
Some Applications
of Formal Methods

07 December 2022

Valdivino Alexandre de Santiago Júnior

Coordenação de Pesquisa Aplicada e Desenvolvimento Tecnológico (COPDT)
Instituto Nacional de Pesquisas Espaciais (INPE)

São José dos Campos, SP, Brazil

25th Brazilian Symposium on Formal Methods (SBMF 2022)

About INPE
Headquarters:

São José dos Campos/SP, Brazil.

About INPE
❖ Science and technology for the outer space and the

Earth system, for the benefit of the Brazil and the world.

Remote Sensing

Space Engineering

Weather and Climate

About INPE
❖ Seven post-graduate programs.

About INPE
❖ Seven post-graduate programs.

In This Talk…
❖ Some applications of formal methods (FM).

Source: https://nasa.tumblr.com/post/189210016829/from-discovering-the-secrets-of-the-universe-to

https://nasa.tumblr.com/post/189210016829/from-discovering-the-secrets-of-the-universe-to
https://nasa.tumblr.com/post/189210016829/from-discovering-the-secrets-of-the-universe-to

Application 1

Mitigation problem of single event upsets (SEUs) in
field-programmable gate arrays (FPGAs)

Single Event Effect (SEE)

❖ “SEEs occur when atmospheric radiation, comprising
high energy particles, collide with specific locations on
semiconductor devices contained in aircraft systems.
Memory devices, microprocessors and FPGAs are most
sensitive to SEE”. [FAA 2016]

SEE

Thus, SEEs affect AEROSPACE systems!

SEUs in SRAM FPGAs
❖ SEU is a type of SEE.

❖ An SEU causes a change of state in a storage cell
(memory devices, latches, sequential logic, …). Bit-flip!

❖ Hence, SRAM FPGAs are susceptible to SEUs.

SEUs in SRAM FPGAs
❖ Traditional approaches: usually costly (design and

implementation of techniques in FPGAs, …).

❖ Thus, one interesting path:

❖ Obtaining the results in the initial stage of the project;

❖ No risk to damage the devices (FPGAs);

❖ Model-driven development (MDD).

Objective

❖ To investigate the feasibility, in the context of space
applications, of probabilistic model checking to
determine what would be, among a set of solutions, the
best technique for mitigating SEU on SRAM FPGAs.
[Pereira, Santiago Júnior and Manea 2017][Pereira,
2018].

Triple Modular Redundancy (TMR)

Scrubbing
❖ Rewrites part of the memory. Correct the fault rather

than masking it.

❖ Blind: defines when original data are copied. ΔT

Hamming Code
❖ Error-correction code. Detects and corrects faults.

❖ Makes use of redundant bits.

Determining the SEU rates
❖ Mean Time Between Failures (MTBF).

❖ Cosmic Ray Effects on Microelectronics (CREME)

❖ CREME96: phenomenological models to predict SEE rates.

Determining the SEU rates
❖ CREME96: add info regarding the orbit of the satellite,

type of radiation, …

❖ Example: CBERS-4A.

❖ Mean orbital altitude: 628.614 km.

❖ Inclination: 97.8963 degrees.

❖ Apogee, perigee, …

Determining the SEU rates
❖ Example: CBERS-4A (heavy ions; SEEs/bit/second).

Probabilistic Model Checking
❖ Continuous-Time Markov Chain (CTMC).

❖ Continuous Stochastic Logic (CSL).

❖ PRISM model checker.

Case Studies
❖ Both cases: FPGA Xilinx Virtex-5.

❖ First case study: High Elliptical Orbit [Hoque 2016].

❖ Second case study: CBERS-4A.

Developing the CTMC Models
❖ CREME96 (SEEs/bit/second).

❖ Fault (Event) rate: .λ = 1/MTBF

Developing the CTMC Models
❖ Scrubbing:

❖ Based on [Hoque 2016].

❖ But 10 Adders (A) e 10 Multipliers (M). Higher!

❖ 1, 4, and 9 days.ΔT =

Developing the CTMC Models
❖ TMR:

❖ 2 4-bit inputs.

❖ Individual voting modules.

❖ Hamming code:

❖ 4 bits of data and 3 bits of parity.

❖ Encoding and decoding modules.

×

Developing the CTMC Models
❖ TMR in PRISM.

Kogge-Stone adder in VHDL
❖

Source: https://github.com/NatsuDrag9/Kogge-Stone-Adder/blob/master/Carry_Tree_Adder.vhd

https://github.com/NatsuDrag9/Kogge-Stone-Adder/blob/master/Carry_Tree_Adder.vhd
https://github.com/NatsuDrag9/Kogge-Stone-Adder/blob/master/Carry_Tree_Adder.vhd

CSL Extended With Rewards
❖

Results: Availability
❖ CBERS-4A (PUP=Indirect Ionisation). Mission time: 650

days.

❖ TMR.
Most of the time: degraded or failure.

Results: Availability
❖ CBERS-4A (PUP). Mission time: 650 days.

❖ Hamming Code. Most of the time: operational.

Results: Availability
❖ CBERS-4A (PUP). Mission time: 650 days.

❖ 2A 2M [Hoque 2016]; 10A 10M (ours).

❖ Scrubbing. 1 day.ΔT =

2A 2M and 10A 10M:
operational (good).

Results: Availability
❖ CBERS-4A (PUP). Mission time: 650 days.

❖ 2A 2M [Hoque 2016]; 10A 10M (ours).

❖ Scrubbing. 9 days.ΔT =

2A 2M still good.
But, in 10A 10M, most
of the time degraded.

Results: Availability
❖ CBERS-4A (PUP). Steady-state probability:

❖ TMR: 0.4701; Hamming Code: 0.0046;

❖ Scrubbing.

10A 10M: better as
 increases.ΔT

Conclusions: Availability
❖ Probabilistic model checking: consistent results

considering all evaluated techniques and systems.

❖ TMR: most of the mission time in the failure mode.

❖ Hamming code: high availability.

❖ For scrubbing: highest affected more the smaller
systems.

❖ For larger systems, it might be ok a highest .

ΔT

ΔT

Results: Reliability
❖ CBERS-4A (PUP, HUP = Direct Ionisation). Mission

time: 650 days.

❖ TMR and Hamming Code. TMR: really bad!.

Results: Reliability
❖ CBERS-4A (PUP). Mission time: 650 days.

❖ C1: 2A 2M [Hoque, 2016]; C2: 10A 10M (ours).

❖ Scrubbing. 1 day.ΔT = C = Cover Rate =
P(detect_ fault | fault_exists)

Results: Reliability
❖ CBERS-4A (PUP). Mission time: 650 days.

❖ C1: 2A 2M [Hoque, 2016]; C2: 10A 10M (ours).

❖ Scrubbing. 9 days.ΔT = Reliability: highly
affected by .ΔT

Overall Conclusions
❖ Using a formal method approach to complement a

traditional one can worth the value.

❖ TMR: bad performance.

❖ Hamming Code: promising results.

❖ Scrubbing:

❖ Reliability related to .

❖ Safety more affected by the cover rate.

ΔT

Application 2

Automated unit test case generation based on C++
source code.

Software Testing
❖ Sometimes, we just have the source code (no docs).

❖ Unit testing level: widely used in industry. Lots of
frameworks and tools available.

Software Testing
❖ TIOBE index: November/2022.

Source: https://www.tiobe.com/tiobe-index/

Software Testing
❖ TIOBE index: November/2022.

Source: https://www.tiobe.com/tiobe-index/

Objective

❖ To contribute to the improvement of quality of software
products created in the C++ programming language, via
automated test case generation and FM [Eras, Santiago
Júnior and Santos 2019][Eras 2020].

The Singularity Method
❖ Automated unit test case generation based on C++ source code.

❖ Reads the source code and per forms success ive
transformations: Finite State Machine (FSM) Control-Flow
Graph (CFG) NuSMV model checker (functional model
checking).

❖ Trap properties: counterexamples as test case/data.

The Singularity Method

The Generator Module
❖ Translates the generated metadata (FSM) into an SMV

model (NuSMV model checker).

❖ Trap properties: variation of the HiMoST method
[Santiago Júnior and Silva 2017].

❖ They force counterexample generation.

❖ Formalised in Computation Tree Logic (CTL).

Trap Properties
❖ 1.) Negation of the events.

❖ 2.) Negation of the boolean transitions.

❖ 3.) Negation of the non-boolean transitions.

Tool

Source: https://github.com/eduardoeras/Singularity

https://github.com/eduardoeras/Singularity
https://github.com/eduardoeras/Singularity

Case Studies
❖ C++ Geoinformatics applications (mature; non-trivial).

Classes evaluated: 1,063.Classes evaluated: 24.

Results: TerraLib
❖ Metrics:

❖ State coverage: #states of the model that appear in the
counterexamples (test cases/data);

❖ Transition coverage: #transitions of the model that
appear in the counterexamples (test cases/data).

Results: TerraLib
❖ state coverage X #states/class.

Up to 100 states/class:
good state coverage.

Results: TerraLib
❖ transition coverage X #state transitions/class.

Up to 100 state transitions/
class: good transition

coverage.

Results: TerraLib
❖ state coverage X #generated properties/class.

Up to 100 properties/class:
good state coverage.

Results: TerraLib
❖ transition coverage X #generated properties/class.

Up to 100 properties/class:
good transition coverage.

Generating a large number of
properties does not imply a
good coverage of the model

(source code).

Results: TerraLib
❖ #valid counterexamples X #all counterexamples/class.

Up to 100 counterexamples/
class: good.

Valid counterexample:
states.

> 2

Results: TerraLib
❖ #invalid counterexamples X #case 3 properties/class.

Case 3: generated the highest
number of properties.

Invalid counterexample:
states.

≤ 2

Overall Conclusions
❖ The Singularity method: “effective” counterexamples (test

cases) up to 100 states/class and 100 transitions/class.

❖ Generating a large number of properties does not imply a
good coverage of the model (source code).

❖ Lots of invalid counterexamples particularly due to case 3.
Need to carefully choose the properties templates.

❖ We tried some properties templates based on the
specification patterns. But, in general, no good results
considering our case studies.

Application 3

Assessment of the safety of navigation systems for
aircrafts.

System Safety Assessment
❖ Safety assessment: mandatory for certification of aircraft

complying with Part 25 airworthiness standards.

❖ Airworthiness: measure of an aircraft's suitability
for safe flight.

Source: https://www.embraercommercialaviation.com/commercial-jets/e195/

System Safety Assessment
❖ Industry guidelines include FAA AC 25.1309-1A (1B) and

SAE ARP-4761.

❖ Several methods for compliance demonstration analysis are
predicted:

❖ Failure Mode and Effect Analysis (FMEA);

❖ Failure Hazard Analysis (FHA);

❖ Fault Tree Analysis (FTA), …

System Safety Assessment
❖ Alternative to the traditional FTA: probabilistic models

(predicted in the SAE ARP-4761).

❖ Advantages of probabilisitic model checking over FTA:

❖ Expressing a temporal sequence of events or state-
dependent behaviour of systems;

❖ Possible automation of certain parts of the safety
assessment activity.

Objective

❖ Investigating the contribution of FM (particularly
probabilistic model checking) to the activity of assessing
the safety of aircraft navigation systems, providing an
alternative to complement the study carried out by
using classical but non-formal methods [Pasa and
Santiago Júnior, 2021].

Failure Conditions and Hazard Classifications

Failure Conditions and Hazard Classifications

System safety assessment for navigation systems of a generic
commercial transport category aircraft.

Failure Conditions and Hazard Classifications

Failure conditions.

Failure Conditions and Hazard Classifications

Operations.

Each failure condition is applicable to a certain type of operation, mostly
related to approach procedures (navigation leading to landing).

Failure Conditions and Hazard Classifications

Operation Enroute/Terminal Area/Non-precision Approach (LNAV or RNP 0.3):
The “Enroute/Terminal Area/Non-precision Approach” function is essentially

the capacity for the aircraft to determine its lateral position (latitude and
longitude) with the appropriate level of position uncertainty. Lateral Navigation (LNAV) is

a mode of operation where the aircraft lateral trajectory is typically controlled by the
Flight Management System (FMS). Required Navigation Performance (RNP)

0.3 is a similar mode, but it has a stricter position uncertainty limit of 0.3 nautical miles.

High-level System Architecture

Flight Phases and Exposure Times

Flight Phases and Exposure Times
Critical phases.

CTMC Models

CTMC Models
Flight phase state transitions (PRISM).

CTMC Models

All systems/subsystems start as healthy and may present one out of two possible
failure modes: they may become failed (annunciated fault) or may present

erroneous information (non-annunciated fault).

CTMC Models

CTMC Models

Safety Properties
❖ CSL.

❖ Two types of failure conditions:

❖ Loss of navigation;

❖ Misleading information (the systems indications are
erroneous to a point where the pilots could be
mislead, which may be a more severe failure
condition).

Safety Properties
❖ Loss of navigation safety property for the LNAV/RNP

0.3 approach.

❖ Misleading information safety property for the LNAV/
RNP 0.3 approach.

Safety Properties
❖ Loss of navigation safety property for the LNAV/RNP

0.3 approach.

❖ Misleading information safety property for the LNAV/
RNP 0.3 approach.

The bounds of the probabilities depend on the flight duration time ().T

Safety Properties
❖ Loss of navigation safety property for the GLS

approach.

❖ Misleading information safety property for the GLS
approach.

Results

Results

The maximum acceptable probability.

Results
❖ Extending flight duration: from h to h.

Still Ok!
T = 1.5 T = 18

Overall Conclusions
❖ Probabilistic model checking: feasible for the activity of

assessing the safety of aircraft navigation systems.

❖ But, we must not neglect the classical methods (FTA,
…).

Final Remarks
❖ FM (probabilistic and functional model checking):

successfully used for non-trivial applications.

❖ In the current stage, FM should be used as a
complementary approach, aiding non-formal/classical
solutions.

Final Remarks
❖ Scalability and lack of transparency still seem to be big

issues in the practical settings related to FM.

❖ In practical terms, be formal but not “so” formal!

References
❖ [FAA 2016]. FEDERAL AVIATION ADMINISTRATION (FAA). Single Event

Effects Mitigation Techniques Report. 2016.

❖ [Hoque 2016]. HOQUE, KHAZA ANUARUL. Early dependability analysis of
FPGA-based space applications using formal verification. PhD Thesis,
Concordia University, Montréal, Québec, Canada, 2016.

❖ [Pereira, Santiago Júnior and Manea 2017]. PEREIRA, VINY CESAR;
SANTIAGO JÚNIOR, VALDIVINO ALEXANDRE DE; MANEA, SILVIO. SEU
Mitigation for SRAM FPGAs: A comparison via Probabilistic Model Checking.
In: XVIII Workshop de Testes e Tolerância a Falhas (WTF), XXXV Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), 2017,
Belém, PA. Anais do XVIII Workshop de Testes e Tolerância a Falhas - WTF.
Porto Alegre, RS: Sociedade Brasileira de Computação (SBC), 2017, p. 56-69.

References
❖ [Pereira 2018]. PEREIRA, VINY CESAR. Model

Checking Probabilístico para Apoiar a Mitigação de
Evento de Falta Única em Field Programmable Gate
Arrays (FPGAs). 2018. Master in Applied Computing,
Instituto Nacional de Pesquisas Espaciais (INPE).

References
❖ [Eras, Santiago Júnior and Santos 2019]. ERAS, EDUARDO ROHDE;

SANTIAGO JÚNIOR, VALDIVINO ALEXANDRE DE; SANTOS,
LUCIANA BRASIL REBELO DOS. Singularity: A methodology for
automatic unit test data generation for C++ applications based on
Model Checking counterexamples. In: Proceedings of the IV Brazilian
Symposium on Systematic and Automated Software Testing (SAST 19),
2019, Salvador, BA, p. 72-79.

❖ [Eras 2020]. ERAS, EDUARDO ROHDE. Singularity: Um Método para
Geração Automática de Casos de Testes Unitários baseado em
Contraexemplos de Verificador de Modelos para Aplicações em C++.
2020. Master in Applied Computing, Instituto Nacional de Pesquisas
Espaciais (INPE).

References
❖ [Santiago Júnior and Silva 2017]. SANTIAGO JÚNIOR, VALDIVINO

ALEXANDRE DE; SILVA, FELIPE ELIAS COSTA DA. From Statecharts
into Model Checking: A Hierarchy-based Translation and Specification
Patterns Properties to Generate Test Cases. In: Proceedings of the 2nd
Brazilian Symposium on Systematic and Automated Software Testing
(SAST 2017). ACM, New York, NY, USA, Article 2, 10 pages.

❖ PASA, GABRIEL DUARTE; SANTIAGO JÚNIOR, VALDIVINO
ALEXANDRE DE. Aircraft Navigation Systems Safety Assessment via
Probabilistic Model Checking. In: Gervasi, O. et al. (eds),
Computational Science and Its Applications - ICCSA 2021. Lecture
Notes in Computer Science, vol 12952, p. 465-480, Springer, Cham.

Thank You!

E-mail: valdivino.santiago@inpe.br

Web: http://www.lac.inpe.br/~valdivino/

GitHub: https://github.com/vsantjr

http://www.lac.inpe.br/~valdivino/
https://github.com/vsantjr
http://www.lac.inpe.br/~valdivino/
https://github.com/vsantjr

