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Time-delay interferometry (TDI) is the data processing technique that cancels the large laser phase
fluctuations affecting the heterodyne Doppler measurements made by unequal-arm space-based gravita-
tional wave interferometers. The space of all TDI combinations was first derived under the simplifying
assumption of a stationary array, for which the three time-delay operators commute. In this model, any
element of the TDI space can be written as a linear combination of four TDI variables, the generators of the
“first-generation” TDI space. To adequately suppress the laser phase fluctuations in a realistic array
configuration, the rotation of the array and the time dependence of the six interspacecraft light travel times
has to be accounted for. In the case of the Laser Interferometer Space Antenna (LISA), a European Space
Agency mission characterized by slowly time varying armlengths, it has been possible to identify data
combinations that, to first order in the interspacecraft velocities, either exactly cancel or suppress the laser
phase fluctuations below the level identified by the noise sources intrinsic to the heterodyne measurements
(the so-called “secondary” noises). Here we reanalyze the problem of exactly canceling the residual laser
noise terms linear in the interspacecraft velocities. We find that the procedure for obtaining elements of the
second-generation TDI space can be generalized in an iterative way. This allows us to “lift up” the
generators of the first-generation TDI space and construct elements of the higher order TDI space whose
gravitational wave sensitivities are equal to those of their first-generation counterparts.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is a
space mission proposed by the European Space Agency to
observe gravitational waves (GW) in the millihertz fre-
quency band. LISA will rely on an array of three identical
spacecraft that exchange coherent laser beams along the
three 2.5-million-kilometer arms of the resulting giant
(almost) equilateral triangle. The heliocentric trajectories
of the three spacecraft result in armlengths that are unequal
and weakly time dependent with interspacecraft relative
velocities ≲10 m=s. Since these velocities are negligible
compared to the speed of light, we are justified in retaining
only first order terms in the velocities in our considerations.
The frequency noise of the LISA stabilized lasers dominates

the other secondary noises by 7 or more orders of magnitude
and must be removed or sufficiently suppressed to achieve
the requisite sensitivity. By linearly combining the appro-
priately delayed six one-way interspacecraft Doppler
measurements, we can construct data combinations—the
time-delay interferometry (TDI) combinations—that cancel
(or sufficiently suppress) the laser frequency noise while
retaining sensitivity to GWs.
The simplest assumption is to regard the armlengths to

be constant and consider only three time delays. This
means that the light travel time between spacecraft i to j is
the same as between j to i. This is not true in general
because the LISA triangle rotates once in a year. The
Sagnac effect implies that the up and down optical paths are
unequal. The TDI space that arises from the assumption of
three constant armlengths is the so-called first-generation
TDI [1–3]. A rigorous mathematical foundation for this
case was laid in [4] proving that the TDI space was a linear
structure called in the literature as the first module of
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syzygies [5,6] which is a module over the polynomial ring
of the three time-delay operators. A neat solution was
possible because the delay operators commute and form a
commutative polynomial ring. Hilbert’s theorem guaran-
tees that in a commutative polynomial ring over a field, all
ideals are finitely generated or the ring is Noetherian. This
implies that the Gröbner basis algorithm terminates and
finally leads to a finite set of generators for the module.
This module is a kernel of a homomorphism [7] or the TDI
maps the laser noise to zero and therefore forms a null
space. It has been shown that the module is generated by a
set of four generators, the simplest and most useful set
being α, β, γ, and ζ, the Sagnac combinations.
The next level of simplification is to consider the Sagnac

effect so that now we have six time delays but they are
considered to be time independent. This case can also be
solved exactly [8,9] and results in six generators for the first
module of syzygies. These form the so-called 1.5-gener-
ation TDI space.
The most general case consists of TDI combinations

where the array is rotating and the six time delays are time
dependent. In this case the operators donot commute andone
ends up with a noncommutative polynomial ring, whose
elements are strings of operators or “words” as they are called
in the literature. In the past, one of the authors (S. V. D.) has
attempted to compute the analogous Gröbner basis for the
noncommutative case but found that the algorithm did not
terminate. Others have tried to useMathematica towards the
same goal but have not succeeded. Therefore, it seems that
the Gröbner basis is infinite and this approach seems to be
intractable. In the case of LISA, however, the armlengths are
slowly changing in time and the problem therefore can be
treated like a “perturbation” over the static case and the
results obtained thereby suitably generalized.
In this paper, we will first study the TDI space with six

different delays that are slowly time varying—we will
consider terms only to first order in the interspacecraft
relative velocities. In the past this case has been consid-
ered [7,8,10,11] with partial solutions for the so-called
second-generation TDI space. In recent publications [12,13]
an alternative approach was proposed, in which second-
generation TDI combinations were obtained through the
use of a computer program. Its underlining algorithm relied
on geometric TDI [14] and searched for combinations that
would suppress the laser noise below the level identified by
their secondary noises. Although this approach identified a
significantly large number of second-generation TDI com-
binations, it could not check for their independence nor
assess the dimensionality of the second-generation TDI
space. An attempt to answer these questions has been
presented in [15], where the new TDI channels derived
in [12] were related to the Sagnac generators α, β, γ, ζ of the
first-generation TDI space. Although the established rela-
tionship cannot be mathematically exact, it is nevertheless
accurate enough for modeling the residual noises of these

second-generation TDI expressions. Its drawback, how-
ever, is relying on Sagnac observables containing only the
three delay operators characteristic of a stationary array.
Finally, an analytic approach has been proposed [16]

for finding elements of the second-generation TDI space.
It entails a generalization of work presented in [11]
for analytically deriving second-generation unequal-arm
Michelson combinations. In [16] new Sagnac-like combi-
nations as well as a new set of expressions for the monitor,
beacon, and relay [8] have been presented.
In this paperwe propose instead a different approach from

those cited above for identifying TDI combinations that
cancel exactly the laser noise when the delays are charac-
terized by small interspacecraft velocities. We do so by also
using only analytic techniques. Recently matrix methods
have also been employed, which lead to TDI observables
albeit numerically [12,17–19]. Although the TDI combina-
tions we will derive in this article can be recast in matrix
form, we will not do that here. In our approach we first
rewrite the elements of a basis of the first-generation TDI
space in terms of the six delay operators. Then we show that
their corresponding second-generation TDI expressions can
be obtained by acting on specific combinations of the data
entering their expressions with uniquely identified poly-
nomials of the six delays. This so-called “lifting” operation
is key to our method as it allows us to generalize the main
property of a basis of the first-generation TDI space:
elements of the second-generation TDI space can be
obtained by taking linear combinations of properly delayed
lifted basis. In physical terms, the operation of lifting
corresponds to two light beams each propagating clockwise
and counterclockwise several times around the array before
being made to interfere onboard the transmitting spacecraft.
In so doing the time variations and the Sagnac effect on the
light travel times get averaged out [8].
The paper is organized as follows. In Sec. II we review

some of the past relevant results, which will be required
here, by deriving a suitable set of four elements of the first-
generation TDI space that can uniquely be written in terms
of the six time-dependent delays and generate this space in
the limit of a stationary array. Although in the stationary
configuration the basis usually adopted included the four
Sagnac combinations α, β, γ, ζ, ζ loses its uniqueness when
trying to incorporate the six time-dependent delays in its
definition. Also it cannot be interpreted as the result of the
interference of two beams that have been propagating along
two different paths and a straightforward geometric inter-
pretation to ζ is lacking [8,16]. To avoid this complication,
we use instead the four data combinations α, β, γ, X, as
generators of the first-generation TDI space, with X being
the usual unequal-arm Michelson combination. This is
possible because ζ is linearly related to α, β, γ, X [2].
After deriving the expressions for the residual laser noises

in specific data combinations entering the expressions of α,
β, γ, X, in Sec. III we present useful identities of the delay
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operators valid with six, time-varying delays characterized
by small interspacecraft velocities. These identities are used
to derive the second-generation TDI combinations that
cancel the laser noise up to the velocities of the interspace-
craft light travel times. We call this technique “lifting” as it
allows us to derive the corresponding elements in the
second-generation TDI space by starting with the basis
elements of the first generation. By then suitably delaying
and linearly combining the lifted basis of the first-generation
TDI space, one can generate elements of the higher-order
space. As an application we derive expressions of (i) ζ-like
combinations that exactly cancel the laser noise while
suppressing (like ζ) the gravitational wave signal in the
low part of the accessible frequency band and (ii) second-
generation TDIs containing only four-link measurements
(i.e. the beaconP2, monitorE2, and relayU2 combinations).
In Sec. VI we finally present our comments on our findings
and our conclusions.

II. THE FIRST-GENERATION TDI SPACE

Here we present a brief summary of the derivation of the
TDI space valid for a stationary array. We start by writing
the one-way Doppler data yi; yi0 in terms of the laser noises
using the notation introduced in [7,19]. We index the one-
way Doppler data as follows: the beam arriving at space-
craft i has subscript i and is primed or unprimed depending
on whether the beam is traveling clockwise or counter-
clockwise around the interferometer array, with the sense
defined by a chosen orientation of the array (see Fig. 1). We
define the delay operators Di by DiyðtÞ ¼ yðt − LiÞ where
Li is the travel time spent by the light to travel the ith arm
(the speed of light has been assumed to be equal to 1). The
assumption of a stationary array implies the following
expressions for the six one-way interspacecraft Doppler
measurements1:

y1 ¼ D3C2 − C1; y10 ¼ D2C3 − C1;

y2 ¼ D1C3 − C2; y20 ¼ D3C1 − C2;

y3 ¼ D2C1 − C3; y30 ¼ D1C2 − C3: ð2:1Þ

The problem of identifying all possible TDI combina-
tions associated with the six one-way Doppler measure-
ments becomes one of determining six polynomials, qi; qi0 ,
in the delay operators Di; i ¼ 1, 2, 3. The polynomials

qi; qi0 satisfy the equation
P

3
i¼1 qi:yi þ

P
3
i0¼1

qi0 :yi0 ¼ 0,
where the equality means “zero laser noises.”
It can be shown that the resulting TDI space is the first

module of syzygies [2,4,7]. We will be mainly concerned
with the Sagnac TDI observables α, β, γ, ζ that generate the
TDI space [2,4] because these observables generate the
module. We will also consider the Michelson TDI X
because of its inherent simplicity, which will act as a guide
for the other cases. We therefore list these TDI generators
below and write them as six tuple polynomial vectors
ðqi; qi0 Þ (in this notation the data streams yi; yi0 are
implicit):

α ¼ ð1;D3;D3D1;−1;−D2D1;−D2Þ;
β ¼ ðD1D2; 1;D1;−D3;−1;−D3D2Þ;
γ ¼ ðD2;D2D3; 1;−D1D3;−D1;−1Þ;
ζ ¼ ðD1;D2;D3;−D1;−D2;−D3Þ: ð2:2Þ

The observables α, β, γ, ζ perfectly cancel the laser
frequency noise when the armlengths are time independent.
In this paper we propose to go beyond this simple case,
where the armlengths weakly depend on time. Our goal is
to generalize the first-generation TDI space to the situation
in which the armlengths vary slowly.
We will find that α and its cyclic permutations β and γ

can be converted into second-generation TDI with the help
of commutators and some algebraic manipulation. But the
TDI ζ is not so straightforward as it cannot be thought of as
the result of the interference of two beams propagating
along two different paths. However, we may switch to
another set of generators, namely, α, β, γ and the unequal-
arm Michelson combination X. This is possible because of
the following relationship [2] between ζand α, β, γ, X:

ζ ¼ D1X −D2D3αþD2β þD3γ; ð2:3Þ

FIG. 1. Schematic array configuration. The spacecraft are
labeled 1, 2, and 3, and the optical paths are denoted by Li,
L0
i with the index i corresponding to the opposite spacecraft.

1Besides the primary interspacecraft Doppler measurement
yi; yi0 that contains the gravitational wave signal, other metrology
measurements are made onboard the LISA spacecraft. This is
because each spacecraft is equipped with two lasers and two
proof masses of the onboard drag-free subsystem. It has been
shown [7], however, that these onboard measurements can be
properly delayed and linearly combined with the interspacecraft
measurements to make the realistic LISA interferometry con-
figuration equivalent to that of a system with only three lasers and
six one-way interspacecraft measurements.
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where X is

X¼ð1−D2
2;0;ðD2

3−1ÞD2;D2
3−1;ð1−D2

2ÞD3;0Þ: ð2:4Þ
Equation (2.3) means that any linear combination of the
generators α, β, γ, ζ is also a linear combination of α, β, γ,
X. This implies that α, β, γ, and X is another generating set
for the module of syzygies. We will therefore include the
derivation of the second-generation combination X2 that
had already been derived in earlier publications [8,10].
At the zeroth order in the interspacecraft velocity the

laser noise cancels out for the first-generation TDI, those
given in Eq. (2.2) and also the Michelson X. But at the next
order in the velocities, the laser noise does not cancel out
completely in these TDIs, making it larger than their
remaining noises. This we call residual laser noise and
denote the corresponding TDI by the subscript res:

αres ¼ ðD3D1D2 −D2D1D3ÞC1;

βres ¼ ðD1D2D3 −D3D2D1ÞC2;

γres ¼ ðD2D3D1 −D1D3D2ÞC3;

Xres ¼ ðD3D3D2D2 −D2D2D3D3ÞC1: ð2:5Þ

Since the above expressions contain products of operators
which are permutations of each other and occur with
opposite sign, at zeroth order the laser noise cancels out
but at first order the velocity terms [as we will see in
Eq. (3.4) below] multiplying the _C term do not cancel out.
These residual laser noises must be canceled to achieve the
requisite sensitivity.

III. TDI WITH SIX TIME-DEPENDENT
TIME DELAYS

A. The general model of LISA

We started with the first-generation TDI because we can
cleanly derive the exact generators that completely span the
TDI space. Our idea is to use these foundational results to
generalize to the realistic model of LISA. We will achieve
this by what we call the lifting procedure. This procedure is
described in Sec. IV. We now set up the analysis for six
time-dependent time delays. Because of the Sagnac effect
due to the rotation of the LISA constellation, the armlength
from say spacecraft i to j is not the same as the one from j
to i. Therefore Li ≠ L0

i and so we have six unequal time-
dependent armlengths. The corresponding operators are
now labeled as Di and Di0 .
The one-way phase measurements therefore assume the

following forms:

y1 ¼ D3C2 − C1; y10 ¼ D20C3 − C1;

y2 ¼ D1C3 − C2; y20 ¼ D30C1 − C2;

y3 ¼ D2C1 − C3; y30 ¼ D10C2 − C3; ð3:1Þ

where we have adopted the labeling convention shown in
Fig. 1. In it the phase difference data to be analyzed is
indexed as follows: the beam arriving at spacecraft i has
subscript i and is primed or unprimed depending on
whether the beam is traveling clockwise or counterclock-
wise (the sense defined here with reference to Fig. 1)
around the array’s triangle, respectively. Thus, as seen in
the figure, y1 is the phase difference time series measured at
reception at spacecraft 1 with transmission from spacecraft
2 (along L3). The polynomials qi; q0i satisfy somewhat more
general equations [7].

B. Slowly time-varying armlengths
and vanishing commutators

If the armlengths are time dependent, then the operators
do not commute and the laser noise will not cancel.
However, if the armlengths are slowly varying we can
make a Taylor expansion of the operators and keep terms
only to first order in _Li and _L0

i or linear in velocities.
Let us consider the effect of n operators Dk1 ;…;Dkn

applied on the laser noise CðtÞ. The operators could refer to
either Li or Li0. We do not write the primes explicitly in
order to avoid clutter but the identities that we derive hold
in either case. Instead of writing Dkp we may denote the
same by just kp where kp take any of the values 1, 2, 3, 10,
20, 30. Then as shown in [7,20] we have

knkn−1…k2k1CðtÞ

¼ C
�
t −

Xn
p¼1

Lkp

�
þ
�Xn
j¼2

Lkj

Xj−1
m¼1

_Lkm

�
_C
�
t −

Xn
p¼1

Lkp

�
:

ð3:2Þ
Let us interpret the right-hand side of this equation. The
first term is just the laser noise at a delayed time that is
equal to the sum of the delays at time t. If the armlengths
were constant this would be the only term that would be
present and the operators would commute leading to first-
generation TDI. Note that the second term multiplies the _C
evaluated at the delayed time. This term makes the
operators noncommutative. But the noncommutativity is
small because the armlengths are slowly varying i.e.
_L ≪ 1—it is linear in the velocities. The first term is of
zeroth order in velocities. Since here we are only concerned
with the second term, we will only write the second term
assuming that the zeroth order term has been canceled
exactly in the expressions. Further, in order to avoid clutter,
we will not write C or _C when there is no cause for
confusion. We may also write vkp ¼ _Lkp . Then with this
understanding we may write Eq. (3.2) as

knkn−1…k2k1 ¼
Xn
j¼2

Lkj

Xj−1
m¼1

vkm: ð3:3Þ
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Note that the kp need not be distinct—the operators may
repeat. We write the first few products explicitly as

D2D1 ¼ L2v1;

D3D2D1 ¼ L2v1 þ L3ðv1 þ v2Þ;
D4D3D2D1 ¼ L2v1 þ L3ðv1 þ v2Þ

þ L4ðv1 þ v2 þ v3Þ: ð3:4Þ

It was shown in [7,11] that certain commutators cancel the
laser noise under the approximation we are making. Let
x1; x2;…; xn and z1; z2;…; zn be delay operators. Then it
follows from Eq. (3.3) that

½x1x2…xn; z1z2…zn� ¼
Xn
k¼1

Lxk

Xn
m¼1

vzm −
Xn
m¼1

Lxm

Xn
k¼1

vzk :

ð3:5Þ

Let σ be a permutation on n symbols. Then xσð1Þ; xσð2Þ;…;
xσðnÞ is a permutation of x1; x2;…; xn, then it is easy to
show that

½x1x2…xn; xσð1Þ; xσð2Þ;…; xσðnÞ� ¼ 0: ð3:6Þ

It was shown in [11] that a large number of Michelson type
TDI can be generated by relying on Eq. (3.6) and, more
recently [16], those results have been generalized to find
many other elements of the second-generation TDI space
such as the Sagnac, symmetric Sagnac, monitor, beacon,
and relay.

IV. THE LIFTING PROCEDURE

We first need to derive the expressions of the four
generators, α, β, γ, X, of the first-generation TDI formu-
lation that include the six delays i; i0 i; i0 ¼ 1; 2; 3; 10; 20; 30.
Since these combinations correspond to beams propagating
clockwise and counterclockwise, we can then generalize
the procedure for identifying combinations that suppress
the laser noise to the required levels [8,10]. This is done by
making each beam propagate clockwise and counterclock-
wise a number of times such that the resulting data
combinations exactly cancel the laser noise up to the
velocities of the six delays. This procedure, which we
now call lifting, is unique and can be applied iteratively an
arbitrary number of times. It should be emphasized that
some elements of the second-generation TDI space, like the
Sagnac combinations α, β, γ, require more than two lifting
iterations to exactly cancel the laser noise up to the linear
velocity terms [7,8]. Therefore we will refer to the space of
the second-generation TDI space as those combinations
that exactly cancel the laser noise up to the linear velocity
terms.

A. The unequal-arm Michelson X

The X combination includes the four one-way Doppler
measurements, (y1, y10 , y20 , y3) from the two arms centered
on spacecraft 1. In what follows we will present the method
discussed in [7,8,10] for obtaining the second-generation
TDI X2, and generalize this approach to derive other
unequal-arm Michelson combinations. Let us consider
the following synthesized two-way Doppler measurements:

X↑ ≡ y1 þD3y20 ¼ ðD3D30 − IÞC1;

X↓ ≡ y10 þD20y3 ¼ ðD20D2 − IÞC1: ð4:1Þ

As we know, the first-generation TDI combination X, is
equal to the expression

X ≡ ðD3D30 − IÞX↓ − ðD20D2 − IÞX↑

¼ ½D3D30 ;D20D2�C1: ð4:2Þ

It is easy to see the above commutator is different from zero
when the delays are functions of time and, to first order, are
in fact proportional to the interspacecraft relative velocities.
To derive the second-generation TDI combination X2,
which cancels exactly the laser noise up to linear velocity
terms, we rewrite the above expression for X in terms of its
two synthesized beams. They are equal to

X↑↑ ≡D20D2X↑ þ X↓ ¼ ðD20D2D3D30 − IÞC1;

X↓↓ ≡D3D30X↓ þ X↑ ¼ ðD3D30D20D2 − IÞC1: ð4:3Þ

The X2 expression can be derived by repeating the
same procedure used for deriving X. This results in the
expression

X2 ≡ ðD3D30D20D2 − IÞX↑↑ − ðD20D2D3D30 − IÞX↓↓

¼ ½D3D30D20D2;D20D2D3D30 �C1 ¼ 0; ð4:4Þ

where the equality to zero means “up to linear velocity
terms” and it is a consequence of the general property of the
commutators of the delay operators proved in the previous
section. It is clear that the iterative procedure we have
implemented for deriving both X and X2 can be repeated to
obtain the expression for other unequal-arm Michelson
combinations. Lastly we note that, because the magnitudes
of the frequency fluctuations associated with a GW signal
and the secondary noises in X2 are significantly smaller
than those of a laser, the commutator of two delay operators
applied to them results in relative frequency fluctuations
that are about 7 orders of magnitude smaller than their
values and can therefore be regarded as equal to zero. This
means that the order by which two delay operators act on a
GW signal and the secondary noises can be ignored. This
observation implies that their contributions to X2, X

GW;N
2
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are related to those in X, XGW;N through the following
relationship:

XGW;N
2 ¼ ðI −D3D30D20D2ÞXGW;N: ð4:5Þ

Equation (4.5), which has already appeared in the liter-
ature [21], follows from Eqs. (4.4) and (4.2) after some
simple algebraic manipulations that account for the com-
mutativity of the delay operators when applied to a GW
signal and the secondary noises. It states the GW signal and
secondary noises present in X2 are related to those in X
through the operator ðI −D3D30D20D2Þ. It also says that the
GW sensitivity of X2 is equal to that of X because the
Fourier transfer function of the operator ðI −D3D30D20D2Þ
multiplies both the GW signal and the noise in X and
thus cancels out. In general, if A and B are two TDI
observables such that A ¼ pðDi;Di0 ÞB, where pðDi;Di0 Þ is
a polynomial in the delay operators Di and Di0 then
because the same transfer function scales both the signal
and the noise in A and B, the sensitivities of A and B are
identical.
We will be using Eq. (4.5) later on when deriving other

second-generation TDI combinations.

B. The Sagnac combination α

The α combination represents a synthesized Sagnac
interferometer. In it two synthesized light beams interfere
onboard spacecraft 1 after making a clockwise and
counterclockwise loop around the array. From simple
geometric considerations on the delays and paths traveled
by the two synthesized beams it is easy to derive the
following expression for α:

α ¼ ½y1 þD3y2 þD3D1y3�
− ½y10 þD20y30 þD20D10y20 �: ð4:6Þ

After substituting Eqs. (3.1) into Eq. (4.6) we find the
expression of the residual laser noise C1ðtÞ in α to be
equal to

αres ¼ ðD3D1D2 −D20D10D30 ÞC1: ð4:7Þ

The 1.5-generation TDI Sagnac observables were obtained
by making each beam go around the array twice, in
clockwise and counterclockwise directions. In so doing
the effects of rotation could get canceled exactly, while
linear terms in the velocities multiplying the laser
noise would get adequately suppressed below the secon-
dary noises. As we will show below, exact cancellation of
the laser noise up to linear velocity terms can be achieved
by having the beams make additional loops around
the array.

Let us consider the two beams forming alpha,

α↑≡y1þD3y2þD3D1y3 ¼ðD3D1D2− IÞC1;

α↓≡y10 þD20y30 þD20D10y20 ¼ ðD20D10D30 − IÞC1: ð4:8Þ

The 1.5-generation TDI Sagnac observable, α1.5, was then
obtained by forming the following linear combination of α↑
and α↓:

α1.5 ≡ ðD20D10D30 − IÞα↑ − ðD3D1D2 − IÞα↓
¼ ½D20D10D30 ; D3D1D2�C1: ð4:9Þ

From the properties of commutators derived in the previous
section, we recognize that the right-had side of Eq. (4.9)
does not cancel the laser noise terms containing the
velocities.2 However, by applying our iterative procedure
one more time this can be achieved. Let us first write the
following two expressions, which take into account
Eq. (4.9):

α↑↑ ¼ D20D10D30α↑ þ α↓ ¼ ðD20D10D30D3D1D2 − IÞC1;

α↓↓ ¼ α↑ þD3D1D2α↓ ¼ ðD3D1D2D20D10D30 − IÞC1:

ð4:10Þ

From the above equation we then obtain the following
expression for α2:

α2 ≡ ðD3D1D2D20D10D30 − IÞα↑↑
− ðD20D10D30D3D1D2 − IÞα↓↓

¼ ½D20D10D30D3D1D2; D3D1D2D20D10D30 �C1: ð4:11Þ

We may notice that the operator that applies to C1 in
Eq. (4.11) is the commutator of two delay operators, each
being the product of the same number of primed and
unprimed delay operators and related by permutations of
their indices. From the commutator identities derived in the
previous section, we conclude that such a commutator
results in the exact cancellation of the laser noise up to
linear velocity terms. The iterative process highlighted
above can of course be repeated, resulting in other TDI
combinations. Finally we now provide the expression of
αGW;N
2 in terms of αGW;N [21], which follows from

Eqs. (4.11), (4.10), (4.9), (4.8):

αGW;N
2 ¼ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞαGW;N:

ð4:12Þ

2Although the 1.5-generation α combination was also referred
to in the literature as being an element of the second-generation
TDI space because it suppresses the laser noise below the
secondary noises, here we will refer to it as α1.5 since it does
not exactly cancel the laser noise up to the linear velocity terms.
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Equation (4.12) above reflects the fact that the delay
operators can be treated as constant and that the inequality
between the primed and unprimed delays can also be
disregarded when acting on a GW signal and the secondary
noises in α2. Like in the case of X2 and X, here too α2 and α
have the same sensitivity to gravitational waves as the same
Fourier transfer function multiplies both the GW signal and
the secondary noises of α.
As it will be shown below, Eqs. (4.5) and (4.12) will play

a key role in the derivation of other second-generation TDI
combinations by properly delaying and linearly combining
the four observables (α2, β2, γ2, X2).

V. THE SECOND-GENERATION TDI SPACE

In what follows we first show that any element of the
first-generation TDI space can be lifted up to the second-
generation space. We emphasize, however, that lifting is not
a bijection between the two TDI spaces. There exist in fact
an infinite number of lifted combinations showing the same
sensitivity to GWs as their first-generation counterpart. As
an application of this general theorem, we then derive the
expressions for the symmetric Sagnac combination ζ2, the
monitor E2, the beacon P2, and the relay U2. This is done
by taking specific combinations of the lifted basis (α2, β2,
γ2, X2). Although there already exist expressions in the
literature for the E2, P2, U2 combinations that cancel the
laser noise up to linear velocity terms [7,8], the ζ1.5
combinations [8] only suppress the laser noise below the
secondary noises. For this reason we have included the
derivation of ζ2, which cancels exactly the laser noise terms
linear in the velocity.

A. Lifting the first-generation TDI space

Let us consider the following arbitrary element of the
first-generation TDI space:

ρ≡ λααþ λββ þ λγγ þ λXX; ð5:1Þ

where ðλα; λβ; λγ; λXÞ are arbitrary polynomials of the six
delays. Let us also take the following arbitrary linear
combination of ðα2; β2; γ2; X2Þ [the lifted counterparts of
ðα; β; γ; XÞ]:

ρ2 ≡ λα2α2 þ λβ2β2 þ λγ2γ2 þ λX2
X2; ð5:2Þ

where ðλα2 ; λβ2 ; λγ2 ; λX2
Þ are also arbitrary polynomials of

the six delays. Since (α2, β2, γ2, X2) cancel exactly the laser
noises, it is clear that any linear combination of them [such
as that given by Eq. (5.2)] is also laser noise-free. Since (α2,
β2, γ2, X2) only contain the GW signal and the secondary
noises, we can replace in Eq. (5.2) their expressions in
terms of the first-generation TDI combinations as given
by Eqs. (4.5) and (4.12). This results in the following
expression for ρ2GW;N:

ρ2
GW;N ¼ λα2Pαα

GW;N þ λβ2Pββ
GW;N þ λγ2Pγγ

GW;N

þ λX2
PXXGW;N; ð5:3Þ

where Pα (with Pβ, Pγ obtained from it by permutations of
the spacecraft indices) and PX can be derived from
Eqs. (4.12) and (4.5) relating the GW signal and the
secondary noises of the second-generation combinations
to their first-generation counterparts [21]. If we now select
ðλα2 ; λβ2 ; λγ2 ; λX2

Þ to be equal to the following expressions,

λα2 ¼ QλαPβPγPX;

λβ2 ¼ QλβPαPγPX;

λγ2 ¼ QλγPαPβPX;

λX2
¼ QλXPαPβPγ ð5:4Þ

(with Q being an arbitrary polynomial of the six delay
operators) it is easy to derive the final expressions for ρ2
and ρ2

GW;N in terms of ρGW;N by substituting Eq. (5.4) in
Eq. (5.3),

ρ2 ¼ Q½λαPβPγPXα2 þ λβPαPγPXβ2 þ λγPαPβPXγ2

þ λXPαPβPγX2�; ð5:5Þ

ρ2
GW;N ¼ QPαPβPγPXρ

GW;N: ð5:6Þ

Equation (5.6) tells us that (i) the sensitivity of ρ2 is
identical to that of ρ because the Fourier components of the
GW signals and the secondary noises in ρ2 have the same
transfer function to the GW signal and the secondary noises
in ρ; (ii) the arbitrariness of the polynomial Q implies the
mapping from the first-generation TDI space to the higher
one is not one-to-one. In other words, lifting allows us to
derive an infinite number of elements of the second-
generation TDI space characterized by having the same
GW sensitivity as their first-generation counterpart.

B. The Sagnac combination ζ

As an application of the above general result, we will
now derive the expression for the second generation Sagnac
combination ζ2 that exactly cancels the laser noise up to
linear velocity terms. In the case of almost equilateral
arrays (with LISA being the most well-known example)
among all TDI combinations the symmetric Sagnac ζ is
characterized by a GW transfer function that suppresses the
GW signal in the lower part of the accessible frequency
band. By being still affected by the instrumental noise
sources, ζ has been shown to provide future space-based
GW interferometers with the capability of calibrating their
in-flight noise performance in the presence of a strong
astrophysical GW background [22].
Expressions for ζ that could exactly cancel the laser

noise in the case of a rigidly rotating array were found in
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the literature [8,9]. They have also been shown to
adequately suppress the laser noise below the secondary
noise sources in the case of slowing varying armlengths.
Here we show that it is possible to derive a family of ζ-like
combinations that exactly cancel the laser noise up to linear
velocity terms by taking specific linear combinations of
(α2, β2, γ2, X2). Let us first write the following general
linear combination of ðα2; β2; γ2; X2Þ,

ζ2 ≡ λXX2 þ λαα2 þ λββ2 þ λγγ2; ð5:7Þ

where the four polynomials of the delay operators, (λX, λα,
λβ, λγ) are at the moment unknown.
Since (α2, β2, γ2, X2) cancel exactly the laser noises, it is

clear that any linear combination of them [such as that
given in Eq. (5.7)] is also laser noise-free. Since (α2, β2, γ2,
X2) now only contain the GW signal and the secondary
noises, we can replace in Eq. (5.7) their expressions in
terms of the first-generation TDI combinations as given by
Eqs. (4.5) and (4.12). This results in the following
expression for ζGW;N

2 :

ζGW;N
2 ¼ λXðI −D3D30D20D2ÞXGW;N

þ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞ
× ½λααGW;N þ λββ

GW;N þ λγγ
GW;N�: ð5:8Þ

Since ζGW;N ¼ D1XGW;N −D2D3α
GW;N þD2β

GW;N þ
D3γ

GW;N, it is then easy to identify the following expres-
sions for the polynomials (λX, λα, λβ, λγ) that guarantee ζ2
to have the same sensitivity as ζ:

λX ¼ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞD1;

λα ¼ −ðI −D3D30D20D2ÞD2D3;

λβ ¼ ðI −D3D30D20D2ÞD2;

λγ ¼ ðI −D3D30D20D2ÞD3: ð5:9Þ

Note the above four polynomials are not unique as they are
defined up to an arbitrary polynomial multiplying them. If
we now take the above expressions for (λX, λα, λβ, λγ) and
substitute them into Eq. (5.7) we obtain the final expres-
sions for ζ2 and ζGW;N

2 :

ζ2¼ðD3D1D2D20D10D30−IÞðD20D10D30−IÞD1X2

þðI−D3D30D20D2Þ½−D2D3α2þD2β2þD3γ2�; ð5:10Þ

ζGW;N
2 ¼ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞ

× ðI −D3D30D20D2ÞζGW;N: ð5:11Þ

As expected from the criterion adopted for identifying the
four polynomials (λX, λα, λβ, λγ), Eq. (5.11) explicitly
shows that ζ2 has the same sensitivity to GWs as ζ. This is

because the Fourier components of the GW signals and the
secondary noises in ζ2 have the same transfer function to
the GW signal and the secondary noises in ζ.

C. The monitor E2 combinations

The monitor is a TDI combination that relies on only four
Doppler measurements. As the name suggests, it corre-
sponds to an array configuration inwhich one spacecraft can
only receive laser light from the other two. To derive the
second-generation TDI expression for such configuration,
we first remind the reader that the first-generation TDI
combination E is related to the basis elements (α, β, γ, X)
through the relationship [3]

E¼α−D1ζ¼α−D1ðD1X−D2D3αþD2βþD3γÞ
¼−D1D1XþðIþD1D2D3Þα−D1D2β−D1D3γ; ð5:12Þ

where we have substituted the expression for ζ in terms of
ðα; β; γ; XÞ given in Eq. (2.3).
Let us now write again the following general linear

combination of (α2, β2, γ2, X2)

E2 ≡ μXX2 þ μαα2 þ μββ2 þ μγγ2; ð5:13Þ

where the four polynomials of the delay operators
ðμX; μα; μβ; μγÞ are unknown.
Since ðα2; β2; γ2; X2Þ cancel exactly the laser noises, any

linear combination of them [such as that given in
Eq. (5.13)] is also laser noise-free. Since ðα2; β2; γ2; X2Þ
now only contain the GW signal and the secondary noises,
we can replace in Eq. (5.13) their expressions in terms of
the first-generation TDI combinations as given by
Eqs. (4.5) and (4.12). This results in the following
expression for EGW;N

2 :

EGW;N
2 ¼ μXðI −D3D30D20D2ÞXGW;N

þ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞ
× ½μααGW;N þ μββ

GW;N þ μγγ
GW;N�: ð5:14Þ

Since EGW;N ¼ −D1D1XGW;N þ ðI þD1D2D3ÞαGW;N −
D1D2β

GW;N −D1D3γ
GW;N, it is then easy to derive the

following expressions for ðμX; μα; μβ; μγÞ that guarantee E2

to have the same sensitivity as E:

μX ¼ −ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞD1D1;

μα ¼ ðI −D3D30D20D2ÞðI þD1D2D3Þ;
μβ ¼ −ðI −D3D30D20D2ÞD1D2;

μγ ¼ −ðI −D3D30D20D2ÞD1D3: ð5:15Þ

As in the case of ζ2, the four polynomials identifying E2

are also not unique as they are defined up to an arbitrary
polynomial multiplying them. In other words, there exist an
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infinite number of monitor combinations in the second-
generation TDI space.
If we now substitute the expressions above for the

polynomials ðμX; μα; μβ; μγÞ into Eq. (5.13), we obtain
the following expressions for E2 and EGW;N

2 :

E2 ¼ −ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞD1D1X2

þ ðI −D3D30D20D2Þ½ðI þD1D2D3Þα2
−D1D2β2 −D1D3γ2�; ð5:16Þ

EGW;N
2 ¼ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞ

× ðI −D3D30D20D2ÞEGW;N: ð5:17Þ

D. The beacon P2 combinations

The beacon, like the monitor, is a TDI combination that
relies on only four Doppler measurements. As the name
suggests, it corresponds to an array configuration in which
one spacecraft can only transmit laser light to the other two
but is unable to receive from them. As in the case of the
monitor combination, we first observe that the first-
generation TDI combination P is related to the basis
elements (α, β, γ, X) through the following relationship [3]:

P ¼ ζ −D1α

¼ D1X −D2D3αþD2β þD3γ −D1α

¼ D1X − ðD1 þD2D3ÞαþD2β þD3γ; ð5:18Þ

where again we have taken advantage of the expression for
ζ in terms of ðα; β; γ; XÞ given in Eq. (2.3).
As was done in the previous subsection, we first take a

linear combination of ðα2; β2; γ2; X2Þ with four unknown
polynomials (νX, να, νβ, νγ) of the delay operators

P2 ≡ νXX2 þ ναα2 þ νββ2 þ νγγ2: ð5:19Þ

Since ðα2; β2; γ2; X2Þ cancel exactly the laser noises, any
linear combination of them [such as that given by
Eq. (5.19)] is also laser noise-free. This implies that we
can replace in Eq. (5.19) their expressions in terms of the
first-generation TDI combinations as given by Eqs. (4.5)
and (4.12). This results in the following expression for
PGW;N
2 :

PGW;N
2 ¼ νXðI −D3D30D20D2ÞXGW;N

þ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞ
× ½νααGW;N þ νββ

GW;N þ νγγ
GW;N�: ð5:20Þ

Since PGW;N¼D1XGW;N−ðD1þD2D3ÞαGW;NþD2β
GW;Nþ

D3γ
GW;N, it is then easy to recognize the following

expressions for ðνX; να; νβ; νγÞ guarantee P2 to have the
same sensitivity as P:

νX ¼ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞD1;

να ¼ −ðI −D3D30D20D2ÞðD1 þD2D3Þ;
νβ ¼ ðI −D3D30D20D2ÞD2;

νγ ¼ ðI −D3D30D20D2ÞD3: ð5:21Þ

The above four polynomials are again defined up to an
arbitrary polynomial multiplying them. By substituting
them into Eq. (5.19) we finally get

P2¼ðD3D1D2D20D10D30 −IÞðD20D10D30 −IÞD1X2

þðI−D3D30D20D2Þ½−ðD1þD2D3Þα2þD2β2þD3γ2�;
ð5:22Þ

and

PGW;N
2 ¼ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞ

× ðI −D3D30D20D2ÞPGW;N: ð5:23Þ

E. The relay U2 combinations

The relay is a TDI combination corresponding to an
array configuration in which one spacecraft can only
receive along one arm and transmit along the other. As
in the case of the previous two four-link combinations, we
first observe that the first-generation TDI combination U is
related to the basis elements (α, β, γ, X) through the
following relationship [3]:

U ¼ D1γ − β: ð5:24Þ

Given the above form of U, the most general expression for
U2 will be determined by the following linear combination
of β2 and γ2:

U2 ≡ δββ2 þ δγγ2; ð5:25Þ

where δβ, δγ are unknown polynomials of the delay
operators. Since (β2, γ2) cancel exactly the laser noises,
any linear combination of them [such as that given
by Eq. (5.25)] is also laser noise-free. This implies that
we can replace in Eq. (5.25) their expressions in terms of
the first-generation TDI combinations as given by
Eq. (4.12). This results in the following expression for
UGW;N

2 :

UGW;N
2 ¼ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞ

× ½δββGW;N þ δγγ
GW;N�: ð5:26Þ

SECOND-GENERATION TIME-DELAY INTERFEROMETRY PHYS. REV. D 107, 082001 (2023)

082001-9



Since UGW;N ¼ −βGW;N þD1γ
GW;N, it is easy to identify

the following expressions for (δβ, δγ) guarantee U2 to have
the same sensitivity of U:

δβ ¼ −1;

δγ ¼ D1: ð5:27Þ

The above two polynomials are defined up to an arbitrary
polynomial multiplying them. The resulting expressions for
U2 and UGW;N

2 are therefore equal to

U2 ¼ −β2 þD1γ2 ð5:28Þ

and

UGW;N
2 ¼ ðD3D1D2D20D10D30 − IÞðD20D10D30 − IÞUGW;N:

ð5:29Þ

VI. CONCLUSIONS

We revisited the second-generation TDI space, i.e. the set
of TDI combinations canceling the laser noise up to terms
linear in the time derivatives of the interspacecraft light
travel times. We identified analytic expressions for the
Sagnac (α2, β2, γ2) and unequal-arm Michelson combina-
tion X2 that exactly cancel the laser noises up to linear
terms in the interspacecraft velocities. Our derivation relies
on an iterative procedure we named “lifting.” This tech-
nique entails making two synthesized laser beams go
around the array along clockwise and counterclockwise
paths a number of times before interfering back at the
transmitting spacecraft. We found that, to cancel the laser

phase fluctuations (up to linear velocity terms) in the
Sagnac combination α, the two synthesized beams need
to make at least three loops around the array before
interfering back at the transmitting spacecraft. By relying
on the expressions of the lifted Sagnac ðα2; β2; γ2Þ and
unequal-arm Michelson combinations, X2, we were able to
show that any element of the first-generation TDI space can
be lifted up. In particular wewere able to identify an infinite
number of expressions for ζ-like, monitor, beacon, and
relay combinations. This was done by taking linear
combinations of ðα2; β2; γ2; X2Þ with polynomials of the
delay operators that result in TDI combinations whose
sensitivities equal those of their first-generation counter-
parts. In this regard we can say of having identified a
mapping between the first- and the second-generation TDI
spaces by which any element of the first-generation TDI
space is lifted up.
We believe the iterative procedure so effectively

employed in this article may be extended to cancel the
laser frequency noise at higher orders. We will follow up on
these ideas in our forthcoming investigation.
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