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Abstract. Facing the climate change and anthropogenic activities that have been discharging a
large proportion of carbon dioxide CO2) into the atmosphere, wetlands stand out as an important
sink for CO2 that is fixed in plant biomass and peatlands. Therefore, quantifying and monitoring
wetland biomass is of great importance to preserve carbon stocks. This study aims to explore the
potential of multispectral bands and vegetation indices (VIs) derived from PlanetScope and
Sentinel-2A sensors to estimate of aboveground biomass (AGB) and organic carbon in AGB
(Corg) in the emergent vegetation of a palustrine wetland. We use correlation analysis and linear
regression models to examine the relationships between spectral and biophysical variables and
verify the best predictor spectral variables for AGB and Corg. Scirpus giganteus vegetation was
sampled in the Banhado Grande wetland, in southern Brazil. The VIs were best correlated and
preferred as predictor variables. The most accurate model used data from the PlanetScope sensor
and VI of photochemical reflectance. Both sensors showed potential for pixel-based estimates of
AGB and Corg due to their low RMSE values and their contribution as predictors of biophysical
variables, which can contribute to opening new avenues in scientific research focusing on the
management, monitoring, and conservation of marshes and your ecosystem service of carbon
sink. © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.16
.034516]
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1 Introduction

Coastal wetland ecosystems, such as mangroves, marshes, and saltmarshes, provide a variety of
ecosystem services. Among these, we highlight the capture of atmospheric carbon dioxide (CO2)
by plant biomass, and its storage as organic matter in substrates and soils.1–3 As a natural carbon
sink, this function makes them critical for the mitigation of natural and anthropogenic climate
change in front of exponential increases in atmospheric CO2 in recent decades.

4,5 This ecosystem
service of coastal wetlands has been referred to in the literature as blue carbon.6–9 These
studies contribute to the management of wetlands and conservation of their biogeochemical
processes.4,10

Assessing carbon storage in the biomass of vegetated ecosystems is critical for carbon offset
initiatives, such as reducing emissions from deforestation and degradation (REDD+) and for
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facilitating a low-carbon economy.11,12 This assessment is also important for blue carbon
research and for the conservation of coastal wetlands and their ecosystem services.13 Furthermore,
these biophysical variables are primary indicators of wetlands physiological status and your
monitoring should be performed regularly to assess the health of the wetland ecosystem.14

These measurements are usually obtained on site, by sampling a small area, based on repli-
cated squares, to estimate aboveground biomass (AGB). Dry biomass values are converted into
organic carbon (Corg) storage using a generalized conversion factor and multiplied by the veg-
etation extent to calculate total aboveground carbon storage.15–17 This is a suitable approach in
situations where the structural form of the vegetation is more homogeneous, such as extensive
monospecific stands,18 but it is less precise when there is high species diversity with variable
distribution.19

Due to difficulties in accessing wetlands, many studies seek to develop innovative and effec-
tive methodologies, based on integration of geographical information system and remote sensing
(RS) techniques to map, classify, monitor,20 and analyzing substantial biophysical parameters in
the context of regional and global scales.21,22

Compared with traditional methods, RS technology allows for a quick, accurate, and less
destructive estimation of the vegetation biomass and carbon of wetlands, as in situ data are still
needed to calibrate models. Wetland biomass studies have mainly focused on AGB and carbon
sinks, using optical remote sensing, synthetic aperture radar (SAR) or a combination thereof, and
light detection and ranging (LiDAR). These are the three main methods for such efforts.17,23

Other sensors, from either airborne platforms or an unmanned aerial vehicle (UAV) or a high
spatial resolution, have been used to map and estimate AGB,24,25 have an imaging system that
can potentially replace traditional aerial surveys, and offer better techniques for monitoring blue
carbon habitats. Datasets produced by RS-based UAV with high spatial resolution of 2 to 5 cm
can detect changes in blue carbon species compositions and can be mapped in detailed 2D and
3D.26 High spatial resolution RS images and LiDAR data are often restricted by their limited
spatial and temporal coverage and, because of this, are most commonly used for studies in small-
scale wetlands.27

Among the available sensor systems, the optical systems are the most used so far to model
AGB and Corg in wetlands, especially those of medium spatial resolution (range of 4 to
30 m).17,28 Optical RS method uses the spectral characteristics of plants that are mostly related
to electromagnetic radiation (ER) absorption by plant pigments in the visible region of the spec-
trum (0.4 to 0.72 mn), ER reflectance in the near infrared (NIR) region (0.72 to 1.1 nm) as a
function of cell structure, and absorption by water in the mid infrared region (1.1 to 3.2 nm).29

Applying RS techniques in wetland is more complex than in terrestrial vegetation.
Furthermore, the occurrence of flood pulses introduces greater variability in reflectance values
due to the mixing of plant and water signals. This mixing usually results in a decrease in total
reflected radiation, especially in the near to mid infrared regions, where water absorption is
stronger.30 Red-edge locations transfers may also occur and eventually reduce the effects of
red-edge type vegetation indices (VIs) to detect growing vegetation.31 The degree of soil mois-
ture in wetlands also decreases the intensity of the spectral response and the values of VIs, such
as normalized difference vegetation index (NDVI).32

Indices particularly based on the red and NIR bands are sensitive to the condition of green
leaf vegetation (amount of chlorophyll), the structure of the vegetation and photosynthetically
active radiation. Due to these characteristics, they are often used in wetlands, in studies related to
photosynthesis and related to field data of biophysical variables, such as AGB and Corg,33–35

water balance, and other related processes.36 However, these VIs were established mainly for
terrestrial vegetation.

Among the VIs developed for wetland vegetation, the NDVI adaptations that replace the red
spectral band by the blue spectral band, such as the indices proposed in Ref. 37 stand out. The
authors applied normalized difference aquatic vegetation index (NDAVI) and water adjusted
vegetation index (WAVI) VIs in a large set of hyperspectral and multispectral sensor images,
with spatial resolutions from 2 to 90 m. They concluded that these VIs provided better sepa-
rability characteristics compared to those obtained by ground-based VIs over varied vegetation
types and conditions, and that NDAVI and WAVI values were superior to NDVI and soil modi-
fied vegetation index (SAVI). They also ensure that the integration of these indices and in situ
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data (nutrients, pigments, and biomass) can contribute to a better understanding of vegetation
dynamics in aquatic ecosystems and to management and conservation programs.

RS methods for modeling AGB and Corg make use of in situ data (biomass) to “train” the
algorithm and develop a set of rules or models from the satellite images.38 These models can be
divided into two types, machine learning (ML)-based models and spectral variables (SV)-based
linear regression models. ML-based models often perform better when predicting the AGB of
coastal wetlands compared to linear regression models,23,39 but need a larger number of field
samples to train and validate the models and are more complex to apply. Thus, the difficulty
of acquiring sufficient AGB samples from coastal wetlands is a limiting factor for application of
these models.

However, the linear regression models, with a few field samples and several RS spectral data,
achieve good results and are widely used to estimate AGB and Corg of coastal wetlands. As
checked in Ref. 34 in predicting AGB for the Bohami Rim coastal wetland, China, using a linear
regression model based on multiple data sets (seven independent variables from 23 metrics
derived from Sentinel-1 SAR data and Sentinel-2 images, topography, and climate data), which
obtained a root mean square error (RMSE) and r value of 188.32 g∕m2 and 0.74, respectively.
From the AGB map generated with the model, the authors generated an AGB carbon stock map.

Among the main sensors used in studies of wetland vegetation and estimation of AGB in blue
carbon ecosystems, highlight the Landsat thematic mapper (TM), enhanced thematic mapper
(ETM), and operational land imager (OLI) sensors17,28 as the best option for large scale
AGB and Corg sinks modeling.7,22 Many researchers still prefer medium-resolution satellite
images for measuring AGB over long periods and at large areas.27 Thus, high resolution satellite
data is still under-utilized. More studies are still using high-resolution satellite sensors in map-
ping and estimation of blue carbon multi-species.17

The availability of Earth observation satellites such as the European Space Agency (ESA)
Sentinel series Sentinel-1 (radar) and Sentinel-2 (optic), open access, and operational since 2015
provides opportunities to assess AGB modeling capabilities and carbon stock of palustrine
wetlands, achieving good results, with R2 ¼ 0.63 and an RMSE of 169.68 g∕m240 and in
herbaceous wetlands with an accuracy of 75.4%.41

Sentinel-2 is a terrestrial monitoring constellation of two identical satellites (2A and 2B) with
new spectral capabilities and a five day revisit time. It carries optical sensors in the visible and
infrared ranges, for a total of 13 spectral bands with 10-, 20-, and 60-m spatial resolution.42

It is known as the first commercial satellite with a red edge band in addition to the visible and
infrared bands. Around the same time, images from the PlanetScope sensor, launched in 2014,
begin to be explored in wetlands. The PlanetScope sensor, a CubeSat developed by Planet Labs
Inc. (San Francisco, California), has fewer bands than the Sentinel sensor (blue, green, red, and
infrared) but has 3-m spatial resolution and daily revisits.43

With this new moderate-resolution satellite systems, the estimation of biophysical data can be
obtained by improved sensors, with shorter revisiting time. The efficiency of multispectral bands
and VIs derived from PlanetScope and Sentinel–2 sensors was separately evaluated in Ref. 44 to
predicting mangrove biomass and generated prediction models through conventional linear regres-
sion and multivariate regression. Higher coefficient of determination (R2) values were obtained
using multispectral band predictors for Sentinel-2 (R2 ¼ 0.89) and Planetscope (R2 ¼ 0.80).

NDVI images derived from PlanetScope were tested in Ref. 35 to be reliable proxies for
temporal variations of AGB and carbon content in a saltmarsh ecosystem in Jervis Bay
National Park. The authors found a strong correlation (r ¼ 0.78; p < 0.001) between the above-
ground carbon content extracted from a map created using the ArborCam image and the NDVI
extracted from PlanetScope image.

To date, the number of studies that have explored the relationship and prediction of AGB and
Corg in wetlands using the PlanetScope sensor is much lower than those using the Sentinel-2
sensor. For ecosystems with predominantly emergent vegetation such as marsh, saltmarsh, or
palustrine wetlands, this number is even smaller. This demonstrates the need and gaps that still
exist to explore the spectral properties of both sensors and their relationship with this biophysical
variables explicit in these ecosystems.

Moreover, so far, no previous studies have compared the performance of these satellite data
for emerging wetland vegetation, using prediction models developed from the same on-site
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collected data, with emphasis on the common bands and VIs that can be derived from these
systems. Thus, the aim of this study is to explore the potential of multispectral bands and
VIs derived from PlanetScope and Sentinel-2A sensors as predictors of AGB and Corg in the
emergent vegetation of a palustrine wetland.

The relations between AGB and Corg and the SV of the sensors are addressed as from cor-
relation analysis. Predictive models were performed from the SV best correlated with the bio-
physical parameters using simple and multivariate linear regression algorithms. The accuracy of
the best models was validated with sample data obtained in the experimental units. Moreover,
this study contributes with the provision of the most relevant bands and VIs of the Sentinel-2 and
PlanetScope satellite images to obtain optimal accuracy in the estimation of AGB and carbon
sinks in a palustrine wetland in southern Brazil.

2 Materials and Methods

2.1 Study Area

The study area is located in the Banhado Grande (BG) wetland, between the municipalities of
Glorinha, Santo Antônio da Patrulha and Viamão (29°57′S; 50°41′W), east of the state of Rio
Grande do Sul (Fig. 1). BG is a palustrine environment integrated with the Banhado Grande
Environmental Protection Area (EPABG) for sustainable use, comprising marsh areas, flood
plains, and rice fields that become connected in periods of large flooding pulses.45

Fig. 1 Study area and sample sites: (a) location of BG and EPABG in Rio Grande do Sul; (b) white
dots indicating sample sites in BG; and (c) simplified projection image of sample sites.
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In the vegetation cover of the experimental area, aquatic macrophytes predominate, compris-
ing the emerging species Scirpus giganteus, with the most representative area and coverage in
monodominance in the wetland.46,47 It occurs in areas with a presence of active peat bogs,48,49

extending for ∼1507 ha.47

The study area is located in the geomorphological region of the Inner Coastal Plain, in a flat
area with altimetry of up to 20 m. The lithology is predominantly sedimentary environments with
heterogeneous peat, interconnected by floodplain deposits composed of silt-clay sand.50 The
location is characterized by a humid subtropical climate, with no defined dry and rainy season.
Rainfall ranges from 1700 to 1800 mm per year, distributed across 100 to 120 days of rain. The
mean annual temperature varies between 17°C and 20°C.45,51

2.2 Field Data Collection

Biomass samples were collected at nine sites throughout one annual cycle in 2018, at the end of
the summer (March 14), winter (August 17), and spring (November 22) seasons. At each site,
three sample locations were randomly selected; in total, 27 biomass samples were collected.
These sites were selected because they are accessible, in addition to contemplating an extensive
area with monodominance of Scirpus giganteus.

The sampling schemewas designed so that each sample sites corresponds to a transect similar
to a 20 m by 20 m Sentinel pixel. The sample sites were fixed with stakes, spaced at least 40 m
apart, aligned in the north-south direction, positioned with Global Positioning System (GPS)
equipment Etrex Legend model, with a margin of error of 3 m. The sample sites were positioned
in large areas with monospecific predominance of Scirpus giganteus [Fig. 2(a)] so that the
collection of reflectance data in the pixels of the images did not occur outside the areas with
the desired plants, due to possible errors in GPS positioning and of the sensors.

Collections were carried out according to the guidelines shown in Refs. 16 and 52. Only areas
with monodominance of Scirpus giganteus were sampled [Fig. 2(b)]. A 50 cm × 50 cm quadrat
(0.25 m2) was placed over the plants and plant matter was clipped to the soil surface. The plants
were bagged and returned to the laboratory where samples were dried in an oven at 60°C for 72 h
or until a constant weight was reached to obtain the dry biomass. The material was weighed on
a precision scale to obtain the dry weight expressed in grams per m².

Corg concentration was obtained with the Walkley Black wet combustion method.53 This
method shows the organic carbon content (%) in 100 g of dry weight of biomass. The conversion
of dry biomass weight (g∕m2) to Corg stocks (g∕m2) was done based on direct proportion.16,54

In the rest of the text, we will express AGB as the amount of dry biomass (g∕m2) above ground
and Corg as the organic carbon content (g∕m2) present in the AGB.

Descriptive [minimum, maximum, mean, and standard deviation and coefficient of variation
(CV%)] and bivariate (Levene) statistics of the samples were calculated using the statistical pro-
gram SPSS 18.0.55

Fig. 2 Collection of the vegetation Scirpus giganteus: (a) image with point of a sample site and
(b) image after the vegetation cut, date: March 14, 2018, BG – RS. Source: Author.
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2.3 Satellite Data and Image Processing

Sentinel-2A and PlanetScope data were obtained as close as possible to the vegetation collection
dates (Table 1). The Sentinel-2A image was obtained from the Copernicus website,56 in the
13 bands of the multispectral instrument (MSI) sensor, with pre-processing level 1C. Of these,
the visible (blue, green, and red) and NIR bands have a spatial resolution of 10 m; the Red Edge
(RE5, RE6, RE7, and RE8A) and shortwave infrared (SWIR1 and SWIR2) bands have a spatial
resolution of 20 m; and bands 1, 9, and 10 have a spatial resolution of 60 m42 but were not used
since those sensors are designed to detect coastal aerosols, water vapor, and cirrus cloud radi-
ation, respectively.

The images are orthorectified, georeferenced, and radiometrically calibrated, with an atmos-
pheric correction applied to top-of-atmosphere. The images were pre-processed to level 2A to
remove atmospheric effects and convert pixel values to surface reflectance. Pre-processing was
performed using the Sen2Cor tool from ESA,57 on the Sentinel Application Platform (SNAP).
The 2A level bands were stacked and resampled to 10-m spatial resolution using the nearest
method, in the SNAP geometric operation tool.

PlanetScope images were obtained from the Planet Platform,58 Ortho Scene product with four
spectral bands, 3B pre-processing level and 3-m spatial resolution. The Ortho Scene product is
distributed in images with radiance values (Planet Analytic product) and reflectance values
(Planet Surface Reflectance–SR). The SR product is derived from the Planet Analytic product,
the bands are co-acquired, orthorectified, and georeferenced, with radiometric calibration in sur-
face reflectance using the 6S algorithm, V2.1. The SR product ensures consistency in all weather
conditions, minimizing the uncertainty of the spectral response in time and location.43

2.4 Vegetation Indices

About 10 VIs (Table 2) were analyzed as predictor variables for AGB and Corg. Among the VIs,
NDVI is often used to estimate vegetation biomass in wetlands33,67 and in studies related to
photosynthesis, carbon stocks, water balance, and other plant-related processes. This VI is
sensitive to green leaf vegetation and photosynthetically active radiation.68

We use specific VIs for wetland vegetation, such as the NDAVI and the WAVI, which are
versions of the NDVI and EVI adapted for wetlands by replacing the red spectral band by the
blue spectral band.

To estimate Corg, the indices of photochemical reflectance (sPRI) and integrated index
(CO2flux) are sensitive to changes in carotenoid pigments in leaves, indicative of the efficiency
of the use of photosynthetic light or the level of carbon dioxide stored by vegetation. CO2flux is
an integrated index, formed by the PRI and NDVI VIs, which represent the light use efficiency in
photosynthesis and the vigor of photosynthetically active vegetation, respectively.

The use of indexes formulated with red edge bands has been growing since the Sentinel-2 and
RapidEye satellites missions. Studies have addressed the important relationship between reflec-
tance and chlorophyll and other nutrients present in the plant cell structure 69,70 with the foliar
area index71 and plant biomass.44,72 Variations of the NDVI index were tested with combinations
of bands in the visible, red edge, and NIR spectral ranges of Sentinel-2 (VIs Normalized
Difference Red Edge – NDRE1 to NDRE3). Because CO2Flux is an integrated index, a formu-
lation was also tested by replacing NDVI by NDAVI, if NDAVI had higher reflectance values
than NDVI. The VIs are based on the band mathematics of the sensors’ reflectance images and
were calculated in Qgis v 12.3 software.

Table 1 Image acquisition and field data collection dates.

Sensor March/2018 August/2018 November/2018

Sentinel-2A March 11 August 28 November 16

PlanetScope March 13 August 17 November 21

Field data collection March 14 August 17 November 22
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2.5 Statistical Analysis

The spectral values of the bands and VIs were obtained from the pixels corresponding to the
points of each sample site on BG. For the automatic extraction of the values, the point sampling
tool, available in the QGis software, was used. Descriptive (minimum, maximum, mean, error,
and standard deviation) and multivariate (Pearson, simple and multiple linear regression, one-
way ANOVA and Tukey test) statistics were generated. Due to the characteristics of the database
and to strengthen the relationship between data, the AGB and Corg variables were transformed to
a natural logarithm scale for the correlation and regression application.

To identify the bands and VIs with the most significant correlation and contribution as pre-
dictor variables, a correlation matrix of the biophysical data and the values corresponding to
the bands and VIs in each sensor was generated, using Pearson’s correlation coefficient (r),
considering significant p < 0.05 (95% CI). The data were analyzed using the SPSS 22.0 and
RStudio 1.4.1106 programs.

The method used to select the variables for the regression models was the Hierarchical with
block entry, in which predictors are selected by the researcher based on their order of importance
to predict the output variable.73 The hierarchical criterion used was to first insert the variables
with the highest and significant correlation with the output variables (AGB and Corg). After
entering these predictors, predictors with lower correlation are added, following the hierarchical
order.

The models used to estimate AGB and Corg were obtained after a multiple first-order linear
regression, according to the (generic) equation below, Eq. (1)

EQ-TARGET;temp:intralink-;e001;116;201y ¼ ðβ0þ β1:x1þ β2:x2þ βn:xn:Þ þ ϵ; (1)

where y are the biophysical variables to be estimated, x are the independent variables (spectral
bands and VIs), β0, β1, β2, and βn are unknown coefficients and ε is the model’s random error or
residual.

If the multiple regression did not meet the assumptions for a satisfactory regression, a simple
linear regression, Eq. (2), was used

EQ-TARGET;temp:intralink-;e002;116;114y ¼ ðβ0þ β1:x1Þ þ ϵ:ϵ: (2)

For all equations, the necessary assumptions for a satisfactory regression were observed:
p-value, multicollinearity, homogeneity, independence of errors, and normality of residuals.

Table 2 Vegetation indices used in the study.

VIs Equation References

NDVI—normalized difference NDVI ¼ ðρNIR−ρRedÞ
ðρNIRþρRedÞ Rouse et al. 59 and

Tucker60

NDAVI—aquatic by normalized difference NDAVI ¼ ðρNIR−ρBlueÞ
ðρNIRþρBlueÞ Villa et al.61

WAVI—adjusted to water WAVI ¼ ð1þ LÞ ðρNIR−ρBlueÞ
ðρNIRþρBlueþLÞ Villa et al.37

NDRE1—normalized difference red edge 1 NDRE1 ¼ ðρRE6−ρRE5Þ
ðρRE6þρRE5Þ Gitelson and Merzlyak62

NDRE2—normalized difference red edge 2 NDRE2 ¼ ðρRE7−ρRE5Þ
ðρRE7þρRE5Þ Barnes et al.63

NDRE3—normalized difference red edge 3 NDRE3 ¼ ðρRE5−ρRE4Þ
ðρRE5þρRE4Þ Gitelson and Merzlyak62

sPRI—photochemical reflectance PRI ¼ ðρBlue−ρGreenÞ
ðρBlue−ρGreenÞ Gamon et al.64 and

Rahman et al.65

sPRI ¼ ðPRIþ1Þ
2

CO2Flux—integrated CO2Flux ¼ ðNDVIX sPRIÞ Rahman et al.65 and
Baptista66

CO2Flux—integrated NDAVI CO2FluxNDAVI ¼ ðNDAVIX sPRIÞ Author

Note: ρNIR = near infrared reflectance; ρRE = red edge reflectance; ρBlue = blue reflectance; ρGreen = green
reflectance; ρRed = red reflectance. Value assumed by the algorithm: WAVI: L ¼ 0.5.

Belloli et al.: Estimation of aboveground biomass and carbon in palustrine wetland. . .

Journal of Applied Remote Sensing 034516-7 Jul–Sep 2022 • Vol. 16(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 10 Nov 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



The performance of the models was evaluated by the Student’s t-test and ANOVA with a
significance level of p < 0.005, for the best value of the coefficient of determination (R2) and
adjusted coefficient of determination (R2adj:). To assess the accuracy of the models, the param-
eters R2adj and RMSE were used. SPSS determines the value of R2adj using the Wherry
equation.73 In a final step, the highest performing model were applied to the entire study area
to generate AGB and Corg maps in the area covered by Scirpus giganteus in the BGmarsh, using
the Rasterio Python library in Python 3.

3 Results and Discussion

3.1 Analysis of the Correlation between the Biophysical Data and
Spectral Data

The field-measured data and its statistics are shown in Table 3. The mean AGB of the field-
measured ranged between 598.76 g∕m2 � 70.89 (± standard error) and 862.98 g∕m2 � 87.83.
The minimum and maximum values were 340.24 and 1289.28 g∕m2, respectively. During the
three campaign of field collections, no preferential periods of senescence or change in plant
growth (height) were observed. However, new leaves were observed in larger quantities in the
last field collection. Flowering development was not observed either. Based on the homogeneity
of variances test (Levene’s test), no significant differences were observed in the variance of the
AGB and Corg values between the collection dates (df 2, F 3.28, p < 0.005).

The dynamics of Scirpus giganteus biomass was analyzed in Refs. 74 and 75 on an island in
the lower delta of the Paraná River, Argentina. The authors observed high leaf turnover in the

Table 3 Field-measured data and its descriptive statistics.

AGB (g∕m2) Corg (g∕m2 and %)

Sample
sites\Date March 14 August 17 November 22 March 14 August 17 Nov 22

1 686.28 587.08 1076.28 281.37 and 41% 234.832 and 40% 441.27 and 41%

2 556.44 340.24 855.28 233.7 and 42% 142.90 and 42% 350.66 and 41%

3 671.16 433.08 719.2 288.6 and 43% 173.23 and 40% 280.49 and 39%

4 651.04 477.88 1289.28 273.44 and 42% 200.71 and 42% 502.82 and 39%

5 611.68 503,68 649.88 256.90 and 42% 206.51 and 41% 259.95 and 40%

6 443.96 675.08 1105.08 190.9 and 43% 276.78 and 41% 442.03 and 40%

7 636.08 683.28 765.84 267.15 and 42% 293.81 and 43% 336.97 and 44%

8 618.88 1079.08 422.92 266.12 and 43% 442.42 and 41% 173.40 and 41%

9 610.96 609.48 883.08 256.6 and 42% 249.89 and 41% 406.22 and 46%

Min 443.96 340.24 422.92 190.9 and 41% 142.9/ 40% 173.4/ 39%

Max 686.28 1079.08 1289.28 288.6/ 43% 442.42/ 43% 502.82/ 46%

Mean 609.61 598.76 862.98 257.2/ 42% 246.79/ 41% 354.87/ 41%

SE 24.28 70.89 87.83 9.83/ 0.22 29.22/ 0.32 34.84/ 0.77

Std 72.84 212.68 263.5 29.5/ 0.66 87.67/ 0.97 104.52/ 2.33

Reference
values

377 a 500 g∕m274,75 370 a 702 g∕m2 e 40%76,77

Note: SE: standard error, Std: standard deviation.
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Scirpus giganteus area, with new green leaves even during the winter months. They also did not
identify a seasonal trend of senescence or increase in biomass, but they did verify leaf growth
throughout the annual cycle. Mean biomass values ranged between 377 and 500 g∕m2 and were
lower than the mean values found in our study.

As for the Corg content in the biomass, values around 40% were found, with a minimum of
39% and a maximum of 46%. Mean Corg ranged between 246.79� 29.22 and 354.87 g∕m2 �
34.84. In research studies on blue carbon, the most prevalent method for estimating organic
carbon is burning the dry biomass samples. Among the factors for conversion of biomass into
blue carbon used in geospatial-based studies, 50% is the factor frequently adopted for mangrove
habitats17 and for marshes values between 34%76 and 48%.77 In general, they are balanced at
40% of the dry biomass weight for emerging vegetation,54,78,79 similar to the values verified for
Scirpus giganteus in our study.

The relations between AGB and Corg and the SV of the sensors are shown in Fig. 3 and
Table 4, as from correlations analysis. Note that the variables AGB and Corg were strongly
correlated (r ¼ 0.99) since the Corg amount derives from a value that is proportional to the
AGB weight. This reflected a similar correlation for both variables in relation to the image bands
and VIs evaluated.

When comparing the visible and NIR spectral bands, it was verified that the bands that
showed the best and more significant correlation between the biophysical and spectral variations
in one sensor were not the same bands observed in the other, but in both the NIR band obtained
significant correlation (p < 0.05). PlanetScope’s NIR and Blue bands showed significant and the
highest correlations (NIR ¼ 0.60; 0.61 and blue ¼ −0.50; −0.51; p < 0.05) while the lowest
correlation occurred with the green band. The same results were reported in Ref. 44 who showed
that the NIR band was the most effective, for both Planetscope (r ¼ 0.44) and RapidEye
(r ¼ 0.25), in predicting mangrove biomass while the green band had the lowest correlation.

For the Sentinel-2A data, the red edge bands (RE6 and RE8) stood out with best and
significant r values for AGB and Corg, respectively (RE6 ¼ 0.48; 0.50 and RE8 ¼ 0.46;
0.48; p < 0.05). The blue and red bands resulted in the lowest r values (r ¼ 0.07 and 0.04).

The inverse correlation with the blue band of the PlanetScope sensor and the no significant
correlations in the blue and red bands of the Sentinel-2A sensor are due to the higher absorption
of radiation by vegetation pigments (chlorophyll, carotenoids, and xanthophyll) in these regions
of the spectrum since absorption increases proportionally with the content of these pigments.29

They indicate photosynthetic efficiency or the rate of carbon dioxide used and stored by the
vegetation.64,65 Radiation absorption is proportional to the increase in AGB in this region of
the spectrum.80

Fig. 3 Pearson correlation coefficient matrix between spectral bands and biophysical variables in
each sensor. (a) PlanetScope sensor and (b) Sentinel-2A sensor. AGB: aboveground biomass;
Corg: organic carbon; red: band corresponding to red in the visible spectrum; NIR: band corre-
sponding to near infrared; RE: bands corresponding to the red edge band; and SWIR: band
corresponding to shortwave infrared.
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An inverse spectral response occurs in the NIR region, where reflectance increases with
increasing AGB. This inversion occurs due to the significant correlation of the NIR bands
of the two sensors, followed by the red edge bands. The red edge bands also reflect the chloro-
phyll content related to the vigor of photosynthetically active vegetation.70,81,82

The red edge bands B6, B7, B8, and B8A were strongly correlated with Grassland AGB in
the Lake Shengjin wetland, China, being the most important ones for biomass prediction models
compared to other Sentinel bands, as shown in Ref. 72 The red edge bands are effective for
monitoring vegetation and can both quantify AGB and map plant communities in wetlands.83

Consequently, the VIs generated from the bands with more significant correlation also
achieved the best correlation coefficient among the VIs. Figure 4 and Table 5 present the cor-
relation between the VIs and biophysical variables. For the PlanetScope sensor, the sPRI VIs
showed the best and more significant correlation for AGB and Corg, r ¼ 0.66 and 0.68;
p < 0.05, followed by CO2FluxNDAVI, r ¼ 0.61; 0.62; p < 0.05.

Fig. 4 Pearson correlation coefficient matrix between the vegetation indices and biophysical var-
iables for each sensor: (a) PlanetScope sensor and (b) Sentinel-2A sensor. AGB: aboveground
biomass and Corg: organic carbon.

Table 4 Pearson Correlation coefficient and p-values for AGB and Corg with spectral bands.

PlanetScope sensor Sentinel-2 sensor

AGB Corg AGB Corg

Bands r p r p r p r p

BLUE −0.50 0.011 −0.51 0.009 0.07 0.737 0.07 0.742

GREEN −0.27 0.207 −0.28 0.182 0.33 0.105 0.35 0.085

RED −0.36 0.092 −0.35 0.083 −0.04 0.848 −0.06 0.786

NIR 0.60 0.002 0.61 0.001 0.45 0.022 0.47 0.018

RE 5 — — — — 0.21 0.317 0.24 0.244

RE 6 — — — — 0.48 0.015 0.50 0.011

RE 7 — — — — 0.43 0.033 0.46 0.022

RE 8A — — — — 0.46 0.021 0.48 0.015

SWIR 11 — — — — 0.42 0.036 0.41 0.044

SWIR 12 — — — — 0.22 0.299 0.19 0.354

Note: p-value < 0.05 is significant.
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For the Sentinel-2A sensor, only the CO2Flux VI showed significant correlation with bio-
physical variables, r ¼ 0.66; 0.65; p < 0.05, followed by the CO2FluxNDAVI index with no
significant correlation, r ¼ 0.30 and 0.33. Correlations with the other indices achieved r values
lower than 0.30.

The VIs formed with the Sentinel-2A Red Edge bands showed no significant correlations and
were therefore not entered into the correlation matrix. The highest correlation was seen with the
NDRE4 index formulated with the RE5 and NIR bands, r ¼ 0.30 and 0.32, for AGB and Corg.
A higher correlation between the set of NDREs generated and the biophysical variables was
expected since good correlations and the potential of these indices as predictive variables for
wetland biomass,39,44 and leaf area index are verified in different crops.71,84 Changes in the posi-
tion of the red edge band can occur in flood events, which could reduce the effectiveness of
NDRE indices in RS applications.85 However, images with the occurrence of floods or with
high rainfall levels close to the date of capture of the scenes were not used.

NDAVI and WAVI showed r values greater than NDVI for both sensors. A similar result
was found in Ref. 37 where the NDAVI and WAVI performed better for differentiating wetland
vegetation, when compared to NDVI. This result supports the hypothesis that NDAVI can
be associated with biophysical data from vegetation and used to monitor its dynamics. The
substitution of NDVI by NDAVI in the VIs CO2Flux NDAVI reached a higher correlation for
the PlanetScope sensor data.

The sPRI has considerable potential for mapping photosynthetic fluxes in large landscapes,
in compliance with Ref. 65 The authors found a strong coefficient of determination, R2 ¼ 0.78,
between the sPRI and carbon flux data. The CO2Flux VI was evaluated in the Ref. 86 to check
the loss of carbon sequestration by vegetation before and after a fire and in regrowth. The authors
verified that vegetated areas have a high CO2Flux because the plants retain more carbon dioxide,
whereas the burnt areas have a low CO2Flux due to the release of carbon dioxide and because
they lose part of the vegetation by burning.

The VIs CO2flux and CO2fluxNDAVI showed significant correlation in both sensors.
However, the extracted values were not directly comparable between sensors, as well as for most
of the VIs applied. Table 6 gives the statistics extracted in the sample site points, describing the
dynamic range of the extracted values of the spectral indices common to both sensors.

The NDVI index for both sensors proved to be more sensitive to biomass variations, with
a range of 0.29 and 0.40 between maximum and minimum values, respectively, followed by
NDAVI for the PlanetScope sensor and WAVI for the Sentinel-2 sensor. The VIs showed similar
behavior because the mean values observed were very close between sensors. However, the
values of coefficient of variation (CV%), values, in majority, point to greater heterogeneity
in the spectral values of Sentinel-2. The CV% measures the percentage dispersion of the data
around the mean of the observed values; it is given by the percentage ratio between the standard
deviation (Std) and the mean.

Table 5 Pearson Correlation coefficient and p-values for AGB and Corg with VIs.

PlanetScope sensor Sentinel-2 sensor

AGB Corg AGB Corg

Index r p r p r p r p

NDVI 0.55 0.004 0.55 0.004 0.24 0.230 0.26 0.190

NDAVI 0.57 0.003 0.58 0.002 0.25 0.224 0.28 0.181

WAVI 0.57 0.003 0.58 0.002 0.25 0.224 0.28 0.181

sPRI 0.66 0.000 0.68 0.000 0.19 0.353 0.22 0.295

CO2Flux 0.59 0.002 0.59 0.002 0.66 0.000 0.65 0.000

CO2FluxNDAVI 0.61 0.001 0.62 0.001 0.30 0.146 0.33 0.109

Note: p-value < 0.05 is significant.
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It is noted that the dynamic range of the extracted PlanetScope VIs values (Max – Min) was
reduced compared to the extracted Sentinel-2AVIs values, which indicates a significant positive
bias in the Sentinel-2A values. This can also be verified in Fig. 5, where we use as example the
VIs CO2Flux and CO2FluxNDAVI with significant correlation in both sensors. It can be seen
from Fig. 5 that both sensors were sensitive to the seasonal greenness of Scirpus giganteus and
woody and shrub species present in the study area in the summer and spring months (March and
November), as well as to the lower vegetative activity in the winter months. (August).

The CO2Flux was used to test the ability of sensors to capture the Scirpus giganteus spectral
response with a scale of 1:1300 m (Fig. 6). Compared to Sentinel, the improved spatial resolution
of the PlanetScope sensor allows a more precise definition of surface details, enabling better
delineation of the vegetation canopy due to higher pixel variability (see also Fig. 5), however
the background effect of the soil can be more noticeable, which can lead to lower VIs values.

The Sentinel image pixel, with 10 m of spatial resolution, generalizes and tends to increase
the spectral response of the vegetation in the same area, which may justify the higher values of
the indices. Lower values of VIs extracted from the PlanetScope sensor were also found in
Ref. 87 when comparing derived temporal NDVI profiles of PlanetScope and Sentinel-2 sensors
for mapping of grassland phenology, corroborating our result.

Table 6 Statistics of the VIs in the sample sites on each of the sensors.

PlanetScope Sentinel-2A

Max–min Mean DP CV% Max–min Mean DP CV%

NDVI 0.29 0.60 0.09 15.34 0.40 0.64 0.12 19.41

NDAVI 0.26 0.66 0.09 13.00 0.27 0.75 0.08 11.04

WAVI 0.04 0.98 0.13 13.00 0.41 1.13 0.12 11.04

sPRI 0.05 0.55 0.01 2.38 0.13 0.62 0.04 6.16

CO2Flux 0.18 0.33 0.06 17.04 0.32 0.32 0.09 26.88

CO2FluxNDAVI 0.17 0.36 0.05 14.85 0.26 0.47 0.08 16.90

Fig. 5 Spatialization of CO2flux and CO2fluxNDAVI VIs images on each collection date.
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3.2 Analysis of the Regression Models for Estimating Biophysical Variables

The best models to predict AGB and Corg from the spectral data of each sensor were selected
based on the higher R2 and R2adj values, lower RMSE and ANOVA, with p-value below 0.005.
Table 7 gives the equations with the best performance for estimating AGB and Corg for each
sensor and their coefficients.

Simple regressions generated with PlanetScope data produced predictive RMSE ¼
157.10 g∕m2 (23.8% of mean observed AGB) and 62.77 g∕m2 (23% of mean observed Corg)
compared to the multiple linear regression generated from Sentinel-2A data, with RMSE ¼
166.73 g∕m2 (25.3% of the mean observed AGB) and 67.47 g∕m2 (24.6% of the mean observed
Corg).

From the values of R2adj (Table 7), it was verified that the models generated with
PlanetScope data achieved greater contribution and reliability as the best predictor of AGB
(42%) and Corg (44%), with higher accuracy when compared to Sentinel-2A.

Respectively, the models generated from Sentinel-2A data achieved reliability in predicting
the AGB (41%) and Corg (40%) for the species Scirpus giganteus. The model with the best fit in
the equations based on PlanetScope data occurred only with the sPRI index as the predictive
variable. Models generated with a larger number of variables had lower R2adj values and higher
RMSE. The opposite occurred for the equations based on Sentinel-2A data since with the inclu-
sion of the Red Edge RE6 band in the model, in addition to the CO2Flux index, there was an
increase in R2adj and lower RMSE.

A similar result was found in Ref. 72 for the AGB estimate of grassland vegetation in a marsh
area. In the research mentioned, the combination of traditional bands and VIs and Red Edge and
textures derived from the red edge B8, B7, B8A, and B6 bands achieved better performance in
estimating AGB (R2 ¼ 0.849; RMSE ¼ 127.578 g∕m2) than if those bands were used sepa-
rately (R2 ¼ 0.738; RMSE ¼ 164;812). Furthermore, the four red edge bands and VIs were the
most important variables for the RF and XGBoost regression prediction models.

Likewise, pursuant to Ref. 39 the best multiple regression model for estimating emergent
biomass was a combined model of the red edge (band 6) and NIR1 bands from the World

Fig. 6 A 10-m2 poligon overlaid on the sample site and CO2flux image derived from
(a) PlanetScope image and (b) Sentinel image, both acquired on March 11 and 13, 2018,
respectively.

Table 7 Regression equations: (A) PlanetScope sensor and (B) Sentinel-2A sensor.

Biop. var (g∕m2) Equation Test R2 R2adj RMSE* p-value**

A AGB = 4896,287 + 10168,022 * sPRI 0.44 0.42 157.10 0.000

Corg = 2030,075+4217,391*sPRI 0.46 0.44 62.77 0.000

B AGB = 78,034+1409,939*CO2Flux + 1212,366*RE6 0.46 0.41 166.73 0.001

Corg =29,054+536,955*CO2Flux + 550,291*RE6 0.45 0.40 67.47 0.001

*RMSE in g∕m2; **p-value significant (p < 0.005, 95% CI).
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View sensor. Band 6 of this sensor has a spectral range from 705 to 745 nm, the same as bands
RE5 and RE6 of the Sentinel-2A sensor. The authors’ model resulted in an R2 ¼ 0.69 and
RMSE ¼ 546 g∕m2, 16% of the mean biomass observed.

Data from the PlanetScope sensor was used to predict AGB in a wetland with the species
Spartina alterniflora.88 In this study, the regression model that best predicted AGB used the
combination of the visible difference vegetation index VIs, which includes only the visible
bands, and the SAVI formulated with the NIR and red bands. This combination resulted in
an R2 ¼ 0.74 and RMSE ¼ 223.38 g∕m2, and was similar to the best predictive VIs seen in our
study for the same sensor since sPRI and CO2fluxNDAVI are derived from combinations of
visible and NIR bands.

We analyzed further the relationship between the observed and predicted AGB and Corg
based on the two best models (Table 8) and are shown as scatter plots (Fig. 7). It is observed
(Table 8) that the mean values estimated for the biophysical variables by the models were very
close to the observed values, especially for the equations based on the spectral data of the
PlanetScope sensor.

Table 8 Estimates of biophysical variables in g∕m2, generated from models versus values
observed on site.

PlanetScope Sentinel-2A V. Observed

AGB Corg AGB Corg AGB Corg

Min 421.81 175.71 525.43 220.10 340.24 142.9

Max. 886.39 368.41 1055.41 427.90 1289.28 502.82

Max–min 464.58 192.70 529.98 207.80 949.04 359.92

Mean 656.33 270.81 682.40 283.24 658.32 273.82

Std 136.28 56.52 145.24 57.44 201.35 81.81

CV% 20.70 20.64 21.28 20.28 30.58 29.87

Fig. 7 Dispersion of values estimated by the equations versus the observed values:
(a) PlanetScope and (b) Sentinel-2A.
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The CV% and SD values show that the variations in the estimated data were lower than
the variations in observed data. These, together with the difference between the maximum and
minimum values, indicate the tendency of the models to underestimate AGB and Corg. Both
models had a saturation problem, which resulted in underestimation of the biophysical variables
in the high biomass area, especially for the PlanetScope sensor.

Note that the Sentinel model was relatively better to estimate high AGB and Corg than
the PlanetScope model (more than 169 g∕m2 for AGB and 59 g∕m2 for Corg). However,
the PlanetScope model produced the lowest RMSE, and the mean estimates were closer to
the actual observation. Thus, the spatially modeling of the AGB and Corg it was generated
(Fig. 8) according to equation of PlanetScope from Table 7.

Fig. 8 Spatial distribution of estimated AGB and Corg in the BG marsh.
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The AGB and Corg maps show little spatial heterogeneity in the area covered by Scirpus
giganteus. AGB varies between 700 and 1000 g∕m2 and Corg between 266 and 400 g∕m2. The
largest AGB and Corg are distributed in the areas with woody and shrub species. The lowest
values are presented in areas with open water, flooded or more moisture.

It can be seen from the results of this study and the other studies cited that the efficiency of
the PlanetScope and Sentinel-2 data as predictors of AGB and Corg is relatively higher with the
use of VIs. According to Ref. 60, this is due to the potential of VIs to highlight intrinsic plant
properties that are strongly related to biomass accumulation, such as greenness and leaf vigor.

Our study showed satisfactory results for estimating AGB based on Sentinel-2A. The multi-
variate regression model generated RMSE ¼ 166.73 g∕m2. This RMSE value is low compared
to recent studies.72,83 The result from PlanetScope is also satisfactory with an RMSEvalue ¼
157.10, comparable to the value obtained in Ref. 88 with RMSE ¼ 223.38 g∕m2.

In addition to providing current estimates of AGB and Corg, the use of SV has proved espe-
cially useful for monitoring and inventorying Corg stocks in marsh, which is crucial for emission
offsetting and carbon credit projects, similar to the REDD programs. Furthermore, it contributes
to the recognition of the environmental function of this marsh as a blue carbon ecosystem.

There are still few studies comparing the performance of the Sentinel-2 and PlanetScope
sensors using AGB and Corg prediction models based on-site collected data, spectral bands,
and VIs derived from these systems. As for of marsh ecosystems in southern Brazil, this is
a pioneer work on the prediction of AGB and Corg from spectral data. Therefore, these findings
on the relationships between biophysical variables and vegetation cover reflectance in these
ecosystems are just in the beginning.

As next steps, we suggest the evaluation of other VIs and the use of time series spectral
images. To improve the prediction accuracy, we suggest obtaining a larger amount of sample
data and using more advanced evaluation methods, such as ensemble learning-based algorithms.

4 Conclusions

The relationships between the biophysical variables and the set of predictive variables were
established. This study demonstrated the efficiency of spectral bands, Vis, and biophysical
variables derived from Sentinel-2A and PlanetScope sensors, which are still poorly explored
in this area. VIs were more correlated and preferable as predictive variables for the models.
The highest and significant correlations were obtained with the sPRI VI for PlanetScope and
with CO2flux for Sentinel-2A.

The NIR band presented the highest correlation with the biophysical variables for the
PlanetScope Sensor, whereas for Sentinel-2A, the greatest correlation was with the red edge
RE6 band. No significant correlations were observed between the NDRE indices and the bio-
physical variables. However, the addition of the RE6 edge band increased the R2adj of the model
for the Sentinel-2 satellite, demonstrating its capacity as a quantitative indicator of biophysical
variables.

Even with a smaller number of spectral bands, the PlanetScope sensor was more efficient in
predicting the variables. The model that generated the best estimate of the biophysical variables
based on spectral data was the one fitted with PlanetScope data as a simple linear regression,
which is unusual since in most studies multiple regression models provide the smallest errors.

Thus, the sensor with higher spatial resolution provided more contribution for the prediction
of biophysical variables, generating a mean estimated AGB ¼ 656.33 g∕m2 and Corg ¼
270.81 g∕m2 for the species Scirpus giganteus in BG, and a prediction RMSE of 157.10 and
62.77 g∕m2, respectively.

Overall, the study recommends both Sentinel-2 and PlanetScope for predicting AGB and
Corg in emerging marsh areas due to their low RMSE values and their contribution as predictors
of biophysical variables based on R2adj values. We conclude that Both sensors showed appre-
ciable potential for pixel-based estimates of AGB and Corg and the VIs sPRI and CO2Flux have
ability to simply and easily convey these habitat information makes it worthy of further refine-
ment and validation as a tool for support for the management, monitoring, and conservation of
marshes.
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