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Abstract. While water lifting plays a recognized role in the global atmospheric power budget, estimates for this role in tropical

cyclones vary from no effect to a major reduction in storm intensity. To better assess this impact, here we consider the work

output of an infinitely narrow thermodynamic cycle with two streamlines connecting the top of the boundary layer in the

vicinity of maximum wind (without assuming gradient-wind balance) to an arbitrary level in the inviscid free troposphere. The

reduction of a storm’s maximum wind speed due to water lifting is found to decline with increasing efficiency of the cycle and

is about 5% for maximum observed Carnot efficiencies. In the steady-state cycle, there is an extra heat input associated with the

warming of precipitating water. The corresponding positive extra work is of an opposite sign and several times smaller than that

due to water lifting. We also estimate the gain of kinetic energy in the outflow region. Contrary to previous assessments, this

term is found to be large when the outflow radius is small (comparable to the radius of maximum wind). Using our framework,

we show that Emanuel’s maximum potential intensity (E-PI) corresponds to a cycle where total work equals work performed

at the top of the boundary layer (net work in the free troposphere is zero). This constrains a dependence between the outflow

temperature and heat input at the point of maximum wind, but does not constrain the radial pressure gradient. We outline the

implications of the established patterns for assessing real storms.

1 Introduction

Reliable predictions of storm intensity are vital for improving human safety. These predictions require a robust account of the

major physical factors that determine the maximum wind speed that can be developed by the storm. Tropical cyclones do not

just generate kinetic energy, they also lift water that subsequently precipitates. This lifting can diminish the power available for

winds. Nonetheless, available estimates of this impact are inconsistent (Makarieva et al., 2020; Emanuel and Rousseau-Rizzi,

2020).
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Table 1 summarizes the situation. In steady-state large-scale circulations, the water lifting power WP (W m−2) is within

20-50% of total wind power. By analogy to hydropower, this lifting power is estimated from the known precipitation rate P

and precipitation path length HP (the mean height from which the hydrometeors are falling) (Gorshkov, 1982, 1995; Pauluis

et al., 2000; Pauluis and Dias, 2012; Makarieva et al., 2013, 2017c).

Table 1. Relative estimates of the contribution of water lifting to atmospheric energetics, by different authors in chronological order.

Author Context Value (%) Comment

Gorshkov (1982, p. 6),

Gorshkov (1995, Ta-

ble 2.1)

Atmospheric circu-

lation over land
20

Precipitation over land P = 0.5 t m−2 yr−1 (L’vovitch, 1979) falling

from mid troposphere HP ∼ 5 km gives SLgPHP = 1.2× 1014 W

for total land area SL = 1.5× 1014 m2 or ∼ 20% of total atmospheric

power equal to the sum of WP = gPHP = 0.8 W m−2 and kinetic en-

ergy dissipation WK = 3.5 W m−2. The latter value corresponds to 1%

contribution of total solar flux (Gustavson, 1979).

Emanuel (1988, Fig. 3a

vs. Fig. 4a)

Tropical cyclone,

reversible ascent
20

A storm that lifts all condensed water from the surface with relative hu-

midity 80% and temperature Ts = 30°C to the atmospheric layer with

temperature To '−73°C is theoretically estimated to develop a 20%

lower pressure drop (' 96 hPa, from 1013 hPa to 917 hPa) than would

a similar storm without lifting water (' 118 hPa, from 1013 hPa to

895 hPa).

Emanuel (1988,

p. 1149)

Tropical cyclone,

pseudoadiabatic

ascent

5

A storm where condensed water precipitates from the point of conden-

sation is theoretically estimated to develop a 5% lower pressure drop

than would a similar storm without lifting water.

Pauluis et al. (2000);

Pauluis and Dias (2012)

Tropical convec-

tion
50

Satellite-derived WP = 1.5 W m−2 (Pauluis and Dias, 2012) and

WK = 1.4 W m−2 (Pauluis et al., 2000) correspond to WP /(WP +

WK)× 100%' 50%.

Sabuwala et al. (2015,

Fig. 4a)

Tropical cyclone,

pseudoadiabatic

ascent

50

A hurricane with maximum velocity ' 50 m s−1 is theoretically esti-

mated to develop a 50% lower squared maximum velocity than would a

similar storm without lifting water.

Makarieva et al.

(2013, 2017c)

Global atmospheric

circulation
30

WK = 2.3 W m−2 based on instantaneous MERRA re-analysis data

and WP = 1 W m−2 based on observations and theoretical estimates

correspond to WP /(WP +WK)× 100%' 30%.

Rousseau-Rizzi and

Emanuel (2019)

Tropical cyclone,

reversible cycle
0

Condensed water does not precipitate but travels with the air parcels

both up and down, net water lifting power (the integral over dqt in

Eq. (13) of Rousseau-Rizzi and Emanuel, 2019) is zero.

This work
E-PI cyclone with

εC ' 0.3
10

Cumulative account of water lifting and water warming, Eq. (29), re-

duces squared maximum velocity by about 10% in both reversible and

pseudoadiabatic storms.
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For tropical cyclones, Emanuel (1988) estimated that water lifting reduces the central pressure drop in intense storms by

about 5% and 20% for pseudoadiabatic and reversible ascent, respectively, and concluded that “the importance of water loading

in limiting the hurricane intensity in the reversible case” is “very substantial”. Without referring to this prior work, Emanuel

and Rousseau-Rizzi (2020) recently agreed with Makarieva et al. (2020) that in real cyclones the reduction of the squared

maximum velocity due to water lifting should not exceed 10%.

In contrast, Sabuwala et al. (2015) –quoted by Emanuel (2018) but neglected by Rousseau-Rizzi and Emanuel (2019) and

by Emanuel and Rousseau-Rizzi (2020)– used satellite-derived precipitation data and Emanuel’s potential intensity framework

to report an approximately 50% reduction in the squared maximum velocity due to water lifting for pseudoadiabatic ascent.

Unlike Sabuwala et al. (2015), who did not quote Emanuel (1988), Wang and Lin (2020) used the approach of Emanuel (1988)

to account for the total water mixing ratio qt in the pseudoadiabatic model of Emanuel and Rotunno (2011) and found that this

reduces air velocity at the radius of maximum wind in a hurricane with reversible adiabats by about 10% (or squared velocity

by 20%). At the same time, Emanuel and Rousseau-Rizzi (2020) indicated that the impact of the water lifting on storm intensity

depends on the integral of dqt/dt over a closed contour. For a reversible cycle, which conserves the total water content, this

integral is exact zero (Table 1).

The preceding issues raise several questions. First, is the water lifting impact on storm intensity large or small, and if it

is small, why is this different from the power budget of larger-scale circulations? Second, what is the reason for the high

observation-derived estimates of Sabuwala et al. (2015)? Third, why is the impact of the water lifting maximized in reversible

compared with pseudoadiabatic hurricanes?

Assessing the influence of water lifting on a storm’s steady-state intensity requires a consideration of the storm’s thermo-

dynamic cycle. The original derivation of a storm’s maximum velocity by Emanuel (1986) was based on a scaling relation

between velocity and temperature along a surface of constant moist saturated entropy and angular momentum (Emanuel 1986,

Eq. (13); Emanuel and Rotunno 2011, Eq. (11)). The derivation assumed the free troposphere to be in gradient-wind balance.

Makarieva et al. (2018, their Fig. 1, Eqs. (p5) and (p6)) showed that this assumption can be relaxed in the assessment of storm-

integrated energy fluxes. Kerry Emanuel suggested1 that Makarieva et al. (2018)’s approach could be used locally to describe

an infinitely narrow cycle in the vicinity of maximum wind. Without referring to Makarieva et al. (2018), Rousseau-Rizzi and

Emanuel (2019) applied this suggestion but, as noted by Montgomery and Smith (2020) and Makarieva et al. (2020), their

derivations were based on an incorrect configuration of air streamlines.

Here we consider an infinitely narrow thermodynamic cycle in the vicinity of maximum wind that comprises two streamlines

connecting the top of the boundary layer to some arbitrary level in the free troposphere (Fig. 1). Our analysis assumes the

atmosphere to be inviscid above the boundary layer, but does not require the gradient-wind balance at the radius of maximum

wind. We show that the expression for work of this cycle is equivalent to the scaling relation in the original Emanuel (1986)’s

derivation (Section 2). The new, more general formulation of E-PI framework is useful in the following three aspects.

1K. Emanuel made this suggestion in his signed review of (subsequently rejected) submission of Makarieva et al. (2018) to the Journal of Geophysical

Research: Atmospheres.
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First, by allowing an explicit evaluation of the water lifting term that we perform in Section 3, it responds to the above three

questions concerning the contribution of water lifting to storm’s energetics.

Second, it allows the estimation of the gain of kinetic energy and angular momentum in the outflow region of the storm.

Regarding this term, it has long been held that it can be large only when the outflow radius is very large (Emanuel 1986, p. 602;

Emanuel 2004, p. 190). Rousseau-Rizzi and Emanuel (2019) noted that the outflow term “will be small if the radius at which

this occurs is not too large”. However, Makarieva et al. (2019), see also Makarieva et al. (2020), showed that, conversely,

this term “is significant when the outflow radius ... is close to the radius of maximum wind”, i.e., when the outflow radius is

small. Omitting to quote Makarieva et al. (2019) or to discuss their own previous opposing view, Emanuel and Rousseau-Rizzi

(2020) made an effort to re-derive the result of Makarieva et al. (2019) about the (in)significance of the outflow term at (large)

small outflow radii. Emanuel and Rousseau-Rizzi (2020)’s derivations were not conclusive, however, as they based on their

Eq. (6), where the dimensions of the right-hand and left-hand sides do not match. As Makarieva et al. (2020) argued, this is due

to an incorrect transition from volume to surface power fluxes. Here a consistent derivation of the outflow term is presented

(Section 3).

Third, the new formulation demonstrates that E-PI at the point of maximum wind corresponds to a thermodynamic cycle

with zero work in the free troposphere (Section 4). This strong constraint, together with the recently revealed relation between

the inner core and outflow parameters in E-PI, is essential for evaluating "superintensity" (hurricane wind speeds exceeding

their E-PI limits) (Makarieva and Nefiodov, 2021).

2 An infinitely narrow thermodynamic cycle

2.a Combining dynamics and thermodynamics

We consider two closed air streamlines, ABCDA and A′B′C′D′A′ (Fig. 1), in an axisymmetric atmosphere. The goal of our

derivations is to find the relation between turbulent dissipation and heat input at the top of the boundary layer. From this

relation, the maximum wind speed in E-PI can be estimated.

We assume hydrostatic equilibrium and apply the Bernoulli equation to path b′Bb that belongs to streamline ABCDA:

−α∂p
∂z

= g, (1)

−αdp= d

(
V 2

2

)
+ gdz−F · dl, (2)

where α≡ 1/ρ, ρ= ρd+ρv +ρl is the density of moist air (including dry air ρd, water vapor ρv and condensed water ρl), p is

air pressure, g is the acceleration of gravity, V is air velocity, F is the turbulent friction force per unit air mass, and dl = Vdt.

The connection between the dynamics and thermodynamics will be found through the common term αdp. The logic of our

derivations is schematized in Fig. 2.

Applying Eqs. (1) and (2) to b′Bb results in Eq. (3) (Fig. 2), which relates work of the friction force to the sum of the

horizontal differences in pressure and kinetic energy per unit moist air mass (halved squared velocity). In Eq. (3), we have
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Figure 1. Air streamlines (solid and dotted black arrows) and the infinitely narrow thermodynamic cycle (thick pink lines) considered in the

text (cf. Fig. 1b of Makarieva et al., 2020). The z and r axes correspond to the altitude above the sea level and the distance from hurricane

center, respectively; rb′ = rB′ , rc = rC′ . Points B and B′ are infinitely close and chosen in the vicinity of maximum wind. The atmosphere

is inviscid for z > zb = zB′ .

additionally assumed that Vb′ = VB′ . This implies two possibilities. One is that ∂V/∂z = 0, which holds by definition at the

point of maximum wind and is otherwise a plausible assumption at the top of the boundary layer, where turbulent viscosity

becomes negligible (Bryan and Rotunno, 2009b, p. 3045). Another possibility is that points b′ and B′ (and, respectively, B and

b) coincide, such that path b′b is horizontal. This second case with zb = 0 was considered by Rousseau-Rizzi and Emanuel

(2019, their Fig. 1), who assumed that |F|= 0 for z > 0 but |F| 6= 0 at B′b. For a derivation of Eq. (3) from the equations of

motion, see Appendix A.

Our next step is to consider the inviscid atmosphere above z = zb. Applying the Bernoulli equation (2) with |F|= 0 to

streamlines bc and B′C′ and assuming hydrostatic equilibrium at path cC′ (which is not a streamline) yields Eq. (4). It relates

the horizontal change of αdp at B′b to the sum of the integral of αdp over the closed contour B′bcC′B′ and the changes of

kinetic energy at B′b and in the outflow region cC′ (Figs. 1 and 2). (When these changes are zero, the first equality of Eq. (8)

follows.)

At this point, we invoke the relation between the specific volumes of moist and dry air, αd = (1 + qt)α, where αd ≡ 1/ρd is

the specific volume of dry air, and qt ≡ (ρv +ρl)/ρd is the total water mixing ratio. This relation allows us to link the integrals

of αdp and αddp over the closed contour B′bcC′B′, Eq. (5).

On the other hand, the integral of αddp over a closed contour represents work done per unit dry air mass in the corresponding

thermodynamic cycle. This work is converted from the heat input with the cycle’s efficiency ε, Eq. (6). By summing Eqs. (3)–

(6) we combine the dynamic and thermodynamic constraints to obtain a relation between turbulent dissipation and heat input

in the lower atmosphere, Eq. (7).

In the particular case of qt = const, one can divide the functions under the integral signs in Eq. (6) by a constant factor

1 + qt. Then we obtain the second equality in Eq. (8).

5



Lower atmosphere:
Bernoulli equation,

hydrostatic equilibrium,
Vb′ = VB′

−
b∫

b′

F · dl=−
b∫

B′

αdp−
b∫

B′

d

(
V 2

2

)
(3)

Upper atmosphere:
Bernoulli equation,

hydrostatic equilibrium
at cC′, F= 0

−
b∫

B′

αdp=−
∮
αdp+

b∫
B′

d

(
V 2

2

)
+

C′∫
c

d

(
V 2

2

)
(4)

Wet and dry mass units:
(1+ qt)α≡ αd,

(1+ qt)δQ≡ δQd

−
∮
αdp≡−

∮
αddp+

∮
qtαdp (5)

Thermodynamics:
Link between work

and heat input
−
∮
αddp= ε

b∫
B′

δQd (6)

Link between
volume-specific

frictional dissipation
and heat input

−
b∫

b′

F · dl= ε

b∫
B′

δQd +

∮
qtαdp+

C′∫
c

d

(
V 2

2

)
(7)

Reversible cycle with qt = const,
no kinetic energy change

at B′b (point of maximum wind)
and in the outflow cC′

−
b∫

B′

αdp=−
∮
αdp= ε

b∫
B′

δQ (8)

Figure 2. Key steps of deriving the relation between turbulent dissipation and heat input in the lower atmosphere. The integrals over a closed

contour refer to B′bcC′B′ in Fig. 1. The heat input δQd is normalized per unit dry air mass.

In the derivation, the hydrostatic equilibrium approximation (1) was applied at b′Bb and cC′, but it was not used at bc and

B′C′. The thermodynamic processes in the cycle were not specified, so Eq. (6) can be viewed as defining the value of ε. The

choice of the outflow point c along the streamline in Eqs. (4) and (7) was arbitrary. The assumption that the cycle is infinitely

narrow was used in Eqs. (3) and (7), but not in Eqs. (4)–(6). Equation (8) describes an infinitely narrow cycle B′bcC′B′ with

∂V 2/∂z = 0 at cC′ and ∂V 2/∂r = 0 at B′b. It is also valid for a special case of B′bcC′B′ being a closed streamline with

Vb = VB′ (Emanuel, 1988).

2.b Conventional E-PI estimate

We will now demonstrate the equivalence of the framework depicted in Fig. 2 to E-PI in two ways: in terms of turbulent

dissipation and in terms of angular momentum.
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The ratio of the surface fluxes of turbulent dissipation and ocean-to-atmosphere heat is proportional to squared velocity (e.g.,

Bister and Emanuel, 1998, Eqs. (15) and (16)). An independent estimate of this ratio would yield a constraint on velocity. Such

an estimate can be deduced from Eq. (7) with some assumptions.

Emanuel (1986) did not discriminate between α and αd (and accordingly between δQ and δQd) and thus neglected the

second term on the right-hand side of Eq. (7). The third term on the right-hand side of Eq. (7), which is the change of kinetic

energy in the outflow, was also neglected. That was because Emanuel (1986) assumed gradient-wind balance and, hence,

V = v, where v is tangential velocity, and then chose point c in the outflow where V = v = 0 and, hence, ∂V 2/∂z = 0. Finally,

Emanuel (1986) considered the thermodynamic cycle to be reversible, such that its efficiency ε equals Carnot efficiency εC ≡
(Tb−Tc)/Tb.

Applying these assumptions –neglecting the last two terms and putting ε= εC and δQd = Tbds
∗ in Eq. (7)– we lift the

integral signs in the limit of the infinitely narrow cycle b′→ B′ and divide both sides of the equation by dt, to obtain:

−F ·V = εC
δQd
dt

= εCTb
∂s∗

∂r
u, (9)

where V = dl/dt is total air velocity, u= dr/dt is radial velocity, and s∗ is moist saturated entropy.

Multiplied by ρ, Eq. (9) relates local volume-specific rates (W m−3) of turbulent dissipation and heat input into a horizontally

expanding air parcel. Assuming that the ratio of these volume-specific rates is the same as the ratio of the corresponding surface

fluxes (W m−2) of turbulent dissipation D = ρCDV
3 and heat input J = ρCkV (k∗s − k),

− F ·V
δQd/dt

=
D

J
, (10)

yields the original E-PI formula for maximum velocity (e.g., Emanuel and Rotunno, 2011, Eq. (22)):

V 2
max =

D

J

Ck
CD

(k∗s − k) = εC
Ck
CD

(k∗s − k). (11)

Here Ck ' CD are surface exchange coefficients for enthalpy and momentum, respectively; k∗s (J kg−1) is the saturated en-

thalpy of air at surface temperature, and k is the actual enthalpy of air.

The second way of demonstrating the equivalence between E-PI and the framework in Fig. 2 is to show that the following

combination of Eqs. (4)–(6),

−
b∫

B′

αdp−
b∫

B′

d

(
V 2

2

)
= ε

b∫
B′

δQd +

∮
qtαdp+

C′∫
c

d

(
V 2

2

)
, (12)

is, under E-PI assumptions, equivalent to Emanuel and Rotunno (2011)’s Eq. (11),

ν1− ν2
T1−T2

=− ds
∗

dM
, (z ≥ zb), (13)

where T1, T2 and ν1 ≡ v1/r1, ν2 ≡ v2/r2 are, respectively, air temperatures and angular velocities at arbitrary distances r1 and

r2 from the storm center on a surface of constant angular momentum M and moist saturated entropy s∗ = s∗(M) defined by

the given value of ds∗/dM .
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Using the definition of angular momentum

M ≡ vr+
fr2

2
, (14)

where the Coriolis parameter f ≡ 2Ωsinϕ is assumed constant (ϕ is latitude, Ω is the angular velocity of Earth’s rotation), and

assuming gradient-wind balance at point b,

α
∂p

∂r
=
v2

r
+ fv, (15)

we can write our Eq. (12) (with the second term on the right-hand side ignored) as

B′∫
b

v

r

∂M

∂r
dr =−ε

B′∫
b

δQd +
1

2
(v2C′ − v2c ). (16)

Here we have assumed, as did Emanuel and Rousseau-Rizzi (2020), that the change of velocity V over path cC′ is dominated

by the change in tangential velocity v, V 2
C′ −V 2

c = v2C′ − v2c . Since the atmosphere at cC′ is frictionless and hydrostatic, it is

equivalent to assuming local gradient-wind balance (see Eq. (A10)). With path cC′ hydrostatic and in gradient-wind balance,

all our results are invariant with respect to its orientation (whether/how cC′ is tilted about the vertical axis).

To lift the integral signs and describe an infinitely narrow cycle, we need to evaluate the last term in Eq. (16) in the limit

rB′ → rb. Since the atmosphere is frictionless above zb and since the pressure field is axisymmetric, paths bc and B′C′

conserve angular momentum M . Using Eq. (14) for M in the equation MB′ −Mb =MC′ −Mc and dividing this equation by

rc(rB′ − rb) we obtain

1

rc

[
vB′ + rb

vB′ − vb
rB′ − rb

+
f

2
(rB′ + rb)

]
=
vC′ − vc
rB′ − rb

. (17)

Taking the limit rB′ → rb and multiplying Eq. (17) by vc we find

vc
∂vc
∂r

=
vc
rc

(
v+ r

∂v

∂r
+ fr

)
=
vc
rc

∂M

∂r
, (z = zb). (18)

We now assume that our infinitely narrow cycle has Carnot efficiency εC = (Tb−Tc)/Tb and that the heat input at B′b can

be expressed in terms of the increment of moist saturated entropy δQd = Tbds
∗. Lifting the integral signs in Eq. (16) with the

use of Eq. (18), we obtain

vb
rb

∂M

∂r
=−(Tb−Tc)

∂s∗

∂r
+
vc
rc

∂M

∂r
, (z = zb). (19)

Assuming, finally, that s∗ = s∗(M), such that ds∗/dM = (∂s∗/∂r)/(∂M/∂r), we obtain Eq. (13) from Eq. (19) with points

1 and 2 corresponding to points b and c, respectively.

With point c chosen such that vc = 0, Eqs. (13) and (19) are equivalent to Emanuel (1986)’s Eq. (13) (see also Emanuel and

Rotunno, 2011, Eq. (12)). Emanuel (1986) made several assumptions about the boundary layer (specifically, that the surfaces

8



of constant s∗ and M are vertical and that the horizontal turbulent diffusion fluxes are small) to justify that the radial gradients

of s∗ and M relate as their surface fluxes τs = J/Ts and τM =−Dr/V , respectively:

∂s∗/∂r

∂M/∂r
=

τs
τM

. (20)

Then assuming that V ' vb, r ' rb, and Ts ' Tb, where Ts is sea surface temperature, Eqs. (19) and (20) yield Eq. (11). Under

Eq. (19), assumptions (10) and (20) are equivalent.

Equation (11) relates local fluxes and is intended to estimate storm’s maximum potential intensity. However, neither Eq. (9)

nor Eq. (19), from which the maximum potential intensity (11) can be derived, require ∂V 2/∂r = 0 (the condition of maximum

wind). This peculiarity of E-PI was noted by Montgomery and Smith (2017). Equation (9) requires ∂V 2/∂z = 0 at z = zb,

while Eq. (19) does not.

As we will discuss in Section 4, ∂V 2/∂r = 0 is an important constraint on E-PI. Here we note that, according to Eq. (8), in

the E-PI framework work in the free troposphere (along the path bcC′B′) is zero. The total work of the cycle, i.e., heat input

at B′b multiplied by efficiency εC , equals the work on B′b. Since εC depends on the outflow temperature Tc, the specification

of the thermodynamic process at B′b and the choice of Tc cannot be independent (Makarieva and Nefiodov, 2021).

3 Estimating the water lifting and outflow terms

3.a Reversible and pseudoadiabatic hurricanes

For the considered thermodynamic cycle B′bcC′B′ to have Carnot efficiency, it should be reversible. This requires that the air

is saturated (relative humidityH is equal to 100%) and the total moisture mixing ratio qt is constant, everywhere in the cycle2.

With qt = const, dividing both sides of Eq. (6) by (1 + qt) we obtain

−
∮
αdp= ε

b∫
B′

δQ, (21)

where δQ≡ δQd/(1 + qt) is the heat input per unit moist air mass. Summing Eqs. (3), (4) and (21) yields

−
b∫

b′

F · dl = ε

b∫
B′

δQ+

C′∫
c

d

(
V 2

2

)
. (22)

Comparison of Eqs. (7) and (22) shows that the latter lacks the water lifting term. Rousseau-Rizzi and Emanuel (2019) similarly

found that the water lifting term is comprised in the integral of the material derivative dqt/dt over a closed streamline, which

is zero when qt = const (Table 1). The physical meaning of this result is that all the water that is lifted in the ascending branch

of the cycle taking the energy away, goes down in the descending branch and performs work, with the net effect being zero.

2In the literature one can sometimes find a loose definition of a reversible process that only assumes qt = const but allows the relative humidity to vary

(e.g., Bryan and Rotunno, 2009a, Eq. (23)).
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However, if the storm circulation is composed of streamlines representing reversible processes (saturated isotherms and

adiabats conserving qt), but qt differs between streamlines, the thermodynamic cycle B′bcC′B′ will not be reversible due to

the change of qt on paths B′b and cC′ that connect different streamlines, ABCDA and A′B′C′D′A′. The efficiency of such a

cycle will be lower than Carnot efficiency.

3.b Extra heat input to warm precipitating water

A cycle with reversible adiabats bc and C′B′ (qt = const, H= 100%) and saturated isotherms B′b and cC′, along which qt,

respectively, increases and decreases, has the following relation between work and heat input (for derivations, see Appendix B):

−
∮
αddp' εCTb∆s∗+

εC
2
cl(Tb−Tc)∆qt, (23)

where εC ≡ (Tb−Tc)/Tb is Carnot efficiency, ∆qt ≥ 0 and ∆s∗ ≥ 0 are, respectively, the changes of total water mixing ratio

qt and moist saturated entropy s∗ from B′ to b, cl = 4.2 kJ kg−1 K−1 is the specific heat capacity of liquid water. The first term

on the right-hand side of Eq. (23) is due to a heat input into an expanding air parcel with evaporating water. If, as we assume

below, all water at the warmer isotherm is added in the form of water vapor, then ∆qt should be replaced by saturated water

vapor mixing ratio ∆q∗ in Eq. (23).

While in finite differences Eq. (23) is valid only when B′b and cC′ are isotherms, in the limit of an infinitely narrow cycle

B′bcC′B′, when B′b and cC′ degenerate each to a point, Eq. (23) becomes valid even if the temperature along B′b and cC′ is

not constant (see Appendix B). As one of our reviewers pointed out, this is due to the small change of temperature along these

paths compared to the finite difference Tb−Tc (see also Carnot, 1890, p. 59). This explains how Emanuel (1986) obtained a

Carnot efficiency multiplier at the radial heat input Tb∂s∗/∂r in his Eq. (13) without assuming horizontal isothermy at the top

of the boundary layer.

The last term in Eq. (23), see also Eq. (B11), corresponds to term “(c)” in Eq. (19) of Emanuel (1988), who described it as

“the increase of entropy due to addition of water mass” and “the contribution of water substance to the heat capacity”. Without

referring to Emanuel (1988), Pauluis (2011) re-derived this term in his Eq. (B2) and interpreted it as “additional work”3,

accounting for which elevates the cycle’s efficiency above Carnot efficiency. Pauluis (2011) explained that this elevation does

not violate the second law of thermodynamics because the cycle is open (moisture is added and removed), while Carnot

efficiency limits the efficiencies of closed cycles only. On the other hand, according to Pauluis (2011), it is not accidental that

the same cycle has Carnot efficiency when cl = 0: it is because this open cycle is thermodynamically equivalent to a closed

cycle where the moisture removed at the colder isotherm is kept within the heat engine and added back to the cycle at the

warmer isotherm. The question to this interpretation is why with cl 6= 0 such a cycle is not equivalent to a closed one.

This is resolved by recognizing an additional heat input to the cycle. Warming the water removed at the colder isotherm with

temperature Tc and returned at the warmer isotherm with Tb requires extra heat cl(Tb−Tc)∆q∗. As the moist air ascends and

3Equation (B3) of Pauluis (2011) should have Tin instead of Tout in the denominator of the right-hand part, otherwise it contradicts Eq. (B2) from which

supposedly derives.
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cools from Tb to Tc, the mean temperature at which the water loses heat is, in the linear approximation, Tw ' (Tb +Tc)/2.

Accordingly, the maximum efficiency with which this heat can be converted to work is (Tb−Tw)/Tb ' εC/2.

Thus, such a cycle is equivalent to a closed cycle with total heat input

∆Qd = Tb∆s∗+ cl(Tb−Tc)∆q∗ (24)

and efficiency

ε= εC

[
1− 1

2

cl(Tb−Tc)∆q∗

Tb∆s∗+ cl(Tb−Tc)∆q∗

]
, (25)

that is lower than Carnot efficiency (εC/2≤ ε≤ εC) due to the irreversibility associated with warming the precipitating water.

This inherent thermodynamic imperfection of steam cycles was recognized already by Sadi Carnot (1890, p. 58).

In a pseudoadiabatic hurricane, all condensed water is immediately removed (precipitates) from the air parcel: ρl = 0 and

qt = q∗. The extra heat reduces to cl(Tb−TP )∆q∗, where TP is the mean temperature at which condensation and precipitation

occur (Tc ≤ TP < Tb). The last term in Eq. (23) can be roughly approximated by cl(Tb−TP )2∆q∗/(2Tb).

3.c Water lifting

Taking into account that paths B′b and cC′ are, respectively, horizontal and vertical (Fig. 1) and using αd = (1+q∗)α for B′b,

we can combine Eqs. (3), (6), (7) and (23) in the following form:

B′∫
b

(
α
∂p

∂r
+

1

2

∂V 2

∂r

)
dr =−εC

B′∫
b

T
∂s∗

∂r
dr− clTb

ε2P
2

B′∫
b

∂q∗

∂r
dr+

∮
αqtdp+

C′∫
c

d

(
V 2

2

)
, (26)

where εP ≡ 1−TP /Tb. Here we have assumed that evaporation occurs from the ocean surface (there is no condensate along

B′b: qt = q∗). We calculate the water lifting term in Appendix C and lift the integral signs in Eq. (26) for the infinitely narrow

cycle B′bcC′B′, i.e., considering the limit rB′ → rb and zC′ → zc. This gives for z = zb and r = rb

(1 + q∗)

(
α
∂p

∂r
+

1

2

∂V 2

∂r

)
=−εCTb

∂s∗

∂r
+

[
1

2

(
V 2
P −V 2

)
+ g(zP − zb)− clTb

ε2P
2

]
∂q∗

∂r
+ (1 + qtc)

1

2

∂V 2
c

∂r
. (27)

Here qtc and Vc refer to the point (rc,zc); ∂V 2
c /∂r is the limit of (V 2

C′−V 2
c )/(rB′−rb) at rB′ → rb and zC′ → zc, cf. Eqs. (17)

and (18). The quantities V 2
P , zP and TP are evaluated on the unclosed contour bcC′B′ (denoted by y):

V 2
P ≡−

1

∆q∗

∫
y

V 2dqt, zP ≡−
1

∆q∗

∫
y

zdqt, TP ≡−
1

∆q∗

∫
y

Tdqt, (28)

where ∆q∗ ≡ q∗b− q∗B′ . In a cycle with reversible adiabats, i.e., with constant qt along bc and C′B′ and ∆q∗ = qtc− qtC′ , the

integrals in Eq. (28) in the considered limit are straightforwardly evaluated: VP = Vc, zP = zc, and TP = Tc.

Equation (27) summarizes the energy budget of the infinitely narrow cycle B′bcC′B′ and thus provides a relation between

local variables. The first and second terms in the square brackets represent kinetic and potential energy increments associated

with phase transitions. Term (V 2
P −V 2)/2 formally accounts for water vapor being added to the air mixture with kinetic energy
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V 2/2 of the air at B′b, while disappearing via precipitation with kinetic energy V 2
P /2 in the free troposphere. We will neglect

this term4, since for typical zP ∼ 10 km and V ∼ 60 m s−1, V 2/2 is only about 2% of gzP .

The water lifting term g(zP − zb) accounts for the net energy expended to lift water. In a real cycle, where there is no

precipitation in the descending branch C′B′ and qt does not change, zP equals the mean precipitation height HP in the

ascending branch bc. In an infinitely narrow cycle with reversible adiabats, qt is also constant in the "descending branch", and

zP = zc =HP has the same meaning.

However, in an infinitely narrow cycle with qt varying along bc and C′B′, moisture disappears along bc. It then arises anew

along C′B′ with its own non-zero gravitational energy. In this hypothetical cycle, moisture performs work as it descends along

C′B′ and consumes energy when it is raised along bc. Thus, the net energy g(zP − zb)∆q∗ is equal to the difference in the

gravitational energy of "precipitation" between bc and C′B′ (cf. Emanuel, 1988, Eq. (C12)).

This net energy is equal to the energy g(HP − zb)∆q∗ spent to raise the additional moisture ∆q∗ from zb to the mean

precipitation height HP along bc plus the energy g∆q∗∂HP /∂q
∗
b(q∗b− q∗c ) spent to raise nearly all moisture q∗b− q∗c ∼ q∗b

to an additional altitude ∆q∗∂HP /∂q
∗
b equal to the difference between the mean precipitation heights along bc and B′C′.

For pseudoadiabats, HP is approximately proportional to q∗b, so that q∗b∂HP /∂q
∗
b ∼HP . In this case, zP − zb turns out to be

approximately twice the mean precipitation height, i.e., around 10 km for Tb ' 300 K, Eq. (C6).

The third term in the square brackets represents the warming of the precipitating water, Eq. (24). It is of the opposite sign

to the water lifting term. For reversible adiabats TP = Tc; with Tb = 300 K, Tb−TP ' 100 K and zP − zb ' 17 km (which

corresponds to mean lapse rate Γ = (Tb−TP )/(HP − zb)' 6 K km−1), the water warming term constitutes about 40% of

the water lifting term. Accounting for water warming somewhat, but not fully, compensates the impact of water lifting, and

the more so, the larger the difference Tb−TP . For pseudoadiabats, TP is equal to the mean temperature of precipitating water

(Eq. C6), the difference Tb−TP is relatively small, and the impact of water warming is almost negligible. With Tb = 300 K,

Tb−TP = 25 K and zP − zb = 10 km (Table C1), it does not exceed 10%.

In units of latent heat of vaporization Lv , the cumulative contribution K1 of the water lifting and warming

K1 ≡
1

Lv

[
g(zP − zb)− clTb

ε2P
2

]
(29)

is of similar magnitude K1 = 0.04 for reversible and pseudoadiabatic storms with high εC ≥ 0.3 (Table C1).

3.d The outflow gain of kinetic energy

The last term on the right-hand side of Eq. (27) describes how the kinetic energy in the outflow, V 2
c /2, changes depending on

the radius r = rb where the streamline crosses the level z = zb (Fig. 1). Assuming that we are at a point near the radius of

maximum wind, such that v/r� ∂v/∂r, we can neglect ∂v/∂r in Eq. (18) and use the relation between tangential velocity

4Term (V 2
P −V

2)/2 can be explicitly accounted for by specifying the interaction between condensate and air (i.e., introducing a specific term to the

equations of motion and Bernoulli equation). If condensate is assumed to have the same horizontal velocity as air (see, e.g., Ooyama, 2001; Makarieva et al.,

2017b), then as the precipitating condensate leaves the air at the surface, it will have the same velocity as the newly evaporated water vapor. The net contribution

of this term to the total power budget of the hurricane will be exact zero (see Makarieva et al., 2017c, Fig. 1).
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and pressure gradient

α
∂p

∂r
≡ B

(
v2

r
+ fv

)
, (30)

where B > 0 defines the degree to which the air flow is radially unbalanced (B < 1 for the supergradient flow when the

outward-directed centrifugal force exceeds the inward-pulling pressure gradient), to obtain from Eq. (18):

1

2

∂V 2
c

∂r
' 1

2

∂v2c
∂r

=
vc
rc

r

v

(
v2

r
+ fv

)
= α

∂p

∂r

1

B
vc
rc

rb
vb
, (r = rb,z = zb). (31)

On the other hand, using Eqs. (14) and the fact that Mb =Mc we can express vc as

vc =
1

rc

[
vbrb +

f

2
(r2b− r2c )

]
. (32)

(Evaluating the derivative of Eq. (32) with respect to rb and taking into account that ∂rc/∂rb = 0 is another way to obtain

Eq. (18)). Using Eq. (32) and neglecting qtc� 1 we can write the last term in Eq. (27) as K2α∂p/∂r, where

K2 ≡
1

B
vc
rc

rb
vb

=
1

B

[
r2b
r2c

+
frb
2vb

(
r2b
r2c
− 1

)]
. (33)

For (rb/rc)
2� 1, this term is small and negative. In contrast, Emanuel (1986, p. 602) incorrectly concluded that the outflow

term becomes significant if the outflow radius is very large5. In their re-evaluation of this issue, Emanuel and Rousseau-Rizzi

(2020) considered the material derivative of angular momentum dM/dt along the path cC′ connecting the two streamlines.

Their derivation is not valid, since cC′ is not a streamline and the air does not move along that path. Defending their configura-

tion of streamlines, Emanuel and Rousseau-Rizzi (2020) noted that “the properties of D′ and D, and of A′ and A are identical”

but said nothing about the properties of C′ and C (see Fig. 1 of Rousseau-Rizzi and Emanuel, 2019).

3.e Estimates of maximum velocity

We will now consider the point where ∂V/∂r = 0 (see Eq. (8) in Fig. 2). This corresponds to the point of maximum wind if

point b is chosen at the top of the boundary layer as in the derivations of Emanuel (1986) and Emanuel and Rotunno (2011) or

to the point of maximum surface wind if point b is chosen at the surface as in the derivations of Rousseau-Rizzi and Emanuel

(2019).

By analogy with Eq. (9), from Eq. (3) with ∂V/∂r = 0 we obtain (see also Makarieva et al., 2020, Eq. (14)):

−F ·V =−α∂p
∂r
u, (34)

where u= dr/dt. Equation (34) is fundamental: it derives from the Bernoulli equation and hydrostatic equilibrium (Fig. 2). It

predicts that if at the point of maximum wind |F| → 0 (as is the case at the top of the boundary layer), then u→ 0. This feature
5This conclusion stemmed from Emanuel (1986)’s Eq. (18), where an outflow term proportional to a large squared radius first appeared. While deriving

this equation for a cycle with finite B′b, Emanuel (1986, p. 588), on the one hand, used the conservation of angular momentum along streamlines bc and

B′C′ and, on the other hand, assumed rB′ (interpreted as “the radial extent of the storm near the sea level”) to be large enough for ∂p/∂r to vanish and, at

the same time, small enough for r∂p/∂r|b� r∂p/∂r|B′ (for details, see Makarieva et al., 2019, Appendix A). With r∂p/∂r ∼ ρv2, ignoring this term at

B′ means that V 2
b −V

2
B′ ∼ V 2

b , while at the point of maximum wind this difference is zero.
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is observed in numerical models (e.g., Bryan and Rotunno, 2009b, p. 3054). It is also valid for a horizontal streamline at zb = 0

as considered by Rousseau-Rizzi and Emanuel (2019, their Fig. 1), whereby u 6= 0 and |F| 6= 0.

On the other hand, for ∂v/∂r = 0 we have from Eqs. (14) and (30)

α
∂p

∂r
= B v

r

∂M

∂r
. (35)

Finally, using the definitions ofK1 (29) andK2 (33) and neglecting q∗� 1, we can write Eq. (27) for ∂V/∂r = 0 as follows:

−α∂p
∂r

=
εC −βK1

1−K2
Tb
∂s∗

∂r
, β ≡ Lv∂q

∗/∂r

Tb∂s∗/∂r
. (36)

Here 0≤ β ≤ 1 is the share of latent heat in total heat input into the air parcel along B′b.

Now using two distinct assumptions, (10) and (20), about how the volume and surface energy fluxes relate, we obtain two

expressions for Vmax that differ by a factor of B. From Eq. (36), Eq. (35) and Eq. (20) we obtain

V 2
max =

εC −βK1

B(1−K2)

Ck
CD

(k∗s − k). (37)

From Eq. (36) multiplied by u, Eq. (34) and Eq. (10) we obtain the same expression, but without B. Since B can be as small

as 0.5 (e.g., Bryan and Rotunno, 2009b, Fig. 8), this is a significant source of uncertainty in Vmax associated with assumptions

(10), (20) and their modifications as discussed elsewhere (Makarieva and Nefiodov, 2021).

For our present purpose of estimating the role of the water lifting and the outflow, this does not matter, since the values

of K1 and K2 are compared with εC and unity, respectively. With K1 ' 0.04, β ∼ 0.7 estimated from a typical Bowen ratio,

and εC = 0.3, K1 reduces V 2
max by βK1/εC × 100%' 10% and Vmax by 5% both for pseudoadiabatic and adiabatic cases at

Tb = 300 K.

This result is comparable to Emanuel (1988), who found that the central pressure drop is reduced by water lifting by about

20% in the reversible case (Table 1). Emanuel (1988) did not evaluate local maximum velocity but considered a large-scale

thermodynamic cycle with a horizontally isothermal top of the boundary layer. Horizontal isothermy is generally not compat-

ible with the other E-PI assumptions and leads to an underestimate of α∂p/∂r (Makarieva and Nefiodov, 2021). This could

cause the overestimate of K1 for the reversible case. The details of pseudoadiabatic calculations were not reported by Emanuel

(1988); we can hypothesize that neglecting the second term in Eq. (C6) for zP could cause the underestimate of K1 for the

pseudoadiabatic case.

As for the outflow termK2, since rb < rc, the factor in square brackets in Eq. (33) is confined between−frb/(2vb)< 0 and

unity. For characteristic values of rb = 30 km, vb = 60 m s−1, ϕ= 15o and f ' 3.77×10−5 s−1 we have frb/(2vb)' 10−2.

With B ' 1, K2 reduces V 2
max by about 1% for large rc.

On the other hand, if the outflow radius is relatively small, K2 is positive and elevates rather than lowers the maximum

velocity estimate. This may happen for many storms with rb/rc &
√
frb/(2vb)∼ 10−1. Interpreting K2 as “dissipation” to

occur at an arbitrary point c in an otherwise frictionless troposphere, is incorrect (cf. Emanuel and Rousseau-Rizzi, 2020).

When K2 > 0 the kinetic energy increases from c to C′. Smith et al. (2014) noted that a mechanism that would provide an
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increment of angular momentum, and hence a kinetic energy increment, along B′b does not appear to exist. But Makarieva

et al. (2017a) indicated that extra angular momentum can arise in the upper atmosphere as a real steady-state hurricane is an

open system that moves through the atmosphere and can import angular momentum as it imports air and water vapor.

Sabuwala et al. (2015, their Eq. (2), the “adiabatic case”) did not derive their formulations from the original assumptions of

E-PI. However, they included what seemed a plausible water lifting term in the hurricane’s power budget, as follows:

εC(D+ J) =D+ gHPP, (38)

from which one obtains that

V 2
max =

D

J

Ck
CD

(k∗s − k) =
1

1− εC

(
εC −

PLv
J

gHP

Lv

)
Ck
CD

(k∗s − k). (39)

Here P (kg m−2 s−1) is the local precipitation in the region of maximum winds6. Equation (39) is obtained from Sabuwala

et al. (2015)’s Eq. (2) and their additional equation Q̇in− Q̇out = P . (The “diabatic case” of Sabuwala et al. (2015) addressed

thermal dissipation of the potential energy of the falling droplets (see Igel and Igel, 2018).)

Compared to (37), the water lifting term gHP /Lv ∼K1 in Eq. (39) is multiplied by a large factor PLv/J � 1 reflecting

the ratio of local precipitation to local heat input. For typical Bowen ratios in hurricanes B ≡ JS/JL ' 1/3 (e.g., Jaimes et al.,

2015) we have J = (1 +B)JL = (1 +B)ELv and PLv/J = (P/E)/(1 +B), where JS , JL and E are the local fluxes of

sensible heat, latent heat, and evaporation, respectively. Ratio P/E between local precipitaton and evaporation in the region of

maximum winds is variable but on average of the order of 10 (see Makarieva et al., 2017a, their Table 1 and Figs. 2 and 3). For

HP ∼ 5 km and εC ∼ 0.3, Sabuwala et al. (2015)’s correction to V 2
max is thus 10(gHP /Lv)/[(1 +B)εC ]' 0.5, which is five

times larger than our βK1/εC ' 0.1 (Table 1). The unjustified replacement of evaporation by precipitation caused Sabuwala

et al. (2015)’s estimate to be too high.

4 The physical meaning of E-PI at the point of maximum wind

Equation (34) shows that, at the point of maximum wind, the local volume-specific rate (W m−3) of turbulent dissipation,

−ρF ·V, is equal to the local volume-specific rate of sensible heat input into an isothermally and horizontally expanding air

parcel, −(∂p/∂r)u. Thus, if all this turbulent dissipative power transforms locally to heat, the external sensible heat input into

the air parcel must be zero.

In the general, non-isothermal case, we can relate turbulent dissipation to latent heat input. Inspecting our key equation (27),

we notice that the water lifting term in Eq. (27) is proportional to ∂q∗/∂r, while the outflow term is proportional to ∂p/∂r,

see Eq. (31). On the other hand, using the definition of q∗ and Clausius-Clapeyron law, the radial gradient of moist saturated

entropy in Eq. (27) can also be expressed in terms of ∂q∗/∂r and ∂p/∂r, see Eqs. (B5) and (B17):

T
∂s∗

∂r
= Lv

∂q∗

∂r
(1 +κ1)−αd

∂p

∂r
(1−κ2) . (40)

6Note the following differences in notations between Sabuwala et al. (2015) and the present work: Ts→ Tb, Q̇in→ J , Q̇d→D, P →WP = gHPP .

Factor 1/(1− εC) is due to dissipative heating.
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Coefficients κ1 and κ2 describe the deviation from horizontal isothermy:

κ1 ≡
1

µγ∗dξ
2(1 + γ∗d)

=
κ2

γ∗dξ
' 0.3, (41)

κ2 ≡
1

µξ(1 + γ∗d)
' 1

µξ
' 0.2, (42)

where ξ ≡ L/RT ' 18, µ≡R/(cpMd)' 2/7 and γ∗d ≡ (Md/Mv)q
∗ are defined in Appendix B. The numerical values corre-

spond to T = 300 K and γ∗d ≡ p∗v/pd = 0.04. For ∂T/∂r = 0, the terms proportional to κ1 and κ2 jointly vanish from Eq. (40),

see also Eq. (B17). Therefore, the isothermal case can be formally obtained by putting κ1 = 0 and κ2 = 0 in Eq. (40) and

related.

Using Eqs. (31) and (40) we write Eq. (27) with ∂V 2/∂r = 0 and q∗� 1 neglected, as follows

α
∂p

∂r
= [−εC (1 +κ1) +K1]Lv

∂q∗

∂r
+ [εC (1−κ2) +K2]α

∂p

∂r
. (43)

Multiplying Eq. (43) by −u and using Eq. (34), we obtain

−F ·V =
εC(1 +κ1)−K1

1− εC(1−κ2)−K2
Lv
∂q∗

∂r
u. (44)

(This equation together with Eq. (36) show that E-PI constrains the latent-to-total heat ratio β at B′b. For K1 =K2 = κ1 =

κ2 = 0 we have β = 1− εC , which, as can be verified from the exact relation (B18), is a good approximation of β for small

K1� εC .) Assuming that turbulent dissipation relates to latent heat input equally at bB′ and at the surface (i.e., replacing in

Eq. (10) total heat Tds∗ and J with latent heat Lvdq∗ and JL = ρCkV Lv(q
∗
s − q), respectively),

− F ·V
Lv(∂q∗/∂r)u

=
D

JL
, (45)

from Eq. (44) we obtain another expression for V 2
max:

V 2
max =

D

JL

Ck
CD

Lv(q
∗
s − q) =

εC(1 +κ1)−K1

1− εC(1−κ2)−K2

Ck
CD

Lv(q
∗
s − q). (46)

When surface sensible heat JS = ρCkV cp(Ts−T ) is negligibly small, such that JL� JS and J = JL+JS ' JL (as assumed

by Emanuel, 1986, who put T = Ts), Eq. (46) coincides with the “dissipative heating” formulation (Bister and Emanuel, 1998,

Eq. (21)). Indeed, for K1 =K2 = κ1 = κ2 = 0, Eq. (46), derived without assuming any dissipative heating, is then equivalent

to Eq. (11) but with εC replaced in the latter by εC/(1− εC). This formal similarity encountered in a numerical model could

lead to the dissipative heating formulation.

While Eq. (44) relates turbulent dissipation to latent heat input alone, this does not mean that “only surface latent heat fluxes

can power tropical cyclones”, which is how Emanuel and Rousseau-Rizzi (2020) apparently misunderstood the isothermal

version of Eq. (44) (see Eq. (15) of Makarieva et al., 2020). Emanuel and Rousseau-Rizzi (2020) interpreted this relation as

a contradiction in the reasoning of Makarieva et al. (2020), since it can be concluded that with no latent heat input from the

ocean there can be no storms, while dry hurricanes were shown to exist at least in numerical models (Mrowiec et al., 2011;

Cronin and Chavas, 2019). We note, however, that whatever follows from Eq. (44), be that a contradiction or not, is an inherent
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feature of E-PI. All the equations that we have so far considered can be derived from E-PI’s key equations, and vice versa, as

we demonstrated in Section 2.

To elucidate the meaning of these relationships, let us consider yet another, equivalent, formulation of Eq. (44). The radial

gradient of moist saturated entropy can be also expressed in terms of ∂T/∂r and ∂p/∂r (see Makarieva and Nefiodov, 2021):

T
∂s∗

∂r
=−αd

∂p

∂r

(
1 +

Lγ∗d
RT

)(
1− 1

Γ

∂T/∂r

∂p/∂r

)
, (47)

where Γ is the moist adiabatic lapse rate (K Pa−1). If, for simplicity, we neglect the water lifting by putting K1 = 0, i.e.,

ignoring the term in square brackets in Eq. (27), we notice, taking into account Eq. (47), that all the remaining terms in

Eq. (27) are proportional to the common factor α∂p/∂r, which can be canceled. Again, putting for simplicity qt = q∗ = 0 and

B = 1, and using Eq. (33), we obtain from Eq. (27):

1 = εC

(
1 +

Lγ∗d
RTb

)(
1− 1

Γ

∂T/∂r

∂p/∂r

)
+
vc
rc

rb
vb
, (48)

which can be re-written in a form similar to Eq. (13) using εC = (Tb−Tc)/Tb and ν = v/r:

νb− νc
Tb−Tc

=
νb
Tb

(
1 +

Lγ∗d
RTb

)(
1− 1

Γ

∂T/∂r

∂p/∂r

)
. (49)

In comparison to Eq. (13), in this equation point b is not arbitrary but pertains to the point of maximum wind, while point c

remains of an arbitrary choice.

Equations (48) and (49) show that when νc = 0 (no kinetic energy change in the outflow), and the air is horizontally isother-

mal, E-PI framework presumes εC(1+Lγ∗d/RTb) = 1 (Makarieva and Nefiodov, 2021). This relation between the water vapor

mixing ratio and the outflow temperature has the following meaning.

As we already noted, in the E-PI framework, total work of the cycle is equal to the work on the path B′b, where heat input

occurs (see Eq. (8) in Fig. 2). This can only be the case when the adiabat bc is, at least somewhere, warmer than the adiabat

B′C′. Then the pressure deficit at b as compared to B′ can be compensated by the pressure surplus in the free troposphere at

bc as compared to B′C′. Without this pressure surplus aloft, the work along bcC′B′ will be negative rather than zero (for a

more detailed discussion, see Makarieva et al., 2017d, Fig. 1). When the air is horizontally isothermal, the required difference

in the temperatures of the two adiabats can only be ensured by a higher water vapor mixing ratio q∗ and, accordingly, a higher

partial pressure ratio γ∗d , at bc. How much of this water vapor condenses along bc producing the required temperature surplus,

is dictated by the outflow temperature Tc. The lower Tc (i.e., the higher εC), the lower γ∗d is required to ensure net zero work

in the free troposphere.

When the cycle is dry, achieved by putting L= 0, then Eq. (49), and the E-PI framework, lack a non-trivial solution for

the isothermal case ∂T/∂r = 0. Otherwise, total work of such a cycle would exceed that of a Carnot cycle, where total work

is always lower than work on the warmer isotherm. A dry Carnot cycle where total work is equal to the work at the warmer

isotherm – as it is in E-PI at the point of maximum wind – is impossible. A dry E-PI hurricane must have local air temperature

increasing towards the center at the point of maximum wind.
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Point of maximum wind; frictionless troposphere above
the point of maximum wind; axial symmetry; satu-
rated air; hydrostatic equilibrium in the outflow cC′

No information about
thermodynamics: ε

is defined by Eq. (6)

α
∂p

∂r
= −εTb

∂s∗

∂r
+g(zP − zb)

∂q∗

∂r
+
1

2

∂V 2
c

∂r

For qtb = qtc, zP = zc
(Eq. 28); for qt = q∗,
zP = zbc (Eq. C6)

V 2
c −V 2

C′

= v2c − v2C′

Streamlines bc and
B′C′ are reversible

adiabats or pseudoadiabats

α
∂p

∂r
= −εC Tb

∂s∗

∂r
+

[
−clTb

Lv

ε2P
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+
g(zP − zb)

Lv

]
Lv∂q

∗

∂r
+

1

B
vc
rc

rb
vb

α
∂p

∂r

K1 ' 0.04 (Eq. 29) K2 '−0.01 (Eq. 33)

Assumption about how
gradients at the point of
maximum wind relate
to local surface fluxes:
Eq. (10), (20), or (45)

V 2
max =

1

B
εC −βK1

1−K2

Ck

CD
(k∗s − k)

Gradient-wind imbalance B ∼ 1 (Eq. 30)

β ' 1− εC
(latent-to-total
heat ratio) is
constrained

by Eqs. (36),
(34), and (44)

Eq. (27)

Eq. (37)

OutflowTotal work Water lifting

Heat input at bB′ Water warming

Figure 3. Main assumptions (green rounded boxes) and results (blue rectangular boxes) of this work with comments (dotted boxes).

5 Conclusions

We considered an infinitely narrow steady-state thermodynamic cycle with the higher temperature corresponding to the point

of maximum wind, Figs. 1 and 2, and demonstrated its equivalence to the E-PI framework as presented by Emanuel (1986) and

Emanuel and Rotunno (2011). This revealed constraints not obvious in the original E-PI framework and clarified its physical

meaning. A summary of our results is given in Fig. 3. Since this analysis required many detailed derivations, we leave a

comparably detailed discussion and development of the implications of these results to subsequent studies. Here we outline

what we consider most essential.

The water lifting term g(zP−zb), with zP given by Eq. (28), can be evaluated for any cycle with the known distribution of qt

independent of the value of ε (Fig. 3). The E-PI thermodynamic cycle has a higher efficiency than the steady-state atmospheric

circulation and tropical convection (e.g., Goody, 2003), which explains the less significant impact we estimated for E-PI storms

(Table 1). Water lifting constitutes part of the total work of the cycle, which cannot be larger than ε times the heat input. Since

latent heat is a major part of heat input, its product with efficiency approximates total work. Both water lifting and latent

heat input depend on the amount of evaporated water. Hence the ratio of the water lifting to total work is roughly equal to the
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potential energy of precipitation gzP divided by the product of latent heat and efficiency,K1/ε∼ gzP /(εLv). WithK1 ∼ 10−2

and ε∼ 10−2 the energy needed to lift water can exceed the total work of the cycle.

The infinitely narrow E-PI cycle is not a real steady-state cycle where evaporation equals precipitation, as the air does not

descend along the adiabat C′B′ (Fig. 1). Here, instead, the water formally arises anew with its own non-zero gravitational

energy. For this reason, the water lifting term in E-PI is proportional to local evaporation (∆q∗) rather than precipitation

(q∗b−q∗c ). In real storms, precipitation P at the point of maximum wind is significantly higher than evaporationE. Replacement

of E with P caused Sabuwala et al. (2015)’s overestimate of the water lifting term (Section 3.e).

If the hurricane is composed of closed streamlines, each with a constant qt (the reversible case), the total work performed on

lifting the water in such a storm is zero (Section 3.a). However, since the E-PI cycle is not a cycle along which the air moves,

the water lifting term here is higher in the reversible case than in the pseudoadiabatic case. This is due to the higher effective

precipitation height in the former (zc > aHP , Eq. (C7)). Accounting for water warming, which requires information about

the cycle’s thermodynamics (Fig. 3), reduces this difference. For Tb ' 300 K and the largest observed εC ' 0.3 (DeMaria

and Kaplan, 1994), the magnitudes of K1 ' 0.04 (Eq. 29) and βK1/εC ' 0.1 for reversible and pseudoadiabatic cases are

similar. This corresponds to a 5% reduction of Vmax (Eq. 37). This reduction is larger for smaller εC but smaller for lower Tb

(Table C1). The developed analytical framework can be used to evaluate corresponding magnitudes for different scenarios in

numerical models.

Our analysis clarifies that ε in E-PI is not the actual efficiency of the cycle but the ratio of total work to heat input at B′b

(Figs. 2 and 3). With additional heat inputs elsewhere in the cycle, ε in Eq. (7) can be higher than Carnot efficiency (cf. Eq.

24). This helps understand the phenomenon of "superintensity". When the adiabaticity is violated near the tropopause due to

an extra heat input, E-PI’s Eqs. (27) and (37) can significantly underestimate α∂p/∂r and the squared maximum velocity (for

details, see Makarieva and Nefiodov, 2021). Since at the tropopause qt is approximately zero, this extra heat input will not

affect the qt distribution and, hence, will make the relative water lifting impact even smaller (same absolute magnitude of K1

related to greater total work).

Our derivations exposed the sensitivity of V 2
max to E-PI’s key assumption about how the gradients of respective variables at

the point of maximum wind relate to their local surface fluxes. If Eq. (20) is applied, the extension of E-PI to unbalanced winds

consists in dividing the conventional E-PI squared velocity by factor B (30) that describes the deviation from gradient-wind

balance (for how this relates to the analysis of Bryan and Rotunno (2009b), see Makarieva and Nefiodov, 2021). If, on the other

hand, Eq. (10) is applied, the gradient-wind imbalance does not affect the E-PI formulation, see Eq. (37).

The choice of the outflow point c as a point where vc = 0, i.e., putting K2 = 0, is equivalent to postulating that, for a cycle

including the point of maximum wind, net work in the free troposphere is zero (see Eq. (8) in Fig. 2). Since generally in the

free troposphere the outflowing air has to move against the inward-pulling horizontal pressure gradient, compensating for this

negative work requires extra warming at bc compared to C′B′. This extra warming is provided either by a higher mixing ratio

at b compared to B′, or by a higher temperature, or by both. This constraint takes the form of the dependence between the

outflow temperature, the mixing ratio and the ratio of the horizontal gradients of temperature and pressure, see Eqs. (48) and
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(49). It follows that attempts to retrieve total pressure fall from E-PI by assuming ∂T/∂r = 0 cannot yield correct results under

the conventional assumption of K2 = 0 (cf. Emanuel, 1986, p. 588).

When the horizontal gradient of air temperature is moist adiabatic (which corresponds to zero heat input), Eq. (48) reduces

to vb/rb = vc/rc. This constancy of angular velocity combined with angular momentum conservation along bc gives two

solutions (see Eq. 33). One is trivial, rb = rc. Another one is νb = νc =−f/2; it describes an atmosphere at rest in the inertial

frame of reference. In either case, there is no storm. However, we now know that, at least in models, it is possible to have

a tropical cyclone with zero heat input from the ocean (Kieu et al., 2020), although further tapering with the conventional

model parameters might be required to make such a cyclone more stable. This prompts reconsidering the relevance of the local

approach for the determination of maximum potential intensity.

A non-local constraint on the work in the free troposphere resulting from E-PI can be applied to the integral cycle ABCDA.

In this case, we cannot put ∂V 2/∂r = 0 in Eq. (8). The work in the free troposphere is equal to the non-zero increment of the

kinetic energy in the boundary layer. Having reached the eyewall, the air must then have sufficient energy to flow away from

the hurricane. If not generated in the boundary layer, this energy could derive from a pressure gradient in the upper atmosphere:

if at the expense of the hurricane’s extra warmth the air pressure in the column above the area of maximum wind is higher than

in the ambient environment, this pressure gradient will accelerate the air outward. However, a significant pressure deficit at the

surface precludes the formation of a significant pressure surplus aloft (e.g., Makarieva et al., 2017d, Fig. 1d).

Moreover, this pressure deficit is what accelerates air in the boundary layer. If the pressure gradient is sufficiently steep

and the radial motion sufficiently rapid, air expansion will be accompanied by a drop of temperature. The process is closer

to an adiabat than to an isotherm, as it was, for example, in Hurricane Isabel 2003 (Montgomery et al., 2006; Aberson et al.,

2006; Makarieva and Nefiodov, 2021). As the warm air creates a pressure surplus aloft facilitating the outflow, cold air creates

a pressure deficit. This enhances the pressure gradient in the upper atmosphere against which the air must work to leave the

hurricane. Consequently, the storm cannot deepen indefinitely. Eventually, the kinetic energy acquired in the boundary layer

becomes insufficient for the rising and adiabatically cooling air to overcome the pressure gradient in the upper atmosphere,

and the outflow must weaken. This condition could provide distinct constraints on storm intensity. Further research is needed

to see whether such processes are relevant in real storms.
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6 Appendices

Appendix A Deriving Eq. (3) from the equations of motion

One of our reviewers stated that Eq. (3), stemming from the Bernoulli equation, could not be obtained assuming hydrostatic

equilibrium (1) alone, but additionally requires the gradient-wind balance. To show that it is not the case and to facilitate a

comparison of our approach with the available studies (e.g., Rotunno and Bryan, 2012), we follow the reviewer’s suggestion to

derive the Bernoulli equation from the equations of motion. These equations in a reference frame rotating with angular velocity

Ω can be cast into the vector form as follows (see, e.g., Lorenz, 1967; Vallis, 2006)

dV

dt
=−α∇p− 2[Ω×V]−∇Φ + F. (A1)

Here, V is the total velocity of air motion, relative to rotating Earth; α≡ 1/ρ is the specific volume; p is air pressure. On the

right-hand side of Eq. (A1), the first term is the pressure-gradient force acting on an air parcel of unit mass from the side of

its surrounding air; the second term describes the Coriolis acceleration; F is frictional force per unit mass. The geopotential Φ

is defined such that g =−∇Φ, where g is the effective gravity, which in addition to the acceleration due to gravity also takes

into account the centrifugal acceleration.

The material derivative is given by

d

dt
=
∂

∂t
+ (V · ∇). (A2)

Using the relation (V · ∇)V =∇V 2/2−V× [∇×V], one can write Eq. (A1) for the case of a steady state (∂V/∂t= 0) as

−α∇p=
1

2
∇V 2 + [ω×V]−g−F, (A3)

where ω ≡ [∇×V] + 2Ω is the absolute vorticity.

Let us find the inner product of Eq. (A3) and vector dl. The equality

[ω×V] · dl = 0 (A4)

holds if dl is the length element along a streamline, i.e., by definition is tangent to the local velocity V = dl/dt. Indeed,

Eq. (A4) follows from the relations

[ω×V] ·V = ω · [V×V] = 0. (A5)

As a result, one obtains the Bernoulli equation

−α∇p · dl =
1

2
∇V 2 · dl−g · dl−F · dl, (A6)

which is valid along a streamline. The meaning of Eq. (A4) is that the force [ω×V] (per unit mass) caused by the vorticity

(including the Coriolis force) does not perform work and, accordingly, it does not change the energy of moving air parcel.

21



If the air motion possesses axial symmetry, it is convenient to use the cylindrical coordinate system with the basis vectors er,

eθ, and ez . The position vector of a point r is now characterized by three components, namely, by radial distance r, azimuth θ,

and height z. The length element of a streamline and the gradient operator read

dl = drer + rdθeθ + dzez = (uer + veθ +wez)dt= Vdt, (A7)

∇≡ ∂

∂l
= er

∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
. (A8)

The curl of velocity (relative vorticity) may be written in the form of a determinant

curl V ≡ [∇×V] =
1

r

∣∣∣∣∣∣∣∣
er reθ ez

∂/∂r ∂/∂θ ∂/∂z

u rv w

∣∣∣∣∣∣∣∣=

(
1

r

∂w

∂θ
− ∂v

∂z

)
er +

(
∂u

∂z
− ∂w

∂r

)
eθ +

1

r

(
∂(rv)

∂r
− ∂u

∂θ

)
ez. (A9)

The geopotential is given by Φ = gz, so that g =−∇Φ =−gez . It is usual to assume that the contribution of the Coriolis

force to the vertical (z) component of the equations of motion is small with respect to the contribution of the centrifugal force

and can be neglected. Then ω ' [∇×V] + fez , where f = 2Ωsinϕ is the Coriolis parameter (Ω = 2π/T is the rotation rate

of the Earth, T = 24 h is the rotation period of the Earth and ϕ is latitude).

For axisymmetric motion, p and V are independent of the angle θ. In this case, the cylindrical components of Eq. (A3) have

the form

−α∂p
∂r

=
1

2

∂V 2

∂r
+wωθ − vωz −Fr, (A10a)

0 = +uωz −wωr −Fθ, (A10b)

−α∂p
∂z

=
1

2

∂V 2

∂z
−uωθ + vωr + g−Fz, (A10c)

where ωr =−∂v/∂z, ωθ = ∂u/∂z− ∂w/∂r and ωz = f + r−1∂(rv)/∂r. To derive the Bernoulli equation, we consider the

streamline defined by dl, Eq. (A7). Multiplying the above three equations by dr, rdθ and dz, respectively, and summing them

one obtains

−α∂p
∂l
· dl =

1

2

∂V 2

∂l
· dl + gdz−F · dl, (A11)

where ∂p/∂θ = 0 and ∂V/∂θ = 0. The cancellation of all terms involving the absolute vorticity components is a consequence

of the more general formula (A4).

Applying hydrostatic equilibrium (1) and the condition ∂V/∂z = 0 turns Eq. (A10c) into −uωθ + vωr −Fz = 0 and the

Bernoulli equation (A11) into

−α∂p
∂r
dr =

1

2

∂V 2

∂r
dr−F · dl, (A12)

which yields our Eq. (3).
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Appendix B Extra work due to warming precipitating water: Deriving Eq. (23)

Saturated moist entropy per unit dry air mass is defined as (see Pauluis, 2011, Eq. (A4))

s∗ = (cpd + qtcl) ln
T

T0
− R

Md
ln
pd
p0

+ q∗
Lv
T
. (B1)

Here, Lv = Lv0 + (cpv − cl)(T −T0) is the latent heat of vaporization (J kg−1); q∗ = ρ∗v/ρd, ql = ρl/ρd, and qt = q∗+ ql are

the mixing ratio for saturated water vapor, liquid water, and total water, respectively; ρd, ρ∗v , and ρl are the density of dry air,

saturated water vapor and liquid water, respectively; cpd and cpv are the specific heat capacities of dry air and water vapor at

constant pressure; cl is the specific heat capacity of liquid water; R= 8.3 J mol−1 K−1 is the universal gas constant; Md is

the molar mass of dry air; pd is the partial pressure of dry air; T is the temperature; p0 and T0 are reference air pressure and

temperature.

The ideal gas law for the partial pressure pv = p− pd of water vapor is

pv =NvRT, Nv =
ρv
Mv

, (B2)

where Mv and ρv are the molar mass and density of water vapor, respectively. Using Eq. (B2) with pv = p∗v in the definition of

q∗

q∗ ≡ ρ∗v
ρd

=
Mv

Md

p∗v
pd
≡ Mv

Md
γ∗d , γ∗d ≡

p∗v
pd
, (B3)

and applying the Clausius-Clapeyron law

dp∗v
p∗v

= ξ
dT

T
, L≡ LvMv, ξ ≡ L

RT
, (B4)

we obtain from Eq. (B1)

Tds∗ = d(Lvq
∗)−αddp+ (cpd + clqt)dT + clT ln

T

T0
dqt (B5a)

= Lvdq
∗−αddp+ cpdT + clT ln

T

T0
dqt, (B5b)

where cp ≡ cpd + q∗cpv + qlcl and αd ≡ 1/ρd. Integrating Eq. (B5a) with T0 = Tb yields

−
∮
αddp=

∮
Tds∗− cl

∮
qtdT − cl

∮
T ln

T

Tb
dqt. (B6)

Along the isotherms dT = 0, i.e., the paths B′b and cC′ are characterized by temperatures Tb and Tc, respectively, while

ds∗ = 0 along the adiabats bc and C′B′, i.e., s∗b = s∗c , s∗B′ = s∗C′ both for reversible (dqt = 0) and pseudoadiabatic (q∗ = qt)

cases. The first term on the right-hand side of Eq. (B6) can be written as follows

∮
Tds∗ =

b∫
B′

Tds∗+

C′∫
c

Tds∗ =

(
1− Tc

Tb

) b∫
B′

Tds∗. (B7)
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Here we took into account the fact that integral over the colder isotherm can be expressed in terms of integral over the warmer

isotherm (Pauluis, 2011):

C′∫
c

Tds∗ = Tc

C′∫
c

ds∗ = Tcs
∗
∣∣∣∣C′

c

= Tc(s
∗
B′ − s∗b) =−Tc

Tb

b∫
B′

Tds∗. (B8)

In the reversible case (i.e., qtb = qtc and qtB′ = qtC′ ), the second and third circulation integrals on the right-hand side of

Eq. (B6) are evaluated as follows

∮
qtdT =−

∮
Tdqt =

c∫
C′

Tdqt−
b∫

B′

Tdqt = ∆qt(Tc−Tb), (B9)

∮
T ln

T

Tb
dqt = Tc ln

Tc
Tb

C′∫
c

dqt =−∆qtTc ln
Tc
Tb
, (B10)

where ∆qt ≡ qtb− qtB′ = qtc− qtC′ .

Using Eqs. (B7), (B9) and (B10), integral (B6) can be cast into the following form

−
∮
αddp=

(
1− Tc

Tb

) b∫
B′

Tds∗+ cl∆qt

[
Tb−Tc +Tc ln

Tc
Tb

]

= εC

b∫
B′

Tds∗+ clTb∆qt [εC + (1− εC) ln(1− εC)] . (B11)

Taking into account that for εC = 1−Tc/Tb . 1

εC + (1− εC) ln(1− εC)' ε2C
2
, (B12)

we obtain Eq. (23) from Eq. (B11). For the largest observed εC = 0.35, approximation (B12) is a 13% underestimate.

For an infinitely narrow cycle, with B′→ b, Eqs. (B7) and (B9)–(B11) are valid even if B′b and cC′ are not isotherms, due

to the smallness of temperature change on these paths as compared to the finite difference Tb−Tc.

In the pseudoadiabatic case (i.e., qt = q∗), the second and third circulation integrals on the right-hand side of Eq. (B6) are

evaluated along the isothermal interval B′b and unclosed contour bcC′B′ (denoted by symbol y):

−
∮
qtdT =

∮
Tdq∗ =

b∫
B′

Tdq∗+

∫
y

Tdq∗ = ∆q∗(Tb−TP ), (B13)

−
∮
T ln

T

Tb
dqt =−

∫
y

T ln
T

Tb
dq∗ ≈− ln

TP
Tb

∫
y

Tdq∗ = ∆q∗TP ln
TP
Tb
. (B14)

Here ∆q∗ ≡ q∗b−q∗B′ , TP defined in Eq. (28) designates the mean temperature at which water vapor condenses and precipitates.

In Eq. (B14) the first equality implies that the integral over the warmer isotherm gives zero contribution. Then we estimate the
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integral by assuming that lnT/Tb is a slowly varying function with respect to T , so that it can be taken out of the integral at

the point T = TP . With the use of Eqs. (B13) and (B14) the water warming term in the pseudoadiabatic case is

cl∆q
∗
(
Tb−TP +TP ln

TP
Tb

)
= clTb∆q∗ [εP + (1− εP ) ln(1− εP )]' clTb∆q∗

ε2P
2
, (B15)

where εP ≡ 1−TP /Tb. We discuss the accuracy of this expression in the end of the next section.

To obtain Eq. (40), we use Eqs. (B3) and (B4) to exclude the temperature differential from Eq. (B5):

dq∗

q∗
=
dγ∗d
γ∗d

= (1 + γ∗d)

(
dp∗v
p∗v
− dp

p

)
= (1 + γ∗d)

(
ξ
dT

T
− dp

p

)
, (B16)

dT =

(
dq∗

q∗
+
dp

pd

)
T

ξ(1 + γ∗d)
=

(
dq∗

q∗
+αd

Md

RT
dp

)
T

ξ(1 + γ∗d)
. (B17)

Putting Eq. (B17) into Eq. (B5b) with T0 = T and grouping the dq∗ and dp terms yields Eq. (40). Combining Eqs. (36), (34)

and (44) we obtain for β in Eq. (36)

β =
1− εC(1−κ2)−K2

(1−K2)(1 +κ1)−K1(1−κ2)
. (B18)

Appendix C Water lifting: Deriving Eq. (27)

In Eq. (26), we represent the last but one term on the right-hand side as∮
αqtdp=

b∫
B′

αq∗
∂p

∂r
dr−

c∫
b

qtd

(
V 2

2
+ gz

)
−

C′∫
c

qtgdz−
B′∫

C′

qtd

(
V 2

2
+ gz

)
(C1a)

=

b∫
B′

αq∗
∂p

∂r
dr− qt

V 2

2

∣∣∣∣c
b

− qt
V 2

2

∣∣∣∣B′

C′
+

c∫
b

V 2

2
dqt +

B′∫
C′

V 2

2
dqt−

∫
y

gqtdz (C1b)

=

b∫
B′

αq∗
∂p

∂r
dr+ q∗

V 2

2

∣∣∣∣b
B′

+ qt
V 2

2

∣∣∣∣C′

c

+

c∫
b

V 2

2
dqt +

B′∫
C′

V 2

2
dqt−

∫
y

gqtdz (C1c)

=

b∫
B′

q∗
(
α
∂p

∂r
+

1

2

∂V 2

∂r

)
dr+

b∫
B′

V 2

2

∂q∗

∂r
dr+ qt

V 2

2

∣∣∣∣C′

c

+

c∫
b

V 2

2
dqt +

B′∫
C′

V 2

2
dqt−

∫
y

gqtdz (C1d)

=

b∫
B′

q∗
(
α
∂p

∂r
+

1

2

∂V 2

∂r

)
dr+

b∫
B′

V 2

2

∂q∗

∂r
dr+

C′∫
c

qt
2

∂V 2

∂z
dz+

∫
y

V 2

2
dqt−

∫
y

gqtdz. (C1e)

Here it is assumed that ql = 0 at the isotherm B′b. In Eq. (C1a), we have used the Bernoulli equation for the two streamlines,

bc and B′C′, and the hydrostatic equilibrium equation (1) for the vertical path cC′. The unclosed contour bcC′B′ is denoted

by symbol y. Note that zB′ = zb and rc = rC′ .

Writing the last integral in Eq. (C1e) as∫
y

qtdz = q∗z

∣∣∣∣B′

b

−
∫
y

zdqt ≡ (zP − zb)∆q∗, (C2)
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we obtain

∮
αqtdp=−

B′∫
b

q∗
(
α
∂p

∂r
+

1

2

∂V 2

∂r

)
dr−

B′∫
b

V 2

2

∂q∗

∂r
dr−

[
g(zP − zb) +

V 2
P

2

]
∆q∗+

C′∫
c

qt
2

∂V 2

∂z
dz. (C3)

Here ∆q∗ ≡ q∗b− q∗B′ and zP and V 2
P are defined in Eq. (28).

Putting Eq. (C3) into Eq. (26) yields

B′∫
b

(1 + q∗)

(
α
∂p

∂r
+

1

2

∂V 2

∂r

)
dr =−εC

B′∫
b

T
∂s∗

∂r
dr− clTb

ε2P
2

B′∫
b

∂q∗

∂r
dr

−
B′∫
b

V 2

2

∂q∗

∂r
dr−

[
g(zP − zb) +

V 2
P

2

]
∆q∗+

C′∫
c

(1 + qt)
1

2

∂V 2

∂z
dz. (C4)

In the limit rB′ → rb and zC′ → zc we can lift the integral signs in Eq. (C4) and divide both parts of the equation by dr to

obtain Eq. (27). Note that by chain rule (∂Vc/∂z)dz|r=rc = (∂Vc/∂r)dr|z=zb .

To evaluate V 2
P , TP and zP for the case qt = q∗, we can express the corresponding definitions (28) as follows:

XP∆q∗ ≡−
∫
y

Xdq∗ =Xbc(q
∗
b− q∗c ) +XcC′(q∗c − q∗C′) +XC′B′(q∗C′ − q∗B′), (C5a)

Xkj ≡−
1

q∗k − q∗j

j∫
k

Xdq∗, (C5b)

where ∆q∗ ≡ q∗b− q∗B′ , X = {V 2,T,z} and Xkj is the average value of X over path kj.

In the limit rB′ → rb and zC′ → zc, when the two streamlines coincide, we have from Eq. (C5)

XP =Xbc +
∂Xbc

∂q∗b
(q∗b− q∗c ) + (Xc−Xbc)

q∗c − q∗C′

q∗b− q∗B′
, (C6)

where Xc =XcC′ . When (q∗c − q∗C′)/(q∗b− q∗B′)∼ q∗c/q∗b� 1 (which is always the case when zc is sufficiently large), the last

term on the right-hand part of Eq. (C6) can be neglected.

Due to the Clausius-Clapeyron law (B4), the relative change of temperature is about ξ−1 ∼ 0.05 of the relative change of

p∗v and, hence, of q∗: q∗b∂T bc/∂q
∗
b ∼ T bc/ξ. Therefore, for X = T the second term on the right-hand side of Eq. (C6) can be

neglected, and TP = T bc, which is the mean temperature of precipitation along bc.

With the mean temperature of precipitation approximately independent of q∗b, the mean precipitation heightHP ≡ zbc scales

as HP ∼ TP /Γ∼ q∗b, because for sufficiently large q∗ the moist adiabatic lapse rate Γ is approximately inversely proportional

to q∗ (e.g., Makarieva and Nefiodov, 2021, Eq. (A10)). Therefore, for X = z the second term in Eq. (C6) is approximately

equal to the first one, such that

zP = aHP (C7)
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Table C1. Estimates of HP = zbc, XP = {TP ,zP } (C6), a (C7), β (B18), and K1 (29) for hydrostatic pseudoadiabatic (in bold) and

reversible profiles with surface temperature Ts, surface pressure ps = 950 hPa, and zb = 1 km.

Ts, K Tb, K zc, km Tc, K εC zP , km TP , K εP HP , km a β K1 βK1/εC

303 300 18 197 0.34 11 275 0.08 6.8 1.6 0.65 0.042 0.08

303 300 18 201 0.33 18 201 0.33 0.65 0.044 0.09

303 300 10 262 0.13 7 283 0.06 5.3 1.3 0.77 0.026 0.16

303 300 10 261 0.13 10 261 0.13 0.78 0.036 0.22

289 284 11 211 0.26 5.5 266 0.06 4.1 1.3 0.77 0.020 0.06

289 284 11 212 0.25 11 266 0.25 0.77 0.028 0.09

with a∼ 2. For more accurate estimates, we evaluated hydrostatic saturated reversible and pseudoadiabatic profiles (ds∗ = 0)

with surface pressure ps = 950 hPa, zb = 1 km and variable Tb and zc (Table C1). For the same zc, the values of Tc are

different, since the reversible moist adiabatic lapse rate is smaller than the pseudoadiabatic one (e.g., Mapes, 2001, Fig. 1a).

The dependence of HP on q∗ in Eq. (C6) was evaluated by varying ps at constant surface temperature Ts. For Tb = 300 K

and zc = 18 km we have a= 1.6. The same calculations show that the approximate Eq. (B14) for the pseudoadiabatic water

warming constitutes about 60% of the exact value (this is due to neglected correlation between T and dq∗ when taking ln(T/Tb)

out of the integral in Eq. (B14)). As the water warming term in the pseudoadiabatic case is an order of magnitude lower than

the water lifting term, this inaccuracy is inconsequential for our estimate of K1 (29).

Appendix D Reply to the Editor and reviewers

Oct 11, 2021

Ref.: JAS-D-21-01727

Editor Decision

Dear Dr. Makarieva,

I am now in receipt of two reviews of your manuscript "Water lifting and outflow gain of kinetic energy in tropical cyclones",

and an editorial decision of Minor Revision has been reached. I apologize for the delay in decision. We had lost the help of

one reviewer and therefore had to seek out an additional Associate Editor to review your manuscript. The reviews are included

below. As you will see, although the decision is Minor Revision, the reviewers seek some vital clarification on key equations

and the writing. Please address these as thoroughly and succinctly as possible in revision.

We invite you to submit a revised paper by 10 December 2021. If you anticipate problems meeting this deadline, please contact

me as soon as possible at Rozoff.JAS@ametsoc.org.

7Original submission JAS-D-21-0172 with line numbers can be found at https://bioticregulation.ru/ab.php?id=mpi4
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Along with your revision, please upload a point-by-point response that satisfactorily addresses the concerns and suggestions

of each reviewer. To help the reviewers and Editor assess your revisions, our journal recommends that you cut-and-paste the

reviewer and Editor comments into a new document. As you would conduct a dialog with someone else, insert your responses

in a different font, different font style, or different color after each comment. If you have made a change to the manuscript,

please indicate where in the manuscript the change has been made. (Indicating the line number where the change has been

made would be one way, but is not the only way.)

Although our journal does not require it, you may wish to include a tracked-changes version of your manuscript. You will be

able to upload this as "additional material for reviewer reference". Should you disagree with any of the proposed revisions,

you will have the opportunity to explain your rationale in your response.

Please go to www.ametsoc.org/PUBSrevisions and read the AMS Guidelines for Revisions. Be sure to meet all recommenda-

tions when revising your paper to ensure the quickest processing time possible.

When you are ready to submit your revision, go to https://www.editorialmanager.com/amsjas/ and log in as an Author. Click

on the menu item labeled "Submissions Needing Revision" and follow the directions for submitting the file.

Thank you for submitting your manuscript to the Journal of the Atmospheric Sciences. I look forward to receiving your revision.

Sincerely,

Dr. Christopher Rozoff

Editor

Journal of the Atmospheric Sciences

December 2, 2021

Ref.: JAS-D-21-0172

Resubmission of revised manuscript

Dear Dr. Rozoff,

Thank you for your consideration of our work and for your positive evaluation of it. We have re-organized the manuscript

following our reviewers’ suggestions. We have added a new figure, which summarizes the main equations and assumptions, as

suggested by our first reviewer.

The new framework that we outline has diverse ramifications, which cannot be all considered in one paper. We appreciate this

opportunity to present the entire framework in a comprehensive and explicit form, such that its implications could be further

developed by anyone interested.

Sincerely,

Anastassia Makarieva

(on behalf of the authors)
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RESPONSE TO THE REVIEWERS

We sincerely appreciate the reviewers’ constructive comments and suggestions.

Reviewer #1:

Summary: The authors start from a more general set of basic equations and tested different assumptions for deriving MPI. I

think this study is beneficial for critical thinking of MPI under different assumptions and enables the quantitative comparison

among the corresponding results. I can generally follow the derivations with additional effort in some places which need more

clarification. My comments are mainly about these unclear/uneasy-to-follow places.

Minor comments:

1. L163: Eq(8) used Vb=VB’ and Vc=VC’, doesn’t it mean an infinitely narrow bcC’B’b?

We clarified in the end of section 2.a as follows: Equation (8) describes an infinitely narrow cycle B′bcC′B′ with ∂V 2/∂z = 0

at cC′ and ∂V 2/∂r = 0 at B′b. It is also valid for a special case of B′bcC′B′ being a closed streamline with Vb = VB′ (Emanuel,

1988).

2. Eq(17), Eq(25) and L709: the formula partial(Vc)/partial(r) is tricky at the first glance, I think extra explanation is needed.

E.g., ’it is the result of the right hand side of Eq(16) after taking the limit’.

We have added a clarification after Eq. (27).

3. Eq(21): ’=’ -> ’'’

Corrected.

4. L255: ’in the right-hand’ -> ’on the right-hand’

Corrected everywhere.

5. L281-L282: Why Tw=(Tb+Tc)/2?

This relationship is approximate (= replaced with ' in the revised text) and valid for small εC , as explained in the Appendix.

It is intended as a possible way to understand the physical meaning of Eq. (23). We have clarified as follows: "Warming the

water removed at the colder isotherm with temperature Tc and returned at the warmer isotherm with Tb requires extra heat

cl(Tb−Tc)∆q∗. As the moist air ascends and cools from Tb to Tc, the mean temperature at which the water loses heat is, in

the linear approximation, Tw ' (Tb +Tc)/2. Accordingly, the maximum efficiency with which this heat can be converted to

work is (Tb−Tw)/Tb ' εC/2."

6. Eq(26) vs Eq(27): In appendix, A29, A33 and A34 -> A30, A38 and A39 is not straightforward enough.

We have now presented these derivations in a more detailed and explicit form, see Eqs. (C5)-(C7). This more accurate consid-

eration produced a somewhat greater estimate of zP (28) for the pseudoadiabatic case (C7) and brought the pseudoadiabatic

and reversible values of K1 closer to each other. Thank you for emphasizing this point in our derivations.
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7. L330: need to mention where such point is: ’e.g., at/near RMW’

Clarified as suggested.

8. L341-L342: it’s better to point out the place/assumption in Emanuel (1986) that leads to the incorrectness.

We clarified in a footnote as follows. In contrast, Emanuel (1986, p. 602) incorrectly concluded that the outflow term becomes

significant if the outflow radius is very large. Footnote: This conclusion stemmed from Emanuel (1986)’s Eq. (18), where an

outflow term proportional to a large squared radius first appeared. While deriving this equation for a cycle with finite B′b,

Emanuel (1986, p. 588), on the one hand, used the conservation of angular momentum along streamlines bc and B′C′ and, on

the other hand, assumed rB′ (interpreted as “the radial extent of the storm near the sea level”) to be large enough for ∂p/∂r to

vanish and, at the same time, small enough for r∂p/∂r|b� r∂p/∂r|B′ (for details, see Makarieva et al., 2019, Appendix A).

With r∂p/∂r ∼ ρv2, ignoring this term at B′ means that V 2
b −V 2

B′ ∼ V 2
b , while at the point of maximum wind this difference

is zero.

9. Eq(33): this is a general form for both dry and moist situations, right? If so, L361-L362 is confusing. Only sensible heat

input? I think under isothermal assumption, there can still be latent heat input if the boundary layer is not saturated.

10. L379-L383: as the authors mentioned, (40)

Former Eq. (33) (now Eq. 34) is indeed a general form for both dry and moist situations. It says that at the point of maximum

wind, work equals dissipation. By itself, it does not say anything about heat input. However, under isothermal conditions, work

−αdp corresponds to sensible heat input. This is what was stated at L361-L362.

The latent heat is indeed present (former Eq. (40), now Eq. 44). Work (and dissipation at the point of maximum wind) equals

total heat input times efficiency. Total heat input is the sum of latent and sensible heat. Efficiency is less than unity. So there is

a possibility for the relationship −αdp= ε(−αdp+Lvdq) to hold. However, it cannot be generally valid. This is discussed in

section 4.

11. L526-L528: it is equivalent to Vc*rc-1/2f*rb2 >= 0 given Mb=Mc. Does this constrain the selection of c point? Maybe I

missed it, is this c or C’ point arbitrary picked? Can the authors comment on this c selection?

Generally, the selection of point c is completely arbitrary. Moreover, as we now clarify after Eq. (16), the obtained results

do not depend on the orientation of cC′ (horizontal, vertical or tilted). Expression for K2 (33) is written taking into acount

Eq. (32), which is based on Mb =Mc. Therefore, the condition vc = 0 specifies the outflow radius rc according to the above

relationship. It is about rc . 10rb, as discussed in section 3.d.

12. In the appendix: are A21-A26 for reversible process? If so, please explicitly state it. It’s easier for readers to get a sense

quickily.

We clarified after Eq. (B6) that Eqs. (B7)-(B8) are general, while before Eq. (B9) we noted that Eqs. (B9)-(B12) are for

reversible processes.
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13. L688: T=Tp: I think it is not very straight-forward to get this, can the authors provide some estimation about the error as

for A26?

This error estimation (about 60% but not consequential for the main conclusions) is provided after Eq. (C7).

14. This paper is not easy for readers to go though given the dense equations. I would suggest the authors emphasize a little

more on the key equations and the comparisons with the previous studies. A table and a figure like table 1 and Figure 2 but for

comparison of assumptions / equations will be of great help.

We have added a new figure (Fig. 3), where we emphasize the key assumptions and equations. In the text, we emphasize that

there are three distinct assumptions (Eqs. (10), (20) and (45)) that lead two different resulting formulae for Vmax.

Reviewer #3:

Brief summary:

This study examines the role of water lifting in tropical cyclones in a theoretical framework and finds that the water lift-

ing’s effect on reducing the storm intensity is generally small. The framework is energetically-based and axisymmetric. The

relationship between the theory and Emanuel’s maximum potential intensity theory is also described.

Recommendation:

The manuscript is well written and provides a nice theoretical framework for understanding the role of water lifting in ideal

tropical cyclones. My overall recommendation is to accept, but I encourage the authors to consider the general comments

below to improve the manuscript.

General comments:

1) The manuscript is a bit dense and difficult to follow at times. Part of this is unavoidable due to the theoretical nature of the

manuscript. However, I would recommend some rewriting of the conclusions section to better bring out the main points. For

example, in first paragraph of the conclusions, a main summary of the important findings is not given. Rather, first equations

are given without any segue to provide context. Additionally, the conclusions section contains reviews of past work, which

would be better located in the introduction or main body. Many readers of JAS will first look at the abstract and conclusions

to determine interest in the rest of the paper. It is important to distill the main points in the manuscript into these sections so

that the paper will be of more general use to a broader audience.

We have re-organized the manuscript as follows. In the Introduction, we presented a clear structure of the main findings of

the paper (the last three paragraphs). In the concluding section, we have merged the material from the first three subsections

("How significant is the water lifting term?", "The estimate of Sabuwala et al. (2015)", "The outflow term") to the corresponding

sections in the main body of the manuscript (now sections 3.c "Water lifting" and 3.e "Estimates of maximum velocity"). The

flow of arguments in the Conclusions is now facilitated by a graphical abstract of the main findings in the new Figure 3

suggested by the first referee.
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2) A critical aspect of any theory is to demonstrate either through observational analysis or numerical simulations that the

theory is valid. This manuscript contains no internal evaluation of the theory, although comparisons to other studies’ estimates

of water lifting power are given in Table 2. I understand the manuscript is already quite long, but such analysis would strengthen

the manuscript. In the end, perhaps such analysis needs to be in a follow-on manuscript, but I do believe it is needed at some

point. I suggest using the axisymmetric CM1 model to validate the theory in ideal conditions. For example, the water lifting

term could be calculated in the model simulations and its significance could be assessed in relation to the theory.

In this work, we have outlined the theoretical framework as comprehensively and explicitly as possible. (We believe that it

could be a certain lack of clarity that contributed to the corresponding issues having remained unsettled.) This has indeed made

the manuscript quite long. However, as we state in the revised Conclusions: "The developed analytical framework can be used

to evaluate corresponding magnitudes for different scenarios in numerical models." This can be done in a follow-on study.

Specific minor comments:

L449: typo "overall" Corrected.
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