs, RF, SVM) yield good results, particularly
in the fine-tuning approach. But stressing the limits of few-
shot, the performances of the best strategies were poor, and
hence smarter approaches are important.



Fig. 5. UMAP projections (2D) of VGG-16+DNN model from 6 different splittings.

Future work includes exploiting all the 2.5 million tiles of
CerraData with methods that do not require additional manual
labeling efforts. We will investigate other DNNs more suitable
for few-shot learning. There is also room for open set learning
(OSL) where we may consider new classes of the biome
Cerrado and submit them to the algorithms and perceive their
performances.
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