
Citation: Velastegui-Montoya, A.;

Montalván-Burbano, N.;

Carrión-Mero, P.; Rivera-Torres, H.;

Sadeck, L.; Adami, M. Google Earth

Engine: A Global Analysis and

Future Trends. Remote Sens. 2023, 15,

3675. https://doi.org/10.3390/

rs15143675

Academic Editor: Dominique

Arrouays

Received: 31 May 2023

Revised: 5 July 2023

Accepted: 12 July 2023

Published: 23 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Review

Google Earth Engine: A Global Analysis and Future Trends
Andrés Velastegui-Montoya 1,2,* , Néstor Montalván-Burbano 2,3 , Paúl Carrión-Mero 1,2 ,
Hugo Rivera-Torres 1, Luís Sadeck 4 and Marcos Adami 5

1 Facultad de Ingeniería en Ciencias de la Tierra, ESPOL Polytechnic University,
Guayaquil P.O. Box 09-01-5863, Ecuador; pcarrion@espol.edu.ec (P.C.-M.); hrrivera@espol.edu.ec (H.R.-T.)

2 Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic
University, Guayaquil P.O. Box 09-01-5863, Ecuador; nmb218@inlumine.ual.es

3 Department of Business and Economics, University of Almería, 04120 Almería, Spain
4 Geoscience Institute, Federal University of Pará, Belém 66075-110, Brazil; luis.sadeck@ufpa.br
5 Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE),

Sao Jose dos Campos 12227-010, Brazil; marcos.adami@inpe.br
* Correspondence: dvelaste@espol.edu.ec

Abstract: The continuous increase in the volume of geospatial data has led to the creation of storage
tools and the cloud to process data. Google Earth Engine (GEE) is a cloud-based platform that
facilitates geoprocessing, making it a tool of great interest to the academic and research world. This
article proposes a bibliometric analysis of the GEE platform to analyze its scientific production. The
methodology consists of four phases. The first phase corresponds to selecting “search” criteria,
followed by the second phase focused on collecting data during the 2011 and 2022 periods using
Elsevier’s Scopus database. Software and bibliometrics allowed to review the published articles
during the third phase. Finally, the results were analyzed and interpreted in the last phase. The
research found 2800 documents that received contributions from 125 countries, with China and the
USA leading as the countries with higher contributions supporting an increment in the use of GEE for
the visualization and processing of geospatial data. The intellectual structure study and knowledge
mapping showed that topics of interest included satellites, sensors, remote sensing, machine learning,
land use and land cover. The co-citations analysis revealed the connection between the researchers
who used the GEE platform in their research papers. GEE has proven to be an emergent web
platform with the potential to manage big satellite data easily. Furthermore, GEE is considered
a multidisciplinary tool with multiple applications in various areas of knowledge. This research
adds to the current knowledge about the Google Earth Engine platform, analyzing its cognitive
structure related to the research in the Scopus database. In addition, this study presents inferences
and suggestions to develop future works with this methodology.

Keywords: earth engine; geoprocessing; bibliometric analysis; co-citation analysis; knowledge mapping

1. Introduction

Google Earth Engine (GEE) is a cloud-based computing platform that uses Google’s
infrastructure to facilitate access to geospatial data and its processing [1]. This platform
requires an account to access, and it is free for educational and research purposes. GEE’s
goals are: (i) to have a dynamic platform that facilitates the development of algorithms on
a large scale; (ii) to promote high-impact research by providing free and open access; and
(iii) to be part of the progress and solutions to the global demand and management of big
data [2,3].

GEE has a vast catalog on a petabyte scale. It gathers information from Landsat,
Sentinel, and MODIS satellites and data on climate models, temperature, and geophysical
characteristics [1,4]. Its intuitive interface has a code editor (https://code.earthengine.
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google.com/, accessed on 30 January 2023), which is an integrated development en-
vironment (IDE) for the elaboration of algorithms using JavaScript programming lan-
guage [5,6]. It also has a graphic window for the user to see the processes conducted. In
addition, it can also work in Phyton, and others through the Earth Engine library [7,8],
and R [9,10]. Finally, it also has a version with a simple interface known as “Explorer”
(https://explorer.earthengine.google.com/#workspace, accessed on 30 January 2023) for
users with little experience in programming languages. Both options allow the entry of
local data and the export of information for subsequent processing or visualization within
geographic information systems (GIS) software, such as QGIS (Version 3.28), and ArcGIS
Pro (Version 3.1.2), among others [11,12].

Research methodologies are constantly changing and innovated to construct knowl-
edge [13]. In the area of geoscience and remote sensing, GEE has become a powerful tool
for remote sensing, given its multiple applications in fields such as agricultural productiv-
ity [14], vegetation monitoring [15], grassland monitoring [16], mangrove mapping [17],
land use and cover [18,19], risk and disaster management [20], islands of heat [21], surface
temperature [22], forest fires [23], bathymetry [24], surface water [25], built-up area [26],
mining [27], among others. Its multiple applications show the GEE platform’s potential to
manage large data sets and contribute to the development of scientific research [28].

Many researchers have analyzed GEE’s potential multiple applications in recent years.
Kumar and Mutanga [2] studied the literature published between 2011 and 2017 to present
the platform’s uses, trends, and potential since its inception. On the other hand, Tamiminia
et al. [29] conducted a systematic review of GEE in geographic big data applications.
Likewise, Zhao et al. [30] used articles from the Web of Science (WoS) Science Citation
Index Expanded (SCIE) and Social Citation Index (SSCI) to study the development of the
scientific production of the Google Earth (GE) and GEE platforms through a scientometric
analysis. The studies above provide relevant information while focusing on systematic and
scientometric literature reviews of the different GEE applications.

Bibliometric analysis helps identify gaps and directions of research in a particular
area [31]. Moreover, it offers objective results, which help understand the knowledge area’s
impact and influence while identifying the publications’ evolution [32]. The methodology
used the processing of bibliographic information, elaborating structure maps of the fields,
and the quantitative analysis of the existing academic literature [31,33].

In recent years, the number of publications that implement the use of GEE has in-
creased. Given this background and its relevance, this research focuses on producing
knowledge using the GEE platform from a bibliometric approach to obtain a quantitative
and general estimate of the topic regarding citation, co-citation, and co-occurrence analysis.
Furthermore, it seeks to help researchers understand the advances in this field, identify
proposed works and innovate in future applications.

In this context, the following research questions were raised: What is the impact and
evolution of scientific production related to the Google Earth Engine platform? What
applications and studies have been developed using the Google Earth Engine platform?

The present study aims to evaluate the intellectual structure of the GEE platform
through a bibliometric analysis using the Scopus (launched by Elsevier, Amsterdam,
Netherlands) database to determine its evolution, performance, and patterns. The ar-
ticle’s organization is as follows: Section 1 introduces the research field. Section 2 indicates
obtaining data sets, methodologies, and software. Section 3 presents the results obtained.
Section 4 analyzes and discusses the results. Finally, the most important conclusions are in
Section 5. Moreover, limitations and future research directions are in Section 6.

2. Materials and Methods

A rigorous and transparent methodological process is used during the systematic
literature reviews to reduce bias in the treatment of information and provide critical
contributions to the field of study [32,34]. Similarly, bibliometric studies give a broad
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understanding of the field of study by analyzing scientific production through quantitative
applications, thus increasing the knowledge of its characteristics, evolution, and trends [35].

Bibliometric mapping, a two-dimensional graphic representation of the field of study
made of networks that examine its intellectual structure, elements, and connections, com-
plemented the analysis [36,37]. Bibliometrics has become an essential tool for researchers
and is widely accepted in academia [38]. The bibliometric allowed these studies in differ-
ent academic disciplines, such as medicine [39], management [40], earth sciences [41,42],
disasters [43], groundwater [44], sustainability and environment [45,46], and computer
science [47], among others.

A methodological process of four phases allowed (see Figure 1) for obtaining the
proposed bibliometric analysis: (i) search criteria, (ii) search procedure, (iii) software
selection and data acquisition, and (iv) data analysis and trends.
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2.1. Search Criteria

This paper analyzes the structure and conceptual evolution of the field of study of
Google Earth Engine through bibliometric analysis. We based our selection on considering
GEE as an online digital processing platform for satellite images on a large scale [1,2,29].
Therefore, the search term used was “Google Earth Engine”, as this is the platform’s name.

2.2. Search Procedure

Bibliometric studies require a database that provides quality information and is reliable
for the researcher [48]. The selected database was Scopus for the following reasons: (i) it is
one of the largest databases for abstracts and citations of peer-reviewed literature [49,50];
(ii) it has broad coverage in terms of quantity and time [51]; (iii) it has quality indicators and
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standards [52]; (iv) it facilitates the download of information in different formats [53,54] y
(v) it is considered by other bibliometric studies [55,56].

The search was conducted on 15 February 2023, using the descriptor “Google Earth
Engine” and a combination of widely accepted variables “titles, abstract and keywords” for
the search. The initial search obtained 2971 documents. Additionally, eliminating the years
before the launch of GEE (2010) and the year 2023, as it is the current year—setting the
search equation TITLE-ABS-KEY (“Google Earth Engine”) AND (EXCLUDE (PUBYEAR,
2023) OR EXCLUDE (PUBYEAR, 2010) OR EXCLUDE (PUBYEAR, 2009)). Finally, the final
search obtained 2822 documents.

2.3. Software Selection and Data Acquisition

The bibliographic information was exported from the Scopus database as a comma-
separated value (CSV) file, with information related to documents by year, sources, authors,
types, study area, sponsor, affiliation, journals, and other parameters. This bibliometric
study used three software:

• Microsoft Excel (Version 2304): Pre-processing to organize and review the information,
eliminating records without an author, duplicate files, and incomplete data [57]. The
result obtained 2800 records. This software also analyzed large data sets, made
calculations, and created tables and graphs to estimate the performance of scientific
production [58,59].

• ArcGIS Pro Software (Version 3.1.2): It is an outstanding computer program in GIS that
organizes, analyzes, visualizes, and shares geographic information [60]. The software
facilitates the elaboration of a map that displays the countries’ contributions to this
subject of study. Other bibliometric studies include the same software [61,62].

• VOSviewer Software (Version 1.6.19): Developed by the University of Leiden (Leiden,
Netherlands) researchers Nes Van Eck and Ludo Waltman. The software builds
and makes it possible to visualize two-dimensional bibliographic networks, called
bibliometric maps or science maps [63,64]. Furthermore, the program facilitates the
handling of large amounts of data, thus revealing the structure of the field of study
and analyzing its central (co-occurrence of keywords), middle (co-citation of cited
authors), and peripheral parts (co-citation of cited journals) [65]. Various academic
disciplines used the software [66,67].

2.4. Data Analysis and Trends

This study applied two approaches during data analysis; the first consists of the
performance analysis and the second of the study of intellectual structure through science
mapping [37,68].

The first relates to scientific production analysis, which considers the growth patterns
of publications and bibliometric indicators, highlighting the contribution of countries,
universities, and authors [34,69]. The second approach deals with bibliometric maps,
which focus on visualizing the existing relationships within the study area using keywords,
authors, and journals [41,70].

3. Results
3.1. Performance Analysis
3.1.1. Document Type and Language

Most of the research on GEE comes from journal articles (77.25%). Journals are
preferred as they are considered higher-quality publications that go through blind peer
review [71]. In second place is the research presented at conferences (18.57%), considered
equally important as journal articles, particularly in computer science, more than other
academic disciplines [72]. Other documents (4.18%) correspond to data papers, reviews,
letters, book chapters, notes, erratums, letters, short surveys, editorials, and books (see
Table 1).
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Table 1. Types of documents on GEE.

Rank Language of Original Document Document

1 Article 2163
2 Conference paper 520
3 Data paper 30
4 Review 30
5 Book chapter 27
6 Note 11
7 Erratum 7
8 Letter 7
9 Short survey 2
10 Editorial 2
11 Book 1

In the academic world, the English language is predominant in its various academic
disciplines [73]. The field of study of GEE is not an exception. Despite containing research
in ten languages, 93.57% of the research available is in English (see Table 2). This majority
choice of English as an academic language is because English is essential for establishing
scientific communication and international collaboration. In addition, many journals are
published in this language [74,75].

Table 2. Language of published documents.

Rank Language of Original Document Document Citations

1 English 2620 38,790
2 Chinese 119 384
3 Portuguese 20 13
4 Spanish 20 19
5 Russian 13 12
6 Korean 2 4
7 French 2 2
8 Japanese 2 2
9 German 1 2

10 Italian 1 0

3.1.2. Scientific Production

According to the database obtained, Figure 2 shows the growth trend of publications
(2011–2022). This field of study shows a growing trend for 12 years, of 2800 publications
that have received 39,228 citations. The first document mentioning GEE was an article
on the historical modeling of a city in 4D through the automation of GEE [76]. In this
same year, the findings of the first results of investigations in GEE were at conferences.
The first, published in “Lecture Notes in Business Information Processing”, addresses the
success stories of GIS applications [77]. The second was presented at “Proceedings—2011
4th International Conference on Information Management, Innovation Management and
Industrial Engineering, ICIII 2011”, exhibiting GEE as a graphical interface for surface
mining mapping and system-assisted truck driving [78].
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This field of study divides into two periods for analysis: Introduction (2011–2016)
and Growth (2017–2022). Period I corresponds to a stage with fewer publications per year,
which refers to the learning curve of the use and applications of GEE. On the other hand,
period II presents a higher number of documents and citations per year, which is related to
the development of the various applications of this platform.

Period I—Introduction (2011–2016): The 37 initial publications in this field of study are
equivalent to 1.32% of the total. In 2012, no publications on GEE were registered, revealing
the natural curve of learning and adaptation to the new GEE platform. The most cited
document was published by Dong et al. [79] in the journal Remote Sensing of Environment
with 462 citations. This paper uses GEE algorithms and Landsat 8 imagery to map paddy
rice. This mapping provides details of a product that has become widespread over the past
decades in Northwest Asia and thus contributes to food security assessment. Other studies
addressed vegetation clearing [80], crop mapping [81], seawater level monitoring [82], risk
analysis [83], urban planning [84], multi-temporal analyses [84], and other applications.

Period II—Growth (2017–2022): The largest amount of scientific literature in the field
of study has developed in these last six years, with 2763 publications (98.68%). They
were showing significant and constant growth in scientific production. During this pe-
riod, studies published are on land use and land cover [18,85], agriculture [86], climate
change [87], land cover change [88], and hydrology [89]. As well as theoretical literature
review studies [1,2]. In the last year (2022), a considerable number of publications focused
on land use/cover [90], classification [91], forest fires [92], predictions [93], and climatic
changes [94], among others.

In Figure 2, we can also observe a decrease in citations between 2020 and 2022. The
lower number of citations in recent years may be related to the “sleeping beauty” effect,
where these recent documents have not reached their potential impact, lacked visibility, or
have little current relevance [95]. Therefore, they are in a period of latency before receiving
wider recognition.
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3.1.3. Contributions by Country

According to the data collected, the publications correspond to 125 countries across
five continents (see Figure 3). Asia has the majority of publications (46.80%), with China,
India, Indonesia, Iran, and Japan standing out. Next, we find the American continent
(25.12%), with a majority contribution from The United States, Brazil, and Canada. Finally,
other continents such as Europe, Africa, and Oceania participated in 19.20%, 5.14%, and
3.74%, respectively.
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China leads the scientific production in the area with 994 publications, followed by
The United States with 623. These countries have collaborated on 145 publications. Some
of their collaborative work includes mapping rice crops using Landsat 8 satellite data [79].
In addition, analyzing land cover changes due to different human activities [85], and
creating global maps of an artificial impervious area to identify human settlements and
their possible environmental impact [96]. In addition, China maintains a strong relationship
with Canada, collaborating in research related to wetland inventory [97], flood monitoring
using algorithms based on multi-temporal SAR statistics [98], and monitoring fallow fields
as a product of agricultural activities [99]. The UK also has a strong relationship with China,
where they have worked together on monitoring and mapping the Himalayas [100], land
use change [101], and other applications.

Being the second most prominent country in GEE publications, The United States
has collaborated with Canada on 40 papers. Collaboration has focused on monitoring
and inventorying wetlands [102,103], GEE review articles [29,104], and mapping irrigated
areas [105]. Germany also collaborated with The United States in 23 studies. In some of
these collaborations, they mapped plantations [106], estimated biophysical variables such
as canopy water content (CWC), fraction of absorbed photosynthetically active radiation
(FAPAR), fraction vegetation cover (FVC), and leaf area index (LAI) [107]. Additionally,
Australia has carried out 15 studies with the USA. We find the application of algorithms for
crop mapping [108], and the analysis of the severity of fires in North American forests [109].

Other countries, such as India, have also presented important publications on Google
Earth Engine. India occupies third place as the country with the most publications, with
231 papers. The most notable publications include: conducting research in cropland
mapping [110,111], wet and dry snow mapping [112], and analysis of river avulsions [113].
Brazil ranks fourth on the list of countries with the highest publication contribution, with
138 publications and 1582 citations. Brazil has also published papers on topics such as
monitoring of livestock activity and pastures [114], analysis of spatio-temporal patterns
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of road mortality with roadkill data of seven mammals [115], and monitoring of the
Amazon [18]. Finally, Italy ranks fifth globally with 133 publications, reaching 1916 citations.
Some of the topics of said publications relate to human population settlement analysis [84],
land use and cover evaluation [116], and other applications.

The VOSviewer software allows the construction of a bibliometric map of bibliographic
coupling, where each node represents a country linked to those countries it has collaborated.
Figure 4 shows the collaboration network between countries, with 71 nodes, 11 clusters, and
2485 links, with a link strength of 3,621,427. China has strong ties with The United States
(link strength 369,292), Canada (link strength 75,189), The United Kingdom (link strength
60,221), Brazil (link strength 57,690), Germany (link strength 62,637), Australia (link strength
57,139), India (link strength 72,829), Italy (link strength 60,461), and The Netherlands (link
strength 37,644), indicating significant collaboration between these countries.
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3.1.4. Journals Performance

Analyzing journals provided a general overview of the use and application of GEE and
its various disciplines as presented in their intellectual structure. The analysis concluded
that are 404 journals linked to this field of study. Table 3 shows the 15 journals with the
highest contribution of articles (1108), representing 39.57%. In addition, the table shows
performance indicators, such as CiteScore, Scimago Journal Rank (SJR), and H-Index.
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Table 3. Scientific production for the top 15 journals.

Rank Journals Country Articles Citations Citescore SJR H-Index

1 Remote Sensing Switzerland 535 9276 7.4 1.283 144

2 Remote Sensing of Environment United States 106 10,864 20.7 3.862 303

3 International Journal of Applied Earth
Observation and Geoinformation Netherlands 60 1183 10.5 1.844 108

4 Sustainability (Switzerland) Switzerland 44 208 5.0 0.664 109

5 Land Switzerland 43 174 3.2 0.685 32

6 ISPRS Journal of Photogrammetry and
Remote Sensing Netherlands 43 1951 17.6 3.481 155

7 Remote Sensing Applications: Society and
Environment Netherlands 42 427 5.0 0.840 27

8 IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing United States 41 664 6.4 1.335 101

9 Science of the Total Environment Netherlands 38 509 14.1 1.806 275

10 ISPRS International Journal of
Geo-Information Switzerland 30 283 5.0 0.721 52

11 Ecological Indicators Netherlands 29 318 8.4 1.284 145

12 Water (Switzerland) Switzerland 26 288 4.8 0.716 69

13 Forests Switzerland 25 134 4.0 0.623 52

14 International Journal of Remote Sensing United
Kingdom 24 146 6.5 0.873 185

15 Geocarto International United
Kingdom 22 62 7.2 0.644 47

Based on the number of published articles, the journal remote sensing ranked first
with 535 papers (24.73%) and 9276 citations, making it the second most cited journal in this
category. Remote Sensing of Environment ranked second, with 106 articles (4.90%), and stands
out as the most-cited journal, with 10,864 citations. International Journal of Applied Earth
Observation and Geoinformation ranked third, with 60 articles (2.77%). Finally, Sustainability
(Switzerland), Land, and ISPRS Journal of Photogrammetry and Remote Sensing ranked fourth,
fifth, and sixth, accounting for 2.03%, 1.99%, and 1.99%, respectively.

According to the Citescore and SJR performance indicators for the top 15, Remote
Sensing of Environment, ISPRS Journal of Photogrammetry, and Science of the Total Environment
are first. Based on the H-index indicator, Remote Sensing of Environment, ISPRS Journal of
Photogrammetry and Remote Sensing, and Science of the Total Environment ranked first, second,
and third, respectively.

In Table 3, the first, second, sixth, seventh, eighth, and fourteenth journals have
the theme of remote sensing in common. The journals in the third, eighth, tenth, and
fifteenth places present the theme of geosciences. The rest of the journals correspond to
multidisciplinary categories, such as Science of the Total Environment, and specific areas, such
as sustainability, land, ecological indicator, water, and forest. They revealed the importance
of the GEE in these areas of knowledge and encompassing the earth sciences.

3.1.5. Areas of Knowledge

The scientific production of this subject of study covers 25 areas of knowledge.
Figure 5 shows these main areas. According to the nature of the study, a publication
can address more than one area of knowledge. The results indicate that earth and planetary
sciences are the most outstanding area of knowledge, with publications that represent
30.23%, followed by environmental science with 16.81% share, computer science (11.53%),
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agricultural and biological sciences (9.39%), social sciences (8.47%), engineering (7.30%)
and physics and astronomy (4.22%). The diversity in areas of knowledge demonstrates the
multidisciplinary applications of GEE. In addition, the remaining 12.05% are from other
areas of knowledge, such as mathematics, energy, decision sciences, biochemistry, genetics,
molecular biology, materials science, multidisciplinary, medicine, business, management
and accounting, chemistry, chemical engineering, economics, econometrics, and finance,
arts and humanities, neuroscience, veterinary, dentistry, immunology and microbiology,
health professions, pharmacology, toxicology, and pharmaceutics.
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3.1.6. Frequently Cited Documents

Table 4 shows the top 15 most cited documents. Five studies perform algorithms and
analysis for cropland monitoring [79,108,110,117,118], four articles deal with multitemporal
mapping and analysis of land use and land cover [18,85,119,120], three papers are review
articles of the GEE platform [1,2,29], one study maps impervious areas [96], one paper
analyzes mangroves [121], and another article focuses on the estimation of terrestrial
evapotranspiration [122]. However, these documents represent only 0.54% of the scientific
production, with 8964 citations (22.85%).

Table 4. Top 15 most cited documents.

Rank Authors Year Document Title Citations Document Type

1 Gorelick et al. [1] 2017 Google Earth Engine: planetary-scale
geospatial analysis for everyone 4792 Article

2 Dong et al. [79] 2016

Mapping paddy rice planting area in
Northeastern Asia with Landsat 8

images, phenology-based algorithm,
and Google Earth Engine

462 Article
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Table 4. Cont.

Rank Authors Year Document Title Citations Document Type

3 Liu et al. [119] 2018

High-resolution multi-temporal
mapping of global urban land using
Landsat images based on the Google

Earth Engine Platform

377 Article

4 Gong et al. [96] 2020
Annual maps of global artificial

impervious area (GAIA) between
1985 and 2018

362 Article

5 Souza et al. [18] 2020

Reconstructing three decades of land
use and land cover changes in
Brazilian biomes with Landsat

archive and earth engine

324 Article

6 Tamiminia et al. [29] 2020
Google Earth Engine for geo-big data

applications: a meta-analysis and
systematic review

313 Short Survey

7 Lobell et al. [117] 2015 A scalable satellite-based crop yield
mapper 305 Article

8 Xiong et al. [110] 2017
Automated cropland mapping of

continental Africa using Google Earth
Engine cloud computing

298 Article

9 Kumar et al. [2] 2018
Google Earth Engine applications
since inception: usage, trends, and

potential
280 Article

10 Huang et al. [85] 2017
Mapping major land cover dynamics
in Beijing using all Landsat images in

Google Earth Engine
258 Article

11 Gong et al. [120] 2019

40-Year (1978–2017) human
settlement changes in China reflected
by impervious surfaces from satellite

remote sensing

247 Article

12 Chen et al. [121] 2017

A mangrove forest map of China in
2015: analysis of time series Landsat

7/8 and Sentinel-1A imagery in
Google Earth Engine cloud

computing platform

240 Article

13 Shelestov et al. [118] 2017

Exploring Google Earth Engine
platform for big data processing:
classification of multi-temporal

satellite imagery for crop mapping

237 Article

14 Zhang et al. [122] 2019

Coupled estimation of 500 m and
8-day resolution global

evapotranspiration and gross
primary production in 2002–2017

236 Article

15 Teluguntla et al. [108] 2018

A 30 m Landsat-derived cropland
extent product of Australia and

China using random forest machine
learning algorithm on Google Earth
Engine cloud computing platform

233 Article

SUM OF TOP 15 CITATIONS 8964

TOTAL CITATIONS (2800 DOCUMENTS) 39,228

The article by Gorelick et al. [1], published in the journal Remote Sensing of Environment,
ranked first, with 4792 citations, representing 53.46% of the top 15. This publication studies
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the GEE platform’s characteristics, structure, applications, and advantages. The second
place corresponds to the article by Dong et al. [79], published in the journal Remote Sensing
of Environment, which has 462 citations. This study mapped the paddy rice planting area in
Northeast Asia to analyze the characteristics of its geographical distribution using Landsat
8 images, the phenology-based algorithm, and the GEE platform. In third place is the study
by Liu et al. [119], published in the journal Remote Sensing of Environment, with 377 citations.
Finally, the study by Gong et al. [96] ranked fourth, with 362 citations, published in the
journal Remote Sensing of Environment. The other articles presented various applications
and content variations related to remote sensing; the same is in Table 4 with their respective
authors and citation numbers.

3.1.7. Satellites and Sensors Used Frequently

GEE contains a catalog of large-scale satellite images. Figure 6 shows the most used
satellites and sensors in the analyzed publications. The Landsat satellite was the most used,
appearing in 1283 studies, followed by the Sentinel satellite, with 933 documents. ASTER,
MODIS, and SAR sensors rank third, fourth, and fifth, respectively. Some studies have
combined different satellite data sets, such as Landsat and Sentinel [111,118]; Landsat and
MODIS [123]; Landsat, Sentinel, and MODIS [124]; Landsat, MODIS, and ASTER [125];
Landsat, Sentinel, ASTER, and MODIS [126]; among other combinations of data. In
addition, few studies included other satellites and sensors such as LiDAR, AVHRR, ALOS
PALSAR, WorldView, NOAA, and PROBA-V.
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3.1.8. Remote Sensing Applications over Time

Figure 7 shows the main remote sensing applications developed in GEE during the
years analyzed. This analysis allows identifying cropland and vegetation topics, land use
and land cover, climate change, cartography and GIS, and flood mapping, which are the
five main uses of GEE. Furthermore, these show a continuous growth of studies.
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3.2. Science Mapping
3.2.1. Author Keywords Co-Occurrence Network

This analysis characterized the study area by visualization in two dimensions, using a
semantic map to observe its intellectual structure, topics, and relevant themes [70]. Figure 8
shows the co-occurrence network of author keywords, where 301 out of 5815 were analyzed,
the same ones repeated at least five times. The network structure is 10 clusters, 301 nodes,
3610 links, and a total link strength of 10,816. Each node represents a research topic
(keyword), and the set of nodes (cluster of the same color) represents a research area. The
size of each node is related to the number of times it appears in the documents.

Cluster 1, called “land use and land cover” (red), has 47 nodes and 2245 occurrences.
This cluster’s topics focus on applying GEE in land use and land cover mapping of different
areas [127]. Likewise, the use of this platform to identify land use and land cover changes
(LULCC) in a reservoir catchment allows for observing if there is any climate impact [101].
LULCC has also been used to identify subsurface drainage [128]. Furthermore, there are
applications in urban areas using population mapping [84].

Cluster 2, labeled “cloud computing” (green), has 38 nodes and 513 occurrences. This
group research includes using the Google Earth Engine Cloud Computing Platform [79,103] and
developing GEE algorithms for flood monitoring and mapping locally and globally [98,129].
Other topics include land cover changes [130], and identifying possible affected mangrove
areas to prevent their loss [17,131]. In addition, other studies have integrated in situ data,
satellite data, and linear regression and machine learning models to estimate the volume of
forest areas [132].
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Cluster 3, called “machine learning” (blue), has 37 nodes and 997 occurrences. Studies
in this cluster focus on processed and curated datasets for deep learning [133,134] and
spatial and temporal pattern mapping [135]. It also includes wetland change detection
using GEE algorithms [136], the presentation of automatic dataset generators for Earth
observation [137], and soil surface moisture mapping focusing on machine learning in
GEE [138]. Also, applied unsupervised deep learning was also used to identify flood-
affected areas [139].

Cluster 4, called “sustainability” (yellow), has 45 nodes and 854 occurrences. It
contains studies on data from physical geography and Earth observation to address sustain-
ability challenges [140]. Furthermore, these studies include research on land use and land
cover [141], land degradation [142], croplands [143], and others. In addition, this cluster
includes an analysis of wildfires in Australia through machine learning [144].

Cluster 5, labeled “spectral index” (purple), has 31 nodes and 776 occurrences. This
group’s research focused on constructing high-resolution maps using satellite data and
spectral indices. The studies in this cluster made estimates of global land surface temper-
ature [125], identified areas affected by climate change and possible reasons for climate
change [145,146], and reconstructed NDVI time series data with information from sensors
such as MODIS [147]. Other research combined spectral indices such as NDVI, EVI, NDWI,
and algorithms for crop identification [148], and analysis of temporal patterns and effects
on vegetation indices [149].
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Cluster 6, called “classification” (turquoise), has 29 nodes and 845 occurrences. This
cluster includes studies on procedures used in image classification for crop mapping [150]
and land cover [151]. In addition, there is a study on land use change assessment using
Sentinel 2 products [152]. It also included the analysis of the GEE classifier’s performance,
among which are the minimum distance (MD), support vector machine (SVM), classification
and regression trees (CART), random forest (RF), and Naive Bayes (NB) [153].

Cluster 7, called “remote sensing applications” (orange), has 26 nodes and 794 occur-
rences. Publications in this cluster focused on the use of big data in land cover delineation
and quantification using computer platforms [154], as well as forest fire mapping [155], land
cover changes, and air quality [156]. Publications in this cluster also analyzed ecosystem
services using population data, meteorological data, terrain characteristics, and data from
the Food and Agriculture Organization (FAO) [86]. This cluster includes a study on data
processing in the cloud for remote sensing of seas and oceans [157].

Cluster 8, labeled “multi-temporal analysis” (brown), has 23 nodes and 255 occur-
rences. This group includes multitemporal analysis of satellite images [158] and multitem-
poral mapping of population distribution in China [159]. Other studies focus on identifying
LULC changes [160], coastline monitoring [161], and others.

Cluster 9, called “satellite imagery” (pink), has 21 nodes and 264 occurrences. The
studies included in this group focus on using satellite images and employing GEE for their
respective geoprocessing [162]. Also, a study that estimates sub-hydro flattened water
surfaces [163] uses spectral unmixing techniques for habitat remote sensing for migratory
shorebird conservation [164], among others.

Cluster 10, labeled “vegetation index” (very light red), has 14 nodes and 226 occur-
rences on the use of vegetation indices in cropland mapping [124]. Other topics include
flood influence assessment [165] and the development of phenological and GEE-based
algorithms [166]. It also provides automation methods for mapping paddy rice produc-
tion [167]. Other studies focused on evaluating the annual dynamics of vegetation cover
and its climatic impact [168].

3.2.2. Co-Authorship Network Analysis

The country/author co-authorship network (Figure 9) indicates the relationship and
degree of collaboration between countries/authors in the field of GEE research [169]. The
lines linking the nodes indicate the co-authorship between countries/authors; the distance
between clusters shows their strength and how much the countries and authors publish in
co-authorship [170]. Figure 9a shows the co-authorship by the country network, comprised
of 71 countries (nodes) distributed in eight clusters. Furthermore, Figure 9b shows the
co-authorship by the authors’ network, with a structure is 16 clusters and 397 nodes.

USA and China are the countries with the highest productivity and present a strong co-
authorship relationship (link strength 146); Gong, P. and Liu, X., with affiliations from China
and USA, respectively, present different collaborations; two of them are the most cited
articles and refer to the creation of global maps of an artificial impervious zone to identify
human settlements and their possible environmental impact (362 citations) [96] and satellite
remote sensing of changes in human settlements in China as reflected by impervious
surfaces (247 citations) [120]. Iran and Canada have a strong co-authorship relationship
(link strength 34); Moghimi, A. (Iran) y Amani, M. (Canada) developed a method for
assessing flood damage in different types of land use and land cover [171]. Likewise, USA
and India present co-authorship (link strength 27), where Kumar, V. (India) and Ellenburg,
W.L. (USA) used Sentinel-1 data and the Otsu method to map flooded areas [172]. China
and Australia also have a close relationship (link strength 20), where Zhang, Y (China)
and Kong, D. (Australia) have developed analyses on global evapotranspiration and gross
primary production [122].
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3.2.3. Co-Citation Network of Cited Authors

This analysis highlights which authors have been considered in scientific publications to
form the knowledge base (reference documents) of the intellectual structure studied [173–175].
Figure 10 shows this co-citation network of cited authors, where a structure of 5 clusters
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and 1000 authors, considering a minimum of 20 citations. The network has 465,623 links
and a link strength of 11,147,647.
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Cluster 1 (red) is called “Spatio-temporal analysis and time series” and has 397 authors.
This cluster contains topics related to space–time analysis applied in various contexts and
time series to measure the development of a specific factor. The group is led by Li X., with
1631 citations, presenting papers on mapping coasts, plains, and phenological elements
using the time series of Landsat images and observing space–time dynamics [176–178].
Wang J. (with 1533 citations) has also been prominent with studies on vegetation indices’
annual mapping and temporal responses [96,179]. Another notable author is Zhang Y., who
analyzes satellite images to measure spatial and temporal variations [180].

Cluster 2 (green) is called “GEE capacities” and has 230 authors and 48,353 citations.
These studies are related to showing the potential of the GEE platform and its different
applications. This group includes Thau D. (1964), Hancher M. (1714), Moore R. (1709),
Dixon M. (1384), and Ilyuschenko S. (1326), who have worked together on feature-related
studies and GEE research [1]. Also, they worked on papers using the GEE methodology on
topics such as forest cover change [181], remote sensing [182], and more.

Cluster 3 (blue), called “Cropland”, comprises 171 authors and has 29,109 citations.
The studies are related to the mapping and monitoring of crop fields, agriculture, and the
expansion or reduction of vegetation. In this group, we find Xiao X.M. (1363), Dong J.
(1120), and Qin Y. (808) with research mapping rice, deciduous rubber plantations, and
forests [79,183]. Gong P. (1034) has also excelled in the geospatial estimation of ecosystem
services at the global level [86].
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Cluster 4 (yellow), called “Cloud computing and big data”, has 155 authors and 23,089
citations. This cluster’s studies cover geoprocessing in the cloud and big data management.
The most prominent author is Gorelick N. (2194), who has worked on a review of GEE, a
platform for large-scale geoprocessing of data [1]. Huang C.Q. (657) used GEE applications
in flood studies using large datasets on this platform [98]. Breiman L. (593) has worked on
papers in machine learning and random forest [184]. Also, there is Brisco B. (574) with the
automation of surface water mapping [185].

Cluster 5 (purple), called “Land use/cover and temperature”, has 77 authors and
6106 citations. The studies of this cluster are related to the classification of land use and
land cover and the monitoring of the Earth’s surface temperature. Huang H.B. (464) and
Clinton N. (401) have carried out a mapping of land occupation and identified its major
dynamics [85]. Also, Clinton N. has presented papers on urban heat islands [186]. Weng
Q.H. (345) has presented papers where they analyze the surface temperature through
satellite images [187].

3.2.4. Journal’s Co-Citation Network

This analysis determines the research accumulated over time in this field of study
based on various disciplines reflected in the journals found in the references [188,189].
Figure 11 shows the journal co-citation network, comprised of 398 journals (nodes) with at
least 20 citations, distributed in 6 clusters.
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Cluster 1 (red), “Hydrology and geophysical”, has 99 nodes and a total of 14,972 ci-
tations, including Journal of Hydrology (The Netherlands, with 1016 citations), Journal of
Geophysical Research (The United States, 974), Geophysical Research Letters (The United States,
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798), Scientific Reports (The United Kingdom, 758), Water Resources Research (The United
States, 627), among others.

Cluster 2 (green), “Science and Nature”, contains 94 nodes with 14,120 citations. In
this group, the following stand out; Science (The United States, 1341), Nature (The United
Kingdom, 1335), Environmental Research Letters (The United Kingdom, 789), PLoS ONE (The
United States, 779), Proceedings of the National Academy of Sciences of The United States of
America (The United States, 773), among others.

Cluster 3 (blue), “Environment and sustainability”, has 72 nodes and a total of 11,205 ci-
tations, including Science of the Total Environment (The Netherlands, 1849 citations), Sustain-
ability (Switzerland, 680), Environmental Monitoring and Assessment (The Netherlands, 506),
Journal of Environmental Management (The United States, 458), Land Use Policy (The United
Kingdom, 428), among others.

Cluster 4 (yellow), “Remote sensing”, presents 49 nodes with 46,212 citations. In this
cluster, the following stand out: Remote Sensing of Environment (The United States, 16,188),
Remote Sensing (Switzerland, 11,122), International Journal of Remote Sensing (The United
Kingdom, 4389), ISPRS Journal of Photogrammetry and Remote Sensing (The Netherlands,
3143), International Journal of Applied Earth Observation and Geoinformation (The Netherlands,
2184), IEEE Transactions on Geoscience and Remote Sensing (The United States, 1501), IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing (The United States,
941), Photogrammetric Engineering and Remote Sensing (The United States, 712), among others.

Cluster 5 (purple), “agriculture”, has 45 nodes and 4620 citations. In this group, there
are journals such as Agricultural and Forest Meteorology (The Netherlands, 619), Scientific
Data (The United Kingdom, 453), Geoderma (The Netherlands, 367), Environmental Modeling
and Software (The Netherlands, 339), Catena (The Netherlands, 319), among others.

Cluster 6 (turquoise), “Ecological”, has 39 nodes and 4134 citations. In this group, we
find Ecological Indicators (The Netherlands, 1092), Acta Ecologica Sinica (China, 234), Science
Bulletin (The Netherlands, 217), Journal of Geographical Sciences (China, 216), Journal of Remote
Sensing (China, 216), among others.

4. Discussion

Research and applications in GEE began 12 years ago, with a relevant increase in
scientific production (see Figure 2), highlighting articles (77.25%) and conference papers
(18.57%). Most of the scientific output is in papers. Remote Sensing of Environment and
Remote Sensing are the journals with more publications. On the other hand, among the
conference papers with more publications in the area are the International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives;
and the International Geoscience and Remote Sensing Symposium (IGARSS). Furthermore,
these journals and conference papers receive and publish articles mainly in English. The
first contribution is modeling a 4D city with GEE [76]. As of 2017, a growing publication
trend demonstrates researchers’ interest in this field of study.

This scientific production has received the collaboration of 125 countries. China (1st)
and The United States (2nd) correspond to the countries with the most contributions of
documents on the subject, with 994 and 623 publications, respectively. Likewise, these
countries have the highest number of collaborative works in which at least one of the
authors belongs to a different country, and their main topics of study have been cropland
mapping [79], land use and land cover [85]. These countries also collaborate with Canada,
The United Kingdom, and Brazil (see Figures 3 and 4). Highlighting the impact of devel-
oped countries in knowledge production using the GEE platform [2]. These studies were
published in nine languages, with English being the most predominant (93.57%).

The results showed that most of the projects have focused on earth and planetary
sciences (with 1639 publications), which indicates the potential of GEE in applying solutions
for earth sciences, as corroborated by Mutanga and Kumar [28]. The main use of GEE is to
obtain and process images. Other subject areas are environmental science (911), computer
science (625), agricultural and biological sciences (509), social sciences (459), engineering



Remote Sens. 2023, 15, 3675 20 of 30

(396), physics and astronomy (229), among others. This variety in subject areas shows that
GEE is a multi-disciplinary tool for solving environmental problems and is essential to
achieving the millennium’s development goals [21,28].

The importance of Landsat and Sentinel data is highlighted in the analysis of satellites
and sensors used in the GEE research. Landsat is the most used because it is the satellite
mission with the most significant historical and continuous data, facilitating multi-temporal
studies since 1972 [190,191]. At the same time, Sentinel made satellite images available in
2015 with higher spatial (10 m) and temporal (every five days) resolution [192].

The study’s intellectual structure analysis used three bibliometric maps as relevant
graphic representations of the topic. The author’s keywords co-occurrence was analyzed
in the first place (see Figure 9), where the presence of overlapping clusters is observed,
with a central element called “Google Earth Engine”. The co-occurrence demonstrates that
the research focused on the elaboration of machine learning algorithms (blue cluster) and
remote sensing applications (orange cluster) based on cloud computing (green cluster).
The co-occurrence shows a focus on the use of satellite imagery (pink cluster), which
through classification algorithms, can perform multi-temporal analysis (turquoise and
brown clusters), employ spectral and vegetation indices (purple and very light red clusters),
as is commonly conducted in land use and land cover (red cluster).

Second, the bibliometric map presents the co-citation analysis of the authors, which
evidences the relationship between researchers who have spoken or have implemented
the GEE platform in their papers (see Figure 11). Gorelick, N., Thau, D., Moore, R.,
and Hancher, M. (yellow and green clusters) were the authors with the most relevant
papers on research and applications of GEE [1,116,193], standing out with the substantial
number of citations they have acquired in their publications. In addition, there were
important contributions by Li, X., Wang, J, and Zhang, Y. in the spatio-temporal analysis and
elaboration of time series [177–180]. Xiao, X.M. and Dong, J. have contributed publications
related to vegetation [194,195], while Gong, P., Clinton, N., and Weng, Q.H. presented
LULC and temperature monitoring [196,197].

Third, according to the analysis of the co-citation network. The red cluster contains
the most significant number of journals with themes related to hydrology and geophysical.
The yellow cluster stood out by its number of relevant citations and the journals with the
highest number of publications on GEE (Remote Sensing, Remote Sensing of Environment) and
citations in papers related to remote sensing. The other clusters (green, blue, and purple)
deal with multidisciplinary issues.

5. Conclusions

This study analyzed and evaluated the intellectual structure of 2800 documents related
to the Google Earth Engine platform, the same ones indexed in the Scopus database,
between 2011 and 2022. The results showed that scientific evolution is a growing trend, as
evident by the contribution of 125 countries and 398 journals.

The most significant publications and citations came from two journals, (i) Remote
Sensing and (ii) Remote Sensing of Environment. Scientific production mainly focused on
developed countries like China and The United States. In addition, the co-occurrence
analysis of author keywords revealed GEE research topics related to land use, land cover,
cloud computing, machine learning, sustainability, spectral index, classification, remote
sensing, multi-temporal, satellite imagery, and vegetation index, among others.

GEE has proven to be an emergent web platform with the potential to manage big
satellite data easily. Furthermore, GEE is considered a multidisciplinary tool with multiple
applications in various areas of knowledge, such as earth and planetary science, environ-
mental sciences, computing, agriculture, biology, and engineering, among others. These
qualities made it easier for researchers worldwide to create, replicate, analyze, and share
algorithms in the cloud using remote sensing applications.

The research identified the relatively new platform application in different geographi-
cal scales and areas of knowledge. Furthermore, the present study seeks to facilitate access
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to relevant information about a given study area, identify emerging topics, and facilitate
collaboration among countries and authors. Finally, this study can serve as a guide for
researchers and their future research projects.

6. Limitations and Future Research Directions

The study has some limitations related to (i) bias in the analysis, given that the number
of citations or documents is not the only quality criteria; (ii) some important documents
may be excluded when only considering the Scopus database since there are also other
databases such as Web of Science, Dimensions, Scielo, among others; (iii) it is not possible to
combined database in the VOSviewer software; (iv) the information collected only includes
documents up to February 2023, so the current year presents incomplete information in
this study.

Research using the Google Earth Engine platform has shown rapid growth in recent
years, promoting the emergence of new research topics and the need to expand knowledge.
As a result, the following topics are recommended for future research:

1. Literature review studies. GEE is a recent platform; as a result, studies were con-
ducted [2,28–30,104]. It is necessary to address the analysis in other databases, search
engines, and types of documents.

2. Studies in developing countries. The most significant contribution of publications
on GEE corresponds to developed countries. Advantageously, GEE is free, and the
GEE algorithms facilitate replicating these studies in different regions by changing
variables and parameters. In this way, developing countries can have the opportunity
to collaborate with the generation of knowledge.

3. Remote sensing applications. GEE has shown its potential in disaster mapping.
However, it can delve into: droughts [198,199], earthquakes [200], floods [201,202],
fires [203,204], and landslides [205,206]. Likewise, environmental monitoring [207]
and mangrove mapping [208] have become very important in recent years.

4. Global maps. Land cover and land use maps have been studied and elaborated in
specific areas [85]. However, only some studies approach the application of GEE
from a global perspective [96,119]. With the constant increase in satellite images and
geoprocessing in the cloud, the production of high-precision global maps on land use
and cover, vegetation indices, and geophysical and climatic data, among others, is
expected.

5. Monitoring of migration of animal species. With high-resolution images, knowledge
of animal species, and the use of GEE, it is possible to identify the ecosystems where
animal species live.

6. Studies showing innovative methodologies and algorithms. Cloud processing facil-
itates research in terms of time and resources. An example is the inclusion of new
algorithms that can combine indexes and classify images.
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