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São José dos Campos, 12227-010 São Paulo, Brazil

(Received 21 October 2022; accepted 13 December 2022; published 30 December 2022)

In this work, we explore how modified gravity theories based on the nonmetricity scalar, known as fðQÞ
gravity, affect the propagation of gravitational waves from inspiraling of binary systems. We discuss
forecast constraints on fðQÞ gravity by considering standard siren events in two contexts: (i) simulated
sources of gravitational waves as black hole–neutron star binary systems, emitting in the frequency band of
the third-generation detector represented by the Einstein Telescope (ET); (ii) three standard siren mock
catalogs based on the merger of massive black hole binaries that are expected to be observed in the
operating frequency band of the Laser Interferometer Space Antenna (LISA). We find that, within the ET
sensitivity, in combination with supernova and cosmic chronometer data, it will be possible to test
deviations from general relativity at < 3% accuracy in the redshift range 0 < z < 5, while the main free
parameter of the theory is globally constrained at 1.6% accuracy within the same range. In light of LISA’s
forecasts, combined to supernova and cosmic chronometer data, in the best scenario, we find that the main
free parameter of the theory will be constrained at 1.6% accuracy up to high redshifts. Therefore, we
conclude that future gravitational wave observations by ETand LISAwill provide a unique way to test, with
good accuracy, the nature of gravity up to very large cosmic distances.

DOI: 10.1103/PhysRevD.106.124053

I. INTRODUCTION

One of the greatest challenges in contemporary physics
is to provide a suitable description of the nature of the dark
sector of the Universe, namely, dark matter and dark energy
(DE) [1–3], which constitute together approximately
95% of the energy density of the cosmic content. The
simplest possible explanation for DE, namely, the cosmo-
logical constant Λ, relates its nature to the vacuum energy
density. Because of its great success to explain the majority
of the observations, the Lambda cold dark matter (ΛCDM)
model is considered the standard model of cosmology.
Nonetheless, the cosmological constant leads to serious
problems from the theoretical point of view [4–6]. As an
alternative to the Λ term, one can consider extra degrees of
freedom with a gravitational origin, i.e., arising from a
gravitational modification that possesses general relativity
(GR) as a particular limit. The modified gravity (MG)
scenarios, in fact, may allow for extensions of the ΛCDM
model and can drive the accelerated expansion of the
Universe at late times, as well as explain various

observations at the cosmological and astrophysical levels
(see Refs. [7–10] for a review).
From an observational perspective, looking for new

astrophysical sources, through a direct manifestation of
gravitational effects, can provide rich physical information
about the nature of gravity, which should play a key role to
probe new (or rule out) MG or DE models. Gravitational
wave (GW) astronomy provides an unprecedented oppor-
tunity to test gravitational physics in that direction.
Currently, more than 90 coalescing compact binary events
have already been observed during the three running stages
of the LIGO/VIRGO mission [11]. One of the most
promising prospects is the observation of standard siren
(SS) events [12,13]. The latter are the GW analog of the
astronomical standard candles and might be a powerful tool
in view of constraining cosmological parameters through
the information encoded in the luminosity distance pro-
vided by these events. To date, one event has been observed
through a binary neutron star merger at z ¼ 0.01, namely,
the GW170817 event [14,15]. Preliminary cosmological
information and the consequences of this observation are
important to the understanding of our Universe locally.
These observations were used to measure the Hubble
constant [16] and also to impose strong constraints on
MG/DE scenarios (see Ref. [17] for a review).
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On the other hand, the detectability rate of the SS events
from the current LIGO/VIRGO sensitivity is expected to be
very low, as well as difficult to reach large cosmic distances.
The central importance of GWastronomy is testified by the
plans for the construction of several GW observatories in
the future, such as the underground-based interferometers
Einstein Telescope (ET) [18] and Cosmic Explorer [19],
and space-based interferometers such as LISA [20],
DECIGO [21], and TianQin [22], among others, to observe
GWs in the most diverse frequency bands. The implications
of cosmological studies using the SShavemotivated focused
studies on the nature of DE, MG, dark matter, and several
other fundamental questions in modern cosmology [23–50].
Looking through the geometrical character of gravity, it

is pertinent to explore which equivalent manners gravity
can be geometrized in. In fact, besides curvature, the other
two fundamental quantities associated with the connection
of a metric space are torsion and nonmetricity [51]. Among
several viable candidates for MG theories, it has been
proposed to construct scenarios where the gravitational
interaction is mediated by nonmetricity, while curvature
and torsion are vanishing [51–54]. These classes of models
are known as fðQÞ gravity, where Q is the nonmetricity
scalar. This approach could be important to describe gravity
at a fundamental level because gravity can be dealt with as a
gauge theory not requiring a priori the validity of the
equivalence principle. In the fðQÞ gravity context, the main
dynamical equations in presence of matter have been
derived in [55]. From this study, modifications in the
gravity sector emerge with respect to the ΛCDM model.
Furthermore, observational constraints on the fðQÞ gravity
have been performed using different observational probes
for several parametrizations of the fðQÞ function [56–69].
The aim of this work is to obtain forecast constraints on

fðQÞ gravity in light of three mock SS catalogs based on
the merger of massive black hole binaries that are expected
to be observed in the LISA operating frequency band, as
well as from a mock SS catalog from black hole–neutron
star mergers within the sensitivity predicted for the ET
mission. In [61], a study was carried out to constrain the
fðQÞ gravity through SS events. However, the present work
differs from the previous one in two main aspects. First, we
here estimate deviations from GR by means of a different
parametrization. Our choice, indeed, is based on a robust
model-independent approach that minimizes possible a pri-
ori biases toward a particular fðQÞ cosmological scenario.
As a result, contrary to the aforementioned work, we do not
assume a ΛCDM background evolution. Second, with
regards to the ET perspective, we here use a mock catalog
of black hole–neutron star mergers, from which we
simulate detections up to redshift z ¼ 5.
This paper is structured as follows. In Sec. II, we

introduce the fðQÞ gravity framework and specify our
theoretical setup. In Sec. III, we present the datasets and the
methodology used in our study. In Sec. IV, we show the
results of our analysis and discuss the main physical

consequences of our findings. Finally, in Sec. V, we outline
our final considerations and perspectives.

II. f ðQÞ GRAVITY AND COSMOLOGY

A fruitful way to obtain new hints on cosmic acceleration
and, consequently, test the underlying gravitational theory,
is to consider a different geometrical approach with respect
to the Riemannian formulation. Specifically, in the present
study, we shall explore the features of nonmetricity at the
cosmological level.
For this purpose, we recall the most general form of the

affine connection [70],

Γλ
μν ¼ fλμνg þ Kλ

μν þ Lλ
μν; ð1Þ

where fλμνg is the Levi-Civita connection,

fλμνg≡ 1

2
gλβð∂μgβν þ ∂νgβμ − ∂βgμνÞ; ð2Þ

with gμν being the metric tensor. The last two terms of
Eq. (1) are the contortion and disformation tensors,
respectively,

Kλ
μν ≡ 1

2
gλβðT μβν þ T νβμ þ T βμνÞ; ð3Þ

Lλ
μν ≡ 1

2
gλβð−Qμβν −Qνβμ þQβμνÞ; ð4Þ

where T λ
μν ≡ Γλ

μν − Γλ
νμ is the torsion tensor, while the

nonmetricity tensor reads

Qρμν ≡∇ρgμν ¼ ∂ρgμν − Γβ
ρμgβν − Γβ

ρνgμβ: ð5Þ

Therefore, the metric-affine spacetime is specified
by the choice of the connection. In our study, we assume
that geometry is provided by nonmetricity, whereas
torsion and curvature are both zero. Two independent
traces can be associated with the nonmetricity tensor
depending on the contraction order, namely, Qμ ¼ Qμ

α
α

and Q̃μ ¼ Qα
μα. It follows that the nonmetricity scalar can

be expressed as [71]

Q¼−
1

4
QαβμQαβμþ1

2
QαβμQβμαþ1

4
QαQα−

1

2
QαQ̃

α: ð6Þ

As for the cases of curvature-free or torsionless scenar-
ios, one may consider theories of gravity that are based on a
generic function of the nonmetricity scalar, the so-called
fðQÞ theories, whose action is given by1

1Here, we use units such that c ¼ 1 ¼ 8πG.
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
fðQÞ þ Lm

�
; ð7Þ

where Lm is the matter field Lagrangian, and g is the
determinant of gμν. Notice that, up to a total derivative, the
above action and the Einstein-Hilbert one are equivalent for
fðQÞ ¼ Q. Thus, GR is recovered as soon as the con-
nections are globally vanishing and the nonmetricity tensor
can be written in terms of the metric only [51,72].
Varying action (7) with respect to the metric provides us

with the field equations [55],

2ffiffiffiffiffiffi−gp ∇α

� ffiffiffiffiffiffi
−g

p
gβνfQ

�
−
1

2
Lαμβ−

1

8
ðgαμQβþgαβQμÞ

þ1

4
gμβðQα− Q̃αÞ

��
þfQ

�
−
1

2
Lμαβ−

1

8
ðgμαQβþgμβQαÞ

þ1

4
gαβðQμ− Q̃μÞ

�
Qναβþ

1

2
δμνf¼Tμ

ν; ð8Þ

where Tμν ¼ − 2ffiffiffiffi−gp δ
ffiffiffiffi−gp

Lm

δgμν is the energy-momentum tensor,
and we have defined fQ ≡ ∂f

∂Q.
In order to analyze the cosmological features of fðQÞ

gravity, let us consider the Friedman-Lemaître-Robertson-
Walker (FLRW) metric with zero spatial curvature,

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð9Þ

where aðtÞ is the scale factor as a function of the cosmic
time t. To avoid trivial solutions that cannot go beyond GR,
we assume the “coincident gauge” [73,74], where the
tangent space and spacetime share the same origin.
Under this choice, the modified Friedmann equations take
the form

6H2fQ −
1

2
f ¼ ρ; ð10Þ

ð12H2fQQ þ fQÞ _H ¼ −
1

2
ðρþ pÞ; ð11Þ

where p and ρ represent, respectively, the total pressure
and density of the cosmic fluid. Furthermore, the non-
metricity scalar is related to the Hubble parameter,
H ≡ _a=a, through [59]

Q ¼ 6H2: ð12Þ

As we focus our analysis on the late stages of the
Universe’s evolution, we can safely neglect the radiation
contribution. Also, we assume that the cosmic fluid is
totally made of pressureless matter, thus p ¼ 0 and

ρ ¼ 3H2
0Ωm0ð1þ zÞ3; ð13Þ

where z≡ a−1 − 1 is the redshift, and H0 and Ωm0 are the
Hubble constant and the current matter density parameter,
respectively.2

To work out the cosmic dynamics in fðQÞ gravity, one
needs to specify the nonmetricity function. A common
approach is to assume a priori the form of fðQÞ and then
check for possible deviations from GR arising from the
resulting dynamics. However, such a procedure may be
affected by misleading conclusions due to possible biases
inherent in the chosen model.
Nevertheless, the aforementioned issues might be alle-

viated by resorting to the cosmographic method [75–78],
which has proven to be a powerful tool when applied to DE/
MG scenarios [79–83]. In the specific case of fðQÞ gravity,
we shall adopt the results obtained in the previous work
[59], where the functional form of fðQÞ has been recon-
structed by means of a kinematic model-independent
analysis on the background low-redshift measurements.
Thus, in the present study, we consider the function

fðQÞ ¼ αþ βQn; ð14Þ

where α, β, and n are treated as free parameters. In addition
to being suggested directly from observations, this test
function allows for a simple test of the deviations from
GR (ΛCDM), which is recovered for β ¼ 1 ¼ n and
α ¼ 0 (α > 0).
The extra free parameters with respect to the ΛCDM

model affect also the cosmological evolution at the per-
turbation level, as attested by the effective gravitational
constant, Geff ≡G=fQ [55]. In particular, taking into
account Eqs. (12) and (14), we find

GeffðzÞ
G

¼ ð6H2ðzÞÞ1−n
nβ

; ð15Þ

for β ≠ 0 ≠ n. The effect induced by the effective gravi-
tational constant on the GW propagation is measured
through the quantity [84]

dGWðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GeffðzÞ
Geffð0Þ

s
dLðzÞ; ð16Þ

where dLðzÞ is the background luminosity distance,

dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ : ð17Þ

Thus, in view of Eq. (15), from Eq. (16) we obtain

dGWðzÞ ¼ EðzÞn−1dLðzÞ; ð18Þ

2In our notation, the subscript “0” indicates the present-day
values of the cosmological parameters, namely, at z ¼ 0.
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where EðzÞ≡HðzÞ=H0 is the dimensionless Hubble
parameter. It is worth stressing that, as soon as n¼ 1¼ β,
Geff ¼ G as in GR, and the GW propagation recovers the
predictions of the ΛCDM model, characterized by

EΛCDMðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þ zÞ3 þ 1 − Ωm0

q
: ð19Þ

III. DATASETS AND METHODOLOGY

In light of the main scope of this work, we generate mock
data inspired by the possibility of future observations of SS
events. In particular, we are here interested in SS events to
be detected by two different observatories, namely, ET and
LISA. We provide a brief description of our samples in the
following.

A. Einstein Telescope

The ET is a third-generation ground-based detector,
covering the frequency range 1–104 Hz. The ET is
expected to be 10 times more sensitive than the current
advanced ground-based detectors. We refer the reader to
[18] for a presentation of the scientific objectives of the ET
observatory. The ET conceptual design study predicts an
order of 103–107 detections per year. After 10 years of
operation, the ET is expected to detect ∼1000 GW SS
events from the black hole–neutron star mergers up to
z ¼ 5 [29].
Our goal, thus, is to generate a luminosity distance

catalog matching the expected sensitivity of the ET after
10 years of operation. In particular, we generate 1000
triples [zi, dLðziÞ, σi], with zi being the redshift of the GW
source, dL the measured luminosity distance, and σi the
uncertainty on the latter. There are three aspects to take into
consideration in the mock data generation process: the
fiducial cosmological model enters both in zi (or more
precisely into the redshift distribution of expected sources)
and dL; the expected type of GW sources enter in zi; finally,
the instrumental and physical specifications enter in σi. In
our case, we fix the fiducial model to the Planck-ΛCDM
baseline parameters [85]. The ET sensitivity we make use
of in this work corresponds to the ET-D curve model,3

which includes the most relevant fundamental noise con-
tributions [86].
The whole methodology to generate the mock data is

already very well known and widely used in the literature.
The features of this methodology are well described in
previous works, such as [26,29]. We display in Fig. 1 the
ET simulated dLðzÞ measurements along with the corre-
sponding ΛCDM best fit (see Table I).

B. LISA

LISA will operate in the millihertz band with the
objective to be an all-sky GW survey. Science with
LISA brings opportunities and challenges in terms of
complications arising from its motion around Earth.
Basically, LISA can be thought of as two detectors, and
it will be launched in three identical drag-free spacecraft
forming an equilateral triangle, with an arm length of about
2.5 × 106 km [87].
Among astrophysical sources, LISA can reach Galactic

binaries, stellar origin black hole binaries, extreme-mass-
ratio inspirals [88], and massive black hole binaries
(MBHBs). See Ref. [89] for a presentation of the scientific
objectives of the LISA mission. The most probable LISA
sources with electromagnetic counterparts are MBHBs.
In particular, MBHBs are supposed to merge in gas-rich
environments and within the LISA frequency band,
allowing for electromagnetic follow-ups to determine

0 1 2 3 4

0

20

40

60

FIG. 1. Simulated luminosity distance measurements with
relative 1σ uncertainties from the mock ET catalog. The black
curve refers to the best-fitted ΛCDM model.

TABLE I. Summary of the MCMC results at the 68% (95%) CL
for the ΛCDM model.

Dataset H0 Ωm0

ET 67.69þ0.63ð1.26Þ
−0.63ð1.23Þ 0.311þ0.018ð0.036Þ

−0.017ð0.034Þ
LISA (delay) 64.42þ1.38ð2.71Þ

−1.41ð2.91Þ 0.386þ0.035ð0.080Þ
−0.042ð0.075Þ

LISA (no delay) 67.54þ0.67ð1.34Þ
−0.68ð1.32Þ 0.317þ0.017ð0.035Þ

−0.017ð0.033Þ
LISA (pop III) 67.39þ0.94ð1.83Þ

−0.93ð1.84Þ 0.306þ0.023ð0.046Þ
−0.023ð0.042Þ

SNþ CC 69.15þ1.95ð3.78Þ
−1.94ð3.82Þ 0.296þ0.027ð0.058Þ

−0.030ð0.066Þ
SNþ CCþ ET 67.85þ0.55ð1.09Þ

−0.55ð1.10Þ 0.307þ0.015ð0.030Þ
−0.015ð0.028Þ

SNþ CCþ LISA (delay) 66.48þ0.96ð1.90Þ
−0.95ð1.93Þ 0.333þ0.021ð0.043Þ

−0.022ð0.040Þ
SNþCCþLISA (no delay) 67.77þ0.62ð1.21Þ

−0.62ð1.22Þ 0.311þ0.015ð0.030Þ
−0.015ð0.028Þ

SNþCCþLISA (pop III) 67.64þ0.77ð1.51Þ
−0.77ð1.54Þ 0.301þ0.017ð0.036Þ

−0.017ð0.033Þ3https://www.et-gw.eu/index.php/etsensitivities.
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their z. Theoretical models and simulations can predict
the redshift distribution and merger rate of MBHBs.
Depending on the initial conditions for black hole for-
mation at high z, there are two scenarios, namely, the light
seed and the heavy seed ones. In the light seed scenario,
massive black holes are assumed to grow from the remnants
of population III (pop III) stars forming at z ∈ ½15; 20�. In
the heavy seed scenario, on the other hand, massive black
holes are assumed to form from the collapse of protoga-
lactic disks. The result of the scenarios produces three
categories of population models named pop III, delay, and
no delay [90]. Our catalog is based on the model presented
in [90,91]. The redshift distribution of MBHBs SS of our
mock sample is displayed in Figs. 1 and 2 in [30].
In this case, we adopt the LISA sensitivity provided

in [92], where the full sensitivity curve4 is constructed by
combining the Galactic and the instrumental noises for
a 4-year mission lifetime. Similar to the ET simulation, in
the LISA mock generation data we fix the fiducial model to
the Planck-ΛCDM baseline parameters [85]. In Fig. 2, we
show the simulated measurements of dLðzÞ from all LISA
catalogs with the corresponding ΛCDM best fits (see
Table I).

IV. RESULTS AND DISCUSSION

In this section, we present and discuss the results
obtained from our numerical analysis of cosmological
observations. In particular, to complement the GW SS
simulated events from the ET and LISA experiments, we
considered the low-redshift measurements of type Ia super-
novae (SN) and cosmic chronometers (CC). We refer to the
Appendix for the details on SN and CC datasets.

A. Monte Carlo analysis

We test deviations from GR and the ΛCDM model by
using the Markov chain Monte Carlo (MCMC) method to
analyze the fðQÞ model under consideration in this
work. In order to estimate observational constraints on
the free parameters, we apply the Metropolis-Hastings
algorithm [93], where the likelihood function for the
GW SS mock dataset is built under the form

LGW ∝ exp

�
−
1

2

XN
i¼1

�
dðobsÞGW;i − dðthÞGWðziÞ

σdGW;i

�2�
; ð20Þ

where N is the size of the sample of each SS catalog. In the

above equation, dðobsÞGW;i are the simulated events with their

associated uncertainties σdGW;i, while dðthÞGWðziÞ is the theo-
retical prediction on each ith event.
In a similar way, we build the likelihood functions for the

SN and CC data [see Eqs. (A3) and (A5)]. As the latter are
independent of the GW measurements, they may be
combined with each other to obtain tighter constraints
on the model parameters.
To compare theoretical predictions and observational

evidence, one needs to solve the modified Friedmann
equations and find the cosmological dynamics. In our
case, in view of Eqs. (12)–(14), Eq. (11) becomes

6n−1βnð2n − 1Þðzþ 1ÞHðzÞ2n−1H0ðzÞ ¼ 3

2
H2

0Ωm0ðzþ 1Þ3;
ð21Þ

where we have used the relation _H ¼ −ð1þ zÞHðzÞH0ðzÞ
to convert the time derivative into the derivative with
respect to the redshift. Thus, solving the first-order differ-
ential equation (21) by means of the initial condition
HðzÞ ¼ H0, we finally obtain

HðzÞ ¼
�
H2n

0 þH2
0½61−nΩm0ððzþ 1Þ3 − 1Þ�

βð2n − 1Þ
� 1

2n

; ð22Þ

for β ≠ 0 and n ≠ 0; 1=2. The above solution can be then
used to find the theoretical predictions for Eq. (18) with the
help of Eq. (17). In the limit for β → 1 and n → 1, we
recover the ΛCDM model as in Eq. (19).
It is worth noticing that Eq. (22) does not involve the

additive constant α of Eq. (14). This fact may be better
understood by expressing the modified Friedmann equa-
tions in light of the model (14). Specifically, from Eq. (10),
with the help of Eqs. (12) and (13), one finds

αþ 6H2
0Ωm0ðzþ 1Þ3 ¼ 6nβð2n − 1ÞH2n; ð23Þ

which, evaluated at the present time, provides

0 2 4 6 8

0

20

40

60

80

FIG. 2. Simulated luminosity distance measurements with
relative 1σ uncertainties from the mock LISA delay (blue), no
delay (orange), and pop III (green) catalogs. The black curves
correspond to the ΛCDM best fits to LISA delay (solid), no delay
(dashed), and pop III (dotted) data.

4https://github.com/eXtremeGravityInstitute/LISA_Sensitivity.
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α ¼ 6nβð2n − 1ÞH2n
0 − 6H2

0Ωm0: ð24Þ

Hence, the constant α does not represent a degree of
freedom of our model, as it can always be expressed in
terms of the other cosmological parameters. The physical
meaning of α is easily revealed in the limit n → 1 and
β → 1, when one obtains H2 ¼ H2

0Ωm0ð1þ zÞ3 þ α=6.
Then, recalling our hypothesis of a flat universe, we
immediately can interpret α as the cosmological constant.
Therefore, the set of free parameters in our fitting

procedure is θ ¼ fH0;Ωm0; β; ng. In particular, the esti-
mates of β and n will quantify the deviations with respect
to GR. In the realization of our MCMC analysis, the
sampling is done by assuming the following uniform priors
over θ5:

H0 ∈ ½50; 100�; ð25aÞ

Ωm0 ∈ ½0; 1�; ð25bÞ

β ∈ ½−10; 0Þ ∪ ð0; 10�; ð25cÞ

n ∈ ½−10; 0Þ ∪ ð0; 1=2Þ ∪ ð1=2; 10�: ð25dÞ

In what follows, we summarize our main results.

B. Observational constraints

Before proceeding to the forecast constraints on possible
deviations from GR, we summarize in Table I the results up
to the 2σ confidence level (CL) from the statistical analyses
of the ΛCDM model. First, we consider individually the
four SS mock samples, namely, the ET sample and the
LISA from the delay, no delay, and pop III sample,
respectively. As expected, given the total sample size
(number of events), the accuracy on the free parameters,
i.e.,H0 andΩm0, is higher from either ETor LISA data with
respect to the SNþ CC measurements. In the latter case,
we find 2.2% accuracy on H0, while 0.9% accuracy from

the ET analysis, and 2.2% from LISA (no delay) analysis.
The analyses using the other LISA sources provide results
with an intermediate accuracy with respect to the latter
cases. Thus, on the one hand, the accuracy on H0 that will
be possible to achieve from SS events and, on the other
hand, the fact that SS are independent of late-time probes
such as SN, CC, and BAO (baryon acoustic oscillations)
and have different systematic errors compared to the latter,
clearly show that SS will be an important complement in
solving the H0 tension in the future.6 Then, combining the
SNþ CC measurements with the SS mock events, we find
that the accuracies on H0 improve up to 0.8% using the ET
forecasts and 0.9% using the LISA (no delay) forecasts.
Thus, the SS events at very large cosmological distances to
be observed in both the ET and LISA band can improve the
current observational constraint in combination with other
simple geometrical measurements. The same results apply
to the Ωm0 parameter (cf. Table I). It is worth noticing that
the results of the LISA (delay) sample are systematically
different from those of the other two scenarios, which are
roughly comparable to each other. In fact, LISA (delay)
provides worse results in terms of accuracy due to the lower
number of detectable SS, as also discussed in [90]. Also, it
is important to comment that the inclusion of high z SS
events, especially when their number density is low, may
induce systematic effects in the cosmological analysis.
The main results concerning the statistical analyses for

the fðQÞ gravity framework under consideration are
summarized in Table II. In this case, we do not report
the results from GWs individually since they are not
predictive enough. In fact, the MCMC constraints for
the fðQÞ model are less stringent due to the presence of
additional free parameters compared to the ΛCDM case.
However, one can see the impact of considering the SS
measurements from the comparison with the results based
on SNþ CC data only. Because of the enlarged parameter
space, the error bars will naturally increase compared to the
ΛCDM model. When considering the SNþ CC joint
analysis, we find 4% accuracy on H0. However, from

TABLE II. Summary of the MCMC results at the 68% (95%) CL for the fðQÞ model under study. For β ¼ n ¼ 1, we recover GR and
the ΛCDM cosmological scenario.

Dataset H0 Ωm0 β n

SNþ CC 68.59þ2.69ð5.18Þ
−2.69ð5.46Þ 0.386þ0.148ð0.260Þ

−0.144ð0.279Þ 1.361þ0.498ð0.752Þ
−0.349ð0.890Þ 0.993þ0.022ð0.044Þ

−0.022ð0.042Þ
SNþ CCþ ET 67.69þ0.63ð1.23Þ

−0.62ð0.21Þ 0.315þ0.150ð0.249Þ
−0.151ð0.246Þ 1.149þ0.568ð0.812Þ

−0.559ð0.811Þ 0.988þ0.016ð0.033Þ
−0.016ð0.031Þ

SNþ CCþ LISA (delay) 66.35þ1.16ð2.26Þ
−1.17ð2.22Þ 0.421þ0.143ð0.263Þ

−0.149ð0.254Þ 1.307þ0.448ð0.731Þ
−0.393ð0.770Þ 0.996þ0.016ð0.033Þ

−0.016ð0.030Þ
SNþ CCþ LISA (no delay) 67.71þ0.67ð1.32Þ

−0.67ð1.30Þ 0.341þ0.116ð0.248Þ
−0.138ð0.230Þ 1.132þ0.387ð0.731Þ

−0.408ð0.713Þ 0.995þ0.015ð0.030Þ
−0.015ð0.029Þ

SNþ CCþ LISA (pop III) 67.20þ0.89ð1.75Þ
−0.88ð1.70Þ 0.386þ0.137ð0.254Þ

−0.137ð0.241Þ 1.453þ0.508ð0.720Þ
−0.334ð0.857Þ 0.982þ0.035ð0.016Þ

−0.018ð0.033Þ

5In this paper, H0 values are expressed in units of km/s/Mpc. 6See discussion in Sec. IX. 7 in [94] and references therein.
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SNþ CCþ ET and SNþ CCþ LISA (no delay) data, we
find 0.9% and 1% accuracy, respectively. Once again, the
analyses using other LISA sources provide intermediary
results to these accuracies. Thus, clearly, we can see that the
addition of SS events will improve considerably the
constraints on H0 in the context of fðQÞ gravity.
Now, it is interesting to turn our attention to the

parameters β and n. In light of SNþ CC data, we note
31% and 2.2% accuracy on β and n, respectively. When
considering the SS events, from CCþ SNþ ET data, we
find 48% and 1.6% accuracy on β and n, respectively. From
SNþ CCþ LISA (no delay), we find 34% and 1.5%
accuracy on β and n, respectively. It is worth remarking
that the parameter space β − n is statistically degenerate,
despite the fact that β − n contours show quite round
shapes. In this regard, we note that the parameter n is
strongly correlated with both H0 and Ωm0 when SNþ CC
are considered, while β is only with Ωm0.
Here, the main parameter quantifying the model effects

is n, which controls the power of gravitational correction
to the GR prediction. We notice that the addition of SS
events from both future experiments can improve the

constraints on the minimal baseline, i.e., on the parameters
Ωm0 and H0. Apart from some statistical fluctuation, the
final constraints on β and n are practically the same.
Figures 3 and 4 show the two-dimensional parameter
regions at 68% and 95% CL and the one-dimensional
posterior distributions for the fðQÞ model as result of the
MCMC analysis of different combinations with SS data.
Our results emerging from the SNþ CC data analysis
indicate no substantial evidence for deviations from GR, as
the values of n are consistent with the unity at the 1σ CL
Furthermore, in the left panel of Fig. 5, we show a

statistical reconstruction at the 1σ CL of the effective
luminosity distance, Eq. (16), under the perspective of
the ET mock sample. We find an estimate of dGW=dL ¼
1.01þ0.03

−0.03 at z ∼ 4.5, with gradually improving precision
toward low z, as expected. This means that future mea-
surements from ET will make it possible to test deviations
from GR, under the fðQÞ gravity framework, at ∼3%
accuracy on dGW=dL ratio. Similarly, in the right panel
Fig. 5, we show the effective luminosity distance from the
best-fit results using the LISA mock data.

FIG. 3. 68% and 95% CL marginalized contours, with posterior distributions, as a result of the MCMC analysis using the ET mock
data.
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FIG. 4. 68% and 95% CL marginalized contours, with posterior distributions, as a result of the MCMC analysis using the LISA
mock data.
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FIG. 5. Effective luminosity distance for the fðQÞ model as a result of the MCMC analysis. Left: the solid blue curve corresponds to
the mean results from SNþ CCþ ET data, while the area between the dotted curves accounts for the relative 1σ uncertainties. Right: the
solid green, orange, and violet curves correspond to the mean results from SNþ CCþ LISA (delay), SNþ CCþ LISA (no delay), and
SNþ CCþ LISA (pop III) data, respectively. The prediction of the ΛCDM paradigm is shown as a black dashed line.
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V. OUTLOOK AND FINAL REMARKS

In this paper, we focused on the fðQÞ theories of gravity
to test possible deviations from GR in light of future GW
detections. Specifically, taking into account the sensitivities
of the ET and LISA experiments, we simulated mock SS
events associated with black hole–neutron star binary
systems and mergers of massive black hole binaries to
probe the GW propagation in a FLRW universe, where
geometry is described by nonmetricity.
Unlike previous approaches to fðQÞ gravity, our pro-

cedure relies on a robust model-independent method that
minimizes possible biases induced by the choice of the
underlying cosmology. For our purposes, we considered a
two-parameter extension of the ΛCDM model, where the
power of the nonmetricity scalar quantifies corrections with
respect to Einstein’s theory. In doing so, we worked out the
cosmic dynamics at the background level, as well as at the
perturbation level in terms of the effective gravitational
constant of the theory.
After describing the methodology to generate mock SS

measurements up to high redshifts from the perspective of
the ET and LISA detectors, we presented the procedure to
compare the observational evidence with the theoretical
predictions. In particular, a Monte Carlo numerical inte-
gration has been applied to constrain the free parameters
of the model under consideration and test deviations with
respect to the standard cosmological scenario. To improve
the accuracy of our results, we complemented the simulated
SS measurements with typical model-independent data at
low redshifts.
Our analysis shows that the inclusion of the SS mea-

surements will considerably reduce the uncertainties on
the H0 estimate. More generally, adding the SS mock data
up to large distances from both the ET and LISA missions
will improve the accuracy of the whole parameter space.
Additionally, our study indicates no statistically significant
deviations with respect to the GR predictions.
Finally, adopting the results emerging from our joint

analyses, we inferred the behavior of the effective lumi-
nosity distance up to very high redshifts. Specifically, when
using the ET mock sample in combination with SN and CC
data, we found that corrections to the standard luminosity
distance could be tested at ∼3% accuracy within the fðQÞ
framework. On the other hand, no deviations bigger than
5% are expected from the LISA perspective when com-
bined with SN and CC measurements.
To conclude, the present study shows that future GW

observations by the ET and LISA missions will offer a
unique tool to test the nature of gravity up to very large
cosmic distances with unprecedented precision.
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APPENDIX: SN AND CC DATASETS

In this appendix, we provide some details of the low-
redshift cosmological observables7 we use to complement
the GW mock data in the statistical analysis on the
fðQÞ model.
The first complementary dataset we employ in our study

is the Pantheon sample [97], composed of 1048 SN Ia in the
redshift range 0.01 < z < 2.3. In this compilation, all the
SN are standardized through the SALT2 light-curve fitter,
in which the distance modulus is modeled as follows [98]:

μ ¼ mB −M þ αx1 − βCþ ΔM þ ΔB; ðA1Þ

wheremb is the B-band apparent magnitude of each SN and
M is its absolute magnitude, while ΔM and ΔB account for
the host-mass galaxy and the distance bias corrections,
respectively. Moreover, x1 and C are the stretch and color
parameters of each SN light curve, respectively, with their
relative coefficients α and β. On the other hand, the distance
modulus predicted by a cosmological model is given as

μðzÞ ¼ 5log10

�
dLðzÞ
1 Mpc

�
þ 25: ðA2Þ

As shown in [99], under the assumption of a flat
universe, one can compress the full SN sample into
a set of cosmological model-independent measurements
of EðzÞ−1. This approach allows us to properly marginalize
over the SN nuisance parameters in the fitting procedure.
Thus, taking into account the correlations among the
E−1ðzÞ measurements, we can write the likelihood function
associated with the SN data as

LSN ∝ exp

�
−
1

2
vTC−1

SNv

�
; ðA3Þ

where v ¼ E−1
obs;i − E−1

th ðziÞ quantifies the difference
between the measured values and the values predicted
by a given cosmological model, and CSN is the covariance
matrix resulting from the correlation matrix given in [99].
The second complementary dataset is built upon the

differential age approach developed in [100], which rep-
resents a model-independent method to characterize the
expansion of the Universe up to z < 2. In this technique,
passively evolving red galaxies are used as cosmic chro-
nometers to measure the age difference ðdtÞ of the Universe

7See also [95,96].
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at two close redshifts ðdzÞ. Thus, one can estimate the
Hubble parameter as

HðzÞ ¼ −
1

ð1þ zÞ
dz
dt

: ðA4Þ

In our analysis, we use the compilation of HðzÞ uncorre-
lated measurements collected in [101] (see references
therein). We can then write the likelihood function relative
to the CC data as

LCC ∝ exp

�
−
1

2

XN
i¼1

�
Hobs;i −HthðziÞ

σH;i

�
2
�
; ðA5Þ

where Hobs;i are the observed measurements with their
relative uncertainties σH;i, while HthðziÞ are the theoretical
values of the Hubble parameter obtained from using a
specific cosmological model.
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