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Abstract: Water colour remote sensing is a valuable tool for assessing bio-optical and biogeochemical
parameters across the vast extent of the Amazon River Continuum (ARC). However, accurate retrieval
depends on selecting the best atmospheric correction (AC). Four AC processors (Acolite, Polymer,
C2RCC, OC-SMART) were evaluated against in situ remote sensing reflectance (Rrs) measurements.
K-means classification identified four optical water types (OWTs) that are affected by the ARC.
Two OWTs showed seasonal differences in the Lower Amazon River, influenced by the increase in
suspended sediment concentration with river discharge. The other OWTs in the Amazon River Plume
are dominated by phytoplankton or by a mixture of optically significant constituents. The Quality
Water Index Polynomial method used to assess the quality of in situ and orbital Rrs had a high failure
rate when the Apparent Visible Wavelength was >580 nm for in situ Rrs. OC-SMART Rrs products
showed better spectral quality compared to Rrs derived from other AC processors evaluated in this
study. These results improve our understanding of remotely sensing very turbid waters, such as
those in the Amazon River Continuum.

Keywords: atmospheric correction; Amazon River Continuum; turbid waters; optical water types;
spectral quality

1. Introduction

Rivers and their marine receiving waters form an integrated system. The flow of
the water, starting with the rainfall and headwaters, transports particulate and dissolved
matter from land to sea, driving the biogeochemical cycling of a range of components
throughout the river’s course and continuing as it enters the ocean [1–3]. Outside the river
basin limits, the river plume is an important component that integrates different water
masses. Freshwater river plumes have a significant impact on the salinity, sea surface
temperature, nutrients, carbon availability and primary production [4–12]. Understanding
the biogeochemical dynamics induced by the land–ocean exchange is, therefore, crucial.

The Amazon River Continuum (ARC), from the lower tidal river at Óbidos 850 km to
the estuary and out into the plume, is a particularly challenging environment to understand
due to its sheer size, diversity of water types from low to high colour range, and tidal
to seasonal cycles. In situ sampling, while fundamental, poses a significant challenge to
the establishment of an effective and representative monitoring scheme, given the large
distances between sampling stations and the usual temporal nature of sampling [13,14].
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With its ability to assess large areas, water colour remote sensing (WCRS) provides a
critical capability to augment point measurements. For accurate retrieval of remote sensing
reflectance (Rrs) and bio-optical properties by WCRS to assess the biogeochemical dynamics
of a given area, a reliable atmospheric correction (AC) is essential.

The high turbidity of the ARC can add complexity to AC performance compared
to other optically complex waters. Elevated suspended sediment concentrations show
a strong signal response in the near-infrared spectrum, potentially leading to the mis-
classification of water pixels as clouds and an overestimation of aerosols [15]. This can
result in misleading WCRS products, such as negative reflectance values [16] when pro-
cessing satellite data with open ocean colour as the default setting in the AC proces-
sor [17]. In addition, AC for blue wavelengths is often challenging, especially in turbid
waters [16,18–20], and can lead to problems with chlorophyll-a concentration (chla) re-
trieval, such as overestimation [17,21,22].

The ARC is also known for the high presence of coloured dissolved organic matter
(CDOM) [23], which enhances water absorption, particularly in the blue-green part of the
spectrum, thereby reducing the signal of water leaving radiance. The significant presence
of CDOM, resulting in a low radiometric signal, has a direct impact on the signal-to-noise
ratio, requiring precise (e.g., high spectral resolution) remotely sensed radiometric signals
that rely heavily on effective atmospheric correction [24,25].

As a step towards developing a WCRS-based characterisation of the ARC, the overall
objective of this study was to evaluate different atmospheric correction algorithms applied
to Sentinel 3 Ocean and Land Colour Instrument (OLCI) images and to assess the quality
of the in situ and remotely sensed spectra. Standard AC algorithms are designed to
perform well in open ocean waters. These algorithms typically estimate aerosol radiance by
assuming negligible water leaving radiance (black pixel assumption) in the near-infrared
(NIR) bands, where pure water strongly absorbs light [16,26]. NIR bands are commonly
used to estimate the atmospheric contribution, which is then extrapolated to the visible
bands. However, in turbid waters, the retrieval of water leaving reflectance is hampered
by increased light backscattering from suspended particles. This results in the water
leaving signal becoming significant in the NIR bands. Therefore, for accurate atmospheric
correction, it is essential to distinguish between aerosol and water leaving contributions at
the top of the atmosphere. In turbid waters where the NIR-based black pixel assumption is
no longer valid [16,20], atmospheric correction algorithms based on the short-wave infrared
(SWIR) region can provide a viable solution [16,21].

There are few studies in the ARC that evaluate the performance of existing AC al-
gorithms for the Amazon River and floodplains. However, these studies are limited to
Sentinel 2 MultiSpectral Instrument (MSI) [27–29] and/or Landsat 8 Operational Land
Imager (OLI) [27,28]. Although the S3-OLCI is a medium spatial resolution sensor (300 m),
it can be used to assess the water colour of the Amazon River [23] and has the advantage
of a better spectral resolution than the previously mentioned sensors. Recently, this sen-
sor has been used to assess the performance of AC processors in the optically complex
coastal waters of French Guiana [30], a region seasonally influenced by the ARC due to its
geographical proximity.

To achieve optimal accuracy in WCRS products, it is essential to assess the data quality
of both in situ and satellite Rrs. The Quality Water Index Polynomial (QWIP) is an effective
tool for this purpose. The QWIP score helps to diagnose outliers and subtle problems with
the Rrs data by identifying spectra that deviate significantly from expected shapes. This
technique provides a quick visual tool for assessing spectral shape and magnitude, making
it useful for a wide range of assessments of aquatic water-leaving reflectance spectra [31].
Furthermore, as shown in [32], QWIP has the potential to evaluate the performance of
different AC approaches. Therefore, this study assesses the quality of in situ and remotely
sensed spectra obtained in the region and evaluates four different atmospheric correction
algorithms applied to S3-OLCI images in the Amazon River Continuum.
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2. Materials and Methods
2.1. Study Area: Lower Amazon River to the Amazon Plume

The Amazon River Continuum considered in this study extends from the upstream
boundary at Óbidos (01◦55.14′S, 55◦31.54′W) to the Amazon River Plume (Figure 1). The
region from Óbidos to the estuary is characterised by extensive floodplains and a main
river channel that becomes wider and slower toward the estuary [33]. The lower part of
the reach is divided around the island of Marajó, where tides of ~3 m (detectable as far
as Óbidos) create semi-diurnal flows to and from floodplains and channels, resulting in
complete flow reversal (but no salinity intrusion). As summarised by [34], the Amazon
River plume is transported up to 1000 km away from the coast by four main water export
pathways [9,35]. Amazon River discharge peaks in spring (April–May) during the north-
ward migration of the Intertropical Convergence Zone (ITCZ), when onshore winds are
relaxed. In the following summer (June–July), river discharge begins to feed the North
Equatorial Counter Current (NECC), and in September, plume water is exported eastward
through this pathway [36].
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has a different colour (see Table 1).

Table 1. Campaigns gathered in the Amazon River Continuum.

Campaign Region Year Number of In Situ
Radiometric Data

TROCAS 1:4 Lower Amazon River 2014–2016 55
TROCAS 5:9 Amazon River mouth 2017–2023 98
Mudbencs Amazon River plume 2023 19

Alucia Amazon River plume 2017 28
Anacondas Amazon River plume 2012 19

Oceano Norte IV Amazon River plume 2009 11

Total 230
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2.2. Sampling Campaigns: In Situ Data

Radiometric data were collected over the last 14 years (2009–2023), comprising a
total of 428 measurements during this period. Figure 1 gives an overview of all the
campaigns considered in this study, while Table 1 provides detailed information about
each campaign. In brief, radiometric and chemical measurements were made during a
series of nine TROCAS project expeditions over the lower Amazon. Four expeditions
were carried out along the lower Amazon River between April 2014 and March 2016,
during periods of low, rising, high and falling river discharge periods (Figure 1) at Óbidos,
Almeirim (approximately halfway to the mouth) and two well-constrained channels by
Macapá. Measurements were made during five subsequent expeditions, 2017–2023, at the
two Macapá stations and two stations bracketing the estuary. Intermediate measurements
were taken on all expeditions. Chemical and radiometric measurements were carried out
offshore as part of the Mudbencs project. Previous measurements were made during the
Anacondas, Alucia and Oceano Norte IV campaigns.

Above-water hyperspectral radiance (L, µW m−2 sr −1) was recorded using a portable
hyperspectral spectroradiometer FieldSpec® (ASD Inc., Boulder, CO, USA; 350–1100 nm).
The acquisition geometry followed recommendations to minimise shadows and avoid sun
glint contamination of the measurements [37]. Radiometric measurements were performed
between 09:00 and 16:00 local time. Total water leaving radiance (Lw), sky radiance (Lsky),
and the radiance from a white panel Spectralon reference (Lg) were measured 10 times in
succession. Lg is used to estimate the downwelling irradiance (Ed) (Equation (1)):

Ed(λ) = Lg(λ) fcπ, (1)

where the correction factor fc is determined by the ratio of a standard Spectralon reference
kept in the laboratory to the Spectralon panel used in the fieldwork. The remote sensing
reflectance (Rrs) is then calculated from Equation (2):

Rrs =
Lw

Ed
=

Lu − ρair−water ∗ Lsky

Ed
, (2)

where Lu represents the upwelling radiance reaching the sensor and ρair−water is the
correction coefficient accounting for sky glint at the air–water interface.

2.3. Data Processing

Various methods have been proposed in the literature to correct optical signals affected
by sun glint interference. In this study, two approaches were used to assess the accuracy of
the results. The first approach is based on [38] and is indicated for turbid to highly turbid
waters. The correction coefficient ρair−water is parameterised by wind speed and cloud
cover (Equations (3) and (4)).

Lsky(λ = 750)
Ed(λ = 750)

≥ 0.05 → ρair−water = 0.0256, (3)

or
Lsky(λ = 750)
Ed(λ = 750)

< 0.05 → ρair−water = 0.0256 + 0.00039W + 0.000034W2, (4)

where W is the wind measured concurrently with the radiometric measurements.
The second approach is the Three-Component Reflectance Model (3C), initially de-

signed to improve the estimation of Rrs using above-water radiometric hyperspectral
measurements performed under sub-optimal conditions, such as cloudy skies, varying
viewing geometry, high glint disturbances and low illumination conditions [39]. The in-
water component of 3C is based on a semi-analytical bio-optical model that provides Rrs
as a function of the optical properties of the significant water constituents and various
boundary conditions. For this study, we used parameter bounds and initial estimates for the
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3C retrievals for measurements significantly affected by sun glint. The table with suggested
parameter bounds and access to the 3C model can be found in [39]. The processing of the
raw radiometric data followed the methodology proposed by [37], with the correction for
sun and sky glint as recommended by [38] and the application of the 3C model.

2.4. In Situ Rrs Classification
2.4.1. Spectra Normalisation

The aim of the normalisation is to reduce first-order variability in reflectance and
emphasise spectral shape, thereby eliminating amplitude differences due to concentration
variations. Normalisation is a standard procedure prior to optical classification, as demon-
strated in previous studies [23,40,41]. Each Rrs spectrum was normalised by its integrated
value [23,40,41] according to Equation (5). Integration was performed using the trapezoidal
method over the 400–800 nm spectral range.

rn(λ) =
Rrs(λ)∫ λ2

λ1
Rrs(λ)dλ

, (5)

where rn(λ) (in units of nm−1) is the normalised spectrum obtained by integration between
λ1 (400 nm) and λ2 (800 nm).

2.4.2. Optical Water Type Identification

In this study, we used an unsupervised k-means classification of the normalised in situ
Rrs to identify the different optical water types (OWT) within the Amazon River Continuum
in order to partition the responses of the respective AC processors. The use of k-means
classification is well-established in water colour studies. It has been used successfully
in a variety of settings, including highly turbid waters such as our study area and other
river-influenced waters [23,32,41]. To determine the optical number of clusters (k) for
optical classification, we employed the Silhouette width analysis [42]. The analysis was
performed over a range of 2–10 clusters.

2.5. Satellite Data

A total of 56 Level 1 OLCI images from the Sentinel-3 satellites (S3A and S3B, 300 m
spatial resolution) were acquired via the CREODIAS platform (https://explore.creodias.
eu/, accessed on 11 July 2024) and the Copernicus Online Data Access (https://data.
eumetsat.int/, accessed on 11 July 2024). The acquired images correspond to the day of the
in situ measurements, as well as one day before and one day after.

For the match-up analysis between satellite and in situ data, the mean satellite-derived
Rrs in a 3 × 3 pixel window cantered on each in situ station with more than 5 valid pixels
(non-NAN) and <20% of the coefficient of variation was considered [43,44]. In addition, the
match-up analysis has identified the samples that fall within and outside the 3 h satellite
pass window.

2.5.1. Selected Atmospheric Correction Algorithms

Each processor was operated using the default settings, as these are generally con-
sidered to be the best options for use without prior knowledge of the aquatic system
or atmospheric conditions, including the recommended water correction settings. If the
atmospheric correction produced Rrs (sr−1), this option was selected. If normalised water-
leaving reflectance (ρw, dimensionless) was produced, the output was transformed to Rrs
by dividing by π. If the processor offered the option to obtain ancillary data by registering
for an EarthData account (https://www.earthdata.nasa.gov/, accessed on 11 July 2024),
this option was selected. A general overview of the selected atmospheric correction is given
in Table 2.

https://explore.creodias.eu/
https://explore.creodias.eu/
https://data.eumetsat.int/
https://data.eumetsat.int/
https://www.earthdata.nasa.gov/
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Table 2. General information about the selected atmospheric correction processors (ACP).

ACP Developed by Implemented in Where to Get

Acolite Royal Belgian Institute of
Natural Sciences Phyton https://odnature.naturalsciences.be/remsem/software-

and-data/acolite, accessed on 11 July 2024

C2RCC European Space Agency SNAP https://step.esa.int/main/download/snap-download/,
accessed on 11 July 2024

OC-SMART Stevens Institute of Technology SNAP v.7 http://www.rtatmocn.com/oc-smart/, accessed on
11 July 2024

Polymer HYGEOS Phyton https://hygeos.com/en/, accessed on 11 July 2024

The following atmospheric correction algorithms, designed for coastal and/or turbid
waters, were considered in this study: (i) The Acolite processor was developed by the
Royal Belgian Institute of Natural Sciences [45]. By default, it employs the Dark Spectrum
Fitting (DSF) approach [46,47], which was used in this study. This AC scheme is entirely
image-based and, as such, does not require external inputs such as aerosol optical thickness
(whether measured or estimated). The algorithm operates under the assumption that
the atmosphere is homogeneous across a scene or sub-scene, allowing the prediction of
atmospheric path reflectance from multiple dark targets within the scene or sub-scene.
The selection of these targets is based on the lowest observed Top-Of-Atmosphere (TOA)
reflectance values across all bands. Acolite offers flexibility, as it can also be configured
using SWIR bands [21,45] by setting the aerosol correction to exponential in the settings
file. Importantly, this AC algorithm is specifically designed for use in clear to turbid waters
and is adaptable to most satellite sensors. However, it is important to note that Acolite
requires SWIR bands for effective performance over turbid waters. For this study, we
used the 20221114 version of the processor, which is available both as a compiled binary
format and as Python source code. Further information can be found on the Institute of
Natural Sciences website (https://odnature.naturalsciences.be/remsem/software-and-
data/acolite, accessed on 11 July 2024).

(ii) The Polynomial-based algorithm (Polymer) was developed to accommodate waters
both with and without sun glint contamination [48]. Polymer operates based on the princi-
ple of the spectral matching method, which relies on a polynomial function to characterise
the spectral reflectance of both the atmosphere and sun glint. This is achieved by leveraging
a water reflectance model applicable to the visible spectrum, further extended to the NIR
spectral range (700–900 nm) using a similarity spectrum tailored for turbid waters. Polymer
is written in Python, and for this study, we used version v4.16. More information can
be found on the HYGEOS website (https://hygeos.com/en/polymer/, accessed on 11
July 2024).

(iii) The Case 2 Regional Coast Colour (C2RCC) is an atmospheric correction algorithm
based on Neural Network (NN) principles. Originally developed by [49] under the name
“Case 2 Regional processor”, the method utilised a substantial collection of radiative
transfer simulations inverted by neural networks. Subsequently, the algorithm has been
improved, incorporating an additional set of NN computations specifically trained to
encompass broader ranges of water scattering and absorption coefficients. This refinement
has resulted in the enhanced version available on the European Space Agency (ESA)
SentiNel Application Platform (SNAP). In this study, we used version 9.0.

(iv) The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART)
is a machine learning algorithm that relies on a multilayer neural network (MLNN) classifier
driven by extensive radiative transfer simulations. The MLNN used in this processor is a
spectral matching algorithm based on the spectral similarity between the Rayleigh corrected
TOA and the water leaving radiances. In particular, this approach eliminates the need to
retrieve aerosol radiances [50]. It was downloaded from the Light and Life Lab website
(http://www.rtatmocn.com/oc-smart/, accessed on 11 July 2024) as a plug-in that was
installed in the SNAP platform. OC-SMART is only compatible with SNAP version 7.0,
which is the version used to run the plug-in.

https://odnature.naturalsciences.be/remsem/software-and-data/acolite
https://odnature.naturalsciences.be/remsem/software-and-data/acolite
https://step.esa.int/main/download/snap-download/
http://www.rtatmocn.com/oc-smart/
https://hygeos.com/en/
https://odnature.naturalsciences.be/remsem/software-and-data/acolite
https://odnature.naturalsciences.be/remsem/software-and-data/acolite
https://hygeos.com/en/polymer/
http://www.rtatmocn.com/oc-smart/
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2.5.2. Assessment of the Spectral Quality of In Situ and Orbital Data

To assess the spectral quality of both the in situ measured and the Sentinel 3 OLCI
A and B (S3-OLCI) derived Rrs after the applied atmospheric correction, we used the
Quality Water Index Polynomial (QWIP) scoring technique [31]. Considering the high
sediment content in the Amazon River Continuum waters [23], which leads to a significant
magnitude of the Rrs spectrum, especially in the red and NIR bands, we chose to use the
spectral range from 400 to 800 nm for in situ data and 400 to 779 nm for S3-OLCI bands.
QWIP (Equation (8)) is based on a polynomial relationship involving the Apparent Visible
Wavelength (AVW) index [51] (Equation (6)) and the Normalised Difference Index (NDI)
(Equation (7)). This relationship is established using the red (band 665) and green (band
490) wavelengths. The QWIP score (Equation (9)) is the difference between the AVW and
NDI values of a spectrum and the QWIP polynomial. Further information on the method
and constant parameters can be found in [31].

AVW =

∑n
i=1 Rrs(λi)

∑n
i=1

Rrs(λi)
λi

, (6)

NDI =
(Rrs(λ2)− Rrs(λ1))

(Rrs(λ2) + Rrs(λ1))
, (7)

QWIP = p1AVW4 + p2AVW3 + p3AVW2 + p4AVW + p5, (8)

where p1 = −8.399885 × 10−9, p2 = 1.715532 × 10−5, p3 = −1.301670 × 10−2,
p4 = 4.357828, p5 = −5.449532 × 102

QWIP score = NDI(490, 665)− QWIP, (9)

where an absolute QWIP score threshold of > 0.2 is used to identify spectra of questionable
quality [31].

2.5.3. Statistical Indicators for Atmospheric Correction Performance Assessment

In addition to the use of the coefficient of determination R2 and the slope, other
statistical descriptors were used to assess the performance of the atmospheric correction
processors considered. These included Root Mean Square Deviation (RMSD), Mean Relative
Absolute Difference (MRAD) and mean bias (MB) (Equations (10)–(12)):

RMSD =

∑N
i=1

[
log10

(
RrsAC

i

)
− log10(Rrsobs

i )
]2

N


1
2

, (10)

MRAD =
1
N

×
N

∑
I=1

∣∣∣RrsAC
i − Rrsobs

i

∣∣∣
Rrsobs

i
× 100%, (11)

MB =
1
N

×
N

∑
i=1

∣∣∣log 10
(

RrsAC
i

)
− log 10

(
Rrsinsitu

i

)∣∣∣, (12)

where Rrsobs is the in situ Rrs observations and RrsAC is the Rrs obtained by remote sensing
after the atmospheric correction.

Another metric considered here is the number of valid pixels (VP), which takes into
account the number of match-ups between in situ measurements and Rrs retrieved from
the image for the same latitude and longitude.

Radar plots were also used to compare the performance of the AC model tested in
this study. This graphical representation allows the visualisation of various statistical
parameters condensed into a two-dimensional graph [52]. In this context, an overview of
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the normalised RMSD, MRAD, MB, slope, R2 and VP (Equations (13)–(18)) is given. The
normalisation process is calculated as follows:

RMSDnorm (j) =
RMSD(j)

max(RMSD(j), j = 1, k)
, (13)

MRADnorm (j) =
MRAD(j)

max(MRAD(j), j = 1, k)
, (14)

MBnorm (j) =
MB(j)

max(MB(j), j = 1, k)
, (15)

Slopenorm (j) =
|1 − Slope(j)|

max(|1 − Slope(j)|, j = 1, k)
, (16)

R2norm (j) =
min

(
R2(j), j = 1, k

)
R2 , (17)

VPnorm(j) =
min(Vp(j), j = 1, k)

Vp
, (18)

where j represents each individual AC model considered in a defined intercomparison
exercise.

In addition to a synthetic visual examination, radar plots were also used to calculate
a comprehensive statistical indicator, summarising the overall performance of the AC
processor under consideration. In practice, this consists of calculating the area associated
with the polygons connecting the normalised indicators from Equations (13)–(18) as follows
(Equation (19)):

Area = 1
2 × π

6 × [RMSDnorm (j)× VPnorm (j) + VPnorm (j)× MRADnorm (j)
+MRADnorm (j)× MBnorm (j) + MBnorm (j)× Slopenorm (j)
+Slopenorm (j)× R2norm (j) + R2norm (j)× RMSDnorm (j)],

(19)

An overview of the study process is shown in the following flowchart (Figure 2).
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3. Results
3.1. Match-Ups

All AC processors tested consistently underestimated the in situ Rrs, showing a
negative mean bias (Figure 3). However, exceptions were observed for the 665 and 674 nm
bands of OC-SMART (Figure 4). The Acolite processor showed higher R2 values for most
bands and a lower RMSD compared to other AC processors. The RMSD showed a similar
pattern for all processors, with high values at lower wavelengths, decreasing until reaching
the NIR, at which point the values increased again. Except for Acolite, the RMSD at
620 nm showed a peak with high values for all AC processors. Compared to the other
AC processors, Acolite showed mean bias values closer to zero, indicating that it was the
processor that least underestimated Rrs retrievals (Figure 4).
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The data were measured at the Amazon River Continuum, and the in situ Rrs were derived following
the methodology proposed by [37] with the elimination of sun and sky glint as recommended by [38].
Scatter plots are presented in a log–log scale. Circles represent match-ups within a 3 h satellite pass
window, while triangles represent match-ups outside the 3 h satellite pass window.

Looking more closely at the match-ups on a band-to-band basis, it becomes apparent
that the accuracy of the retrievals varied depending on the wavelength. This band-to-band
variation has also been observed by [53] for different ACs, including Polymer and C2RCC.
For the bands from 400 to 510 nm, the scattering of the retrievals was consistently high
across all AC processors. However, it is noteworthy that within this range, Acolite showed
superior performance compared to the other AC processors (Figure 3).

There is a marked increase in R2 as the wavelengths move from the blue to the red part
of the spectrum, peaking at 665 nm, 674 nm, and 681 nm. There is then a decrease as the
bands enter the NIR region (Figure 4). MRAD shows the same trend for all AC processors,
with higher values at the extremes of the spectrum and lower values in the green region,
except for OC-SMART, which shows a peak between the bands of 620–754 nm. This MRAD
peak corresponds to an increase in the average bias of the OC-SMART Rrs (Figure 4).
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Figure 4. Spectral variation in the statistical parameters between 400 and 779 nm: (A) Coefficient of
determination (R2), (B) Root Mean Square Deviation (RMSD), (C) slope, (D) Mean Relative Absolute
Difference (MRAD), (E) Mean Bias (MB) and (F) Valid Pixel (VP).

The 3 h time difference between in situ and satellite measurements appears to be
more significant for C2RCC than for the other AC processors (Figure 3). Although C2RCC
had significantly more valid pixels, it also had the worst retrieval performance, with low
coefficients of determination (R2) and high RMSD values for all bands (Figure 4).

With the exception of Acolite, which showed a distinct pattern, the slope of the
regression line showed a consistent trend of increasing with the wavelength. The peak
occurred between the 665 and 709 nm bands, after which the slope decreased abruptly
(Figure 4).

We assessed the feasibility of including measurements from one day before or after
the in situ measurement and investigated whether the 3C model agrees with our in situ
data. To provide an overview, we compare all the bands together (Figure 5). A smaller area
on the radar plot indicates better results.
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Figure 5. Radar plot illustrating the statistical metrics used to evaluate the accuracy of the remote
sensing reflectance for each atmospheric correction processor, using different approaches to estimate
in situ Rrs. The green line represents the in situ Rrs processed according to [37] with sun and sky
glint corrected according to the method proposed in [38] (M99 + R06). The blue line shows the same
approach, not only considering the day of the in situ measurement but also one day before or after
to increase the number of match-ups. The red line corresponds to the in situ Rrs processed with the
3C model.

Clearly, the 3C model showed poor performance with our data (area size: Acolite = 1.53;
Polymer = 1.57; C2RCC = 1.57; OC-SMART = 1.57, Table A1), resulting in suboptimal agree-
ment with the Rrs obtained from the post-atmospheric correction image. We also continued
the evaluation using only the in situ Rrs processed by the M99 + R06 method. While
restricting the data to the same day as the in situ measurement gave slightly better results
for most of the AC processors (area size: Acolite = 0.37; Polymer = 0.77; C2RCC = 1.03;
OC-SMART = 0.81, Table A2), including data from one day before or after did not sig-
nificantly affect the results (area size: Acolite = 0.41; Polymer = 0.85; C2RCC = 0.83;
OC-SMART = 0.85, Table A3). Therefore, for this study area, the number of match-ups
could be increased if necessary. In our case, including data from one day before or after
increased the number of match-ups by 57% for Acolite, 100% for Polymer, 46% for C2RCC
and 77% for OC-SMART.

3.2. Optical Water Types at the Amazon River Continuum

To assess the optical variability within the dataset, we employed k-means classification,
which resulted in the identification of five distinct OWTs. In particular, OWT K5 (Figure 6A)
exhibited optical properties similar to those of oceanic waters, characterised by increased
reflectance at shorter wavelengths and increased absorption at longer wavelengths [40].
Most of cluster K5 (in blue, Figure 6B) lies below the Amazon River estuary and is not under
the influence of the Amazon River, whose plume is known to extend north-westwards
towards French Guiana [36,54]. Consequently, from this point on, all spectra from this
class were removed from our analysis, ensuring that only waters with the Amazon River
Continuum signal were assessed.
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OWTs K1 and K2 characterise sediment-laden waters, mainly along the Lower Ama-
zon [23] (Valerio et al., 2021). Conversely, OWTs K3 and K4 are predominantly found in
coastal waters, with their spectral signatures indicating the prevalent presence of chla (K3)
and a covariance of other bio-optical parameters (K4) [23,55].
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3.3. Assessment of the Spectral Quality
3.3.1. In Situ Rrs

To ensure the spectral quality of the final dataset (in situ Rrs simulated on S3-OLCI
bands after the removal of the K5 spectrum and extracted OLCI for match-ups, except for
those from K5 OWT), we applied the AVW and QWIP score method on the remaining
spectra. Considering the entire dataset (excluding the K5 OWT determined by k-means),
out of a total of 203 in situ Rrs spectra, only 25% are considered valid when applying the
recommended range of −0.2 to 0.2 [31], indicating that these spectra “pass” the quality
assessment. On closer inspection, there is considerable variability between the different
OWTs. The first two OWTs (K1 and K2), located mainly in the Amazon River and adjacent
coastal waters with higher sediment content, have a higher failure rate, with only 14%
and 4% considered to be of adequate quality. In contrast, OWTs K3 and K4, located in the
coastal waters of Brazil and the outer reaches of the Amazon River Plume, have higher
validity rates of 94% and 81%, respectively (Table 3). All spectra from OWT K1 and K2
that did not pass the QWIP score had values < −0.2, a pattern also observed and discussed
by [31] and attributed to optically shallow waters. Conversely, our study area does not
exhibit characteristics of optically shallow waters; rather, the problem arises when the
AVW > 580 nm (Figure 7), where absolutely all of our K1 fits with the AVW mean of 614 nm
and 90% of our OWT K2 fits with an AVW mean of 592 nm. For this reason, we have
relaxed the QWIP score threshold to the range between −0.3 and 0.3 for these two OWTs
(K1 and K2).

Table 3. Percentage of valid in situ Rrs spectra after the QWIP score evaluation. The right column
shows the percentage of valid in situ Rrs spectra considering a range from −0.2 to 0.2. The left column
shows the percentage of valid in situ Rrs spectra considering a range from −0.3 to 0.3.

OWT (N) −0.2 to 0.2 −0.3 to 0.3

All (203) 25% 80%
K1 (97) 14% 89%
K2 (67) 4% 60%
K3 (16) 94% 94%
K4 (21) 81% 95%
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Figure 7. (A) The QWIP relationship between Apparent Visible Wavelength (AVW) and the Nor-
malised Difference Index (NDI) at blue-green and red bands, as described in [31], with the Amazon 
River Continuum (ARC) in situ 𝑅௥௦  dataset showing the different levels of QWIP values (±0.2 
dashed grey line and ±0.3 dash-dotted grey line). Each optical water type found at the ARC is rep-
resented by a different colour. (B) Histogram of the AVW for our in situ ARC dataset. 

Figure 7. (A) The QWIP relationship between Apparent Visible Wavelength (AVW) and the Nor-
malised Difference Index (NDI) at blue-green and red bands, as described in [31], with the Amazon
River Continuum (ARC) in situ Rrs dataset showing the different levels of QWIP values (±0.2 dashed
grey line and ±0.3 dash-dotted grey line). Each optical water type found at the ARC is represented
by a different colour. (B) Histogram of the AVW for our in situ ARC dataset.

3.3.2. S3-OLCI Rrs

The AVW and QWIP scoring methods were also applied to S3-OLCI images resulting
from the four atmospheric corrections. As an example, we choose the 8 November 2019
image at the Amazon River mouth to represent the application of the AVW in the images
(Figure 8).
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show higher AVW values in an overall basic statistic, while OC-SMART shows lower AVW 
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in Figure 8 on the C2RCC image) to examine the pixel variations along this path (Figure 
9). It is clear that Acolite and C2RCC have higher variability, which increases towards the 
oceanic region. Conversely, Polymer and OC-SMART show lower variability, although 
there is noticeable noise in the Polymer image, indicated by the dark blue patches (Figure 
8). OC-SMART stands out as having lower AVW values compared to the other AC-pro-
cessed images. This consistently lower AVW trend for OC-SMART is also evident (Table 
A4). 

Figure 8. Mapped S3-OLCI image as an example (8 November 2019), where Apparent Visible
Wavelength has been applied after using different atmospheric corrections: (A) Acolite; (B) Polymer;
(C) C2RCC and (D) OC-SMART. The white line in the C2RCC image represents the transect used
to extract pixels for evaluation. The same transect was applied to all four images processed with
different atmospheric corrections.

The AVW results are strongly influenced by the AC method used (Figures 8 and 9,
Table A4). Despite having similar values, the same pixel lacks consistency when processed
with different atmospheric corrections. Images processed with the Polymer processor show
higher AVW values in an overall basic statistic, while OC-SMART shows lower AVW values
(Table A4).

We traced a transect extending from the river mouth to the inner plume (white line in
Figure 8 on the C2RCC image) to examine the pixel variations along this path (Figure 9).
It is clear that Acolite and C2RCC have higher variability, which increases towards the
oceanic region. Conversely, Polymer and OC-SMART show lower variability, although
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there is noticeable noise in the Polymer image, indicated by the dark blue patches (Figure 8).
OC-SMART stands out as having lower AVW values compared to the other AC-processed
images. This consistently lower AVW trend for OC-SMART is also evident (Table A4).
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Figure 9. Apparent Visible Wavelength (AVW) values for the same pixel according to different
atmospheric correction approaches, with longitudinal variability.

The QWIP score was calculated for each image using different AC approaches
(Figure 10). As observed, more pixels from the OC-SMART were considered to be valid (in
the range of −0.2 to 0.2) compared to other AC approaches. It is also noticeable that pixels
with negative values are concentrated in the Amazon River and adjacent waters, while
positive values are concentrated closer to oceanic waters.
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Figure 10. Mapped S3-OLCI image as an example (8 November 2019), where Quality Water In-
dex Polynomial score was calculated after applying different atmospheric corrections: (A) Acolite;
(B) Polymer; (C) C2RCC and (D) OC-SMART. Black pixels are those outside the range of −0.2 to 0.2,
as recommended by [31]. Pixels outside this range are considered as not passing the spectral quality.

After calculating the QWIP score for each pixel in the images processed using the four
AC approaches, we again performed a match-up comparison with the good quality in situ
data to assess whether there was any improvement in the results. Using the QWIP score
interval (−0.2 to 0.2) in the images to retain only those pixels that passed the spectra quality
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threshold, we observed utilisation rates of 65%, 71%, 94% and 43% for Acolite, C2RCC,
OC-SMART and Polymer, respectively (Table A5).

This means that more data were used from C2RCC and OC-SMART compared to
Acolite and Polymer, the latter having fewer pixels passing the QWIP score interval. The
results show a slight improvement with an overall reduction in the scattering of the
retrievals (Figure 11) when compared to the results in Figures 3 and 4.
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Figure 11. Match-ups of simulated in situ Rrs for S3-OLCI bands and Rrs derived from different
atmospheric correction processors for the same day: (A) Acolite; (B) Polymer; (C) C2RCC; (D) OC-
SMART. The in situ and satellite data used for the match-up passed the QWIP score with an interval
of ±0.3. The data were measured at the Amazon River Continuum, and the in situ Rrs were derived
following the methodology proposed by [37] and the elimination of sun and sky glint as recommended
by [38]. Scatter plots are presented on a log–log scale. Circles represent match-ups within a 3 h
satellite pass window, while triangles represent match-ups outside the 3 h satellite pass window.



Remote Sens. 2024, 16, 2663 16 of 23

After applying the QWIP score, there was an increase in the coefficient of determina-
tion, with values close to one in the blue region of the wavelengths for the Acolite processor.
The MRAD did not show any significant changes before and after the QWIP score, while
the MB showed a slight improvement (Figure 12). The Acolite had fewer valid pixels
compared to the other ACs.
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4. Discussion

To our knowledge, no study has been conducted using S3-OLCI in Amazon waters
to investigate differences in atmospheric correction and remote sensing reflectance. Our
study showed a high scatter in the retrievals in the lower wavelength bands (<510 nm)
(Figure 3), and this is especially true for the Rrs corrected with C2RCC. This scattering
persists even in higher wavelength bands for this AC processor, unlike other processors
that remain closer to the 1:1 line. The low performance of the C2RCC is to be expected, as
the training data used to train its neural network consisted mainly of simulations of the
Hydrolight model and samples from European waters [56], where water constituents and
bio-optical properties differ considerably from those found in the extremely turbid waters
of the Amazon River Continuum.

A study conducted by [30] examined two coastal waters: (i) those of French Guiana,
which are seasonally influenced by the turbid waters of the Amazon River plume, and
(ii) the Eastern English Channel, which is characterised by moderately turbid waters.

They also used S3-OLCI images but used different atmospheric correction processors
to those used in our study. Their results showed similarly high scatter in the Rrs retrievals
in the lower wavelength bands (400–443 nm). According to the statistical metrics presented
in Figure 4, the spectral variation shows significant differences depending on the AC
applied. Nevertheless, our results consistently show an underestimation of the Rrs for all
AC processors tested. This consistent underestimation was also observed in highly turbid
waters when using different AC processors for S3-OLCI [57].

When comparing the four AC methods tested, Acolite showed the best performance
with a smaller area size, followed by Polymer (area size: Acolite = 0.37; Polymer = 0.77;
C2RCC = 1.03; OC-SMART = 0.81) (Figure 5, Table A2). However, it is important to note that
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Acolite had fewer valid pixels compared to the other ACs, which could pose a challenge
for match-up exercises and validation. Furthermore, the Amazon region is known for its
high cloud cover, which also complicates data retrieval using water colour remote sensing.
Previous studies have shown that Polymer also performed better, producing a higher
number of match-ups because it worked well even under conditions of high sun glint and
high aerosol loads. However, it also underestimated Rrs for turbid waters [53].

The Amazon River has a unique water colour due to its high turbidity. In this study, we
aimed to evaluate whether the 3C model, which is recommended to improve the estimation
of Rrs using above-water radiometric measurements can provide accurate Rrs estimates
in such environments. Typically, above-water measurements, such as those conducted
in this study, are susceptible to significant contributions from sun glint and reflected sky
radiance [58]. While previous studies have reported satisfactory results with the 3C model
for optically complex water systems [32], our results were not consistent with those in our
study area. Contrary to expectations, the 3C model underestimated values obtained by
different AC processors (Table A1) and showed poor statistical metrics (Figure 5). The
discrepancies between Rrs calculated from [37] and the 3C model may be due to water or
atmospheric properties that the 3C model could not accurately reconstruct. It is expected
that the 3C model would provide lower Rrs values [58]. Therefore, the calculation of
Rrs according to [37], followed by the sun glint correction proposed by [38], which is
recommended for turbid waters, proved to be the most appropriate method for our study
area. Including data from one day before or after did not significantly affect the results,
as shown in Figure 5. This can be attributed to the fact that the optical variability of the
Amazon River is determined by the hydrological regime. Therefore, it could be expected
that the water colour would not vary significantly within one or two days during the same
hydrological season.

The four OWTs identified in this study have also been discussed by other authors
in the context of Amazonian waters or highly turbid waters. In their study [23], they
showed that the difference between OWT K1 and K2 lies in the amount of sediment content
resulting from the seasonal discharge of the Amazon River. OWT K1 typically occurs
during the rising water season, which is characterised by a significant sediment input,
resulting in a three times higher absorption coefficient of particulate matter (ap) compared
to the absorption coefficient of coloured dissolved organic matter (aCDOM) [23]. During
the rest of the year, the ratio of ap to aCDOM in the Amazon River is close to 1:1, defining
OWT K2. The OWTs K3 and K4 have also been identified in other studies assessing global
inland and coastal OWTs [40,55]. They represent coastal waters where the optical signals
are predominantly influenced by phytoplankton and a mixture of covarying bio-optical
parameters, respectively.

It is not the intention of this study to perform a validation match-up comparison of
OWT’s Rrs for the AC processors evaluated. In fact, we would need more samples to per-
form such an analysis. However, based on the available data and using the same statistical
metrics defined in our methods, preliminary results indicate that there is an interval in the
spectrum between 490 and 709 nm where all ACs showed better performance (Figure 13).
Conversely, the blue region between 400 and 443 nm showed lower performance.

Preliminary results also suggest that Acolite performed better for OWT K1 but also
showed good performance for K2, similar to Polymer (Figure 13). On the other hand,
OC-SMART showed better performance for K3, which is characterised by coastal waters
with higher chla. Unfortunately, there are insufficient data to perform this analysis for
all ACs for OWT K4, and the same limitation applies to OWT K3 for Acolite, C2RCC,
and Polymer. Although [27] used different orbital sensors (Landsat 8 and S2-MSI), their
results appear to be consistent with our preliminary results. They found that Acolite
performed better in highly turbid inland waters, while OC-SMART showed good accuracy
in clearer waters. As mentioned, further studies are still needed, but preliminary results
show that different AC methods may perform better in retrieving Rrs depending on the
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OWT. This knowledge may be useful if the OWT system is matched to the performance of
the atmospheric correction [59].
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Light colours (white or yellow, closer to 0) are likely to have accurate Rrs for a given optical water
type (OWT: K1, K2, K3 and K4) and S3-OLCI band.

Using the QWIP score as a quality control method for in situ and orbital Rrs data has
been recommended by recent studies [32,59] and may even help to determine the best AC
method to use in a given study area [32]. While [31] recommend using a range of ±0.2
to ensure high-quality data, other authors suggest that this range can be relaxed to ±0.3
when working with multispectral data such as S3-OLCI [59]. If we extend this range to
±0.3 for both in situ and orbital data, we observe a data utilisation rate of over 80% for the
OWTs defined in this study using in situ data, except for K2, and a pixel utilisation rate
of over 95% in the images for all atmospheric correction methods. Polymer, in particular,
benefits significantly from this relaxation, more than doubling the number of usable pixels.
The prospect of obtaining more usable pixels in Polymer images is promising, given that it
has been specifically designed to minimise the effect of sun glint [48]. Given the Amazon
region’s notorious propensity for high glint effects in satellite imagery [60], the use of
Polymer could prove highly beneficial.

Relaxing the QWIP score range had little effect on the OC-SMART images, which
increased from 94% to 97% (Table A5). Finally, after applying the QWIP score to in situ and
orbital Rrs corrected by different AC methods, Acolite still has the smallest area, followed
by Polymer (area size: Acolite = 0.36; Polymer = 0.69; C2RCC = 1.17; OC-SMART = 0.95,
Table A6).

5. Conclusions

This study on the evaluation of atmospheric corrections for S3-OLCI imagery in
the Amazon River Continuum revealed several important findings. First, the tested AC
methods consistently underestimated Rrs compared to in situ measurements. In particular,
the 3C model showed poorer performance than the traditional M99 + R06 approach in
our study area, which is characterised by very turbid waters. Of the AC processors tested,
Acolite had the best overall performance, followed by Polymer and OC-SMART, while
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C2RCC had the lowest performance. Examination of the Rrs match-ups band by band
revealed increasing coefficients of determination with wavelengths up to bands 665 nm,
674 nm, and 681 nm (R2 ≈ 0.8 for Acolite), followed by a decrease in the near-infrared
spectral range. It is also worth noting that there is a peak in the RMSD in the 620 nm band
for Polymer, OC-SMART and C2RCC. Using a match-up interval of 3 days (±1 day) slightly
increased the error but did not significantly affect the results, making it a viable option to
increase the number of observations for match-up analysis if required. This is because the
optical variability of the Amazon River is determined by the hydrological regime. It was
therefore expected that the water colour would not vary greatly within a day or two during
the same hydrological season.

In addition, four OWTs under the influence of the Amazon River Continuum were
identified. Two of these OWTs are typically associated with the Amazon River and show
seasonal variations in response to changes in Amazon River discharge. The other two
OWTs are typically associated with the Amazon River Plume. One of these OWTs is
characterised by the dominance of chla, while the other exhibits a mixture of covarying
bio-optical parameters.

Furthermore, the QWIP score range of −0.2 to 0.2 was found to be inadequate for
very turbid waters, such as those represented by OWTs K1 and K2, where AVW > 580 nm.
The results also highlighted the dependence of AVW results on the AC method used.
Overall, the OC-SMART Rrs products showed superior spectral quality compared to other
AC processors.

Further studies are warranted to assess the impact of different optical water types on
the retrieval of Rrs with respect to atmospheric correction methods. It is important to note
that OWTs are not only determined by the bio-optical properties found in a geographic
location; seasonal variations also play an important role. Therefore, if an AC processor
performs well in a particular region during a particular season, this does not guarantee
optimal performance during another season of the year.

Finally, it is worth noting that, as emphasised by previous studies, there is no con-
sensus on which AC method is superior, as this depends on specific scientific objectives
and applications [27,30]. Furthermore, it is important to keep in mind that atmospheric
correction processors are constantly evolving, and the methodology used in this study only
captures a momentary perspective of the current state.
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Appendix A

Table A1. Statistical metrics (R2, slope, Root Mean Square Deviation—RMSD, Mean Relative Absolute
Difference—MRAD, mean bias—MB, and valid pixel—VP), using the 3C model to calculate Rrs and
applying different atmospheric correction procedures. These statistics use satellite data from the
same day as the in situ measurement.

Acolite Polymer C2RCC OC-SMART

R2 0.18 0.48 0.20 0.36
RMSD 0.60 0.81 1.02 0.86
SLOPE 0.157 0.168 0.102 0.146
MB 0.50 0.72 0.85 0.74
MRAD 81 75 80 78
VP 313 258 552 279
AREA 1.53 1.57 1.57 1.57

Table A2. Statistical metrics (R2, slope, Root Mean Square Deviation—RMSD, Mean Relative Absolute
Difference—MRAD, mean bias—MB, and valid pixel—VP), using [37,38] to calculate Rrs and correct
for sun glint and sky radiance. These statistics use satellite data from the same day as the in situ
measurement.

Acolite Polymer C2RCC OC-SMART

R2 0.74 0.54 0.23 0.70
RMSD 0.29 0.46 0.80 0.53
SLOPE 0.59 0.39 0.25 0.44
MB 0.24 0.38 0.61 0.45
MRAD 39 55 62 76
VP 264 267 591 306
AREA 0.37 0.77 1.03 0.81

Table A3. Statistical metrics (R2, slope, Root Mean Square Deviation—RMSD, Mean Relative Absolute
Difference—MRAD, mean bias—MB, and valid pixel—VP), using [37,38] to calculate Rrs and correct
for sun glint and sky radiance. These statistics include data from satellite images taken one day before
or after the in situ measurement.

Acolite Polymer C2RCC OC-SMART

R2 0.63 0.51 0.31 0.58
RMSD 0.35 0.55 0.77 0.66
SLOPE 0.51 0.36 0.29 0.38
MB 0.27 0.45 0.59 0.52
MRAD 42 58 62 71
VP 414 534 863 542
AREA 0.41 0.85 0.83 0.85

Table A4. Basic statistics of the Apparent Visible Wavelength (AVW) in the Amazon River Continuum
according to the different atmospheric correction processors used in this study (Acolite, Polymer,
C2RCC and OC-SMART).

Acolite Polymer C2RCC OC-SMART

Min 475 440 455 453
Max 650 700 681 631

Mean 577.8 586.2 582.8 572.1
Median 588.9 600.5 593.5 587.5
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Table A5. Percentage of valid pixel Rrs spectra after the Quality Water Index Polynomial (QWIP)
score evaluation. The right column shows the percentage of valid pixel Rrs spectra considering a
range from −0.2 to 0.2. The left column shows the percentage of valid pixel Rrs spectra considering a
range from −0.3 to 0.3.

AC −0.2 to 0.2 −0.3 to 0.3

Acolite 65% 100%
Polymer 43% 96%
C2RCC 71% 100%

OC-SMART 94% 97%

Table A6. Statistical metrics (R2, slope, Root Mean Square Deviation—RMSD, Mean Relative Absolute
Difference—MRAD, mean bias—MB, and valid pixel—VP), using [37,38] to calculate Rrs and correct
for sun glint and sky radiance. These statistics use satellite data from the same day as the in situ
measurement. Quality Water Index Polynomial score was used to improve the relationship between
in situ and satellite data.

Acolite Polymer C2RCC OC-SMART

R2 0.70 0.57 0.39 0.66
RMSD 0.22 0.45 0.67 0.53
SLOPE 0.60 0.55 0.36 0.51
MB 0.18 0.35 0.52 0.43
MRAD 34 52 58 80
VP 91 182 328 225
AREA 0.36 0.69 1.17 0.95
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