

EGU23-16699, updated on 24 Apr 2023 https://doi.org/10.5194/egusphere-egu23-16699 EGU General Assembly 2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Direct measurements can help to understand the changes in ecosystems: Amazonia a case study

Luciana Gatti^{1,2}, Camilla Cunha¹, Luciano Marani¹, Henrique Cassol¹, Cassiano Messias¹, Egidio Arai¹, Luciana Soler¹, Claudio Almeida¹, Alberto Setzer¹, Lucas Domingues², Scott Denning³, John Miller⁴, Manuel Gloor⁵, Caio Correia¹, Stephane Crispim¹, Sergio Correa⁶, Raiane Neves¹, Francine Silva¹, and Guilherme Machado¹

¹INPE, CCST, São Jose dos Campos, Brazil (lvgatti@gmail.com)

²Nuclear and Energy Research Institute (IPEN), São Paulo, Brazil.

³Colorado State University; CO, USA

⁴Global Monitoring Laboratory, National Oceanic and Atmospheric Administration (NOAA), Boulder, CO, USA

⁵University of Leeds, School of Geography, Leeds, UK;

⁶Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil;

The Amazon is the largest rainforest on the planet and was an important carbon sink. The carbon sink is declining, mainly due to an increase in tree mortality as a result of deforestation, degradation, and local, regional and global climate change. In addition, deforestation and forest degradation reduce the ability of the Amazon rainforest to act as a carbon sink. CO₂ Vertical Profiles (VP) were performed from 2010 to 2021 (805), using small aircraft at 4 locations: SAN (2.86° S 54.95° W), ALF (8.80° S 56.75° W), RBA (9.38° S 67.62° W) and from 2010 to 2012 on TAB (5.96° S 70.06° W) and since 2013 at TEF (3.39° S 65.55° W). The question if Amazonia is a carbon source or sink is an important role in the global carbon budget. Amazonia vertical profile annual mean derived from CO₂ annual mean vertical profiles (VP subtracted from the background concentration: ΔVP) from the 4 studied sites can help to clarify this important question. The sampling frequency was approximately 2 times per month in each location, from 4.4 km height (a.s.l.) until near surface 300 m (a.s.l.), and usually carried out between 12:00 and 13:00 local time. The CO_2 samples were analyzed at INPE's LaGEE (Greenhouse Gas Laboratory), in São Jose dos Campos. This result is a direct indication of the regional source in the global carbon budget, indeed there are well-known discrepancies from many studies using different methodologies (bottom-up, top-down techniques, and a wide variety of global, regional, and inversion models). In this study, we will present Carbon flux from the time series for the 4 sites and Amazon Carbon balance using the column budget technique, and analyze the correlations with various parameters related to climate, vegetation, deforestation, and biomass burning.