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Abstract
Tropical deforestation has local and regional effects on climate, but the sign and magnitude of these
effects are still poorly constrained. Here we used satellite observations to evaluate the local land
surface temperature and precipitation response to tropical deforestation in historical simulations
from 24 CMIP6 models. We found tropical forest loss leads to an observed local dry season
warming and reduced wet and dry season precipitation across the range of scales (0.25◦-2◦)
analysed. At the largest scale analysed (2◦), we observed a warming of 0.018± 0.001 ◦C per
percentage point of forest loss (◦C %−1), broadly captured in the multi-model mean response of
0.017± 0.005 ◦C %−1. The multi-model mean correctly simulates reduced precipitation due to
forest loss in the dry season but simulates increased precipitation due to forest loss in the wet
season, opposite to the observed response. We found that the simulated dry season surface
temperature and precipitation changes due to forest loss depend on the simulated surface albedo
change, with less warming and less drying in models with greater increases in surface albedo due to
forest loss. Increased recognition of the local and regional climate benefits of tropical forests is
needed to support sustainable land use policy.

1. Introduction

Land cover change alters energy and water fluxes
between the surface and atmosphere affecting the
local and regional climate (Bonan 2008, Pongratz
et al 2021). Tropical regions are experiencing rapid
changes to land cover, particularly from deforest-
ation (Hansen et al 2013) and forest degradation
(Vancutsem et al 2021). Tropical deforestation has
been shown to cause local surface warming of greater
than 2 ◦C (Alkama and Cescatti 2016, Bright et al
2017, Duveiller et al 2018, Baker and Spracklen
2019). The effect on precipitation is more complex
and scale-dependent (Lawrence and Vandecar 2015),

with increases in precipitation over or near small-
scale deforestation (Garcia-Carreras and Parker 2011,
Khanna et al 2017, Taylor et al 2022) and reduc-
tions over and downwind of large-scale deforestation
(Spracklen and Garcia-Carreras 2015). Analysis of
remotely sensed precipitation suggests tropical forest
loss causes reductions in local precipitation, particu-
larly at scales larger than 50 km (Smith et al 2023).

Climate models have different representations of
the land surface and the biophysical responses to land
cover change, leading to different simulations of the
climate response to land cover change (Boisier et al
2015, Boysen et al 2020, Baker et al 2021a, Luo et al
2022, De Hertog et al 2023). Most models agree that
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deforestation in the tropics causes local surfacewarm-
ing but disagree on the magnitude of the temper-
ature response (Winckler et al 2019b, Boysen et al
2020). In contrast, some models simulate local cool-
ing over tropical deforestation due to strong increases
in simulated surface albedo (Robertson 2019). The
simulated response of local precipitation to land cover
change is even more varied. Luo et al (2022) sim-
ulated the impacts of idealised deforestation scen-
arios and found a multi-model mean reduction in
precipitation over regions of forest loss of −2.2%,
with a range of −5.5% to +0.1% across 11 mod-
els. Spracklen andGarcia-Carreras (2015) synthesised
simulated impacts of deforestation in the Amazon
basin, finding an average of 12 ± 11% reduction in
annual precipitation due to basin-wide deforestation.

Previous assessments of climate model responses
to land cover change have analysed both idealised (e.g.
Davin and de Noblet-ducoudre 2010, Winckler et al
2017, Boysen et al 2020, Luo et al 2022) and historical
(De Noblet-Ducoudré et al 2012, Kumar et al 2013,
Lejeune et al 2017) land cover scenarios. Evaluation
of simulated climate impacts against observations
(Duveiller et al 2018) have largely focused on tem-
perature from satellite (Li et al 2015, Alkama and
Cescatti 2016, Bright et al 2017, Duveiller et al 2018)
or in-situmeasurements (Lee et al 2011). Simulations
of the impacts of land cover change on precipita-
tion (Luo et al 2022) have not yet fully been eval-
uated. We build on this previous work by evaluat-
ing the impacts of tropical deforestation in the his-
torical CMIP6 simulations on both local land sur-
face temperature (T) and precipitation (P) in a con-
sistent manner. We focus on tropical deforestation
because of the urgent need for clear evidence to sup-
port conservation of remaining tropical forests for
climate change adaptation and mitigation (Windisch
et al 2021). We explore how the climate sensitivity to
the extent of forest loss depends on simulated changes
to surface albedo, evapotranspiration (ET), and leaf
area index (LAI). We evaluate the simulated response
using satellite observations, applying a before-after-
control-impact approach, where the change in local
climate over regions of forest loss is compared against
the change in climate over control areas with no
forest loss. This allows us to analyse the simulated and
observed responses to deforestation identically.

2. Data andmethods

We analysed data from 24 CMIP6 models (CMIP6
Tier 1: historical; dataset information listed in
table 1), with spatial resolution varying from 0.56 to
2.79 degrees latitudinally. We downloaded and pro-
cessed monthly mean surface albedo, ET, LAI, land
surface temperature and precipitation for 1850–2014.

To evaluate the CMIP6 models, we used satellite
data from the period 2003–2019. We calculated forest

loss from the Global Forest Change (GFC) version
1.9 (Hansen et al 2013), using forest canopy cover in
2000 and subsequent annual forest loss from 2003 to
2019 at 30 metre (m) resolution. We used MODIS
albedo (MCD43A3), ET (MOD16A2GF) and LAI
(MOD15A2) available at 500 m resolution and land
surface temperature day-night mean (MOD11C3)
available at 1 km resolution. We used precipitation
data from nine datasets, spanning a range of native
resolutions from ∼4 to 25 km (approx. at equator,
table 1 lists the details).

We analysed the observed impacts of forest loss
across four spatial scales (0.25◦ × 0.25◦, 0.5◦ × 0.5◦,
1.0◦ × 1.0◦ and 2.0◦ × 2.0◦), spanning the spatial res-
olution of the CMIP6 models. We performed spatial
regridding using the Python package Iris (Met Office
2023) with the area-weighted regridding scheme.
Datasets were regridded to coarser resolutions using
the highest available resolution as listed in table 1.
Two alternative regriddingmethods (xESMF (Zhuang
2022): ‘conservative-normalised’ and ‘bilinear’) were
tested and had little impact on our results. We calcu-
lated forest loss at each spatial resolution as the sum
of all 30 m pixels within each larger pixel.

We constrained our analysis to the tropics (30◦ S-
30◦ N). We additionally constrained satellite datasets
by the tropical evergreen broadleaf biome, defined
by the MODIS land cover dataset (MCD12Q1), and
CMIP6 models by areas where their forest cover was
greater than 70% at the start of the discrete analysis
periods. This accounted for the fact that simulated
forests may be in different geographical areas within
each model. We tested both constraining CMIP6
models by MODIS evergreen broadleaf and by areas
of forest cover greater than 70%, finding similar res-
ults with both methods. We analysed separately over
the Amazon and Congo Basins and southeast Asia
using shapefiles to geographically constrain the ana-
lysis as outlined in supplementary figure 1.

Detecting a robust local climate response to defor-
estation requires long simulations (Winckler et al
2017). For this reason, we analysed data over 16 year
periods. For the satellite datasets, this period was
2003–2019, as this was the longest common period
of precipitation data. For the CMIP6models, we ana-
lysed ten 16 year periods starting in 1854 and end-
ing in 2014. We selected 16 year periods to match the
length of the satellite record and report model values
as the median across the ten periods. In addition to
this, we analysed the CMIP6 models over five 32 year
periods, finding similar results over this longer time
period (supplementary figures 2–5). To reduce the
impact of interannual variability in temperature and
precipitation, we compared 5 year means at the start
and end of each analysis period.

Land cover change causes both local and non-
local climate impacts (Pongratz et al 2021). The local
climate impacts of land cover change can be assessed
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Table 1. CMIP6 model and satellite datasets used in this analysis. Models are grouped by spatial resolution (<1◦, and⩾1◦ resolution in
latitude).

Dataset Institute
Resolution lon,
lat (degrees)

Resolution
grouping Reference

Model

ACCESS-ESM1-5 CSIRO 1.88× 1.25 >1◦ (Ziehn et al 2019)
AWI-ESM-1-1-LR AWI 1.88× 1.87 >1◦ (Danek et al 2020)
CanESM5 CCCma 2.81× 2.79 >1◦ (Swart et al 2019a)
CanESM5-CanOE CCCma 2.81× 2.79 >1◦ (Swart et al 2019b)
CESM2 NCAR 1.25× 0.94 <1◦ (Danabasoglu 2019a)
CESM2-FV2 NCAR 2.50× 1.89 >1◦ (Danabasoglu 2019b)
CESM2-WACCM NCAR 1.25× 0.94 <1◦ (Danabasoglu 2019c)
CESM2-WACCM-FV2 NCAR 2.50× 1.89 >1◦ (Danabasoglu 2019d)
CMCC-CM2-SR5 CMCC 1.25× 0.94 <1◦ (Lovato and Peano 2020)
CMCC-ESM2 CMCC 1.25× 0.94 <1◦ (Lovato et al 2021)
CNRM-ESM2-1 CNRM-CERFACS 1.41× 1.40 >1◦ (Seferian 2018)
EC-Earth3-CC EC-Earth-Consortium 0.70× 0.70 <1◦ (EC-Earth-Consortium 2021)
EC-Earth3-Veg EC-Earth-Consortium 0.70× 0.70 <1◦ (EC-Earth-Consortium 2019)
EC-Earth3-Veg-LR EC-Earth-Consortium 1.12× 1.12 >1◦ (EC-Earth-Consortium 2020)
GISS-E2-1-G NASA-GISS 2.50× 2.00 >1◦ (NASA/GISS 2018)
HadGEM3-GC31-LL MOHC 1.88× 1.25 >1◦ (Ridley et al 2019)
HadGEM3-GC31-MM MOHC 0.83× 0.56 <1◦ (Ridley et al 2019)
INM-CM4-8 INM 2.00× 1.50 >1◦ (Volodin et al 2019a)
INM-CM5-0 INM 2.00× 1.50 >1◦ (Volodin et al 2019b)
IPSL-CM5A2-INCA IPSL 3.75× 1.89 >1◦ (Boucher et al 2018)
IPSL-CM6A-LR IPSL 2.50× 1.27 >1◦ (Boucher et al 2018)
MPI-ESM-1-2-HAM HAMMOZ-Consortium 1.88× 1.87 >1◦ (Neubauer et al 2019)
MPI-ESM1-2-HR MPI-M 0.94× 0.94 <1◦ (Jungclaus et al 2019)
UKESM1-0-LL MOHC 1.88× 1.25 >1◦ (Tang et al 2019)

Satellite

MODIS Albedo (MCD43A3) 0.05× 0.05 n/a (Schaaf and Wang 2021)
MODIS Evapotranspiration
(MOD16A2)

0.05× 0.05 n/a (Running et al 2021)

MODIS Leaf Area Index
(MOD15A2)

0.05× 0.05 n/a (Myneni et al 2021)

MODIS Land Surface
Temperature (MOD11A2)

0.05× 0.05 n/a (Wan et al 2021)

MODIS Land Cover Type
(MCD12Q1)

0.05× 0.05 n/a (Friedl and Sulla-Menashe 2022)

CHIRPS Precipitation
(CHIRPS-2.0)

0.05× 0.05 n/a (Funk et al 2015)

CMORPH 0.25× 0.25 n/a (Xie et al 2019)
GPCP v3.2 0.5× 0.5 n/a (Huffman et al 2022)
GPM v0.6 0.1× 0.1 n/a (Hou et al 2014)
PERSIANN-CCS 0.04× 0.04 n/a (Nguyen et al 2019)
PERSIANN-CDR 0.25× 0.25 n/a (Ashouri et al 2015)
PERSIANN-CCSCDR 0.04× 0.04 n/a (Sadeghi et al 2021)
PERSIANN 0.25× 0.25 n/a (Nguyen et al 2019)
TRMM v3B43 0.25× 0.25 n/a (Huffman et al 2007)
Global Forest Change
(GFC v1.9)

30 m× 30 m n/a (Hansen et al 2013)

from a single simulation through comparing the cli-
mate change over regions of land cover change com-
pared to neighbouring regions with little or no land
cover change (Kumar et al 2013, Lejeune et al 2017).
Comparing the change over a pixel with forest loss
with its immediate neighbour with little or no forest
loss removes the impacts of climate change and vari-
ability. We adopted this approach and analysed the
local climate response to forest loss using a moving

window nearest neighbour approach as used by pre-
vious studies (Baker and Spracklen 2019, Smith et al
2023), here employing a 3 × 3 grid size. We calcu-
lated the forest loss of each deforested pixel relative
to neighbouring control pixels as the forest loss of
the deforested pixel minus the forest loss of the con-
trol. To be included in the analysis, deforested pixels
must have experienced more than 0.1 percentage
points of forest loss compared to their neighbouring
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control pixels. We calculated the change in each vari-
able over the deforested pixel relative to the change of
the control pixel. We report changes as a function of
forest loss by dividing by the difference in forest loss
between deforested and control pixels.

We focused our temperature analysis on the dry
season, where there was better availability of satellite
data for albedo, ET, LAI, and T, as the wet season has
more clouds which obstruct satellite retrievals. Dry
season temperature is also more sensitive to tropical
deforestation (Baker and Spracklen 2019). For precip-
itation, we analysed dry, wet and transition seasons as
the driest 3 months, wettest 3 months and remaining
6months, respectively, of each year for each pixel. The
satellite remotely sensed precipitation value is based
on the median of the nine satellite precipitation data-
sets, whilst for the CMIP6 models, we derived each
model’s season from its own precipitation data.

To test the relationships between climate vari-
ables, we fitted linear regressions using Pearson’s cor-
relation coefficient, (calculated using SciPy (Virtanen
et al 2020)) to identify whether the computed correla-
tion coefficients were found to be statistically signific-
ant and different from zero at the 5% level (p<0.05).
We report errors throughout as the standard error of
the mean.

3. Results and discussion

Figure 1 shows the observed impacts of forest loss
on local land surface temperature and precipita-
tion. We observed dry season warming due to forest
loss across all spatial scales analysed (figure 1(a)).
This demonstrates that tropical forest loss caused
local warming at spatial scales simulated in regional
(0.25◦ × 0.25◦, ∼25 km × 25 km) to global
(2.0◦ × 2.0◦, ∼200 km × 200 km) climate mod-
els. Warming varies from 0.009 ± 0.002 ◦C %−1

(median± standard error of the mean) at 1.0◦ × 1.0◦

to 0.018± 0.001 ◦C%−1 at 2.0◦× 2.0◦. The local land
surface warming we report here is similar to previ-
ous studies such as Alkama and Cescatti (2016) who
reported that tropical forest deforestation caused a
warming of 0.015 ± 0.001 ◦C %−1. Duveiller et al
(2020) used a space-for-time approach and reported
a warming of 0.018 ± 0.001 ◦C %−1 for wet trop-
ical forests using 1.0◦ × 1.0◦ resolution data. In the
Amazon, Baker and Spracklen (2019) reported defor-
estation caused dry season land surface warming of
0.014 ◦C %−1 using 0.05◦ resolution data.

We observed reductions in precipitation over
regions of tropical forest loss at both an annual
scale and in the dry, wet and transition sea-
sons (figure 1(b)). Forest loss causes a decrease
in precipitation across all analysed resolutions,
with larger reductions as the scale of forest loss
increases. At 2◦ resolution, the annual reduction was
−0.18 ± 0.07 mm month−1 %−1. This sensitivity

is slightly lower than reported by Smith et al (2023)
(−0.25± 0.10 mmmonth−1 %−1 at 2◦) due to small
methodological differences, including a longer ana-
lysis period (2003–2019 compared to 2003–2017).
Reductions in precipitation were observed through-
out the year, with the largest absolute reductions in
precipitation over regions of forest loss in the wet
season (−1.12± 0.32 mmmonth−1 %−1) compared
to−0.06± 0.05 mmmonth−1 %−1 in the dry season
and −0.33 ± 0.24 mm month−1 %−1 in the trans-
ition season.

Figure 2 compares the simulated and observed
impact of forest loss on local dry season land sur-
face temperature. Most models (22 out of 24) sim-
ulate a warming response consistent with the satel-
lite observations. The simulated surface temperature
response to forest loss varies from−0.038± 0.008 ◦C
%−1 (GISS-E2-1-G) to +0.042 ± 0.009 ◦C %−1

(CESM2-WACCM-FV2). In idealised deforestation
simulations, Boysen et al (2020) found that the
near-surface air temperature response simulated by
CMIP6 models varied between −0.02 ◦C %−1

and+0.08 ◦C %−1.
The local surface warming due to forest loss is rel-

atively insensitive to spatial scale, both in the mod-
els and observations. The multi-model mean warm-
ing due to forest loss is +0.017 ± 0.005 ◦C %−1

(0.016 ± 0.002 ◦C %−1 for models <1◦ resolution
and 0.017 ± 0.006 ◦C %−1 for models >1◦ resolu-
tion), which compares well to the observed warm-
ing of 0.018 ± 0.001 ◦C %−1 (at 2◦ resolution).
Whilst the multi-model mean is close to the observed
value, figure 2 highlights the large variability across
models. We also analysed the simulated temperature
change due to forest loss for each model separately
over the ten 16 year model periods (supplement-
ary figure 6). Only 7 models show consistent warm-
ing across all periods. Most models (17 out of 24)
show warming and cooling in different periods, five
of which (CanESM5, CMCC-ESM2, GISS-E2-1-G,
MPI-ESM1-2-HR and UKESM1-0-LL) show a cool-
ing response in four or more of the ten 16 year peri-
ods contrary to the observed temperature response.
This further confirms the need for long simula-
tions to robustly diagnose a climate response to land
use change from climate models. When analysing
the simulated temperature change over the longer
32 year periods (supplementary figure 2), we find a
very similar multi-model mean warming response of
0.019 ± 0.004 ◦C %−1. Most models show a consist-
ent warming in both the 16 year and 32 year analysis
(supplementary figures 3 and 7), with only GISS-E2-
1-G andMPI-ESM1-2-HR showing an overall cooling
in the 16 year analysis and UKESM1-0-LL and MPI-
ESM1-2-HR showing a cooling in the 32 year analysis.

Figure 3 compares the simulated and observed
changes in dry and wet season precipitation due
to tropical forest loss. The simulated precipitation
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Figure 1. Observed local response of temperature and precipitation to tropical forest loss from 2003 to 2019. (a) Median
dry-season land surface temperature change (∆T) per percentage point of forest loss and (b) median precipitation change (∆P)
per percentage point of forest loss for annual mean, dry, wet and transition seasons. Temperature data are from the MODIS
MOD11C3 product and precipitation data from nine products (table S1). Results are shown at four spatial resolutions (0.25◦,
0.5◦, 1.0◦ and 2.0◦). Error bars indicate the standard error of the mean.

response to forest loss is less consistent than for
temperature. In the dry season, 6 of the 24 mod-
els simulate increases in precipitation due to forest
loss, whilst the remaining 18 models simulate reduc-
tions. In the wet season, 10 of the 24 models simu-
late an increase, whilst the remaining 14 simulate a
decrease. Across all models, the multi-model mean
response of dry season precipitation to forest loss
is −0.06 ± 0.08 mm month−1 %−1, comparable to
the observed change of −0.06 ± 0.05 mm month−1

%−1 (at 2◦). The multi-model mean response
in the wet season is 0.11 ± 0.65 mm month−1

%−1, opposite to the observed response of
−1.12 ± 0.32 mm month−1%−1. The individual
CMIP6 models tend to be oversensitive to forest
loss (either large increases or decreases) compared
to observed changes. Analysing over 32 years, we
find a very similar multi-model dry season precip-
itation response (−0.063 ± 0.073 mm month−1

%−1, supplementary figures 4(a) and 5). In
the wet season, where there is large intermodel
variability in both analysis periods, the multi-
model mean response changes to a slight drying
(−0.010± 0.430 mmmonth−1%−1).

At the annual scale, the multi-model mean pre-
cipitation sensitivity to forest loss is +0.06 ± 0.23%

per percentage point of forest loss (% %−1) (supple-
mentary figure 8), opposite in sign to the observed
sensitivity of −0.12 ± 0.11% %−1 (at 2◦). Previous
studies have also reported a wide range in the simu-
lated precipitation response to tropical deforestation.
Luo et al (2022) reportedAmazondeforestation resul-
ted in a regional annual mean precipitation response
of−11% to+2% for a 50% reduction in forest cover,
equivalent to −0.18% to +0.04% per percentage
forest loss, with eight out of the 11 models simulating
decreased precipitation over regions of forest loss in
the western and southern Amazon basin. Spracklen
and Garcia-Carreras (2015) reported multi-model
mean annual mean sensitivity of −0.16 ± 0.13% per
percentage point forest loss in the Amazon.

To explore the different regional impacts of forest
loss on climate, we analysed the changes in tem-
perature and precipitation (supplementary figures
9 and 10 respectively) across the Amazon, Congo
Basin and Southeast Asia. Local dry season warm-
ing due to forest loss is seen across all regions in
both satellite data and the multi-model mean. The
models simulate the greatest sensitivity of temperat-
ure to forest loss in the Amazon and Congo, how-
ever this is not seen in the satellite data. The observed
and simulated response of dry season precipitation
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Figure 2. Change in simulated and observed dry season local surface temperature per percentage point of forest loss (∆T, ◦C
%−1), ordered by latitudinal resolution. Simulated changes from the CMIP6 models (blue bars; datasets listed in table 1) are the
median over ten 16 year periods from 1854 to 2014. Observed results from satellite (orange bars) (table 1) are for 2003–2019,
regridded to three resolutions (0.5◦ × 0.5◦, 1.0◦ × 1.0◦, 2.0◦ × 2.0◦) to match the range of resolutions from the models.
Satellite observed forest loss data were from GFC v1.9 (Hansen et al 2013). Model results are for areas where initial forest cover
exceeds 70%, whilst the satellite analysis is constrained by MODIS evergreen broadleaf land cover. Error bars show the standard
error of the mean calculated across the 10 time periods for each model. The dashed line separately shows the multi-model mean
value for<1 and>1◦ spatial resolution models.

to forest loss is consistent across the tropics as a
whole, however regionally the results are divergent,
with opposite responses in the Amazon and Congo
(supplementary figure 10(a)). In the wet season,
there is consistent observed drying due to forest loss
across all regions, however in the simulated response,
there are increases in precipitation in the Congo and
decreases in Southeast Asia (supplementary figure
10(b)). The simulated precipitation responses in the
Congo and Southeast Asia have especially large vari-
ability, reflecting the divergence of model responses.

Figure 4 compares the median dry season sens-
itivity of temperature and precipitation to forest
cover loss against the equivalent sensitivity of dif-
ferent land surface variables (albedo, ET, LAI) to
forest loss. There is substantial variability in the sim-
ulated sensitivity of albedo, ET and LAI to forest loss.
We find large variability in the simulated sensitiv-
ity of surface albedo to forest loss varying from ∼0
to 5.1 × 10−4%−1, with 23 of the 24 models sim-
ulating an increase in surface albedo in regions of
forest loss (INM-CM4-8 simulates a decrease). A pre-
vious assessment of the CMIP5 models also found
large variability in the simulated albedo response
to land use change (Lejeune et al 2020). For ET,
we find simulated sensitivity ranges from −1 to
+0.5 mm month−1%−1. Luo et al (2022) repor-
ted that forest loss caused annual mean changes of

+50 to −150 mm year−1. For LAI, we find a sim-
ulated sensitivity of −0.05 to 0.03 m2 m−2%−1. In
the Amazon, Luo et al (2022) also reported a wide
range in the sensitivity of LAI to forest loss ran-
ging from −2 to +1 m2 m−2, equivalent to −0.02 to
+0.01 m2 m−2%−1.

The local warming due to forest loss is caused by
reduced surface roughness, which reduces turbulent
heat fluxes and ET (Bright et al 2017, Duveiller et al
2018). For dry season temperature, we find statistic-
ally significant relationships (P < 0.05) with albedo
(r2 = 0.299) and ET (r2 = 0.292). As would be expec-
ted (Bright et al 2017, Duveiller et al 2018, Winckler
et al 2019a), models with a stronger sensitivity of sur-
face albedo (greater surface brightening) and weaker
sensitivity of ET (smaller ET decreases) to forest loss
tend to show less warming from forest loss.

Albedo measurements from satellite also suggest
increased albedo due to forest loss with a sensitiv-
ity of 8.0 × 10−5–1.31 × 10−4%−1, equivalent to an
increase in albedo of 0.008–0.013 for complete forest
loss (figure 4). This albedo sensitivity to forest loss is
relatively well captured by some models (3 simulat-
ing albedo within the satellite range), whereas 9 mod-
els underestimate (<8.0 × 10−5%−1) and 12 over-
estimate (>1.31 × 10−4%−1) the sensitivity. Models
that overestimate the albedo sensitivity to forest loss
underestimate the warming due to forest loss.
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Figure 3. Change in simulated and observed (a) dry and (b) wet season precipitation per percentage point of forest loss (∆P, mm
month−1 %−1), ordered by latitudinal resolution. Simulated changes from the CMIP6 models (blue bars) (datasets listed in
table 1) are the median over ten 16 year periods from 1854 to 2014. Observed results from satellite (orange bars) (table 1) are for
2003–2019, regridded to three resolutions (0.5◦ × 0.5◦, 1.0◦ × 1.0◦, 2.0◦ × 2.0◦) to match the range of resolutions from the
models. Model results are for areas where initial forest cover exceeds 70%, whilst the satellite results are constrained by MODIS
evergreen broadleaf land cover. We calculate the standard error of the mean from the ten time periods for each model but from
one time period for the satellite data. The dashed line separately shows the multi-model mean value for<1 and>1◦ spatial
resolution models.

Most models simulate a reduction in ET over
forest loss (multi-model mean −0.19 ± 0.06 mm
month−1%−1), although there is large variability
across models with a range of −1.17 to +0.62 mm
month−1%−1. The sensitivity of ET to forest loss
is related to the change in LAI, as has been shown
previously (Luo et al 2022), with models that simu-
late larger decreases in LAI tending to simulate lar-
ger decreases in ET following forest loss (supple-
mentary figure 11). Forest loss causes a reduction in
simulated ET due to the replacement of forests by
grasses with lower ET rates, matching the response
in idealised deforestation simulations (Boysen et al
2020). Increased ET over regions of forest loss in
some models (e.g. CESM) may be due to tropical
forests being replaced by C4 grasses that are over

productive in the moist tropics (Boysen et al 2020),
whilst in other models (e.g. GISS-E2-1-G) it may be
due to increased simulated precipitation over regions
of forest loss.

We found significant positive relationships for
dry season precipitation with ET (r2 = 0.564) and
albedo (r2 = 0.176). Luo et al (2022) also repor-
ted positive relationships between changes in pre-
cipitation and ET due to deforestation. They also
found that the inter-model spread in precipitation
response to forest loss primarily results from diver-
gent responses of ET. Previous work has also sug-
gested albedo as an important parameter controlling
precipitation changes (Dirmeyer and Shukla 1994,
Berbet and Costa 2003, Costa et al 2007). Dirmeyer
and Shukla (1994) found that the local precipitation

7
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Figure 4. Sensitivity of dry season (a)–(c) land surface temperature (T) and (d)-(f) precipitation (P) to surface albedo (Alb),
evapotranspiration (ET), leaf area index (LAI), per percentage point of forest loss. Simulated (blue) values show the median
change for each model’s ten 16 year periods. We report the linear Pearson correlation coefficient squared (r2) and the p-value (p)
and plot the linear fit where p< 0.05. Results are for areas where initial forest cover exceeds 70%. Satellite values are plotted as
orange circles, regridded to four resolutions (0.25◦ × 0.25◦, 0.5◦ × 0.5◦, 1.0◦ × 1.0◦, 2.0◦ × 2.0◦). These values are constrained
by MODIS land cover evergreen broadleaf area. The red star indicates in-situmeasurement from (Culf et al 1995, Restrepo-Coupe
et al 2013). Model key; ACCESS-ESM1-5: ‘a’, AWI-ESM-1-1-LR: ‘b’, CESM2: ‘c’, CESM2-FV2: ‘d’, CESM2-WACCM: ‘e’,
CESM2-WACCM-FV2: ‘f ’, CMCC-CM2-SR5: ‘g’, CMCC-ESM2: ‘h’, CNRM-ESM2-1: ‘I’, CanESM5: ‘j’, CanESM5-CanOE: ‘k’,
EC-Earth3-CC: ‘l’, EC-Earth3-Veg: ‘m’, EC-Earth3-Veg-LR: ‘n’, GISS-E2-1-G: ‘o’, HadGEM3-GC31-LL: ‘p’, HadGEM3-GC31-MM:
‘q’, INM-CM4-8: ‘r’, INM-CM5-0: ‘s’, IPSL-CM5A2-INCA: ‘t’, IPSL-CM6A-LR: ‘u’, MPI-ESM-1-2-HAM:’v’, MPI-ESM1-2-HR: ‘w’,
UKESM1-0-LL: ‘y’.

response to forest loss showed a strong sensitivity
to the assumed increase in albedo with forest loss
over a range of 0–0.09 (9.0 × 10−4%−1). However,
they found forest loss reduced precipitation when the
albedo sensitivity was greater than 3.0 × 10−4%−1,
opposite to our results of increased precipitation in
models with greater brightening.

We note that the satellite-based sensitivity of
albedo, ET and LAI to forest loss is less than would
be expected based on in-situ measurements. In the
Amazon, (Culf et al 1995) observed annual mean
albedo of 0.13 for tropical forest and 0.18 for pas-
ture, suggesting deforestation causes increased albedo
of 0.05 or 4.6 × 10−4%−1 (plotted as a red star in
figures 4(a) and (d)), about a factor 4 greater than
in the satellite measurements. In-situ data represents
a complete conversion from forest to pasture with
correspondingly large changes in albedo. In compar-
ison, satellite data observes forest loss at larger scales
where remaining tree cover and vegetation regrowth
may reduce the change in albedo caused by forest loss.
In situ observations of dry season ET in the Amazon
are around 110 mmmonth−1 for tropical forests and
70 mm month−1 for pasture (Restrepo-Coupe et al
2013), suggesting deforestation causes a reduction of

40 mm month−1 or 0.4 mm month−1%−1 (plotted
as a red star in figures 4(b) and (e)), around 3.5
times greater than seen in the satellite measurements.
Challenges with remote-sensed ET data which com-
bine remote sensed and model data (Baker et al
2021b) may explain the discrepancy with in-situ data.
The simulated temperature response to forest loss is
strongly related to albedo and ET in the dry season
but less so in the wet season (Baker et al 2021b).

Our analysis focused on assessing the simulated
local climate response to tropical deforestation and
understanding how this depends on the modelled
treatment of the land surface change. Tropical defor-
estation drives changes to the local energy balance
that are dominated by changes in the turbulent energy
flux (Boysen et al 2020, De Hertog et al 2023). Our
analysis shows a large disagreement in the simulated
response of ET flux to deforestation. However, uncer-
tainty in measurements of the ET flux (Baker et al
2021b) are a challenge to constraining the simulated
response of ET to forest loss. In contrast, satellite-
derived datasets of surface albedo are more reliable
(He et al 2014) and may provide a stronger con-
straint on the large spread of model simulated albedo
responses to forest loss. We suggest that evaluating

8
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and improving the surface albedo response to forest
lossmay be a logical and practical initial step tomodel
improvement. Constraining the albedo sensitivity to
deforestation is also important for accurate simula-
tion of the radiative forcing due to historical land-use
change (Lejeune et al 2020).

Previous work has shown that the climate
response to deforestation depends on the background
climate (Pitman et al 2011). To explore whether
changes in background climate have changed the cli-
mate response to deforestation, we calculated how
the simulated sensitivity of temperature to forest
loss varied over the 1854–2014 period. We found
that there was no significant trend in the simulated
response of temperature to forest loss over this period
(supplementary figure 12). The climate response to
deforestation also depends on simulated atmospheric
feedbacks through altering mesoscale circulations
(Khanna et al 2017). Boysen et al (2020) found that
increased shortwave radiation due to reduced cloud
cover over regions of tropical deforestation was more
important than changes in surface albedo in some
models. Luo et al (2022) found mean reductions in
ET over deforested areas (16.9 mm yr−1) were about
4 times greater than reductions in mean flow conver-
gence (−4.3 mm yr−1), suggesting local reductions
in ET dominate reduced rainfall rather than changes
in circulation.

In addition to impacts on temperature and
precipitation, deforestation can also impact other
important climate variables such as causing reduc-
tions in low level cloud cover (Duveiller et al 2021).
We focused on the local land surface warming due
to forest loss, though we note that air temperat-
ure’s response to deforestation may differ (Winckler
et al 2019b). Deforestation can also cause important
changes in the timing and intensity of precipitation.
In Amazonia, deforestation has extended dry season
and delayed the onset of the rainy season (Leite-Filho
et al 2021, Commar et al 2023). InWest Africa, defor-
estation has enhanced storm frequency (Taylor et al
2022). In addition to local impacts, deforestationmay
also change regional climate (Leite-Filho et al 2020).
Tropical deforestation can cause reductions in down-
wind precipitation through reductions in moisture
recycling (Spracklen et al 2012, Zemp et al 2017, Staal
et al 2018) and can alter regional temperatures up
to 50 km away from the location of land-use change
(Cohn et al 2019). Deforestation may even alter pre-
cipitation in regions far removed from the land use
change through teleconnections (Werth and Avissar
2005, Pitman et al 2009, De Noblet-Ducoudré et al
2012, Luo et al 2022).

4. Conclusions and implications

Our analysis provides further evidence of the local
surface warming and drying (reduced precipitation)
due to tropical deforestation. The multi-model mean

captures the observed surface warming due to trop-
ical forest loss, with 22 out of 24 CMIP6 models
analysed simulating warming in response to tropical
forest loss. The multi-model mean suggests increased
annual mean precipitation over regions of tropical
forest loss, opposite in sign to the observed response.
There is large variability in the magnitude of the
modelled temperature and precipitation responses to
deforestation, some of which we attribute to different
implementations of land use change within CMIP6
models and the subsequent changes to albedo and
ET. We find the simulated local land surface warming
due to forest loss is sensitive to the simulated surface
albedo change.

The local warming and drying due to tropical
deforestation will have negative impacts on human
health (Wolff et al 2018, Alves de Oliveira et al 2021),
agriculture (Lawrence andVandecar 2015, Leite-Filho
et al 2021), surrounding forests (Zemp et al 2017,
Staal et al 2020, Li et al 2022) and biodiversity (Pardini
et al 2017). A warmer and drier climate will also
exacerbate the risk of forest fires causing additional
forest loss and the potential for positive climate feed-
backs (Cochrane et al 1999). Some work has sug-
gested the Amazon is close to a tipping point where
additional deforestation would drive sufficient dry-
ing to induce forest dieback (Lovejoy and Nobre
2019). Future work is needed to assess the resilience
of remaining tropical forests to a warmer and drier
climate. Overall, our analysis provides additional
impetus for policymakers to account for the local cli-
mate impacts of tropical deforestation (Duveiller et al
2020, Pongratz et al 2021).

Data availability statement

The dataset used in this analysis are all freely
available through the following repositories:
CMIP6 historical data from https://esgf-index1.
ceda.ac.uk/projects/cmip6-ceda/, CHIRPS from
https://data.chc.ucsb.edu/products/?C=M;O=D,
CMORPH from https://ftp.cpc.ncep.noaa.gov/
precip/CMORPH_RT/GLOBE/data/, GPCP from
https://disc.gsfc.nasa.gov/datasets/GPCPMON_3.
1/summary?keywords=GPCPMON, GPM from
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_
L3/, PERSIANN (CCS, CDR, CCS-CDR, PDIR-
NOW) from https://chrsdata.eng.uci.edu/, TRMM
from https://disc.gsfc.nasa.gov/datasets/TRMM_
3B43_7/summary, MODIS (MCD43A3, MOD16A2,
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