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Abstract: Urban landslides are increasing globally, mainly caused by human-induced changes in
hillsides. Most of these events have caused low-intensity damages to housing and infrastructure. A
total of 2038 locations of landslides in the hydrological year of 2010 were used to model landslides’
occurrence in the metropolitan region of São Paulo—Brazil—using a social–ecological–technological
system’s approach, which enables the analysis of urban landslides as the outcome of dynamic socioe-
conomic and infrastructural conditions alongside climatic and geophysical conditions. A multi-step
model approach was used to select the best set of variables related to landslides’ occurrence and
assess their importance. The value of AUC of the model was 0.9087, denoting the high level of
discrimination achieved. Antecedent rainfall played the most important role, followed by terrain
slope. Informal settlements, associated with poor constructive practices and a lack of municipal
inspection on civil works and buildings, as well as the number of households, which stands for built
density and greater alteration in hillsides, yielded a slightly lower contribution. Other variables
showed a marginal contribution. These results reinforce the role of local ordinances aimed at restrict-
ing occupation in steeper slopes and public policies to promote adequate housing and constructive
practices. Future climate projections to MRSP point to the increase in intense rainfall days, making
disasters caused by landslides a major source of risk.

Keywords: urban systems; urban landslides; urban vulnerability

1. Introduction

As points of concentration of people and infrastructure, cities are hotspots of risk
when exposed to hazards [1,2]. Moreover, the interactions among urban activities can lead,
themselves, to risk situations posed by technological failures, natural disasters, such as
urban floods or landslides, or even social activities, such as crime, riots, or land invasion [3].
In a context of increasing interaction between society and environment, risks are becoming
systemic [4].

Landslides are common events in cities located in hilly areas. Triggered mainly by
rainfall, urban landslides are polycausal phenomena [5]. For example, in the Chinese city of
Zhouqu, it has been shown that the storm-triggered landslide that resulted in 1765 casualties
in 2010 was also related to a combination of factors such as human activity (deforestation
and topsoil erosion) alongside geological conditions and terrain modifications caused by
an earthquake [6,7]. In 2017, another landslide following heavy rainfall caused more than
1000 casualties in the Regent neighborhood, city of Freetown (Sierra Leone). Poor conditions
of rapid and hazardous urbanization were a pre-scenario to this disaster, while increased
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erosion potential from the clearance of hillsides’ vegetation and weak emergency response
acted to amplify its impacts [8].

Globally, landslide occurrence triggered by human activity is increasing, particularly
in relation to housing and infrastructure construction, illegal mining, and hill cutting. This
supports the idea that human disturbance may be more detrimental to future landslide
incidence than the climate [9]. However, countries are not equal concerning landslide risk,
and it has been observed that fatal urban landslides occur primarily in less-developed
tropical regions, likely because of loss of vegetation cover and alterations in terrain and
drainage patterns demanded by urban development, associated with thick weathering
layers characteristic of tropical environments [10].

In this context, Sao Paulo is of primary importance in understanding how landslides
occur in tropical cities. The metropolitan region of São Paulo (MRSP) is the most important
agglomeration in Brazil, in economical and populational terms, and the fourth biggest
urban agglomeration in the world [11], with 21.6 million inhabitants. The original site of
MRSP is one of the exceptions to the rugged relief of the Atlantic Plateau, a geological unit
which covers the southeast of Brazil, alongside the Atlantic coast. Thus, urban development
in this unit is distinguished by the coexistence of hills, discontinuous masses, and blocks
of raised plateaus, interspersed by valleys with a transversal profile well marked by the
dense network [12].

In MRSP, more than 12,000 geological disaster events were recorded in a period
of 20 years (from 1993 to 2013) and the majority of these events caused low-intensity
damages to housing and infrastructure [13]. Although landslides causing deaths and major
economic losses draw public and government attention, low-intensity landslides must not
be underestimated. Associated with an extensive risk, these events are more frequent and
result in non-neglectable material losses. Low impacts accumulated over time reflect an
ongoing erosion of development assets, such as houses, schools, health facilities, roads, and
local infrastructure. They are absorbed mostly by residents, progressively undermining
their capacity to recover and subsist [14].

Landslides in Southern Brazil mostly occur during the rainy season [9,15], as landslide
time series in MRSP have shown the following: a higher number of landslide events were
registered during the rainy season, from mid-December to mid-March (Figure 1), and
January is usually the month with higher records. In this time series, 2010 was the year
with the most landslide records.
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While the temporal incidence of landslides has been previously shown for the urban
system of MRSP, we are still lacking an analysis including dynamic socioeconomic and
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infrastructural conditions alongside climatic and geophysical conditions. Landslides have
frequently been investigated via susceptibility analysis, which entails the examination of
physical attributes of the environment and triggering events. Additionally, vulnerability
analysis has been employed, whereby characteristics of the population residing in disaster-
prone regions are considered to assess the risk that they face and/or their resilience.

Several methodologies have been employed to generate susceptibility maps for land-
slides, encompassing physical modeling (e.g., [16]), heuristic methods (e.g., [17]), statistical
techniques, such as logistic regression (e.g., [18]), and hybrid approaches combining geo-
graphic information systems (GISs) and statistics (e.g., [19]). Notably, the field of landslide
susceptibility assessment has witnessed a surge in the application of artificial intelligence
and machine learning algorithms, including random forest, artificial neural networks, and
support vector machines (e.g., [20]). Moreover, ensemble learning approaches have gained
recognition for achieving enhanced performance compared to individual algorithms [21].
These advanced methodologies contribute to improved accuracy and efficiency in landslide
susceptibility mapping.

Vulnerability assessment, in contrast, is reliant on expert knowledge and often employs
methodologies such as the analytical hierarchy process (AHP) (e.g., [22]) or composite
index approaches. These approaches utilize normalized indicators, which may (e.g., [23])
or may not be weighted (e.g., [24]).

In recent years, there has been growing interest in adopting integrated approaches
to address the challenges associated with urban landslides. Arrogante-Funes et al. [25]
introduced a heuristic model that integrates susceptibility and vulnerability maps to en-
hance landslide risk assessment. Ahmed [26] examined the underlying causes of landslide
vulnerability in Bangladesh, recognizing landslides as socio-natural hazards requiring
comprehensive analysis. Other studies have utilized natural and social variables to cal-
culate urban vulnerability indexes for different hazards, including urban floods [24] and
landslides [27].

Cities are, par excellence, transdisciplinary problems. Building on complexity theory
and the ecosystem approach, multiple frameworks have been proposed to identify and
characterize urban components and their relationships (e.g., [28]), envisioning cities as
urban social–ecological systems (SESs) composed of two inter-related (sub)-systems: hu-
man, which involves social, economic, and cultural aspects of people and institutions, and
natural, represented by ecological elements.

In this paper, we propose to use the socio–ecological–technological system (SETS)
approach [29] to correlate dynamic and static social, biophysical, and infrastructural condi-
tions with landslide occurrence in the MRSP. The SETS is intended to look at the cities as
complex urban systems, where ecological functions are included in a socio-technological
framework that explicitly considers the role of technology and infrastructure within the
social–ecological system [30]. The technical–infrastructural subsystem represents the built
environment itself, that mediates the relationships between human actions and the envi-
ronment and can contribute to mitigating or to exacerbating impacts and stressors to this
system. From a management point of view, treating infrastructure integrated in a SETS
can facilitate the identification and prevention of maladaptive issues that stem from SETS
interactions, such as lock-in, as well as offer new perspectives for adaptation strategies that
may not traditionally be considered [31,32]. Since its only premises are the interactions
between components of these domains, it is flexible enough to accommodate a variate
type of analysis from distinctive perspectives to investigate urban systems’ dynamics and
complexity [33]. Moreover, this approach can support the urban system characteristics of
openness and its multi-scalar nature [34]. The SETS approach has been recently used in
assessing urban flood vulnerability [24].

Within this framework, the objectives of this study were (i) to investigate the variables
related to landslide occurrence based on the spatial incidence of landslides in MRSP in
a logistic regression model, and (ii) to quantify its importance. These were achieved
by modeling the landside occurrence in the MRSP, using multi-step regression with a
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bootstrap strategy. Going beyond a traditional susceptibility analysis, built upon static
physical conditions such as lithology or slope degree, we included dynamic socioeconomic
and infrastructure conditions inherent to urban systems, as well as ecological variables.
Furthermore, considering rainfall alongside this, we were able to assess its importance in
relation to other factors within MRSP.

2. MRSP SETS’ Core Components

For the MRSP, we identified the SETS core components that belong to each of the SETS
domains: ecological–biophysical, social–behavioral, and technological–infrastructural, based
on a literature review. In urban environments, where human-induced changes are prominent,
landslide occurrence is the outcome of the relationships between intrinsic characteristics of
the biophysical domain with the extension, level, and quality of alteration of slope geom-
etry, surcharge, and water-related processes. These alterations are controlled by actions of
dwellers, land developers, and public administration, understood as components of the social–
behavioral domain. These actions are materialized in the built environment, which comprises
the technological–infrastructural domain and includes buildings, sanitation systems, streets,
and drainage systems, which exert influence slope stability.

Most of the literature about landslides is concerned with factors related to the bio-
physical domain. Rainfall is reported to be the main factor in triggering shallow landslides,
i.e., single-slope movements with planar slip surfaces and small lateral dimensions [35–37].
There are different ways to measure their effect [38]. In investigations into the relationship
between antecedent rainfall and landslides, several authors have considered different pe-
riods over which rainfall should be accumulated, ranging from hours to months, e.g.,
24 h [39], 3 days [40], 4 days [41], 15 days [42], 31 days [43], or 3 to 4 months [44].
Kirschbaum and Stanley [45] proposed variable thresholds to accumulated rainfall over
7 days to indicate potential landslide activity worldwide. Different periods are due to the
type of landslide and regional/local meteorological and physical conditions [46]. In MRSP,
thresholds of 60 mm and 80 mm accumulated over 72 h were adopted by Civil Defense to
issue a risk alert [47]. Larger periods are considered based on the assumption that the soil
water capacity is not achieved by a single precipitation event [37]. Additionally, Ahrendt
and Zuquette [48] observed that rainfall temporal distribution is as important as the total
amount of rainfall, since cumulative rainfall can lead to complete saturation, while heavy
intense rain may not infiltrate but be dissipated by surface runoff.

Common physical variables are those related to terrain characteristics as well as
geological and geotechnical characteristics. Besides slope angle, other geometric features
were found to influence landslides, such as slope aspect, drainage, surface roughness,
topographic indices, elevation, slope length, and curvature [49–51]. Varnes [52] presents a
compilation of situations regarding the composite materials of slopes, their texture, and
structure that account for the geological setting that may be favorable for landslides. The
assessment of mass movement susceptibility in municipalities of MRSP considered drainage
pattern, slope length, and curvature, alongside landform and substrate characteristics [53].
Rectilinear and concave slopes, with abrupt valley-head slopes, composed of shallow
and early-degree pedogenic development over migmatites and granitic gneisses, were
identified as being more prone to developing landslides. These highly susceptible slopes
were associated with high and low hills and a high density of lineaments/structures.

Vegetation presence can prevent soil erosion [54] and contribute to water infiltra-
tion [55] as well as to soil stability, in the sense that plant roots tend to hold soils to-
gether [56]. The removal of vegetation cover, as a man-induced process, is often a factor
that causes landslides in rural areas as much as in urban areas, as noted by many authors
(e.g., [8,57]), particularly in tropical regions.

Intrinsic characteristics and natural processes of the ecological–biophysical domain
are altered by the urban occupation of hillsides. This process demands that vegetation
is cut and requires the modification of land contours on local and large scales (grading
and mass-grading), which is associated with paving, change strength stability of the slope,
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natural regime of runoff, and infiltration of storm water. Moreover, the introduction of
new surface and subsurface water sources associated with irrigation or leaky water from
utilities, and the deposition of inadequate material (such as garbage or construction waste)
in fills, alter the geotechnical behavior of the natural terrain.

Inadequate building techniques and insufficient design practices employed by fami-
lies and land developers as well as poor municipal ordinances and weak inspection are
unfavorable factors. These are overlapping factors in illegal settlements, which are called
favelas (squatters or slums), when families promote the invasion of public or private areas.
A different type of illegal settlement is when there is a land developer who promotes the
allotment and sells plots, but fails to obtain the legal requirements to approve it. In both
cases, there is not a previous design for the land development that could set an appropriate
use of terrain, enhancing safety. Sanitary systems are commonly absent. In this paper, these
areas are referred to as informal settlements.

A usual technique observed in favelas is cut-and-fill, e.g., soil removal from the rear of
the site and its deposit at the front of the lot, creating a flat area, filled with unconsolidated
material extremely susceptible to collapsing [49]. As this is carried out without engineering
or any calculation, frequently, the angle at which the headwall is excavated is defined by
pursuing the maximization of a flat terrain area, which increases slopes’ susceptibility and
damage if a failure occurs. Leaving cuts and fills exposed is a practice commonly observed,
favoring soil erosion and destabilization. In some cases, an ordinary plastic protective cover
is used to prevent storm water infiltration, resulting in temporary protection. Ref. [58] found
similar cut-and-fill practices in the MRSP, also observing fills made using heterogeneous
materials (organic debris, plastics, debris, wood, plant remains—trees, branches, leaves,
etc.). These technogenic deposits are more instable when compared to cuts, but they may
represent a minor risk because in general they are small-sized fills and mobilize less of a
volume of heterogeneous materials when a landslide occurs [59]. The illegal settlement
situation implicates that civil work and building public inspection that could enhance the
safety in these areas are not carried out.

A low income level and limited formal education are components of families’ vulnera-
bility [60]. These characteristics are resources to cope with disaster events. They may also
be related to the families’ capacity to build more secure houses. Families with a low income
level would have less economic resources to execute adequate grading in their plots and
buildings or to contract professional help. A low educational level could be related to less
capabilities in building houses via self-aided processes (Figure 2).
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The lack of infrastructure systems or their inappropriate design or operation are clearly
related to slope security [43,45,49,59,61]. When sewage collection is not universal, solutions
such as septic tanks are a possible source of water infiltration, as well as the direct disposal
of wastewater [62]. Leakages in sanitary systems are also a source of water infiltration.
An absence of storm water drainage elements, including paved streets, accelerates slope
erosion and contributes to water saturation and soil surcharge.

A high density of households, as a concentration of human interventions, has also been
related to slope instability, as much as the settlement consolidation level, in the sense that its
surfaces tend to become more impervious [36,55,61] and have less vegetation cover (Figure 3).
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Figure 3. Dense urban development of hillsides in the MRSP: (a) a general overview of Jardim
Paraná, a low-income neighborhood on the hillsides of Cantareira Mountain Ridge, in São Paulo city;
(b) looking to the opposite side of Jardim Paraná, a new favela is forming, where houses are substitut-
ing native vegetation cover.

Smyth and Royle [49] observed that when favelas become more consolidated, mate-
rials used in the first dwellings are substituted by more permanent and heavier building
materials, implicating an increased load on the terrain. This characteristic is common not
only in illegal settlements but also in low-income neighborhoods, in combination with
unpaved streets and poor sanitary system conditions [49,55].

3. Materials and Methods
3.1. Study Area

This study was undertaken in the metropolitan region of São Paulo (MRSP), which
comprises 39 municipalities and covers an area of almost 80 km2.

Urban development in MRSP municipalities took place in the flatter areas, formed by
phanerozoic sediments, with soft hills and platforms, and by the extensive fluvial plains of
the Tietê and Pinheiros rivers, formed by quaternary sedimentary deposits. However, from
the second half of the XXth century, the expansion in the pioneer settlement consumed
favorable areas and began to advance to the hillsides of the Neoproterozoic mobile belts,
formed over a crystalline basement of metamorphic and igneous rocks [63,64] (Figure 4).

MRSP has a humid subtropical climate, with a dry–cool winter and a wet–warm
summer (Cwa in Köppen’s classification). The climate is naturally controlled by relief,
altitude (ranging from 600 m to 1000 m above sea level), and the short distance to the
Atlantic Ocean (about 30 km) [65,66]. The mean annual rainfall is 1400 mm and it is
unevenly distributed across the year and in the territory [67]. During the summer season
(December, January, and February), rainfall reaches 1100 mm/year, while during the winter
season (June, July, and August) it reaches 400 mm/year. Spatially, a strong variation in
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rainfall in the SE–NW direction can be observed. Long-duration rainfall is associated
with cold fronts and it is spatially comprehensive, while lines of instability and the local
movement of air, as well as summer storms, result in short-duration rainfall [68].
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3.2. Independent Variables

Based on SETS components related to landslides and their relationships described in
Section 2, we evaluated the available data on MRSP and selected the independent variables
that represent correlated factors with model landslide occurrence (Table 1). Regarding the
ecological–biophysical domain, we selected antecedent rainfall, terrain slope and aspect,
and mass movement susceptibility, which account for geological, geomorphological, and
hydrological–pedological conditions of natural terrain, and percentage of vegetation. Social–
behavioral and technological–infrastructural variables were derived from the demographic
censuses, carried out every 10 years in Brazil. These data enabled us to characterize, on
the one hand, the practices of the families, expressed by their income and educational level,
and families’, land developers’, and public administration’s practices associated with the
settlement condition (whether informal or not). On the other hand, we characterized the
technological–infrastructural domain, selecting sewage system coverage, storm water system
conditions (expressed by the existence of street pavements, grating, and curbs), and building
density (expressed by the number of households). To account for the settlement consolidation
level, we included variables of the difference in vegetation cover, number of households
and income, and whether the settlement condition had changed. A framework with SETS
domains, components, and variables related to landslide occurrence is presented in Table 1.
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Table 1. Independent variables selected to model the occurrence of landslides in the MRSP.

Domain Independent Variable

Ecological–Biophysical Domain

Daily rainfall
Antecedent rainfall
Terrain slope
Terrain aspect
Mass movement susceptibility
Percentage of vegetation in 2010
Percentage of vegetation change (2010–1991)

Social–Behavioral Domain

Average income of the individual responsible for the
household in 2010
Average change in income of the individual responsible
for the household (2010–1991)
Percentage of literate individuals responsible for the
household (household’s head) in 2010
Settlement condition in 2010
Settlement condition change (2010–1991)

Technological–Infrastructural Domain

Households in 2010
Household changes (2010–1991)
Percentage of households without sewerage in 2010
Percentage of households on unpaved streets in 2010
Percentage of households on streets without storm
sewer (curb) in 2010
Percentage of households on streets without storm
sewer (grating) in 2010
Percentage of households on streets with open sewage
in 2010

3.2.1. Landslide Inventory

Coordinates and dates of landslides were obtained from the Georeferenced Inventory
of Geodynamic Events, published by the Geological Institute of São Paulo State (IG) [13].
This database comprises geological, hydrological, and meteorological disaster events reg-
istered from 1993 to 2013, in all municipalities of MRSP, except for São Paulo. Event
information was gathered from (i) public and private organizations, including state and
municipal civil defense agencies, state and federal road operators, and concessionaires;
(ii) news published in print and electronic media; and (iii) high-resolution remote sensing
data. All registers were classified according to a level of confidence concerning the date
and the address of the event, based on the original information available for each event [13].
Since 1993, a total of 30,685 events have been registered. Among them, 12,311 (40.12%) were
classified as geological events, comprising the following: debris flows, rock- or landslides,
erosion, erosion of the riverbanks, rock fall, soil subsidence and collapse, and mass move-
ment. These events were mostly shallow landslides, that is, rotational or translational slides
of engineering soils with small dimensions; a few of them, however, were rockslides [52].

After a consistency check, the following were excluded from the database: (i) events
classified with a low level of location accuracy or an estimated/non-informed date;
(ii) duplicated registers with the same coordinates and same date or with less than
5 days of difference; (iii) registers with an indication of an inexistent event recorded
from field verification; and (iv) registers located out of MRSP’s municipal boundaries.
Finally, we kept registers from 2001 to 2013, since until 2001, registers were not complete
because data were collected only during the rainy season. This exclusion resulted in a
database of 8066 landslides’ locations, and from which a total of 2038 were in the 2010
hydrological year (from October 2009 to September 2010) and were used to model the
landslide occurrence. According to the inventory, these landslides caused a total of 18
fatalities, thereby characterizing them as predominantly low-intensity landslides.
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3.2.2. Rainfall Data

Daily rainfall (mm) was obtained from the Climate Hazards Group InfraRed Precipi-
tation with Station Data (CHIRPS)—version 2.0 [69]—available on Google Earth Engine.
CHIRPS incorporates satellite imagery with in situ station data to create gridded rainfall
time series at a resolution of 0.05 arc degrees. In MRSP, 35 in situ stations were incorporated
to infrared cold cloud duration (CCD) observations calibrated using the Tropical Rainfall
Measuring Mission Multi-Satellite Precipitation Analysis version 7 (TMPA 3B42 v7) to
estimate daily rainfall.

3.2.3. Elevation-Related Variables

Variables related to terrain—slope and aspect—were based on a digital elevation
model (DEM), with 10 m spatial resolution. DEM was derived from the digital planimetric
and topographic map of MRSP, with 25 m contours [65] and a spatial scale compatible to
1:25,000, using a triangulated irregular network (TIN) calculated based on contour lines,
measured points, and a river network. Terrain slope (in degrees) was obtained using
the first-order derivative estimation, as proposed by [70]. Aspect is the direction that a
slope faces, measured from 0◦ (north) to 360◦, in a clockwise direction. This variable was
categorized, adopting 4 directions, with each one encompassing 90◦, and centered in 0◦ for
north, 90◦ for east, 180◦ for south, and 270◦ for west, and was related to flat areas (where
aspect was null).

3.2.4. Physical Mass Movement Susceptibility

Mass movement susceptibility classification was performed based on geological, geo-
morphological, and hydrological–pedological conditions [53], by the Geological Survey
of Brazil (“Companhia de Pesquisa de Recursos Minerais”—CPRM), for all municipali-
ties in MRSP, except Vargem Grande Paulista, Pirapora do Bom Jesus, Juquitiba, and São
Lourenço da Serra. Maps are available as digital vector data, compatible to 1:25,000. Zones
were classified into high, medium, or low susceptibility, according to the predominant
characteristics in each municipality.

3.2.5. Land Cover Data

Land cover classes of vegetation, built up areas, bare soil, and water were mapped from
Landsat TM, at a spatial resolution of 30 m, using Landsat Collection Tier 1, processed and
made available by the U.S. Geological Survey (USGS). A supervised classification approach
based on the support vector machine (SVM) was applied to visible and infrared bands (red,
green, blue, and NIR bands), the normalized difference vegetation index (NDVI), the mean
NDVI computed for the summer season, and the mean NDVI of the winter season. The
classification model was built with 677 random samples visually classified on orthophotos
of the year 2010, and divided into two equally sized groups for training and validation. An
overall accuracy of 89.8% (confidence intervals of [0.873, 0.920]) and kappa index of 0.844
were obtained from the confusion matrix. This model was applied to 1992 images and the
land cover classes were remapped to obtain a vegetation cover map of 1992 and 2010. The
year 1992 was chosen to be a reference for the 1991 census data. Additionally, the vegetation
change between 1992 and 2010 was computed based on the vegetation cover maps.

3.2.6. Demographic Census Data

In this paper, the demographic census data from the Brazilian Institute of Geography
and Statistics (“Instituto Brasileiro de Geografia e Estatística”—IBGE) and georeferenced
census tracts, processed and made available by the Center for Metropolitan Studies (“Centro
de Estudos da Metrópole”—CEM), were used. The selected variables from the census data
were as follows: number of households, to account for built density, and percentage of
households without sewerage, on unpaved streets, on streets without storm sewers (curb
and grating), and on streets with open sewage, to characterize the built environment.
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To characterize families, variables of average income of the individual responsible for
the household (household’s head) and percentage of literate household heads were selected
to account for their levels of education. To characterize families’ and land developers’
built practices, as well as the public administration role, the settlement’s condition (regular
or subnormal) was used. In the census database, subnormal settlements correspond to
favelas and illegal allotments. They are identified as tracts with 51 or more housing units
characterized by the absence of title deeds, irregularity of the roadways and the size and
shape of plots, and/or lack of essential public services (such as garbage collection, sewage,
water and electricity systems, and public lighting) [71,72].

Census data were interpolated into a grid, using dasymetric mapping, following
similar approaches for world data [73] and for regional and local data [74–76]. Street
networks made available by CEM and built-up areas from land cover maps, as previously
described, were used as ancillary data to spatially disaggregate the census tracts.

3.3. Database Preparation

To model the occurrence of landslides in the MRSP, the hydrological year of 2010 was
selected, since for this period, the most complete datasets of meteorological and census
variables are available. Therefore, the period between 1 October 2009 and 30 September
2010 was adopted, contemplating the entire wet period, from October to March, in one
year, in accordance with recommendations for susceptibility and hazard mapping [77–79].

The geocoding of landslide events reports the street name and the address number
where the event occurred, which consequently results in locations systematically along
the streets. To estimate where the landslide likely occurred, 30 m was adopted as a mean
distance from the center of the street to the interior of the plot to account for this mis-
location. All areas within the built-up area in MRSP and outside the 30 m buffers around
the landslide location were considered to be areas of non-occurrence of landslides. These
areas were divided into a 10 m grid cell, and to each cell center, a point was assigned to
create points of non-occurrence of the landslide. A random date was assigned to each of
these points.

For each point, antecedent rainfall from 1 to 120 days was computed. In this paper, we
selected different periods to be tested, ranging from rainfall in the same date for each point
up to the rainfall accumulated over 120 days. The upper boundary was defined based on
the period between the beginning of the wet season (October) and the peak of the landslide
occurrence (January). Based on the coordinates and dates, we extracted the antecedent
rainfall of each point of occurrence and non-occurrence of landslides for all of the periods
considered.

Before the extraction of each independent variable’s value related to each location of
disaster and non-disaster, all variables were resampled to a grid with a spatial resolution
of 10 m. Then, to account for the mis-location of landslide points of occurrence, variables
were spatially aggregated using a sliding window of 7 × 7 grid cells in 10 m grids, using an
appropriate function. For terrain slope, we used the maximum value; for mass movement
susceptibility and subnormal condition of the settlement, we used the modal value; for
households, we used the sum of values; and, for vegetation and family’s characteristics
(income and literate status), we used the mean value. In the case of vegetation, since it is a
binary map (0: non-vegetation, 1: vegetation), the mean value also expresses the percentage
of vegetation within the considered distance. From these focal filtered grids, we derived
four other variables that accounted for changes in the conditions between 2010 and 1991:
vegetation, households, income, and settlement’s condition change.

Landslide inventory and mass movement susceptibility maps did not cover all of
the municipalities of MRSP. Therefore, analysis excluded the following municipalities:
Biritiba-Mirim, Cajamar, Embú-Guaçu, Embú, Franco da Rocha, Itapevi, Juquitiba, Poá,
Pirapora do Bom Jesus, Salesópolis, São Caetano do Sul, São Paulo, São Lourenço da Serra,
and Vargem Grande Paulista.
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For validation purposes, we split the database into an 80–20% proportion, preserv-
ing the balance between categories of the dependent variable (landslide occurrence and
non-occurrence).

3.4. Model Development

Modeling was developed in two steps: exploratory analysis and landslide occurrence
modeling. Firstly, the association between landslide occurrence and climatic, biophysical,
and census’ variables was explored using Student’s t-tests to compare the mean of the
quantitative explanatory variables between the two groups: landslide and non-landslide.
For the categorical variables, the equality of the proportion between the groups’ landslide
and non-landslide was performed using the chi-squared test to test the difference in the
distribution within each category of these variables between the two groups. In this step, we
made a first selection of the variables, removing variables that were not different between
the two groups. Complementing this, appropriate statistical measures were calculated to
assess the correlation between all of the continuous and categorical variables.

In the second step, univariable and multi-variable logistic regression models were
developed to obtain a quantitative estimation of landslide hazard and the contribution of
each factor to its occurrence. A logistic regression model is a widely used approach in the
literature related to landslides [18], it is reported to yield lower error rates and the best
generalization capabilities [80]. This model has the following form:

g(x) = ln (π(x)/(1 − π(x)) = β0 + βi x (1)

where g(x) is the logit, π(x) is the probability of the event occurrence given the independent
variable’s value (x), and β0 and βix are the regression parameters.

Logit is a transformation applied to the probability of an event’s occurrence. It is also
known as the odds ratio and it expresses the chance of a landslide event given an increment
in any of the independent variables’ value. For continuous variables, eβi corresponds
to the chance for an increase of 1 unit in this variable. For categorical variables, eβi will
express the chance of landslide occurrence when the independent variable assumes one
class in comparison to another class. In logistic regressions, parameters are obtained using
maximum likelihood estimation.

Parameters and statistics, as well as their confidence intervals, were estimated using
bootstrap as a resampling technique with a probability of 95%. This is recommended
to provide stable estimates with low bias [81,82]. All models were run 1000 times with
randomly generated sets of samples, each one with 1000 points of landslide occurrence and
1000 points of non-occurrence.

3.5. Model Performance Assessment

The assessment of univariable models was performed based on their significance,
using a high level of tolerance (p-value < 0.25) to prevent discarding variables that could
add some level of explanation in the multi-variable analysis. Therefore, variables with non-
significant parameters in relation to the landslide occurrence calculated were disregarded.

Univariable logistic regression models were also calculated in order to select the best
antecedent rainfall period. These models were then compared using a modified version of Cox
and Snell’s index adjusted to constrain the index value not to exceed 1 (Equation (2)). This
approach is analogous to R2 in an ordinary linear model but adapted for logistic regression.
Although it is useful to compare logistic regression models [83], they are not recommended to
be used to report final results [84], since this index, along with others such as pseudo-R2, can
lead to misinterpretations of the model’s predictive strength in the sense that they yield lower
values if compared to values of ordinary least squares R2 obtained under similar conditions [85].

R2
n = (1 − (Lo/Lm)2⁄N)/(1 − exp (−Lo/N) (2)
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where R2 is likelihood in the chi-squared test, Lo is the likelihood functions for the constant-
only model, Lm is likelihood functions for the fitted model, and N is the sample size.

A multi-variate model with all variables selected in the univariable model’s step was
fit to enable the selection of significant variables and to assess the main effects from their
interaction. All variables yielding a level of significance higher than 95% were retained to a
preliminary complete model. The final assessment was to compare this preliminary com-
plete model to others, fitted with a subset of its variables, using the Bayesian information
criterion (BIC) [86]. From this final analysis, we selected the model yielding the highest
predictive strength and the smallest and most significant set of independent variables.

To assess the predictive information of each of the independent variables, we used an
adequacy index, based on the likelihood ratio test [83]. It is expressed as the ratio between
the −2 log likelihood ratio statistic for testing the joint significance of a model with a full set
of variables and the −2 log likelihood ratio statistic for testing the importance of a model
with only one variable. This index estimates the proportion of log likelihood explained by
the variable with reference to the log likelihood explained by all variables, which can be
understood as the contribution of each variable to the model.

The goodness-of-fit of the final model was evaluated using the area under the receiver
operating characteristics curve (AUC). This was performed using the test samples. The AUC
ranges from 0 to 1 and values lower than 0.5 suggest that the model yields no discrimination
between points of occurrence of landslides and non-occurrence. As a general rule, AUC
values from 0.7 to 0.8 suggest acceptable discrimination and from 0.8 to 0.9 suggest excellent
discrimination. Values higher than 0.9 suggest outstanding discrimination, although for
logistic regression models it is extremely unusual to observe such high values [84].

All analyses were performed using the R-project software (http://www.r-project.org/,
accessed on 6 June 2023).

4. Results

Our results encompass the identification of the best way to account for rainfall, the
identification of relevant variables to model landslide occurrence and the mathematical
expression of this relation, and the analysis of these variables in terms of their contribution
to landslide occurrence and the risk associated with an increment in each of these variables.

4.1. Antecedent Rainfall

We found that the cumulative precipitation of the 14 previous days was the best way
to account for the soil water saturation in MRSP. The importance of cumulative rainfall
preceding the occurrence of landslides exhibits clear behavior in the univariable model
(Figure 5). Up to 14–20 days, it has rising significance, estimated by the high value of the
likelihood chi-squared test. This importance is maximal if computed with the 14 days of
previous rainfall and declines sharply with more than 25 days.
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This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4.2. Landslide occurrence Model

The landslide occurrence model was built after carrying out an exploratory analysis
of all variables and an assessment of uni- and multi-variable models. The results of these
steps are presented in Appendices A and B. For the final model, the variables retained were
as follows: antecedent rainfall (day and 14 previous days), two biophysical variables (slope
and percentage of vegetation), two variables of the social domain (average household
head’s income and settlement condition), and three variables characterizing the built
environment (households, percentage of households without sewerage, and percentage
of households on streets without a storm sewer (curb) in 2010). They are all statistically
significant at the 5% significance level and, except for average household head’s income in
2010 and percentage of households without sewerage, they all have a positive relationship
with landslide occurrence (Table 2).

Table 2. Estimated coefficients, two-tailed p-values, and 95% confidence intervals for the final logistic
regression model.

Variables of Final Model Coefficient Coefficient Confidence
Interval (95%) p-Value

Intercept −3.5869 [−3.5997, −3.5740] <0.001
Antecedent rainfall (day and 14 previous days) 0.0163 [0.0162, 0.0163] <0.001
Terrain slope 0.0621 [0.0617, 0.0625] <0.001
Percentage of vegetation in 2010 1.7894 [1.7699, 1.8089] <0.001
Average household head’s income in 2010 −0.0001 [−0.0001, −0.0001] 0.019
Settlement condition in 2010 1.5335 [1.5180, 1.5489] <0.001
Households in 2010 0.0370 [0.0365, 0.0374] <0.001
Percentage of households on streets without
storm sewer (curb) in 2010 1.1494 [1.1329, 1.1659] 0.007

Percentage of households without sewerage
in 2010 −1.7180 [−1.7317, −1.7044] <0.001

Final model
Observations (n)

Points of landslide occurrence
Points of landslide non-occurrence

Bootstraps

2000
1000
1000
1000

Model likelihood test
Likelihood ratio χ2 d.f.

p-value

1280.3
8

<0.001

The final analysis, performed using BIC criteria, showed that the model fitted with
all of the selected variables was better than any other model fitted with subsets of these
variables (Table 3).

Table 3. Top three ranked models according to Bayesian information criterion (BIC).

Final Model and
Models with Subset of Selected

Variables
Rank Number of Times

as Rank #1
BIC

Value

BIC Value
Confidence

Interval (95%)

Final model 1 549 1561 [1559, 1564]
Final model, except average
household head’s income in 2010 2 274 1557 [1554, 1559]

Final model, except percentage of
households on streets without
storm sewer (curb) in 2010

3 155 1559 [1556, 1562]

4.3. Variables’ Contribution

Antecedent rainfall plays the most important role in landslide occurrence: this variable
corresponds to 0.70 of the predictive information of all variables combined alone, according
to the calculated index of adequacy (Table 4). For terrain slope, this index is 0.20. Settlement
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conditions and households have similar predictive information proportions, 0.15 and
0.14, respectively. Other variables have smaller contributions, with the index of adequacy
below 0.06.

Table 4. Index of adequacy of each variable of the final logistic regression model.

Variable Likelihood Ratio χ2 Adequacy

Antecedent rainfall (day and 14 previous days) 900.6 0.70
Terrain slope 262.2 0.20
Percentage of vegetation in 2010 20.7 0.02
Average household head’s income in 2010 73.7 0.06
Settlement condition in 2010 191.3 0.15
Households in 2010 174.9 0.14
Percentage of households on streets without storm
sewer (curb) in 2010 16.9 0.01

Percentage of households without sewerage in 2010 24.5 0.02

Combined 1280.3 1.00

4.4. Landslide Occurrence Risk

Considering only antecedent rainfall, each increment of 10 mm will raise the chance
of a landslide by 1.177 times (Table 5). Similarly, increments in terrain slope, percentage
of vegetation cover, households, and percentage of households on streets without a storm
sewer (curb) will result in a higher chance of landslide occurrence. Increments in the
average household head’s income and percentage of households without sewerage, on the
contrary, will decrease the chance. Remarkably, landslides in subnormal settlements have
4.634 times more chance of occurring than in a regular settlement.

Table 5. Index of adequacy of each variable of the final logistic regression model.

Variable Increment Odds
Ratio

Odds Ratio Confidence
Interval (95%)

Antecedent rainfall (day and 14
previous days) 10 mm 1.177 [1.176, 1.177]

Terrain slope 1◦ 1.064 [1.064, 1.065]
Percentage of vegetation in 2010 10% 1.196 [1.194, 1.199]
Average household head’s
income in 2010 BRL 10,000 0.989 [0.9887, 0.9891]

Settlement condition in 2010 Subnormal in
relation to regular 4.634 [4.705, 4.863]

Households in 2010 1 household 1.038 [1.037, 1.038]
Percentage of households on
streets without storm sewer
(curb) in 2010

10% 1.122 [1.120, 1.124]

Percentage of households
without sewerage in 2010 10% 0.842 [0.841, 0.843]

5. Discussion

An extensive landslide inventory associated with gridded thematic data layers and a
bootstrap strategy contributed to a robust statistical result. A theoretical and data-gathering
effort was made to model landslides, associating them with biophysical, social, and built
environment variables.

5.1. Importance of Ecological–Biophysical Variables in Landslide Occurrence

There is a strong association between landslides and rainfall in MRSP: this variable
accounted for 70% of the predictive information of the model. Furthermore, we also found
an important contribution of antecedent rainfall, likely representing soil water saturation,
in accordance with early observations in Brazil made by [41], followed by the Civil Defense
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in São Paulo state in establishing the awareness level. The modeling results pointed to a
period of 14 days to account for the total antecedent rainfall: for the points of landslide
occurrence, this total was, on average, 216 mm, while for points of non-occurrence, it
was 83 mm (Table A1, Appendix A). Climate projections for 2070 and 2100 foresee the
doubling of the days with intense rain (higher than 10 mm) [67]. Accumulated rainfall
in this context will increase and act to saturate the soil in a shorter period, concurring
to undermine slope stability and raise landslide risk. Landslide hazards on time scales
affected by climate change can be quantitatively characterized via a combination of climate
models and precipitation estimates, as recently shown by Kirschbaum et al. [87].

Terrain slope gradient accounts for natural terrain’s most important characteristic
related to landslide occurrence. In our model’s results, it accounted for 20% of the model’s
predictive information. Other geological, geomorphological, and hydrological–pedological
aspects, very often highlighted in the landslide literature (e.g., [54,79]), were treated in this
research as areas of mass movement susceptibility. Nevertheless, in urban areas of MRSP,
medium- and high-susceptibility classes were found to be correlated with steeper slopes
and subnormal settlements. For this reason, the mass movement susceptibility variable
was deprecated in fitting the logistic regression model performed in this paper, despite
its importance in physical-process-based models of landslides. Slopes and settlement
conditions offered greater explanation in landslide occurrence.

Vegetation is of great importance to water infiltration processes and in preventing
soil erosion and instability. Nevertheless, its presence was positively related to landslides.
This result is contradictory with much research that relates vegetation cut with landslides
(e.g., [8,43]). The mean percentage of vegetation was of only 10% at points of non-occurrence
of landslides, while at points of landslide occurrence, it was higher, at 22.7% (Table A1,
Appendix A). Vegetation cover likely represents an indirect indicator of open spaces
and pervious surfaces. We hypothesize that its higher percentage in landslide points
denotes areas that have been left unoccupied, often because of severe physical restrictions,
surrounded by impervious areas without an adequate surface water drainage system. Thus,
these open spaces may become areas of accumulation and infiltration of water, causing the
saturation of the soil and its eventual rupture, despite the presence of vegetation, whose
roots could contribute to water absorption and soil cohesion.

5.2. Importance of Social–Behavioral Variables in Landslide Occurrence

Previous work has already pointed to the role of unfavorable housing and urban-
ization conditions in landslide occurrence [88–90]. In this paper, these conditions were
identified with subnormal settlements, which are associated with illegal allotments and
favelas, inadequate practices of cut-and-fills, the creation of technogenic deposits, self-aided
building, and lack of inspection, reflecting poor building practices of families and land
developers, as well as a weak role of public administration. They accounted for 15% of
the predictive information of the landslide occurrence model. The dramatic difference in
settlement conditions is expressed by the chance of landslide occurrence being 4.6 times
higher in a subnormal settlement than in a regular one. Income posed a minor contribution
to landslide occurrence, corresponding to 6% of the model’s predictive information. This
may be due to a bias of census data, caused by the declaratory nature of this information.
The average monthly household income in the points of landslide was BRL 1828 in 2010
(approximately USD 968 in 2023). An increase of BRL 100 in this income would imply a
0.99 chance of landslide occurrence. This may suggest that landslide occurrence is related
to a problem of access to housing, rather than solely a matter of income. This hypothesis is
reinforced by the fact that dwellers at points of landslide occurrence have a similar level of
income to their neighbors, but different reasons rather than just economic resources made
them occupy these areas.

Educational level did not result in being relevant to landslide occurrence, at least in
terms of educational level measured by the variable available in the census data—percentage
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of literate individuals responsible for the household. This variable may not be adequate to
measure families’ capabilities to properly build their houses via self-aided processes.

5.3. Importance of Technological–Infrastructural Variables in Landslide Occurrence

The number of households was taken as a representative measure of the number of
buildings, characterizing the built environment, and yielded 14% of the predictive information
of the landslide occurrence model. Therefore, a high density of buildings, and consequently
major slope interventions, correspond to a higher probability of landslide occurrence.

Descriptions of landslide events reported the role of wastewater or storm water dis-
posed directly into the soil. Strong evidence in the literature supports the causal relationship
between water infiltration and landslides (e.g., [41]). Hence, variables of the percentage of
households without sewerage, without a storm sewer (grating), and on streets with open
sewage were expected to have higher values in landslide occurrence points. Surprisingly,
for MRSP, the results were the opposite. Our hypothesis is that either sewage and storm wa-
ter leakages are very often associated with a higher coverage of this infrastructure system,
or these results may be related to the fact that in MRSP extensive areas have low coverage
of these systems and areas where landslides have occurred are not representative of this
situation. Indeed, an average of 26% of the households within the buffer of each point of
landslide non-occurrence do not have access to sewerage, while within the buffer of the
landslide occurrence points, the average is of 17.8%. This same difference in situations
is observed regarding the inexistence of storm sewers (grating) and the presence of open
sewage on streets. Regarding the former variable, averages were of 45.8% in areas of
non-occurrence and 39.8% in areas of occurrence, while for the latter, averages were of 6%
and 4.6%, respectively. These percentages suggest that areas of landslide occurrence are,
on average, in a better situation than areas of non-occurrence, and this difference, in the
case of the variable related to sewerage, may have yielded a minor contribution (2%) to the
predictive information of the model.

5.4. Landslide Occurrence from Social–Ecological–Technological System’s Perspective

The fact that the majority of landslide fatalities occur in cities of less-developed coun-
tries points to their intrinsic vulnerability due to the existence of larger areas of precarious
settlements [1,56,91]. Moreover, hazardous climatic conditions pose an additional chal-
lenge for landslide management and prevention [10]. In the MRSP, both conditions occur:
particularly intense rainfall during the summer season, when most of the landslides occur,
and precarious settlements exhibiting hazardous conditions. Vulnerability raised from
precarious settlements’ existence, on the other hand, is a combination of inadequate and
precarious hillside occupation with social vulnerability of a population that have this as the
only solution to a housing problem. In both cases, government actors fail in their policies
to ensure social and environmental protection.

In this scenario, public administration must take actions not only based on monitoring
and warning systems, but mainly in preventing precarious occupation on hillsides. More-
over, a shift in culturally adopted techniques leveraging building practices, both related to
buildings and cut-and-fills, would contribute to slope stability and could lead to a positive
transformation in hillside occupation patterns in the MRSP.

This study is aligned with recent efforts to assess risks in an integrated framework,
bridging the gap between susceptibility and vulnerability analysis [24–27]. By considering
variables within a comprehensive framework, this study identifies the crucial factors
that are decisive in addressing landslide risks. Notably, rainfall emerges as the most
prominent factor, highlighting the formidable challenges posed by climate change in the
study area, considering that future climate projections indicate an increase in the frequency
of intense rainfall days [67]. Steep slopes constitute the second significant factor, along with
subnormal settlement conditions. In this regard, the public administration indeed has a
pivotal role in taking proactive measures to prevent slope occupation, to ensure adequate
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protection measures, to implement slope stabilization infrastructure, and, in some cases, to
relocate families.

This study also incorporates ecological and infrastructural variables that are often
overlooked in landslide assessments. In this context, two counterintuitive observations
were made: (1) areas without landslide occurrence exhibited a higher prevalence of infras-
tructure deficiencies, particularly in sewage systems; (2) areas with landslide occurrence
showed a higher presence of vegetation. While these findings do not imply a lack of associ-
ation between these variables and landslides, their relatively minor significant contribution
to landslide occurrence suggests that public administration should prioritize other factors
when addressing landslide risks.

5.5. Considerations for Urban Landslide Modeling

High-spatial-resolution built-up maps, showing buildings and open spaces, their
layout related to contour lines, and pervious and impervious surfaces, could add a higher
level of detail to characterize the built environment. The availability of census data is
a constraint to a fully dynamic model. In Brazil, for instance, we are currently facing a
critical situation regarding the availability of up-to-date census data. The last census was
carried out in 2010, and the first results of the 2020 census are expected to be publicly
available in mid-2023. Data related to the ecological–biophysical domain are constrained by
a compromise between spatial extent and spatial resolution, in the sense that more detailed
data are only available for restricted areas (as in at the site investigation level).

Non-linearity in the extremes of distribution can be observed in the model results. For
example, if a high-enough value of population density is taken to calculate the probability of
landslide occurrence, this could be equal to 1, which is not a reasonable scenario. Therefore,
for prediction purposes, this model should be improved to account for such non-linearity.
Nevertheless, the high level of discrimination achieved by this model suggests an overall
linear behavior.

The approach proposed in this work took advantage of a well-established method
to map landslide susceptibility. Uni- and multi-variable logistic regression analyses were
performed to identify significant factors with explanatory power. To ensure reliable results
with minimal bias, we employed a bootstrapping strategy, which enabled us to obtain
stable estimates of the susceptibility model. The developed model successfully quantified
the contributions of physical, ecological, social, and infrastructural variables reported in
the existing literature as associated with landslides in the study area. Although the scope
of this study does not encompass an exhaustive or definitive guide to urban landslides, its
methodology can be readily replicated in other cities. By adapting variable sets to match
regional specificity and current conditions, distinct outcomes will be obtained, consequently
fostering the development of context-specific responses.

6. Conclusions

A total of 2038 events recorded in the hydrological year of 2010 were used to model
landslides’ occurrence in MRSP, associating them with socioeconomic and infrastructural
conditions, as well as antecedent rainfall calculated for each landslide and the physical
characteristics of the terrain. A multi-step model approach was used to select the best set
of variables related to landslide occurrence and assess their importance, yielding an AUC
of 0.9087, denoting the high level of discrimination achieved.

Variable selection and the understanding of them in a social–ecological–technological
framework provides a unique validation and quantitative analysis to the ad hoc vulnerabil-
ity assessment of landslides. As expected, antecedent rainfall plays the most important role,
accounting for 70% of the predictive information of all of the variables combined. Terrain
slope yielded 20%, while subnormal housing conditions and housing density yielded a
slightly lower contribution. Despite the contribution to the model, there is a dramatic
difference in settlement conditions, expressed by the chance of landslide occurrence: it is
4.6 times higher in a subnormal settlement than in a regular one. These results reinforce the
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role of local ordinances aiming to restrict occupation in steeper slopes and public policies
to promote adequate housing and constructive practices. Still, future climate projections for
MRSP point to the increase in intense rainfall days, making disasters caused by landslides
a major source of risk.

Socio–environmental–technological systems (SETSs) offer a comprehensive framework
for analyzing the intricate interplay among the environment, infrastructure, and society.
By advancing our comprehension of the contextual factors influencing the distribution of
hazards within society, SETSs facilitate a deeper understanding of the impacts and response
mechanisms associated with extreme events and climate change effects. The insights gained
from SETS analysis serve as valuable inputs for evidence-based policy-making aimed at
fostering the development of resilient cities.
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Appendix A. Model Development Results: Exploratory Analysis

The comparison between variables’ values at points of landslide occurrence and at
points of non-landslide occurrence provided a characterization of SETS variables and
enabled the first variable selection. It is important to note that points of non-landslide
represent the totality of urbanized areas within the considered municipalities, excluding
landslide points and their squared 30 m buffer.

Considering the continuous variables, almost all of them presented a significant
association with landslide occurrence (Table A1). Antecedent rainfall, slope, percentage of
vegetation, average income of household’s head, number of households, and household
change are notably different between the two groups (Table A1). For example, for the
landslide points, the antecedent 14 days rainfall value was more than 2.5 times the value
of the non-occurrence points. Three variables, average household head’s income change,
percentage of literate household heads, and percentage of households on unpaved streets,
were not found to be associated with landslide occurrence and were therefore excluded
from further analysis.

Table A1. Results for the exploratory analysis of independent continuous variables.

Independent Variable

Mean Value at
Points of
Landslide

Occurrence

Mean Value at
Points of

Landslide Non-
Occurrence

Student’s
t-Test p-Value

Rainfall in the event day 18 mm 6 mm −31.45 <0.001
Antecedent rainfall—day and
previous day 37 mm 11 mm −42.89 <0.001

Antecedent rainfall—day and 7
previous days 124 mm 45 mm −64.65 <0.001

Antecedent rainfall—day and
14 previous days 216 mm 83 mm −71.67 <0.001

https://github.com/ma-hirye/SETS_RMSP
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Table A1. Cont.

Independent Variable

Mean Value at
Points of
Landslide

Occurrence

Mean Value at
Points of

Landslide Non-
Occurrence

Student’s
t-Test p-Value

Antecedent rainfall—day and
21 previous days 294 mm 122 mm −73.79 <0.001

Antecedent rainfall—day and
28 previous days 367 mm 162 mm −70.41 <0.001

Antecedent rainfall—day and
60 previous days 684 mm 355 mm −67.85 <0.001

Antecedent rainfall—day and
120 previous days 1072 mm 741 mm −53.75 <0.001

Terrain slope 14.45◦ 7.09◦ −32.43 <0.001
Percentage of vegetation
in 2010 22.7% 10.0% −16.41 <0.001

Percentage of vegetation
change (2010–1991) −14.4% −22.0% −12.48 <0.001

Average income of the
individual responsible for the
household (household’s head)
in 2010

BRL 1828
(updated to 2018)

BRL 2647
(updated to

2018)
29.52 <0.001

Average income change in the
individual responsible for the
household (household’s head)
(2010–1991)

− BRL 1207
(updated to 2018)

− BRL 1137
(updated to

2018)
2.15 0.032

Percentage of literate
individuals responsible for the
household (household’s head)
in 2010

95% 95% 2.31 0.021

Households in 2010
20 households

(222
households/ha)

13 households
(144

households/ha)
−17.46 <0.001

Household change (2010–1991) 10 households 6 households −12.17 <0.001
Percentage of houses without
sewerage in 2010 17.8% 26.0% 13.74 <0.001

Percentage of houses on
unpaved streets in 2010 8.2% 7.8% −0.72 0.471

Percentage of houses on streets
without storm sewer (curb)
in 2010

12.6% 9.3% −5.91 <0.001

Percentage of houses on streets
without storm sewer (grating)
in 2010

39.8% 45.8% 7.83 <0.001

Percentage of houses on streets
with open sewage in 2010 4.6% 6.0% 5.08 <0.001

Concerning the categorical variables, all of them yielded statistically significant differ-
ent distributions (Table A2) between points of landslide occurrence and non-occurrence.
A fewer number of landslides occurred in east-facing slopes while the proportion of
non-landslide points was lower in the south- and north-facing slopes. Comparing the
distribution of mass movement susceptibility classes in landslide and non-landslide points
shows a clear pattern of landslide occurrence in areas of medium and high susceptibility.
Almost 21.88% of the landslides occurred in subnormal settlements, which contrasts with
the distribution of these settlements at points of non-landslide: only 3.74%. While 8.83% of
the landslides fall in settlements created between 1991 and 2010 (worst situation in 2010),
only 2.29% of points of non-occurrence fall in this class.
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Table A2. Results for the exploratory analysis of independent categorical variables.

Independent
Variable and

Categories

Number of
Points of
Landslide

Occurrence 1

Proportion
at Points of
Landslide

Occurrence

Proportion at
Points of
Landslide

Non-Occurrence

Pearson’s
χ2 d.f. p-Value

Terrain aspect 2038 170.94 4 <0.001
North 464 22.77% 18.55%
East 306 15.01% 21.91%
South 479 23.50% 16.59%
West 491 24.09% 21.64%
Flat 298 14.62% 21.31%

Mass movement
susceptibility 2037 1338.73 2 <0.001

Low 1606 78.84% 95.44%
Medium 305 14.97% 3.54%
High 126 6.19% 1.02%

Settlement condition
in 2010 2038 1858.21 1 <0.001

Regular 1592 78.12% 96.26%
Subnormal 446 21.88% 3.74%

Settlement condition
change (2010–2000) 2038 396.87 2 <0.001

No change 1839 90.24% 97.18%
Worsened in 2010 180 8.83% 2.29%
Improved in 2010 19 0.93% 0.53%

1 Eventual difference between the total number of points of landslide occurrence (2038) and points presented is
due to the inexistent values for the variable.

A correlation among variables was identified, although this was not used as a criterion
for excluded variables. Among the continuous variables, a higher Spearman coefficient was
found for average income of the household’s head and percentage of literate household
heads; number of households in 2010 and household change between 1991 and 2010; and
percentage of houses on unpaved streets and on streets without a storm sewer (curb). These
are positive correlations, and they support the following: (a) households with a lower
income are also households in which those responsible are less educated; (b) areas with
a higher density of households presented a great increment between 1991 and 2010; and
(c) streets without storm sewers (curbs) are frequently not paved. Both positive and inverse,
less-intense correlations were also found (Figure A1).
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The categorical variables were dependent, according to Pearson’s chi-squared tests.
The correlation between subnormal settlements in 2010 and the change in their conditions
between 2000 and 2010 were expected. It is interesting to note the correlation between
medium or high susceptibility to mass movement and subnormal areas (Figure A2a). These
areas more prone to mass movements are also correlated with areas that became subnormal
after 2000 (understood as a worsened situation in 2010) (Figure A2b).

1 
 

 
Figure A2. Relative contribution to Pearson’s chi-squared test between mass movement susceptibility
and (a) settlement condition in 2010 and (b) settlement condition change between 2000 and 2010.

Finally, no significant correlation (i-value higher than 0.05 in F-statistic) was found
between all possible pairs of a continuous variable and a categorical variable.

Appendix B. Model Development Results: Uni- and Multi-Variable Logistic
Regression Assessment

Univariable models were calculated in order to select variables based on a p-value
higher than 0.25. We then excluded two variables from further analyses: aspect and average,
except average household head’s income change. For variables related to the percentage
of households on streets without a storm sewer (curb) or with an open sewer, parameters
yielded a p-value of 0.025 and 0.085, respectively, while for others, p-values associated with
their parameters were lower than 0.001 (Table A3).

Table A3. Estimated coefficients, two-tailed p-values, 95% confidence intervals, and estimated
likelihood ratios, χ2, for univariable logistic regression models.

Univariable Models Intercept Coefficient
Coefficient

Confidence Interval
(95%)

p-Value Likelihood
Ratio χ2

Antecedent rainfall (day and 14
previous days) −2.4034 0.0160 [0.0160, 0.0161] <0.001 911.7

Terrain slope −0.9148 0.0885 [0.0882, 0.0888] <0.001 296.3

Aspect 0.1027 38.8
North (in relation to flat areas) −0.0104 [−0.0178, −0.0029] 0.578
East (in relation to flat areas) 0.4934 [0.4858, 0.5010] 0.008
South (in relation to flat areas) 0.6820 [0.6742, 0.6897] <0.001
West (in relation to flat areas) 0.3958 [0.3884, 0.4033] 0.031
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Table A3. Cont.

Univariable Models Intercept Coefficient
Coefficient

Confidence Interval
(95%)

p-Value Likelihood
Ratio χ2

Mass movement susceptibility −0.1870 130.5
Medium (in relation to low) 1.6395 [1.6281, 1.6509] <0.001
High (in relation to low) 1.9794 [1.9579, 2.0008] <0.001

Percentage of vegetation in 2010 −0.2445 1.6062 [1.5976, 1.6148] <0.001 94.0

Percentage of vegetation change 0.1536 0.8527 [0.8449, 0.8605] <0.001 32.9

Average income of the household’s
head in 2010 0.5021 −0.0002 [−0.0002, −0.0002] <0.001 73.8

Average income change for the
household’s head −0.023631 −0.000021 −0.000019] 0.390 1.7

Settlement condition in 2010 −0.2097 162.4
Subnormal (in relation to regular) 1.9845 [1.9737, 1.9954] <0.001

Settlement condition change −0.0668 41.8
Change (in relation to no change) 1.4055 [1.3918, 1.4192] <0.001

Households in 2010 −0.5184 0.0319 [0.0316, 0.0321] <0.001 102.1

Household change −0.2174 0.0289 [0.0286, 0.0292] <0.001 54.7

Percentage of households on streets
without storm sewer (curb) in 2010 −0.0615 0.5771 [0.5666, 0.5876] 0.025 9.3

Percentage of households on streets
without storm sewer (grating) in 2010 0.2189 −0.5114 [−0.5182, −0.5045] 0.003 16.2

Percentage of households on streets
with open sewage in 2010 0.0384 −0.7231 [−0.7393, −0.7068] 0.085 5.7

Percentage of households without
sewerage in 2010 0.1922 −0.8958 [−0.9032, −0.8884] <0.001 38.8

In the complete model, where we analyzed the joint effects of variables, we excluded
variables associated with a p-value > 0.05, which were those related to a change in conditions
(vegetation change, subnormal settlement change, and household change), two variables
related to the absence of infrastructure systems (percentage of households on streets with
open sewage and percentage of households without storm sewers (grating)), and mass
movement susceptibility (Table A4).

Table A4. Estimated coefficients, two-tailed p-values, and 95% confidence intervals, for the complete
logistic regression model.

Variables of the Complete Model Coefficient Coefficient
Confidence Interval (95%) p-Value

Intercept −3.4228 [−3.4369, −3.4087] <0.001
Antecedent rainfall (day and 14 previous days) 0.0164 [0.0164, 0.0165] <0.001
Terrain slope 0.0608 [0.0604, 0.0613] <0.001
Mass movement susceptibility

Medium in relation to low 0.2734 [0.2573, 0.2894] 0.399
High in relation to low −0.0008 [−0.0358, 0.0343] 0.517

Percentage of vegetation in 2010 1.5938 [1.5736, 1.6140] 0,002
Percentage of vegetation change 0.3379 [0.3242, 0.3516] 0.293
Average household head’s income in 2010 −0.000123 [−0.000125, −0.000121] 0.012
Settlement condition in 2010 1.9657 [1.9424, 1.9889] <0.001
Settlement condition change −0.9398 [−0.9682, −0.9114] 0.143
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Table A4. Cont.

Variables of the Complete Model Coefficient Coefficient
Confidence Interval (95%) p-Value

Households in 2010 0.0384 [0.0379, 0.0390] 0.002
Household change −0.0051 [−0.0057, −0.0045] 0.477
Percentage of households on streets without storm
sewer (curb) in 2010 1.4845 [1.4646, 1.5044] 0.003

Percentage of households on streets without storm
sewer (grating) in 2010 −0.1482 [−0.1598, −0.1365] 0.468

Percentage of households on streets with open
sewage in 2010 −0.9120 [−0.9394, −0.8846] 0.182

Percentage of households without sewerage in 2010 −1.6121 [−1.6264, −1.5978] <0.001

Observations (n)
Points of landslide occurrence

Points of landslide non-occurrence
Bootstraps

2000
1000
1000
1000

Model likelihood test
Likelihood ratio χ2 d.f.

p-value

1301.8
15

<0.001
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