

Severe Weather Prediction: Integrating Partial Differential and Machine Learning Models

Haroldo F. de Campos Velho (COPDT-INPE)

haroldo.camposvelho@inpe.br

http://www.lac.inpe.br/~haroldo

XI CIMAC (Congreso Internacional de Matemática Aplicada y Computacional)

Summary

- Weather prediction: PDE x Data
- A false dilemma
- Hybrid prediction:
 Differential. equations + Machine learning (data-driven)
- Hybrid prediction for convective events
- Next actions for Hybrid Prediction
- Final remarks

Scientific challenges

- Before the 20th Centrury:
 We want to know the "Laws of Nature"
- During the 20th Centrury: We know the Laws, but how can we solve the equations?
- After the 20th Century
 The first decades of this century show that one of the challenges is the extraction of knowledge from a tsunami mass of data: "Data Scince".

A scientific achievement of the 20th century

The Vilhelm Bjerknes' Theorem (1904)

Book: Lewis Fry Richardson (1922)

Paper: Charney, Fjørtoft, von Neumann (1950)

S V E N S K A G E O F Y S I S K A F Ö R E N I N G E N

VOLUME 2, NUMBER 4 Tellus NOVEMBER 1950

A QUARTERLY JOURNAL OF GEOPHYSICS

Numerical Integration of the Barotropic Vorticity Equation

By J. G. CHARNEY, R. FJÖRTOFT¹, J. von NEUMANN The Institute for Advanced Study, Princeton, New Jersey²

A scientific achievement of the 20th century

Weather prediction by Differential Equations

$$\begin{split} &\frac{\partial \zeta}{\partial t} = -\boldsymbol{\nabla} \cdot (\zeta + f) \mathbf{U} - \mathbf{k} \cdot \boldsymbol{\nabla} \times \left(RT' \boldsymbol{\nabla} l p + \dot{\sigma} \frac{\partial \mathbf{U}}{\partial \sigma} + \mathbf{F} \right) \\ &\frac{\partial D}{\partial t} = \mathbf{k} \cdot \boldsymbol{\nabla} \times (\zeta + f) \mathbf{U} - \boldsymbol{\nabla} \cdot \left(RT' \boldsymbol{\nabla} l p + \dot{\sigma} \frac{\partial \mathbf{U}}{\partial \sigma} + \mathbf{F} \right) - \boldsymbol{\nabla}^2 (\boldsymbol{\Phi}' + RT_0 \ l p + \frac{1}{2} \mathbf{U} \cdot \mathbf{U}) \\ &\frac{\partial T}{\partial t} = -\boldsymbol{\nabla} \cdot \mathbf{U} T' + T' D + \dot{\sigma} \gamma - \frac{RT}{c_p} \left(D + \frac{\partial \dot{\sigma}}{\partial \sigma} \right) \qquad \{ \text{with: } \boldsymbol{\phi} = g \boldsymbol{h} \ ; \ \text{and: } \boldsymbol{\sigma} = \boldsymbol{p} / \boldsymbol{p}_0 \} \\ &\frac{\partial q}{\partial t} = -D - \frac{\partial \dot{\sigma}}{\partial \sigma} - \mathbf{U} \cdot \boldsymbol{\nabla} \ l p \quad \{ \text{with: } \boldsymbol{q} = \log(\boldsymbol{p}_0) \} \end{split}$$

- (a) ζ: vorticity
- (b) D: divergence
- (c) T: temperature
- (d) q: moisture

A scientific achievement of the 20th century

Weather prediction by differential equations

A scientific achievement of the 20th century

Solving differential equations: Finite Difference

$$\begin{split} \frac{\partial \varLambda(\alpha_i)}{\partial \alpha_i} &\approx \frac{\varLambda(\alpha_i + \varDelta \alpha_i) - \varLambda(\alpha_i)}{\varDelta \alpha_i} + O\left(\varDelta \alpha_i\right) \;, \\ \frac{\partial \varLambda(\alpha_i)}{\partial \alpha_i} &\approx \frac{\varLambda(\alpha_i) - \varLambda(\alpha_i - \varDelta \alpha_i)}{\varDelta \alpha_i} + O\left(\varDelta \alpha_i\right) \;, \\ \frac{\partial \varLambda(\alpha_i)}{\partial \alpha_i} &\approx \frac{\varLambda(\alpha_i + \varDelta \alpha_i) - \varLambda(\alpha_i - \varDelta \alpha_i)}{2 \, \varDelta \alpha_i} + O\left(\varDelta \alpha_i^2\right) \;, \\ \frac{\partial^2 \varLambda(\alpha_i)}{\partial \alpha_i^2} &\approx \frac{\varLambda(\alpha_i + \varDelta \alpha_i) - 2\varLambda(\alpha_i) + \varLambda(\alpha_i - \varDelta \alpha_i)}{\varDelta \alpha_i^2} + O\left(\varDelta \alpha_i^2\right) \;. \end{split}$$

$$\frac{d\mathbf{\Lambda}_F}{dt} + \mathbf{D}\,\mathbf{\Lambda}_F + N^F(\mathbf{\Lambda}_F) + \mathbf{K} = \mathbf{0} \ .$$

A scientific achievement of the 20th century

Solving differential equations: Spectral Method

$$\begin{split} \varLambda(\lambda,\mu,t) &= \sum_{m=-J}^{+J} \sum_{\ell=|m|}^{|m|+J+\alpha} c_\ell^m \varLambda_\ell^m(t) Y_\ell^m \\ Y_\ell^m &= Y(\lambda_\ell,\mu_m) = P_\ell^m(\mu) \, e^{im\lambda} \\ c_\ell^m &= \begin{cases} a^2 \,, \text{ for: } \psi \,, \, \chi \,, \, \phi \\ a \,, \text{ for: } u \,, \, v \\ 1 \,, \text{ for: } T \,, \, r_h \,, \, q \end{cases} \quad \alpha = \begin{cases} 1 \,, \text{ for: } u \,, \, v \\ 0 \,, \text{ otherwise} \end{cases} \end{split}$$

$$\frac{d\mathbf{\Lambda}_S(t)}{dt} + \mathbf{L}\,\mathbf{\Lambda}_S + N^S(\mathbf{\Lambda}_S) + \mathbf{C} = \mathbf{0}$$

A scientific achievement of the 20th century

Weather prediction by differential equations

A scientific achievement of the 20th century

Weather prediction by differential equations

10

Scientific challenges

- Before the 20th Centrury:
 We want to know the "Laws of Nature"
- During the 20th Centrury: We know the Laws, but how can we solve the equations?
- After the 20th Century
 The first decades of this century show that one
 of the challenges is the extraction of knowledge
 from a tsunami mass of data: "Data Scince".

The FOURTH PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

EDITED BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

Data weather prediction

Challenges for the 21-th Century

Challenges for the 21-th Century

Severe weather prediction: "Data Science"

International Journal of Remote Sensing

ISSN: 0143-1161 (Print) 1366-5901 (Online) Journal homepage: https://www.tandfonline.com/loi/tres20

Short-range forecasting system for meteorological convective events in Rio de Janeiro using remote sensing of atmospheric discharges

Vinícius Albuquerque de Almeida, Gutemberg Borges França & Haroldo Fraga de Campos Velho

Data weather prediction

Challenges for the 21-th Century

MORPHING FOR AVAIDANT METEROLOGY (SING) MACHINE ELECTROLOGY (SING) MACHINE ELECTROLOGY (SING) MACHINE MACHINE

Challenges for the 21-th Century

Table 4. Classifiers	and configurations u	used for training the algorithms.

Classifier	Description	Configuration	Reference
Random forest	Creates decision trees trained on different subsets of input features.	Default configuration with 100 trees using the standard variance reduction as split selection criterion	Leo Breiman (2001)
Decision tree (J48)	Creates single decision tree based on all available input features	Unpruned decision tree with a minimum of two instances per leaf.	Ross Quinlan (1993)
Multilayer Perceptron (MLP) Classifier	Multilayer perceptron with one hidden layer with customized number of hidden units	Standard perceptron with ten hidden units using the sigmoid activation function and optimization by the minimization of the squared error loss function.	Eibe Frank (2016)
Radial Basis Function (RBF) Classifier	Class implementing radial basis function networks	Radial basis function classifier with ten hidden units trained by minimizing squared error.	Eibe Frank (2014)
Voting committee	Class for combining classifiers	Used default configuration for RandomForest and J48 and the customized versions of MLPClassifier and RBFClassifier with ten hidden units	Ludmila I. Kuncheva (2014)
Deep Learning fully- connected (DL-FC) layers with dropout	Keras sequential models for deep learning.	Python implementation using the tensorflow framework. Two fully-connected (dense) layers with twenty-five units each, dropout regularization between dense layers, adam optimizer, sparse categorical crossentropy loss function, activation ReLu for intermediate layers and softmax for the output layer.	TensorFlow Authors

Data weather prediction

Challenges for the 21-th Century

Hybrid prediction: Differential Eqs. + Data Science

Applied Computing and Geosciences 16 (2022) 100099

Contents lists available at ScienceDirect

Applied Computing and Geosciences

journal homepage: www.sciencedirect.com/journal/applied-computing-and-geosciences

Yasmin Uchôa da Silva ^{a,*}, Gutemberg Borges França ^a, Heloisa Musetti Ruivo ^b, Haroldo Fraga de Campos Velho ^b

a Laboratório de Meteorologia Aplicada, Departamento de Meteorologia-IGEO-CCMN, Universidade Federal do Rio de Janeiro (UFRJ), Rio De Janeiro, Brazil

b Instituto Nacional de Pesquisas Espaciais (INPE), São Paulo, Brazil

Hybrid prediction: Differential Eqs. + Data Science

Período: Fev. 2008-2020;

Frequência entre as previsões: 3h

Resolução horizontal: 18 km (90x90)

Níveis na vertical: 33

Projeção: 'Mercator'

Lat/Lon do ponto central da grade: -22.8136, -43.2675

Time step: 180s

- Attribute analysis: "p-value"
- Data dimension reduction

□ WRF outputs: 1.8 x 10⁶ attributes

Selection by p-value: 36 attributes

Atributo	Nível	Latitude	Longitude	Valor-p			
sh	400	-22.55	320W	9.2E-05			
sh	300	-20S	317.5W	1.7E-04			
sh	400	-255	-25S 322.5W				
sh	850	-205	4.2E-04				
sh	850	-205	315W 312.5W	8.5E-04			
sh	300	-205	320W	1.4E-03			
sh	400	-255	320W	1.4E-03			
sh	400	-27.55	322.5W	1.4E-03			
sh	300	-22.55	320W	1.5E-03			
omega	600	-205	317.5W	1.6E-03			
omega	300	-205	315W	2.0E-03			
u	925	-255	317.5W	2.3E-03			
v	925	-255	317.5W	2.5E-03			
sh	925	-22.55	317.5W	3.2E-03			
omega	600	-205	317.5W	3.4E-0			
sh	300	322.5W	3.4E-03				
sh	400	400 -22.5S 322.5W					
omega	600	600 -20S 315W		4.7E-03			
sh	500	-27.55	322.5W	4.8E-03			
sh	600	-22.55	317.5W	4.9E-03			
omega	700	-205	312.5W	5.7E-03			
omega	500	-27.55	312.5W	6.0E-03			
omega	600	-27.55	312.5W	6.5E-03			
omega	700	-27.55	312.5W	6.7E-03			
V	400	-27.55	322.5W	6.8E-03			
sh	400	-205	320W	7.1E-03			
sh	850	-205	317.5W	7.2E-03			
V	700	-255	322.5W	8.0E-03			
sh	500	-25S	320W	8.1E-03			
V	500	-255	322.5W	8.6E-03			
omega	850	-20S	310W	8.8E-03			
sh	700	-27.55	322.5W	8.8E-03			
u	500	-27.55	322.5W	8.9E-03			
u	700	-22.55	322.5W	8.9E-03			
omega	400	-27.55	312.5W	9.2E-03			
	950	-22.55	217 5W	0.4E-03			

Machine learning (ML) algorithms - performance:

Extreme event at RJ State mountain region (March/2022)

Hybrid prediction: Differential Eqs. + Data Science

Extreme event at RJ State mountain region (March/2022)

Precipitação: (a) WRF

(b) Eras-5

Hybrid prediction: Differential Eqs. + Data Science

EExtreme event at RJ State mountain region (March/2022)

	DAY 20											2	1													
9	CITY - AREA		Petrópolis - Area 1																							
HOU	R (Local time)	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	0	1	2	3	4	5	6	7	8	9
	Mean Hourly Precipitation	0.0	0.0	0.0	0.0	0.0	0.0	7.6	100.2	91.0	47.6	29.1	0.4	27.3	72	67.0	28.7	22.6	17.5	7.2	3.8	1.6	1.0	0.0	0.0	0.0
OBS	Standard Deviation	0.0	0.1	0.0	0.0	0.0	0.0	2.7	9.2	11.4	9.6	9.2	0.6	17	13	12	13.4	9.2	6.3	2.0	2.1	1.9	0.9	0.0	0.0	0.0
0	Maximum	0.0	0.2	0.0	0.0	0.0	0.0	11.9	117.1	####	59	37.1	1.4	46	89	84	50.6	33.8	24.7	11.3	7.1	4.8	2.5	0.0	0.0	0.0
	Minimum	0.0	0.0	0.0	0.0	0.0	0.0	4.2	88.8	71.2	30	14.3	0	7.9	56	51	15.8	9.9	9.8	5.5	1.8	0.0	0.0	0.0	0.0	0.0
1	Mean Hourly Precipitation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.7	69.4	60.1	15.0	20.2	50.4	24.6	4.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WRF	Standard Deviation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.3	7.4	9.8	6.3	7.6	7.9	17	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	Maximum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	53.1	82.5	75	23.7	30	59	42	7.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.3	63.0	49	9.8	9.9	39	7.9	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Even	t Occurrence	N	N	N	N	N	N	N	Y	Y	Y	Y	N	Y	Y	Y	Y	N	N	N	N	N	N	N	N	N
	NaiveBayes* (6)				-																					
	MultilayerPerceptron* (1)																									
100	LMT* (4)																									
Models	RandomForest* (2)																									
Mo	RandomForest* (3)							100																		
-	RandomForest* (4)																									
	RandomForest* (5)																									
	RandomForest* (6)																									

Hybrid prediction: Differential Eqs. + Data Science

Extreme event at RJ State mountain region (March/2022)

1	CITY - AREA											Te	resóp	olis -	Area	2										
HOU	R (Local time)	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	0	1	2	3	4	5	6	7	8	9
	Mean Hourly Precipitation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.8	28.2	89.6	32.0	15.4	25.6	27.8	0.0	0.0	0.0	2.6	8.2	0.0	0.0	0.0	0.0	0.0	0.0
OBS	Standard Deviation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.67	5.8	5.6	6.7	4.0	5.2	17.1	0.0	0.0	0.0	1.6	3.1	0.0	0.0	0.0	0.0	0.0	0.0
0	Maximum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.6	33	97.2	42.8	20.6	32.4	41.8	0.0	0.0	0.0	4.6	12.8	0.0	0.0	0.0	0.0	0.0	0.0
	Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.3	17.2	80.8	24.3	10.1	18.7	7.9	0.0	0.0	0.0	0.2	3.7	0.0	0.0	0.0	0.0	0.0	0.0
100	Mean Hourly Precipitation	0.0	0.0	0.0	0.0	0.0	0.0	15.2	60.2	30.8	22.6	11.1	18.2	0.0	0.0	0.0	0.0	14.7	3.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WRF	Standard Deviation	0.0	0.0	0.0	0.0	0.0	0.0	17.7	8.3	16.1	13.9	8.4	17.2	0.0	0.0	0.0	0.0	12.5	5.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	Maximum	0.0	0.0	0.0	0.0	0.0	0.0	47.2	63.0	41.8	30.9	22.1	42.5	0.0	0.0	0.0	0.0	33.2	14.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Minimum	0.0	0.0	0.0	0.0	0.0	0.0	5.6	42.2	1.1	0.4	0.0	1.8	0.0	0.0	0.0	0.0	2.4	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Even	t Occurrence	N	N	N	N	N	N	N	N	Y	Y	Y	N	Y	Y	N	N	N	N	N	N	N	N	N	N	N
	NaiveBayes* (6)																									
	MultilayerPerceptron* (1)																									
	LMT* (4)																									
Models	RandomForest* (2)																									
Mo	RandomForest* (3)																									
	RandomForest* (4)																									
	RandomForest* (5)																									
	RandomForest* (6)																									

Modelos		24 horas			48 horas		72 horas				
Wodelos	POD	FAR	CSI	POD	FAR	CSI	POD	FAR	CSI		
NaiveBayes* (6)	0.88	0.12	0.78	0.86	0.25	0.67	0.69	0.32	0.52		
MultilayerPerceptron* (1)	0.89	0.11	0.80	0.89	0.20	0.73	0.73	0.31	0.55		
LMT* (4)	0.89	0.07	0.84	0.70	0.30	0.54	0.61	0.39	0.44		
RandomForest* (2)	0.93	0.07	0.88	0.80	0.11	0.73	0.73	0.30	0.56		
RandomForest* (3)	0.90	0.04	0.90	0.86	0.25	0.67	0.74	0.29	0.59		
RandomForest* (4)	0.95	0.03	0.92	0.90	0.18	0.75	0.78	0.28	0.63		
RandomForest* (5)	0.97	0.02	0.94	0.92	0.11	0.82	0.77	0.25	0.65		
RandomForest* (6)	0.95	0.09	0.86	0.84	0.17	0.72	0.75	0.30	0.58		

Hybrid prediction: Differential Eqs. + Data Science

Hybrid prediction: Differential Eqs. + Data Science

Book:

Compilation of computational methods for nowcasting with focus on commercial aviation traffic.

A person to say thank you

Prof. Ubidio Rubio Universidad Nacional de Trujillo President of the SPMAC

SPMAC: Sociedad Peruana de Matemática Aplicada y Computacional

Hybrid prediction: Differential Eqs. + Data Science

Gracias!

Why VO?

Traditional (old faschion) scheme in astronomy:

- 1. The astronomer asks a time to use a telescope
- 2. The astronomer colects his/her data
- 3. Data analysis for colected data: publishing a report (paper)

New schemes:

- 1. One observatory does a survey of astronomical data
- 2. Astronomical community can access the data
- 3. Which is the most efficient strategy to share data?

Astronomical survey

Sloan Digital Sky Survey

Goal

Create the most detailed map of the Northern sky "The Cosmic Genome Project"

Two surveys in one

Photometric survey in 5 bands Spectroscopic redshift survey

Automated data reduction

150 man-years of development

High data volume

40 TB of raw data 5 TB processed catalogs Data is public

2.5 Terapixels of images

The University of Chicago
Princeton University
The Johns Hopkins University
The University of Washington
New Mexico State University
Fermi National Accelerator Laboratory
US Naval Observatory
The Japanese Participation Group
The Institute for Advanced Study
Max Planck Inst, Heidelberg
Sloan Foundation, NSF, DOE, NASA

From: Alex Szalay, AustraliAsia e-Research Conference, 2007

Increase of astronomical data

VO communities: IVOA

EURO WO

09/07 19:29 PC254872427824 Haroldo ScreenHunter

International Virtual Observatory Alliance

About IVOA	Members	Contacts	IVOA Executive
Working Groups	Documents and Standards	Mailing Lists	Calendar
Newsletter		Google™ Custom Se	Search
J	IVOA E	vents	

From: http://www.ivoa.net/

thttp://www.ivoa.net/

Para acessar rapidamente, coloque os seus favoritos aqui na barra de favoritos. Importar favoritos agora...

The BraVO project

Declaration of intentions: signed at August 18, 2006

The super-structure: INCT-Astrophysics

Brazilian effort for VO: The BraVO project

http://www.lna.br/bravo

Instituto de Astronomia, Geofísica e Ciências Atmosféricas Departamento de Astronomia

The BraVO project

Description

Journal of Computational Interdisciplinary Sciences (2009) 1(3): 187-206

© 2009 Pan-American Association of Computational Interdisciplinary Sciences ISSN 1983-8409

http://epacis.org

The Brazilian Virtual Observatory – A New Paradigm for Astronomy

R.R. de Carvalho¹, R.R. Gal², H.F. de Campos Velho¹, H.V. Capelato¹, F. La Barbera³, E.C. Vasconcellos¹, R.S.R. Ruiz¹, J.L. Kohl-Moreira⁴, P.A.A. Lopes⁵ and M. Soares-Santos⁶

Manuscript received on September 09, 2009 / accepted on January 20, 2010

http://epacis.org/jcis.php

2. Decision tree for astronomical data classification Classification Star/galaxy is not easy task!

2. Decision tree for astronomical data classification

Classification

Star/galaxy

It is not easy task

See the figure:

(a) Easy

2. Decision tree for astronomical data classification

2. Decision tree for astronomical data classification

THE ASTRONOMICAL JOURNAL, 141:189 (12pp), 2011 June

© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-6256/141/6/189

DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION

E. C. Vasconcellos¹, R. R. de Carvalho², R. R. Gal³, F. L. LaBarbera⁴,

H. V. CAPELATO², H. FRAGO CAMPOS VELHO⁵, M. TREVISAN⁶, AND R. S. R. RUIZ¹

¹ CAP, National Institute of Space Research, Av. dos Astronautas 1758, São José dos Campos 12227-010, Brazil

² DAS, National Institute of Space Research, Av. dos Astronautas 1758, São José dos Campos 12227-010, Brazil ³ Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822, USA

⁴ INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, Napoli 80131, Italy

⁵ LAC, National Institute of Space Research, Av. dos Astronautas 1758, São José dos Campos 12227-010, Brazil

⁶ IAG, University of São Paulo, Rua do Matão 1226, São Paulo 05508-090, Brazil

Received 2010 October 27; accepted 2011 February 11; published 2011 May 9

(with use of committee machine)

