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ABSTRACT

Context. A new and promising technique for observing the Universe and study the dark sector is the intensity mapping of the redshifted 21 cm line
of neutral hydrogen (Hi). The Baryon Acoustic Oscillations [BAO] from Integrated Neutral Gas Observations (BINGO) radio telescope will use
the 21 cm line to map the Universe in the redshift range 0.127 ≤ z ≤ 0.449 in a tomographic approach, with the main goal of probing the BAO.
Aims. This work presents the forecasts of measuring the transversal BAO signal during the BINGO phase 1 operation.
Methods. We used two clustering estimators: the two-point angular correlation function (ACF) in configuration space, and the angular power
spectrum (APS) in harmonic space. We also used a template-based method to model the ACF and APS estimated from simulations of the BINGO
region and to extract the BAO information. The tomographic approach allows the combination of redshift bins to improve the template fitting
performance. We computed the ACF and APS for each of the 30 redshift bins and measured the BAO signal in three consecutive redshift blocks
(lower, intermediate, and higher) of ten channels each. Robustness tests were used to evaluate several aspects of the BAO fitting pipeline for the
two clustering estimators.
Results. We find that each clustering estimator shows different sensitivities to specific redshift ranges, although both of them perform better at
higher redshifts. In general, the APS estimator provides slightly better estimates, with smaller uncertainties and a higher probability of detecting
the BAO signal, achieving &90% at higher redshifts. We investigate the contribution from instrumental noise and residual foreground signals and
find that the former has the greater impact. It becomes more significant with increasing redshift, in particular for the APS estimator. When noise is
included in the analysis, the uncertainty increases by up to a factor of ∼2.2 at higher redshifts. Foreground residuals, in contrast, do not significantly
affect our final uncertainties.
Conclusions. In summary, our results show that even when semi-realistic systematic effects are included, BINGO has the potential to successfully
measure the BAO scale at radio frequencies.

Key words. large-scale structure of Universe

1. Introduction

Recent cosmological observations, such as distance mea-
surements with type Ia supernovae, observations of cosmic
microwave background (CMB) temperature and polarization
anisotropies, and the detection of baryon acoustic oscillations
(BAO) in large-scale structure spectroscopic surveys, have been
key in establishing the current standard cosmological model,
ΛCDM. Although a remarkable fit to existing observations,
ΛCDM requires 95% of the energy content of the Universe to be
in the form of dark matter (∼25%), and a puzzling component
that causes the current accelerated expansion of the Universe,
dark energy, with approximately 70%. Confidence in the model
requires the identification of these two components of the Uni-
verse (Abdalla & Marins 2020). Otherwise, the ΛCDM model
will be subject to being challenged by alternative interpretations,
many of which involve modifications of our theory of gravitation
on large scales.

The BAO feature, appearing as a fixed scale in both the CMB
and large-scale structure (LSS) data (a geometrical probe), orig-
inates in the early Universe, when the temperature was high
enough to keep photons and baryons coupled. The BAO are the
imprints left by acoustic waves traveling at relativistic speed,

generated by the gravitational infall of baryons (and dark mat-
ter) into the potential wells of dark matter balanced by the radia-
tion pressure pushing out these baryons from overdense regions.
The comoving distance they traveled until recombination when
the baryons were released from the drag of the photons defines
the BAO scale (Dodelson 2003). This characteristic scale is then
imprinted in the LSS distribution and evolves with structure
formation as a standard ruler that can be measured as a func-
tion of the redshift (Eisenstein et al. 2007a; Seo & Eisenstein
2007). This makes the BAO one of the most powerful and well-
established tools for investigating the history of the acceleration
of the expansion of the Universe (Weinberg et al. 2013).

The first statistically significant measurements of the BAO
feature imprinted on the galaxy distribution were made by
Eisenstein et al. (2005), who analyzed the Sloan Digital Sky
Survey (SDSS) data, and by Cole et al. (2005), who used the
2dF Galaxy Survey (2dFGS). After this, several other detec-
tions of the BAO scale were performed using different biased
tracers of the dark matter in several redshift ranges. These
include the analyses of SDSS data at various stages of data
gathering (Anderson et al. 2012, 2014; Alam et al. 2017, 2021;
Ata et al. 2018), in addition to the WiggleZ Dark Energy Survey
(DES) (Hinton et al. 2016) and the 6dFGS (Carter et al. 2018)
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analyses. More recently, data releases of the DES have been
analyzed for the detection of the BAO signature through differ-
ent clustering measurement methods: in configuration, in har-
monic and Fourier spaces, and for a two- or three-dimensional
distribution of sources (Camacho et al. 2019; Abbott et al. 2019,
2022). These results have used the common template-based fit-
ting method to study the BAO feature from clustering esti-
mates. Alternative approaches for measuring the BAO scale
in the angular (two-dimensional) two- and three-point statis-
tics use an empirical parametric fit technique, for example,
Sánchez et al. (2011), Carnero et al. (2012), de Simoni et al.
(2013), Carvalho et al. (2016, 2020), De Carvalho et al. (2018,
2020), and de Carvalho et al. (2021).

A new and very promising way of measuring BAO is through
the detection of structures as traced by the redshifted diffuse
21 cm hyperfine transition line of neutral hydrogen (Hi) through
the so-called intensity mapping (IM) technique (Chang et al.
2008). Compared to radio surveys using the 21 cm emission to
detect individual galaxies (for an example of its use in cosmo-
logical analyses, see Avila et al. 2018), limited by the low lumi-
nosity of the 21 cm line emission, the IM technique can cover
a larger volume of the Universe in a much shorter time, using
instruments with a relatively small, and consequently cheaper,
collecting area, as discussed and evaluated in Battye et al.
(2013) and Abdalla et al. (2022a) (see also Chang et al. 2008;
Loeb & Wyithe 2008). The idea is to measure the overall Hi
brightness temperature field, similarly to what is done for CMB
temperature fluctuations, but mapping the Universe as a function
of redshift. This is possible given the high abundance of hydro-
gen, so that a hydrogen map is expected to be a powerful tracer
of the underlying total matter content of the Universe. In this
sense, through redshift surveys at radio frequencies, the 21 cm
IM constitutes a new window for observing the Universe, and
for studying the dark sector.

To exploit this new observational window, several radio
instruments that are already observing or are still under con-
struction will survey a large volume of the Universe through the
21 cm IM technique and measure the BAO feature. They include
the Square Kilometer Array1 (SKA; SKA Cosmology SWG
2020); MeerKAT2 (Santos et al. 2017), a precursor of the
SKA; the Five-Hundred-Meter Aperture Spherical Radio Tele-
scope, currently the largest single-dish telescope in the world
(FAST; Nan et al. 2011); the Canadian Hydrogen Intensity
Mapping Experiment3 (CHIME; Bandura et al. 2014); Tianlai4
(Chen 2012); HIRAX (Crichton et al. 2022); and the Baryon
Acoustic Oscillations from Integrated Neutral Gas Obser-
vations5 (BINGO; Battye et al. 2013; Bigot-Sazy et al. 2015;
Abdalla et al. 2022a), which is described in the next section.

In this work we evaluate what to expect from future BINGO
observations in terms of measuring the transversal (angular)
BAO signal. To perform this task, we employ and compare two
clustering estimators, the two-point angular correlation function
(ACF) in configuration space, and the angular power spectrum
(APS) in harmonic space. To our knowledge, this is the first
forecasting study of the BAO detection from 21 cm IM sim-
ulations using the ACF. The anisotropic two-point correlation
function estimator ξ(r⊥, r‖) was explored by Avila et al. (2022)
for the case of an SKA-like survey employing simulations and

1 https://www.skatelescope.org/
2 https://www.ska.ac.za/science-engineering/meerkat
3 https://chime-experiment.ca/
4 http://tianlai.bao.ac.cn/wiki/index.php/Main_Page
5 https://www.bingotelescope.org/en/

by Kennedy & Bull (2021) for a theoretical modeling approach
focusing on the MeerKAT survey. Both of them focused on
the impact of the instrumental beam smoothing and foreground
removal in recovering the BAO scale. Villaescusa-Navarro et al.
(2017) also explored the SKA case, assessing the BAO detection
through the radial power spectrum, under the presence of instru-
mental effects and foreground contamination, and the impact of
the angular resolution imposed by a single-dish instrument. They
reported that the telescope beam will compromise the detection
of the isotropic BAO feature at redshifts z & 1, while the radial
BAO seems to be robust against the foreground removal. These
published results confirm the potential of future 21 cm IM obser-
vations for detecting the BAO signature.

In the present work, we use a template-based method to
model the APS and ACF estimated from two types of mock
realizations, mimicking future BINGO observations, and extract
the BAO information from each of them. We use the covariance
matrices calculated from the mocks to construct the likelihood
corresponding to each template, and using a maximum likeli-
hood estimator, we estimate the parameters of the model for each
simulation. We apply this template-fitting procedure to three sets
of consecutive bins, so that we can evaluate the BAO detection
at three different redshift intervals.

This paper is organized as follows. Section 2 briefly
describes the main aspects of the BINGO project. Section 3
introduces the Hi clustering theory and the template model con-
structed for each estimator. Section 4 presents the details of the
cosmological 21 cm simulations, the characteristics of the instru-
mental noise, and the foreground contamination, as well as the
foreground cleaning process employed here. Section 5 summa-
rizes our method for the clustering measurements, the BAO fit-
ting process, and the covariance matrix construction. The results
from all our analyses are discussed in Sect. 6, and the conclu-
sions are summarized in Sect. 7.

2. The BINGO telescope

The BINGO radio telescope is in construction at a site (for
the site selection process, see Peel et al. 2019) located in
Paraíba State, northeastern Brazil (latitude: 7◦2′27.6′′ S; longi-
tude: 38◦16′4.8′′ W; altitude: 350 to 460 m). Its main scientific
goal is to measure the BAO signal imprinted on the 21 cm dis-
tribution in the redshift range 0.127 ≤ z ≤ 0.449 (Abdalla et al.
2022a). This goal will be achieved through an IM survey covering
5324 square degrees, using the telescope in sky-transit mode, with
a 14.75◦wide declination strip centered at a declination δ = −15◦.

The telescope has a crossed-Dragone design, with a 40 m
diameter primary paraboloid and a 34 m diameter secondary
hyperboloid. During BINGO Phase 1, the telescope will operate
with a focal plane containing 28 horns (Wuensche et al. 2022;
Abdalla et al. 2022b). Each horn is sensitive to circular polar-
ization and is coupled to a correlation receiver with four ampli-
fier chains. They are expected to perform at an expected system
temperature Tsys = 70 K. The optical design will produce a suit-
able angular resolution for the BAO signal, with a full width at
half maximum θfwhm = 40′ of the beam in the central frequency
ν = 1120 MHz. In a second phase, we intend for BINGO to oper-
ate with 28 additional horns, totaling 56 horns.

The redshift range covered by BINGO corresponds to
the frequency interval 980−1260 MHz, which is quite com-
plementary to instruments such as CHIME (400−800 MHz;
Bandura et al. 2014). A more detailed description of the BINGO
project, its scientific goals, and instrument status is available in
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previous publications of the collaboration (Abdalla et al. 2022a;
Wuensche et al. 2022).

3. Modeling the BAO signal

3.1. Hi clustering

The intensity mapping of the 21 cm signal measures the bright-
ness temperature of the average Hi intensity in a given volume
of the Universe, which can be written as function of the redshift,
z, as (see, e.g., Battye et al. 2013; Hall et al. 2013)

T̄HI(z) = 188 h ΩHI(z)
(1 + z)2

E(z)
mK, (1)

where H0 = 100 h km s−1 Mpc−1 is the Hubble constant, E(z) =
H(z)/H0, and ΩHI is the Hi density parameter. Fluctuations of the
Hi brightness temperature, δTHI, are a biased tracer of the dark
matter fluctuations, δ. Their Fourier transform can be written in
terms of the growth function D(z) as

δTHI(k, z) = D(z) T̄HI(z) bHI(z) δ(k, 0), (2)

where bHI(z) is the bias factor as a function of redshift z,
and δ(k, 0) is the underlying dark matter distribution at z =
0. In this way, the Hi power spectrum is given by PHI ≈

[D(z) T̄HI(z) bHI(z)]2P(k), where P(k) is the matter power spec-
trum at z = 0.

As detailed by Battye et al. (2013) and Seehars et al. (2016),
since the 21 cm IM surveys the Universe within tomographic
bins of redshift, we can project the three-dimensional quantity
δTHI(χ(z)n̂) = T̄HI(z)δHI(χ(z)n̂) on the sky by integrating it along
the line of sight n̂ as

δTHI(n̂) =

∫
dz φ(z) T̄HI(z) δHI(χ(z) n̂), (3)

where δHI(χ(z) n̂) is the density fluctuation of neutral hydrogen at
the comoving distance to redshift z, χ(z), and φ(z) is the projec-
tion kernel (a window function of observation). Here, we assume
a top-hat kernel, that is, φ(z) = 1/(zmax− zmin) for zmin < z < zmax
and φ(z) = 0 outside the redshift bin. Decomposing the Hi tem-
perature fluctuations in spherical harmonics, we have (see also
Sobreira et al. 2011; Costa et al. 2022)

δTHI(n̂) =

∞∑
`=0

∑̀
m=−`

a`mY`m(n̂), (4)

with the a`m harmonic coefficients written as

a`m = 4πi`
∫

dz φ(z) T̄HI(z)
∫

d3k
(2π)3 δHI(k, z) j`(kχ(z)) Y∗`m(k),

(5)

where j` is the spherical Bessel function. Therefore, from the
above equations, we can define the APS of the temperature fluc-
tuations, C` = 〈 |a`m|2〉, as a function of the matter power spec-
trum, such that (for the analogous case of a galaxy distribution,
see also Loureiro et al. 2019)

Ci j
`

=
2
π

∫
dk W i

HI,`(k) W j
HI,`(k) k2 P(k), (6)

where the indices i and j denote two tomographic bins. For i =
j and i , j, we obtain auto- and cross-APS, respectively (see

also Costa et al. 2022). The redshift dependence is given by the
window function

W i
HI,`(k) =

∫
dz bHI(z) φ(z) T̄HI(z) D(z) j`(kχ(z)). (7)

In a similar way to the APS, we can also define the ACF,
ω(θ), defined as the probability of finding galaxies separated by
an angle θ. For a tomographic bin around z, the ACF can be
defined as a function of the matter three-dimensional spatial cor-
relation function ξ(r) (Sobreira et al. 2011; Crocce et al. 2011;
Sánchez et al. 2011; de Simoni et al. 2013)

ω(θ) ≡ 〈δTHI(n̂) δTHI(n̂ + θ)〉 (8)

=

∫
dz1 f (z1)

∫
dz2 f (z2) ξ(r(z1, z2, θ), z̄), (9)

where f (z) = bHI(z)φ(z)T̄HI(z) and r(z1, z2, θ) is the radial comov-
ing distance between spatial fluctuations δHI at redshifts z1 and
z2 separated by an angle θ. This equation neglects the time evo-
lution of the matter correlation function inside the bin, so that it
can be evaluated at a given z̄ (the average redshift of the bin) as

ξ(r, z̄) =
1

2π

∫
dkk2 j0(rk)P(k, z̄), (10)

where j0 is the spherical Bessel function of zeroth order and
P(k, z̄) is the matter power spectrum at redshift z̄.

Alternatively, following Sobreira et al. (2011) and
Crocce et al. (2011) and using Eq. (4), we can still obtain
the ACF as

ω(θ) =

〈 ∞∑
`=0

∑̀
`=−`

a`ma`′m′Y`m(n̂)Y`′m′ (n̂ + θ)
〉
, (11)

and, as a function of the APS, as

ω(θ) =
∑
`m

C`Y`m(n̂)Y`m(n̂ + θ) (12)

=
∑
`

C`
2` + 1

4π
P`(cos θ), (13)

where P` are the Legendre polynomials.
The theoretical auto- and cross-C`s employed in this

paper, both as input to the 21 cm log-normal simulations (see
Sect. 4.1.1) and to construct the BAO templates, were calcu-
lated using the Unified Cosmological Library for C`s (UCLCL)
code (Loureiro et al. 2019; McLeod et al. 2017). This code
implements Eqs. (6) and (7) using the CLASS Boltzmann code
(Lesgourgues 2011; Blas et al. 2011) to estimate the primordial
power spectra and transfer function. To account for all processes
involved in the evolution of the Universe, we used the win-
dow function WTot,i(k) = W i

HI,`(k) + W i
RSD,`(k). In addition to

Eq. (7), it also includes a term describing the redshift space dis-
tortion (RSD) effect, W i

RSD,`(k). A detailed description of how
the two terms are implemented in the UCLCl code can be found
in Loureiro et al. (2019).

3.2. BAO template

The extraction of the BAO features from data clustering esti-
mates is commonly performed by fitting a template model,
derived from a parameterization of the matter power spectrum
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(see, e.g., Anderson et al. 2014, and references in the Introduc-
tion). Following the same approach, we write this parameteri-
zation as a function of the linear power spectrum, Plin, and the
no-wiggle (no BAO feature) power spectrum, Pnw,

Ptemp(k) = [Plin(k) − Pnw(k)] e−k2Σ2
nl + Pnw(k). (14)

We employed the nbodykit6 code to obtain both Plin(k) and
Pnw(k), using the transfer functions calculated by the CLASS code
and the analytic calculation by Eisenstein & Hu (1998), respec-
tively. The exponential term, e−k2Σ2

nl , takes into account the effect
of nonlinear structure growth by damping the signal around the
BAO scale. The damping scale, Σ2

nl = (Σ2
⊥ + Σ2

‖
)/2, is written

in terms of the components along (Σ‖) and across (Σ⊥) the line
of sight, taking into account the RSD effect. Seo & Eisenstein
(2007) have shown that these components can be written as
Σ⊥ = 10.4D(z)σ8 (prediction for real space) and Σ‖ = (1 + f )Σ⊥,
where f is the growth rate of cosmic structures (see also the
discussion by Chan et al. 2018; Ata et al. 2018). Because we
already account for the RSD in the window function W i

HI,` when
projecting Ptemp(k) into the APS (Eqs. (6) and (7)), we can con-
sider Σnl = Σ⊥. For our fiducial cosmology (see Sect. 4.1.1), we
then fixed the damping scale at Σnl = 7.6, 7.1, and 6.7 h−1 Mpc,
appropriate values for the lower, intermediate, and higher red-
shift intervals into which we split the BAO fitting analyses,
as discussed below. Then, from the projection of Ptemp(k) into
Ctemp(`), we constructed the template used for the APS analysis,

C(`) = B Ctemp(`/α) +
∑

q

Aq `
q, (15)

where α, B and Aq are free parameters, the last two of them
intended to absorb linear and nonlinear bias effects, noise, and
uncertainties in the RSD, in addition to any other difference
between the data points and the full shape template, such as those
introduced by systematic effects.

For the ACF analyses, the template model was constructed
by substituting the same Ctemp(`) in Eq. (12) to calculate
ωtemp(θ), so that we guarantee the consistency of the two tem-
plates, obtaining

ω(θ) = Bωtemp(αθ) +
∑

q

Aq

θq , (16)

where α, B and Aq are free parameters, as in Eq. (15). The last
term in both templates, appearing as functions of ` and θ, can
be written so that the number q of Aq parameters optimizes our
fitting pipeline. Section 6.4 shows results from testing differ-
ent degrees of freedom, that is, different choices for minimum
and maximum values to run the q index, for the C` and ω(θ)
templates.

In both cases, the α parameter, the most important parameter
of the analysis, is the so-called shift parameter, associated with
the change in the BAO peak position with respect to a fiducial
cosmology,

α =
DA(z)/rd

(DA(z)/rd)fid
, (17)

where DA is the angular diameter distance and rd is the sound
horizon scale at the drag epoch. Then, α characterizes any
observed deviation with respect to the model, so that α > 1

6 https://github.com/bccp/nbodykit

(α < 1) indicates a shift of the acoustic peak to smaller (larger)
scales. Because the fiducial cosmology adopted to model the
BAO templates and to generate the synthetic data are the same,
we expect to find α ≈ 1 when fitting them to the APS and ACF
clustering computed from the simulations. This allowed us to test
the method and to predict what to expect from the BAO analysis
of the future BINGO data.

4. Synthetic data preparation

In this section we describe the different sets of simulations
we employed in the analyses. Sky maps were produced in the
HEALPix pixelization scheme (Gorski et al. 2005), with Nside =
256. The semi-realistic mock data sets (referred to as BINGO-
like simulations) include instrumental noise, beams effects,
the BINGO sky coverage scan, and simulated foreground sig-
nals that will contaminate 21 cm observations in the BINGO
frequency range. A foreground cleaning pipeline, outlined in
Sect. 4.2, was applied to a small set of BINGO-like simulations,
constructed from a subset of the FLASK mocks, to mitigate the
effect of the foreground signal on the 21 cm signal and estimate
the residual contamination in the recovered maps.

4.1. BINGO-like simulations

4.1.1. Cosmological signal

The 21 cm signal simulations we employed here were produced
in two ways. In most of the tests, we used a large set of (fast) log-
normal simulations of the 21 cm signal generated by the FLASK7

code (Xavier et al. 2016); hereafter FLASKmocks. We also tested
the BAO fitting pipeline over a smaller data set based on the den-
sity contrast from N-body simulations; hereafter N-body mocks.
The two types of simulations are described below.

(a) Fast log-normal distributions. The first set of 21 cm IM
simulations consisted of full-sky log-normal realizations gener-
ated with FLASK. This is a publicly available code able to pro-
duce two- or three-dimensional tomographic realizations of an
arbitrary number of random astrophysical fields and reproduc-
ing the desired cross-correlations between them. FLASK took as
input the auto- and cross-APS, Ci j(`), previously calculated for
each of the i and j redshift slices, and created two-dimensional
HEALPix maps of correlated log-normal realizations of the pro-
jected 21 cm signal in each redshift bin (z-bin). We used the
fiducial Ci j(`) computed using the UCLCl code. Cosmological
parameters matched those from WMAP 5-year results (Table 2,
Five-Year Mean values, of Dunkley et al. 2009), Ωm = 0.26,
Ωb = 0.044, ΩΛ = 0.74, and H0 = 72 km s−1 Mpc−1, for con-
sistency with the N-body mock simulations described below.
Although more recent parameter constraints have been obtained
with the Planck satellite (Planck Collaboration VI 2020), our
pipeline and results do not strongly depend on the exact cos-
mological parameter values. Here we are not interested in con-
straining these parameters, but to show the consistency of our
method and the detection of BAO.

We generated a total of 1500 log-normal realizations, each
of them corresponding to 30 Hi maps, one for each tomographic
z-bin. Despite our ad hoc choice of 30 channels (δν = 9.33 MHz
width each), the BINGO hardware and data analysis pipeline
allows different choices for the number of channels. Conse-
quently, their width can be chosen according to what is most
suitable for cosmological analyses, for example, as a function of

7 http://www.astro.iag.usp.br/~flask/
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the efficacy of a foreground cleaning procedure (Mericia et al.
2022). Tests of how the BAO measurement is impacted when a
different number of channels is used are left for future work.

(b) N-body simulations. A second set of mocks was gen-
erated using the friend-of-friends (FoF) halo catalogs from the
HR4 N-body simulation (Kim et al. 2015). The HR4 has a box
size of 3150 Mpc h−1 and uses WMAP 5-year cosmological
parameters.

First, we selected 100 random observer locations in the simu-
lation box to mimic 100 different realizations in just one simula-
tion. We then constructed the light cone catalog from snapshots
at z = 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5. According to the desig-
nated frequency bin, the halos from the closest two snapshots
were selected. These halos were further filtered randomly, and
the selection probability was proportional to the radial distance
of this bin and the corresponding comoving distance at the red-
shift of the snapshot. Therefore, the generated light cone halo
catalog is a random mixture of the snapshots. We validated the
method by comparing the angular power spectrum and halo mass
function to the light cone halo catalog provided by HR4. The two
results are consistent and meet our requirements.

We constructed the full-sky 21 cm brightness temperature
map from the light cone halo catalog following the method
described in Zhang et al. (2022). By further considering redshift
distortion effects, we constructed 100 realizations of full-sky
mock maps, each containing 30 redshift bins. Because BINGO
exploits only a strip of the sky, we obtained independent real-
izations by randomly rotating the full-sky maps before includ-
ing realistic characteristics of the BINGO observations. Using
four independent rotations (the spherical rotations as performed
by the healpy package), we generated another 400 mock maps
in the BINGO footprint using the 100 original full-sky maps.
After performing these simulations, we had 1500 FLASK and 500
N-body mocks on which to test our BAO detection pipelines.

4.1.2. Foreground signals, instrumental effects, and sky
coverage

Following previous BINGO papers by Fornazier et al. (2022)
and Liccardo et al. (2022), our simulations included the con-
tribution of seven foreground components, including Galactic
synchrotron, free-free, thermal dust, and anomalous microwave
(AME) emissions, extragalactic thermal and kinetic Sunyaev–
Zel’dovich (SZ) effects, and unresolved radio point sources, all
generated using a recent version of the Planck Sky Model soft-
ware (PSM; Delabrouille et al. 2013). The specific configuration
of the PSM code that was used to generate our foreground emis-
sions is as described bellow.

The synchrotron emission was based on the 408 MHz all-
sky map produced by Remazeilles et al. (2015), extrapolated to
BINGO frequencies with a spatially variable spectral index map
following the model derived by Miville-Deschênes et al. (2008).
Free-free emission was simulated using a template given by the
Hα emission map from Dickinson et al. (2003), with a uniform
frequency scaling over the sky and slowly varying with fre-
quency. For the AME, which is usually described as radio emis-
sion produced by the rapid rotation of electric dipoles associ-
ated with small dust grains, we used a high-resolution thermal
dust template from Planck observations, scaled to low frequency
according to the ratio of the AME and thermal dust as found
by Ade et al. (2016), and extrapolated it to BINGO frequencies
using a single emission law. A template for the thermal dust
emission was obtained by applying the generalized needlet inter-

nal linear combination (GNILC) code to Planck 2015 data. This
is the component separation code that was also employed here
to clean the 21 cm maps (see Sect. 4.2). Dust spectral index
and temperature maps, used to extrapolate thermal dust emission
across frequencies using a single modified blackbody in each
pixel, were obtained from fits of GNILC dust maps at different
frequencies. Although AME and thermal dust emission are sub-
dominant at BINGO frequencies, both were taken into account
here for completeness.

The extragalactic emission from thermal and kinetic SZ
effects was modeled according to prior knowledge of existing
galaxy clusters for a number density as a function of mass
and redshift predicted by the cosmological model of interest
given by Tinker et al. (2008). The unresolved radio point source
component was simulated using catalogs of observed sources
from 850 MHz and 4.85 GHz. A population of sources below
the detection threshold was simulated on the basis of theoret-
ical number counts. A more complete discussion of the fore-
ground simulation for the BINGO frequency can be found in
Fornazier et al. (2022) and Liccardo et al. (2022).

We also took the expected thermal (white) noise level
per pixel into account by employing a system temperature
of 70 K. This level was estimated considering 28 horns, each
of them observing at a constant elevation, achieving a sur-
vey area of 5324 deg2 (a sky fraction of fsky ∼ 0.13). We
assumed five years of observation and the horn arrangement
designed for the Phase 1 of observations, as discussed in pre-
vious BINGO publications (Wuensche et al. 2022; Abdalla et al.
2022b; Liccardo et al. 2022). For a good sampling of the map
in declination, the position of the horns will be shifted to dis-
place their pointing on the sky by a fraction of a beam width in
elevation. This will homogenize the observation time over the
innermost BINGO area. A detailed description of the noise sim-
ulations employed here can be found in Fornazier et al. (2022).

Although this paper does not account for the low-frequency
(1/ f ) noise, we are aware that it is an important complication
in real data and can be very detrimental to Hi IM data if not
efficiently removed (Bigot-Sazy et al. 2015; Li et al. 2021). The
1/ f noise is correlated across the frequency band, and when the
observed signal is projected onto a map, it appears as stripes,
that is, as large-scale spatial fluctuations (Harper et al. 2018). In
this sense, because this instrumental effect has the potential to
impact our analyses at the lowest redshifts, where the BAO scale
is comparable to the 15◦ stripe of the BINGO coverage, it is
being addressed in various working groups across the collabora-
tion and our findings will be presented in upcoming works of the
BINGO series. Moreover, we also recall that another instrumen-
tal effect relevant for intensity mapping experiments is the leak-
age of polarized foregrounds into the intensity data (Alonso et al.
2015; Cunnington et al. 2021). Unlike the foregrounds described
above, this polarization leakage is not expected to have a smooth
dependence on frequency, which makes the cleaning process
more complex (Carucci et al. 2020). In this sense, although
BINGO is designed to minimize the impact of this effect
(Wuensche et al. 2022; Abdalla et al. 2022b), future work will
investigate its impact on the foreground cleaning efficiency, as
well as on the BAO recovery.

Because all simulations were generated as full-sky maps,
we selected the BINGO region using an appropriate mask that
accounted not only for the expected sky coverage, but also cut
out a region with strong Galactic foreground signal. To avoid
the impact of sharp edges in the masked region, the mask
was apodized with a cosine square transition of 5◦ using the
NaMaster code (Alonso et al. 2019, see also Sect. 5.1.1). A
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Fig. 1. Illustrative example of a FLASK simulation at the lowest redshift
bin (0.127 < z < 0.138), convolved with a Gaussian beam of θfwhm =
40 arcmin, after selecting the sky region (apodized mask) considered in
all the analyses. The color indicates the brightness temperature in µK.
The Mollweide projection corresponds to celestial coordinates.

detailed description of the procedure to create this mask is pro-
vided in Mericia et al. (2022). Figure 1 shows an illustrative
example of a 21 cm IM simulation in the lowest redshift bin
0.127 < z < 0.138 in the BINGO region.

We also accounted for the angular smoothing effect intro-
duced by the BINGO beam, with θfwhm = 40 arcmin, which we
approximated by a Gaussian of the same width for all the fre-
quency bins. Each simulated sky map was convolved with such
a Gaussian beam before thermal noise was added. In addition,
we investigated the impact of θfwhm scaled with the frequency ν
according to θfwhm(ν) = θfwhm(ν0)×ν0/ν, where ν0 = 1120 MHz
and θfwhm(ν0) = 40 arcmin (Bigot-Sazy et al. 2015). Although
in both cases we approximated the BINGO beam by a Gaussian,
there will be contribution from structures such as the side lobes,
discussed in the companion papers Wuensche et al. (2022) and
Abdalla et al. (2022b), as well as the possible coupling of the
horns, which is still to be investigated.

4.2. Foreground cleaning process

One of the main challenges of 21 cm IM observations is the
efficient subtraction of the foreground contamination, whose
amplitude can be up to 104 larger than the Hi signal. Even
when an efficient cleaning technique is employed, a residual
contamination is expected to remain in the observations, and
therefore it is important to evaluate their impact on the cos-
mological analyses. In this work, we used the GNILC method
(Remazeilles et al. 2011), a nonparametric component separa-
tion technique, to perform the foreground cleaning process.
This method has been tested in previous work and showed
an excellent performance when applied to 21 cm IM observa-
tions (Olivari et al. 2016) and, more specifically, to the BINGO-
simulated data (see Liccardo et al. 2022; Fornazier et al. 2022;
Mericia et al. 2022).

The temperature signal, x(p), represented by a vector of
dimension nch (where nch is the number of BINGO channels)
for each sky pixel p, can be modeled as

x(p) = s(p) + n(p) + f (p), (18)

where s(p) is the 21 cm signal, n(p) is the instrumental noise,
and f (p) is the total foreground signal. All contributions to x(p)
have the same dimension nch. To distinguish foreground emis-
sion from 21 cm signals, GNILC exploits the fact that foreground

emissions are highly correlated between frequencies channels
and thus effectively rely on a few independent spectral degrees
of freedom, while the 21 cm signal, probing shells at different
redshifts, is only weakly correlated between frequency bands.
Using a prior (theoretical template) of the 21 cm and thermal
noise power spectra, GNILC evaluates the effective dimension of
the foreground subspace locally in pixel and harmonic space, as
identified by a principal component analysis of empirical chan-
nel data covariance matrices, computed on a redundant basis
(a tight frame) of a type of wavelets on the sphere (called
“needlets”). With this approach, GNILC does not use any prior
information on the foreground components, except for the safe
assumption that their emission between frequencies is strongly
correlated. Then, GNILC projects the data x(p) out of the fore-
ground subspace.

The 21 cm plus noise signal was then reconstructed for each
wavelet scale by applying an ILC filter W to the data, ŝ =
Wx, in the subspace orthogonal to that of the foregrounds. The
ILC filter was constructed in such a way as to preserve the
21 cm signal while filtering out the foreground contamination.
The complete reconstructed 21 cm plus noise map at each fre-
quency was finally obtained by adding the maps corresponding
to each wavelet scale. A detailed discussion of the use of the
GNILC method for 21 cm foreground cleaning can be found in
Olivari et al. (2016) and Fornazier et al. (2022).

Finally, we emphasize that the reconstructed 21 cm maps
contain a residual contribution from the foreground components
along with the noise,

ŝ ' s + Wn + W f , (19)

where Wn and W f are the residual noise and foreground con-
tribution to the reconstructed 21 cm signal, respectively. In the
case of simulations for which we know the exact input fore-
ground contamination, as is the case here, we can then estimate
its residual contribution over the recovered cosmological signal.
Here, we used this facility to include a realistic foreground resid-
ual contribution to the simulations to evaluate its impact on the
BAO fitting process, avoiding the need to apply GNILC to each
one of them (see Sect. 6.3).

5. Method

This section summarizes the method we employed to extract the
BAO information from BINGO-simulated Himaps. We describe
(1) how the APS and ACF were measured from the simulated
maps, (2) how the covariance matrices were calculated, and (3)
the fitting method we used to estimate the α parameter from each
of the simulations.

5.1. Clustering measurements

5.1.1. Angular power spectrum

The partial-sky coverage is a common situation for CMB and
galaxy surveys, whether due to the observation strategy or to
cuts of regions with strong foreground contamination. The APS
computation in these cases is not as straightforward as it would
be in full-sky analyses, where C`s are computed by expanding
the radiation field in spherical harmonics and averaging the a`m
coefficients,

C` =
1

2` + 1

m=+`∑
m=−`

|a`m|2. (20)
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The effect of a mask when calculating the a`m coefficients over
partial sky is to mix (or couple) different multipoles so that the
estimated APS, Ĉ`, can be written in terms of the true one, C`,
through

Ĉ` =
∑
`′

M``′C`′ , (21)

where M``′ is the multipole mixing matrix, which depends on
the mask geometry (Hivon et al. 2002).

Here we estimated the APS using the so-called pseudo-C`

formalism as implemented in the NaMaster code8 (Alonso et al.
2019). The mixing matrix was estimated analytically, according
to the shape of the mask, and was used to obtain an unbiased
estimate of C` (for examples of application of this formalism
and/or this code to different cases, see, e.g., Brown et al. 2005;
Moura-Santos et al. 2016; Loureiro et al. 2019; Nicola et al.
2020; Anderson et al. 2022).

However, the loss of information due to the mask usually
makes the mixing matrix ill-conditioned and, for this reason,
singular, with no direct inversion. To deal with this, NaMaster
allows the usage of bandbowers, calculating a binned and invert-
ible version ofM``′ . Here, we considered a linear binning, calcu-
lating Ci

` at bins of width ∆`, centered at `. This procedure also
helps making the corresponding covariance matrix more diag-
onal. Different ∆` widths were tested so that we were able to
find the more appropriate width that was to be used in the more
realistic analyses, composing the fiducial configuration, defined
when running the several robustness tests.

5.1.2. Angular correlation function

We measured the ACF from each of the simulations using the
following equation (de Simoni et al. 2013):

ωi(θ) =

∑
pp′ δTpδTp′wtpwtp′∑

pp′ wtpwtp′
, (22)

with δTp = Tb − 〈Tb〉, where Tb is the Hi brightness temperature
at each pixel p, and θ is the angular separation between pixels
p and p′. The parameter wtp is associated with the observed sky
region (mask information; Fig. 1), receiving value 1 when pixel
i contains valid data and 0 when its area has not been observed
or if it is located in the Galactic region and is removed from
the analyses. The ω(θ), as given by Eq. (22), were calculated at
equally spaced θ values, with a bin width ∆θ, using the public
code TreeCorr9 (Jarvis et al. 2004). In the same way as for the
APS analyses, the best ∆θ width for our fiducial configuration
was defined after a few different values were tested.

5.2. Covariance matrix

We used N = 1500 FLASK and N = 500 N-body mock realiza-
tions to estimate the covariance matrices as

C
i j
km =

1
N − 1

N∑
n=1

(Xi,n
k − X̄i

k) (X j,n
m − X̄ j

m), (23)

where k and m indices ran over the different ` or θ bins, and i
and j indicate the z-bin; Xi

k is the clustering measurement, Ci
` or

ωi(θ), and X̄i
k is the respective average over the simulations.

8 https://namaster.readthedocs.io
9 https://rmjarvis.github.io/TreeCorr

It is well known that the statistical noise in the covari-
ance matrix estimated from simulations introduces a bias on
its inverse, [Ci j

km]−1, the precision matrix. The bias is mainly
dependent on the number N of simulations used to construct
C

i j
km and the number of entries Np of the data vectors X. How-

ever, as proposed by Hartlap et al. (2007) and as used, for exam-
ple, in the analyses of Camacho et al. (2019), Ata et al. (2018),
and Anderson et al. (2014), an unbiased version of the precision
matrix can be obtained by rescaling it as

[Ci j
km]−1 →

N − Np − 2
N − 1

[Ci j
km]−1. (24)

The rescaled version of the precision matrix was employed in all
our analyses.

5.3. Parameter inference

The fit of the template models to the estimated clustering
measurement goes through two (recursive) steps: one of them
is to fit the nuisance parameters, B and Aq, appearing lin-
early in both template models, and the other step is to use
the maximum likelihood estimator (MLE) to evaluate α, as
described in Eqs. (15) and (16). Following Chan et al. (2018)
and Camacho et al. (2019), we performed a least-square fit to
find the best-fit Aq values, and, fixing them, we repeated the pro-
cedure to obtain the best-fit B value, in both cases by minimizing
the χ2 defined as

χ2(λ) =
∑
k,m

[Xi
k − xi

k(λ)] [Ci j
km]−1 [X j

m − x j
m(λ)], (25)

where λ = {α, B, Aq} and xi
k is the template model for the ith

z-bin and the kth `/θ bin. We then maximized the likelihood
function,

L(α) ∝ exp(−χ2/2), (26)

now dependent on only one parameter, since χ(λ) is reduced
to χ(α), allowing us to estimate the best-fit α value (see also
Anderson et al. 2014). In practice, this value was obtained
through a grid search, so that the least-square fit of the nui-
sance parameters, Aq and B, was repeated for each α value we
evaluated.

Taking advantage of a tomographic approach, we were able
to combine redshift bins so that the significance of the BAO
detection can increase. We fit one α parameter through a joint
analysis applying the MLE over a set of Nz consecutive z-bins.
In particular, we fit the nuisance parameters, B and Aq, to each
z-bin individually, and, fixing their values, we find one best-fit α
for each set of Nz z-bins.

The 1σ error for the α estimates, σα, is defined as the devi-
ation from the maximum likelihood point, at χ2

min, by ∆χ2 = 1.
It is worth noting that this ∆χ2 = 1 rule is valid in the case
of a Gaussian likelihood, L(p), for only one parameter, in our
case, p = α (see Chan et al. 2018, and references therein, for
details). In principle, this can be employed in our analyses, as
commonly seen in literature (e.g., Ata et al. 2018; Carter et al.
2018; Abbott et al. 2019, 2022), but we have to be careful with
deviations from Gaussian distribution, which can lead to σα val-
ues that underestimate the error bars. In the next section, we
discuss and evaluate the validity of this rule for each clustering
statistic used here.
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Fig. 2. Theoretical APS calculated for three of the 30 tomographic bins
linearly spaced in frequency, whose average redshifts are z̄5 = 0.166,
z̄15 = 0.263, and z̄25 = 0.377. The BAO wiggles appear at higher mul-
tipoles as the redshift increases. The dashed black line shows the white
noise amplitude. The expected contribution from foreground residuals
at the highest z-bin (z̄30 = 0.442; the one with the highest amplitude
of foreground residual) is represented by the gray line. The dotted lines
show the effect introduced by the instrumental beam with θfwhm = 40′.

6. BAO fitting results

In this section we present our findings from analyzing FLASK
and N-body mock realizations. We start with an ideal case, ana-
lyzing pure 21 cm simulations, only accounting for the BINGO
sky coverage and fixed 40 arcmin beam (Sect. 6.1). The contri-
bution of thermal noise and foreground residuals are then con-
sidered one at a time, so that we can investigate the impact of
each one separately, as well as the impact of a redshift-dependent
beam size (Sects. 6.2 and 6.3). We also present the results from
an extensive (but not exhaustive) list of robustness tests evaluat-
ing several aspects of the method employed here to extract the
BAO signal from BINGO-like simulations, using FLASK mocks
as the cosmological signal (Sect. 6.4). These tests allow find-
ing the most appropriate configuration (hereafter called fiducial
configuration), optimizing the analysis. In particular, the fiducial
configuration is defined by
(a) Angular and multipole binning: ∆θ = 0.5◦ and ∆` = 10,
(b) Aq parameters for C` and ω(θ) templates: q = −1, 0, 1, 2 and

q = 0, 1, 2, respectively.
The 500 N-body mocks were analyzed using only this fiducial
configuration (Sect. 6.5).

The choice for the range of scales, θ, and ` intervals is also
important. Because the BINGO coverage is limited to a decli-
nation strip of ∼15◦, the C` determination at the smallest multi-
poles (` . 15) is compromised. Then, applying the BAO fitting
to the (high signal-to-noise ratio) mean C` from the 1500 FLASK
mocks, we chose `min ≈ 32, for which α estimate is the least
biased with the smallest σα error. In this way, the choice of the
multipole range can also account for any artifact introduced by
the mask geometry, which would be more evident in the mean
clustering measurement. Details about the fitting procedure over
the mean APS and ACF are presented in the next subsections.

For all the z-bins we considered the same minimum multi-
pole, but the maximum multipole was chosen according to the
multipole ranges at which the BAO wiggles are concentrated,

Table 1. Maximum multipole, `max, and minimum and maximum angu-
lar scales, θmin and θmax, in degrees considered for the template fitting
over APS and ACF clustering estimates from each z-bin.

# z̄ `max [θmin, θmax] # z̄ `max [θmin, θmax]

1 0.131 141 [10.5, 21.0] 16 0.274 301 [5.0, 10.5]
2 0.140 141 [10.5, 20.0] 17 0.284 311 [4.5, 10.5]
3 0.148 151 [9.0, 18.5] 18 0.295 321 [4.5, 10.0]
4 0.157 161 [8.5, 17.5] 19 0.306 331 [4.0, 10.0]
5 0.166 181 [8.0, 17.0] 20 0.318 341 [4.0, 10.0]
6 0.175 201 [7.5, 16.0] 21 0.329 361 [4.0, 9.5]
7 0.184 211 [7.0, 15.5] 22 0.341 371 [3.5, 9.5]
8 0.194 231 [7.0, 15.0] 23 0.353 371 [3.5, 9.5]
9 0.203 251 [6.5, 14.0] 24 0.365 381 [3.5, 9.0]
10 0.213 251 [6.5, 13.5] 25 0.377 391 [3.0, 9.0]
11 0.222 271 [6.0, 13.0] 26 0.390 391 [3.0, 9.0]
12 0.232 271 [6.0, 12.5] 27 0.403 401 [3.0, 8.0]
13 0.242 271 [5.5, 11.5] 28 0.416 401 [3.0, 8.0]
14 0.252 281 [5.5, 11.5] 29 0.429 401 [2.5, 8.0]
15 0.263 291 [5.0, 11.0] 30 0.442 401 [2.5, 8.0]

Notes. For the APS, the minimum multipole is the same for all the z-
bins, `min ≈ 32. The tomographic bins, from lower to higher redshifts,
are numbered from 1 to 30. The central redshift of each z-bin, z̄, is also
shown.

which are more spread out over higher multipoles the higher the
redshift (Fig. 2). In this sense, after a few tests over the mean
C`, we chose 141 . `max . 401 for lower to higher redshifts, so
that we used only the range containing the BAO wiggles, avoid-
ing to increase the number of data points with multipoles that do
not bring information about the BAO signal (see discussion in
Sect. 5.2).

A similar procedure was used to choose the θ range for the
ACF analyses. Applying the BAO fitting pipeline over the mean
ω(θ) measurements from the FLASK mocks, we chose for each
z-bin the range of scales that was large enough to encompass
slightly more than the full width of the BAO peak. Our choices
for the θ ranges extend from 10.5◦ / θ / 21.0◦ for the smallest
z-bin to 2.5◦ / θ / 8.0◦ for the highest z-bin.

The θ and ` ranges used for each z-bin in all our analyses
are presented in Table 1. The large number of z-bins demanded
a large number of tests to find the more appropriate angular and
mutipole ranges for each estimator. We therefore only show our
final choice in each case. We use the double tilde to refer to
minimum and maximum θ and ` values because although these
numbers are exact for the fiducial values of ∆θ and ∆`, they are
slightly different when testing other binning schemes. For such
cases, we chose the range of scales that was as close as possible
to the fiducial configuration. This is shown in Table 1. All tests
for choosing the best angular and multipole ranges were applied
to the BINGO-like simulations because our goal was to optimize
our analyses for future BINGO observations.

6.1. Fitting clustering measurements from 21 cm only
simulations

Employing the fiducial configuration, we measured the BAO sig-
nal by jointly fitting three sets of Nz = 10 consecutive z-bins, the
lower, intermediate, and higher z-bins (redshift ranges of ∆z ≈
0.09, 0.11, and 0.12 widths), estimating only one α parameter
for each set. The advantage of a tomographic approach, combin-
ing different z-bins, is to improve the error bars and statistical
significance of the measurements. The nuisance parameters, one
parameter B and four (three) parameters Aq, were fit to the
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Table 2. BAO fitting results for the ACF using 1500 FLASK mocks.

Tests z-bins 〈α〉 〈σα〉 σ68 σstd 〈χ2〉/d.o.f. (χ2
red) Ns (%) Nd (%) Mean

21 cm only
1–10 1.1158 0.1427 0.1209 0.1166 122.49/123 (1.00) 65.27 45.73 1.0067± 0.2433

Fid. config. 11–20 1.0426 0.0977 0.0775 0.0923 76.84/70 (1.10) 81.00 75.00 1.0082± 0.1014
21–30 1.0060 0.0565 0.0425 0.0514 69.54/61 (1.14) 92.60 92.00 1.0076± 0.0507

+ white noise
1–10 1.0906 0.1619 0.1042 0.1066 122.05/123 (0.99) 58.73 48.60 1.0070± 0.2915

Fid. config. 11–20 1.0524 0.1213 0.0924 0.0948 76.34/70 (1.09) 80.53 73.80 1.0107± 0.1470
21–30 1.0267 0.0932 0.0807 0.0883 67.88/61 (1.11) 89.60 85.13 1.0070± 0.0989

+ white noise + foreground residuals
Fid. config. 1–10 1.0897 0.1624 0.1123 0.1118 122.42/123 (1.00) 57.07 46.27 0.9952± 0.3270
(∆θ = 0.50◦; 11–20 1.0362 0.1267 0.0969 0.1070 76.60/70 (1.09) 70.20 63.93 0.9989± 0.1546
q = 0, 1, 2) 21–30 1.0074 0.1006 0.0809 0.0930 68.37/61 (1.12) 78.00 73.53 0.9965± 0.1039

1–10 1.0901 0.1649 0.1018 0.1080 238.66/287 (0.83) 53.40 44.67 0.9670± 0.6540
∆θ = 0.25◦ 11–20 1.0370 0.1307 0.0999 0.1054 166.28/180 (0.92) 71.67 64.87 1.0135± 0.2560

21–30 1.0063 0.1034 0.0842 0.0970 154.15/164 (0.94) 76.67 72.33 0.9826± 0.1394
1–10 1.0888 0.1647 0.1100 0.1157 155.02/165 (0.94) 57.73 46.60 1.0034± 0.3245

∆θ = 0.40◦ 11–20 1.0375 0.1298 0.0969 0.1054 100.85/98 (1.03) 72.00 65.20 0.9981± 0.1597
21–30 1.0160 0.0998 0.0833 0.0982 90.00/86 (1.05) 78.80 73.07 0.9976± 0.1065

1–10 1.1687 0.1299 0.1092 0.1117 130.45/133 (0.98) 37.40 18.73 0.9894± 0.3321
q = 0, 1 11–20 1.0364 0.1294 0.1022 0.1070 85.43/80 (1.07) 70.00 63.60 0.9955± 0.1521

21–30 1.0068 0.1005 0.0823 0.0951 78.36/71 (1.10) 85.80 80.67 1.0023± 0.0989
1–10 1.0790 0.1813 0.1432 0.1269 114.55/113 (1.01) 34.93 26.47 1.0015± 0.3270

q = −1, 0, 1, 2 11–20 1.0344 0.1307 0.0963 0.1018 67.38/60 (1.12) 70.53 65.20 1.0047± 0.1521
21–30 1.0200 0.0954 0.0801 0.0895 58.92/51 (1.14) 85.87 82.20 1.0096± 0.1014
1–10 1.0995 0.1657 0.1046 0.1039 216.71/123 (1.76) 14.20 11.33 0.9952± 0.7275

q = −2, 0, 1 11–20 1.0444 0.1214 0.0839 0.0904 146.87/70 (2.10) 39.87 37.73 0.9989± 0.1648
21–30 1.0178 0.0963 0.0790 0.0891 101.07/61 (1.67) 63.87 61.07 0.9965± 0.1065

+ white noise + foreground residual (varying beam size)
1–10 1.0929 0.1620 0.1162 0.1157 121.86/123 (0.99) 58.20 46.33 0.9994± 0.3118

Fid. config. 11–20 1.0419 0.1245 0.1003 0.1113 77.35/70 (1.10) 72.87 64.27 1.0004± 0.1546
21–30 1.0164 0.0900 0.0665 0.0871 72.09/61 (1.18) 80.53 76.27 1.0030± 0.0887

Notes. The first three parts of the table correspond to analyses of 21 cm only, noisy 21 cm (+ white noise), and BINGO-like (+ white noise +
foreground residuals) mocks, using the fiducial configuration in both cases. The other parts of the table show results from the robustness tests,
where the first column points out the aspects that varied with respect to the fiducial configuration, namely the ∆θ binning width and the q index
from ω(θ) template. All robustness tests were performed over the BINGO-like mocks. The last part of the table corresponds to analyses of the
BINGO-like mocks, employing the fiducial configuration, when the beam size was varied with frequency. The last column shows αm±σm

α obtained
from fitting the mean clustering from the mocks. See text for details.

C` (ω(θ)) estimated for each of the ten z-bins individually, so that
for the fiducial configuration, we had a total of 10×5(4) = 50(40)
nuisance parameters. The α fitting results obtained from analyz-
ing the 21 cm only simulations (accounting for BINGO sky cov-
erage and beam) are shown in the first part of Tables 2 and 3 for
the ACF and APS estimators, respectively.

We started to test our BAO fitting pipeline over the high
signal-to-noise ratio mean clustering measurements, that is, the
mean C` andω(θ) from the 1500 FLASKmocks. Our aim in fitting
a measurement with such a high signal-to-noise ratio is not only
to help decide about angular and multipole ranges and their bin-
ning widths, ∆` and ∆θ, but also to be able to identify any possi-
ble systematic bias on α estimates. Hereafter, we use αm and σm

α
to denote the results of fitting the mean C` or ω(θ), and α and σα
the results for individual mocks. The fitting over the mean clus-
tering measurement required dividing the original covariance
matrix by the total number of simulations, but this scaling would
not provide a realistic estimate of σα for one mock realization.

Because likelihoods can be well approximated by Gaussians for
high signal-to-noise ratio measurements of the BAO feature, we
therefore followed Abbott et al. (2019) and divided the original
covariance matrix by 10 to obtain the likelihood and fit the αm

parameter. The corresponding 1σ uncertainty was calculated as
described in the previous section and was then normalized to
obtain σm

α →
√

10σm
α . Using a different normalization factor,

for example, 20 instead of 10, leads to similar error amplitude.
The αm ±σm

α results are presented in the last column of Tables 2
and 3. Using the fiducial configuration to fit the mean cluster-
ing measurements from the 21 cm only simulations, we find a
prediction of 24%, 10%, and 5% errors for the lower, interme-
diate, and higher z-bins, respectively. The same procedure was
employed to all tests fitting the mean clustering measurements,
namely, varying the fiducial configuration or/and including con-
taminant signals, whose results are shown in the last column of
Tables 2–5 and are discussed in the next subsections. In general,
αm estimates are consistent with unity, although they present a
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Table 3. Same as Table 2, but for the APS estimator.

Tests z-bins 〈α〉 〈σα〉 σ68 σstd 〈χ2〉/d.o.f. Ns (%) Nd (%) Mean

21 cm only
1–10 1.0061 0.0594 0.1200 0.1243 102.14/100 (1.02) 93.73 84.20 1.0012± 0.0608

Fid. config. 11–20 1.0083 0.0316 0.0616 0.0889 185.70/207 (0.90) 92.87 87.73 1.0062± 0.0304
21–30 1.0024 0.0178 0.0318 0.0399 244.17/295 (0.83) 92.93 92.27 1.0028± 0.0152

+ white noise
1–10 1.0041 0.0653 0.1311 0.1311 102.12/100 (1.02) 92.33 79.20 0.9915± 0.0684

Fid. config. 11–20 1.0057 0.0410 0.0929 0.1092 185.46/207 (0.91) 90.87 83.27 1.0036± 0.0406
21–30 0.9965 0.0322 0.0707 0.0897 242.42/295 (0.82) 91.60 86.87 0.9999± 0.0304

+ white noise + foreground residual
Fid. config. 1–10 1.0009 0.0659 0.1257 0.1274 102.23/100 (1.02) 90.47 78.87 0.9925± 0.0684
(∆` = 10; 11–20 1.0012 0.0418 0.0888 0.1063 185.53/207 (0.90) 92.47 84.77 0.9985± 0.0431
q = −1, 0, 1, 2) 21–30 0.9975 0.0323 0.0701 0.0890 242.88/295 (0.82) 88.13 83.73 1.0012± 0.0304

1–10 1.0253 0.0697 0.1226 0.1205 45.23/36 (1.26) 94.07 82.67 1.0182± 0.0710
∆` = 15 11–20 1.0070 0.0474 0.1002 0.1154 108.96/108 (1.01) 92.87 83.00 1.0016± 0.0482

21–30 1.0015 0.0345 0.0685 0.0867 157.06/168 (0.93) 94.47 90.40 1.0020± 0.0355
1–10 1.0299 0.0724 0.1293 0.1128 27.24/17 (1.60) 96.87 87.80 1.0346± 0.0760

∆` = 20 11–20 1.0199 0.0476 0.1088 0.1117 76.90/71 (1.08) 94.60 86.93 1.0117± 0.0456
21–30 1.0009 0.0366 0.0726 0.0912 116.66/117 (1.00) 96.20 91.47 0.9975± 0.0355

1–10 1.0523 0.0682 0.1307 0.1334 119.73/120 (1.00) 62.73 50.80 1.0985± 0.0735
q = 0, 1 11–20 1.0558 0.0436 0.0788 0.0870 199.91/227 (0.88) 73.33 68.47 1.0626± 0.0431

21–30 1.0279 0.0333 0.0517 0.0556 254.90/315 (0.81) 76.27 75.67 1.0294± 0.0330
1–10 0.9995 0.0660 0.1236 0.1279 110.52/110 (1.00) 71.87 62.40 0.9935± 0.0684

q = 0, 1, 2 11–20 0.9912 0.0419 0.0858 0.1091 192.63/217 (0.89) 82.73 74.80 0.9960± 0.0406
21–30 0.9958 0.0324 0.0637 0.0818 248.84/305 (0.82) 84.33 81.53 0.9987± 0.0304
1–10 1.0161 0.0664 0.1324 0.1278 110.95/110 (1.01) 83.73 72.40 1.0113± 0.0684

q = −2, 0, 1 11–20 1.0162 0.0422 0.0864 0.1020 193.18/217 (0.89) 88.33 82.13 1.0164± 0.0431
21–30 1.0097 0.0326 0.0691 0.0870 249.10/305 (0.82) 84.47 80.27 1.0131± 0.0304

+ white noise + foreground residual (varying beam size)
1–10 1.0037 0.0642 0.1315 0.1305 102.23/100 (1.02) 91.87 79.00 0.9946± 0.0659

Fid. config. 11–20 0.9984 0.0408 0.0922 0.1088 185.68/207 (0.90) 92.13 83.67 0.9975± 0.0406
21–30 0.9860 0.0338 0.0524 0.0670 337.97/295 (1.15) 75.87 73.93 0.9939± 0.0330

Table 4. BAO fitting results for the ACF using 500 N-body mocks.

Tests z-bins 〈α〉 〈σα〉 σ68 σstd 〈χ2〉/d.o.f. Ns (%) Nd (%) Mean

1–10 1.1339 0.1411 0.1178 0.1085 98.31/123 (0.80) 49.60 34.80 1.0105± 0.2991
21 cm only 11–20 1.0354 0.0973 0.0958 0.1001 67.63/70 (0.97) 79.40 73.40 1.0045± 0.1217

21–30 1.0091 0.0560 0.0554 0.0642 61.79/61 (1.01) 87.40 86.40 1.0035± 0.0558

+ white noise 1–10 1.1082 0.1605 0.1014 0.1074 97.59/123 (0.79) 46.00 36.40 1.0194± 0.3752
+ foreground 11–20 1.0424 0.1317 0.1082 0.1106 66.97/70 (0.96) 68.00 59.60 0.9903± 0.1749
residual 21–30 0.9974 0.1024 0.1160 0.1209 61.04/61 (1.00) 75.60 66.20 0.9698± 0.1242

Notes. The first part of the table show results obtained by analyzing the 21 cm only mock, and the second part corresponds to BINGO-like
simulations. In both cases the fiducial configuration is employed.

Table 5. Same as Fig. 4, but for the APS estimator.

Tests z-bins 〈α〉 〈σα〉 σ68 σstd 〈χ2〉/d.o.f. Ns (%) Nd (%) Mean

1–10 1.0075 0.0385 0.1373 0.1402 84.81/100 (0.85) 84.00 68.60 1.0110± 0.0380
21 cm only 11–20 1.0128 0.0190 0.0682 0.0873 119.81/207 (0.58) 78.40 74.60 1.0062± 0.0177

21–30 1.0096 0.0130 0.0359 0.0549 117.95/295 (0.40) 78.20 76.60 1.0086± 0.0127

+ white noise 1–10 1.0017 0.0475 0.1413 0.1406 85.02/100 (0.85) 84.00 70.40 1.0117± 0.0482
+ foreground 11–20 0.9917 0.0307 0.0971 0.1017 120.99/207 (0.58) 76.20 70.60 0.9926± 0.0279
residual 21–30 1.0080 0.0272 0.0974 0.1174 115.83/295 (0.39) 57.80 50.80 1.0031± 0.0253
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Fig. 3. Histogram distribution of the α parameter, σα error, and χ2 obtained by applying the BAO fitting pipeline to each of the FLASK simu-
lations for the ACF estimator using the fiducial configuration. The rows from top to bottom show the results for each redshift range, the lower
(1−10 z-bins), the intermediate (11−20 z-bins), and the higher redshifts (21−30 z-bins). The average redshift for each range is presented in the
first panel of each row. In all the plots, the solid blue, dashed red, and dotted green lines show the distribution of the parameters resulting from
analyzing the 21 cm only simulations (21 cm), the noisy 21 cm simulations (21 cm + WN), and the BINGO-like simulations (adding also the
foreground residual; 21 cm + WN + FG), respectively. All these results correspond to the Ns fraction of the mocks. See Table 2.

small bias, which in all the cases is well below the statistical
uncertainty.

In addition, Tables 2–5 present the same summary statistics
that were obtained applying the BAO fitting pipeline to each
mock for each of the three redshift ranges. In particular, there
we show the average shift parameter 〈α〉, the average error in
α estimates 〈σα〉, and two measures of the dispersion of the α
distribution, the symmetric error around 〈α〉 encompassing 68%
of the mocks (less sensitive to the tails) σ68, and the common
standard deviation of the distribution σstd, as well as the average
〈χ2〉 (and degrees of freedom, d.o.f.). All these quantities were
calculated from the fraction Ns of the total 1500 mocks, which
correspond to the mocks fulfilling our selection criteria, namely,
those whose α ± σα interval are inside the range [0.6, 1.4] and
that have χ2 > χ2

nw, where χ2
nw is obtained from fitting a non-

BAO template model to the clustering estimates (see Sect. 6.6).
This fraction Ns is also presented in the tables, as is the fraction
Nd of the mock whose α estimate is inside the range [0.8, 1.2].
We consider these as the mocks with a BAO detection. Figures 3
and 4 show for ACF and APS the distribution of the α parame-
ter, the σα error, and the χ2, estimated from the Ns fraction of the
mocks, respectively; the blue curves show the 21 cm only results.

The detection criterion of having the full interval α ± σα
inside the prior range [0.8, 1.2] (e.g., Ata et al. 2018; Chan et al.
2018) has commonly been employed in the literature. However,
we can observe from these analyses that the distribution of the
α parameter in general seems to be more Gaussian than what
we find in our analyses (left panels in Figs. 3 and 4). A pos-
sible reason for this is the lower redshift we considered here,
where the contribution from nonlinear effects is stronger. How-
ever, results from Villaescusa-Navarro et al. (2017), who inves-
tigated the BAO detection from 21 cm signal for the SKA case
for the redshift range 0.35 < z < 3.05, also showed α distribu-
tions with clear deviations from a perfect Gaussian (but note the
smaller number of simulations employed there, namely, 100).
As pointed out by Chan et al. (2018) and Abbott et al. (2022), a
natural consequence from having a (approximate) Gaussian dis-
tribution is a reasonable concordance among the three different
error measurements, that is, 〈σα〉 ∼ σ68 ∼ σstd. This is not our
case, as can be seen from Tables 2 and 3 (as well as from Tables 4
and 5), indicating that 〈σα〉 is not meaningful or representative
of the error in the α measurements for individual mock realiza-
tions (see also Figs. 3 and 4). Our results show that compared to
〈σα〉, the errors given byσ68 are overestimated by ∼18% to 33%,
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Fig. 4. Same as Fig. 4, but for the APS estimator. All distributions are again constructed from the corresponding Ns fraction of the mocks. See
Table 3.

from the smallest to the highest z-bins when the ACF is used,
but is underestimated by ∼50% for APS. Moreover, comparing
the expected σm

α obtained fitting the mean C` and ω(θ) to the
average 〈σα〉, we find a reasonable agreement for intermediate
and higher z-bins, but not for the lower z-bins, in particular, for
the ACF estimator. In addition, although σstd agrees better with
σ68, we still find non-negligible differences among them, which
confirms our α distributions as non-Gaussian (a larger σstd indi-
cates non-Gaussian tails). These reasons motivated our choice
of using the α values instead of α ± σα ranges, which belong to
the interval [0.8, 1.2] as a criterion for a BAO detection (defining
the Nd fraction), as well as our choice of using the 68% spread
of the α distributions, σ68, as the representative error in our
measurements.

Comparing the results obtained for the three redshift ranges,
we confirm that the two clustering estimators perform better at
higher redshifts, as expected. We recall that the lower the red-
shift, the larger the BAO angular scale, θBAO, which for the
BINGO redshift range, 0.127 < z < 0.449, corresponds to
18◦ & θBAO & 7◦ for the fiducial cosmology. This means that
at the smallest redshifts, the θBAO is larger than the 15◦ stripe
of the BINGO coverage, leading to worse statistics at these z-
bins. Figure 5 compares APS and ACF results obtained from
21 cm only simulations (first row), showing the improvement in
their performance for intermediate and higher redshifts, as well
as a high correlation among their results. Comparing the per-
formance from each of the clustering estimators, we found that

they show different sensitivities to specific redshift ranges. Our
results show that C` measurements lead to smaller σ68 errors for
intermediate and higher redshift ranges, namely, 20% and 25%
smaller σ68 when compared to ω(θ). Furthermore, both Ns and
Nd fractions of the mocks are larger for the APS at lower and
intermediate redshifts, and comparable at higher redshifts. For
the Nd fraction, the APS has ∼1.8 higher probability of detect-
ing BAO at lower redshifts at 21 cm only mocks compared to the
ACF.

Finally, comparing the two estimators, we find in summary
an apparently better performance of the APS over the ACF. This
conclusion is mainly based on the following aspects of the ACF
results: the slightly larger σ68 uncertainties at intermediate and
higher redshifts; the quite larger bias on the average 〈α〉, espe-
cially at lower z-bins, corresponding to 0.95σ68; and the smaller
Ns and Nd fractions at small and intermediate z-bins.

We also evaluated the z-bin width and the way in which
the 30 z-bins were combined to estimate the shift parameter.
First, the BAO fitting pipeline was applied to three ranges of
redshift composed by Nz = 12, 10, 8 consecutive z-bins with
δν = 9.33 MHz, so that α is estimated over three redshift ranges
of same total width each (∆z ≈ 0.10). Then, we tested a tomo-
graphic binning of the BINGO frequency band into 30 z-bins
linearly spaced in redshift (δz ≈ 0.01), instead of frequency,
but still estimating α for three redshift ranges of Nz = 10 z-bins
each (same total redshift width). We find that in general, both
cases lead to results comparable to those from Tables 2 and 3,
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Fig. 5. Comparison of the α values estimated using the ACF and APS estimators (black dots). The columns from left to right show estimates from
lower to higher redshift ranges, with average 〈z〉 = 0.172, 〈z〉 = 0.270, and 〈z〉 = 0.386. The first row shows results for the 21 cm only analyses,
and the middle and bottom rows show results including white noise only and white noise + foreground residual, respectively. The red dots in the
bottom row show α estimates from the reconstructed (foreground cleaned) maps.

although each redshift range and clustering estimator has its
own most advantageous configuration. In this sense, for sim-
plicity, and because previous BINGO papers employ a redshift
binning linear in frequency (Liccardo et al. 2022; Fornazier et al.
2022; Costa et al. 2022), we continued to use z-bins with δν =
9.33 MHz width and the BAO fitting process considering three
sets of Nz = 10 z-bin for both estimators.

6.2. Impact of including instrumental noise

Taking all specifications summarized in Sect. 4.1.2 into account,
we estimated the white noise level at each pixel in the BINGO
region, σpix, considering the same resolution as was used to gen-
erate the 21 cm simulations, Nside = 256. From this σpix map, we
generated as many realizations of the corresponding white noise
map as necessary by multiplying it by random values defined by
a Gaussian distribution of zero mean and unitary standard devi-
ation. We added a different noise realization to each of the 1500
FLASK mocks and repeated the same process of calculating C`

and ω(θ) from each of them.
White noise adds a constant term N` at all multipoles to the

APS term, which for BINGO dominates the 21 cm signal as a

function of redshift bin for ` ≥ 200−350 (Fig. 2). Then, we
debiased the C` from each noisy 21 cm simulation by subtracting
the expected N` amplitude, computed from the theoretical noise
level. In contrast, white noise affects the ACF over all angular
scales, so that this debiasing cannot be considered. However,
because the ω(θ) was calculated by averaging over δTpδTp′ from
all pairs of pixels p and p′ separated by θ (Eq. (16)), a natural
consequence is a reduction of the noise.

Our results show that the presence of thermal noise increases
the σ68 uncertainty by 19% and 90% for intermediate and higher
z-bins when the ACF is used, while at lower z-bins, this error
surprisingly diminishes by 14% (similarly to the respective bias
on 〈α〉). The noise impact is more expressive for APS analyses,
with an increase of 9%, 51%, and 122% in σ68 from lower to
higher z-bins. However, although APS results are more affected
by the noise, it still has a smaller σ68 uncertainty for higher
z-bins, while for intermediate z-bins, the two estimators have
comparable errors. The second row of Fig. 5 shows a comparison
of the best-fit α from ω(θ) and C` estimators. It is clearly much
more spread due to the presence of noise. In addition, for both
estimators, the Ns and Nd fractions decrease due to the presence
of thermal noise, with the greatest impact over Ns, decreasing
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by 10% for the ACF estimator at lower z-bins. Again surpris-
ing, Nd increases by 6% for ACF at small z-bins after including
noise. In addition, the number of simulations with a BAO detec-
tion decreases more strongly the higher the redshift. In summary,
the presence of thermal noise has the main impact on higher
z-bins, for which the BAO feature appears at smaller angular
scales (spread to larger multipoles; Fig. 2), where noise starts to
dominate.

6.3. Foreground residual contamination

The last step was to take residual foreground into account, as
expected for BINGO. For this we added the most important fore-
ground signals contributing to the BINGO frequency range along
with the thermal noise (Sect. 4.1.2) to a 21 cm realization. Using
the GNILC code, we performed component separation to recon-
struct the noisy 21 cm signal as discussed in Sect. 4.2. Moreover,
from Eq. (19), using the ILC filter and the known foreground
contamination, we estimated the amplitude of the foreground
residual in each z-bin, W f . This process was repeated for ten
different realizations of the 21 cm signal, each of them contam-
inated by a different realization of the thermal noise, but all
with the same foreground signal contribution. These ten differ-
ent estimates of the foreground residual were used to include the
expected contaminant signal to each of the 1500 mock realiza-
tions (the BINGO-like simulations). The noise realizations are
still different from one mock to another, while the foreground
residual was repeated every ten mocks. This avoided the neces-
sity of applying the (computationally expensive) component sep-
aration process to all the simulations.

Given the 1500 semi-realistic BINGO-like simulations, we
calculated the C` and ω(θ) from each of them and repeated the
BAO fitting process using the fiducial configuration. We again
debiased C` by subtracting the expected N` term. The results are
shown in Tables 2 and 3, as well as in Figs. 3 and 4, for ACF
and APS estimators, respectively. The last row of Fig. 5 also
shows how the foreground residual can affect the concordance
among the two estimators. In general, this contamination has
a less significant impact, with negligible changes in the 〈σα〉,
σ68, and σstd uncertainties compared to a case including noise
(similar conclusions were drawn by Villaescusa-Navarro et al.
2017). Still, both Ns and Nd fractions decrease, especially at
higher z-bins using ACF, and another ∼10% of the 1500 mocks
no longer satisfy the selection and detection criteria. We note
also that for all the redshift ranges, the best-fit αm from the
mean ACF shows a slight shift to values lower than those
found when only noise was included. Because this shift per-
sists at some redshift ranges when the fiducial configuration
was changed (Table 2) and also when the N-body mocks were
used (Table 4), this suggests that the foreground residual might
cause this systematic bias. For the APS, on the other hand, the
results do not lead to the same conclusion. In any case, even
though this shift is observed from ω(θ) results after the fore-
ground residual contribution is included, it is quite small with
respect to the error estimates, that is, small enough to be of no
concern.

In order to evaluate the validity of including the expected
foreground residual to the mocks, instead of applying the GNILC
code to each of them, we added the BAO fitting results from the
ten reconstructed maps to the last row of Fig. 5. The red dots
appear to agree well with the black dots. The middle and last
panels do not show all ten red dots because not all the recon-
structed maps provided best-fit α values in the range [0.6, 1.4]
for (at least) one of the estimators.

Additionally, we tested the impact of a frequency-dependent
beam size, with the BINGO θfwhm taking values from ∼35′ to
∼45′ from low to high z-bins. In this case, the component sep-
aration was applied after the resolution of each frequency map
(21 cm, along with thermal noise and foreground signals) was
converted into the common θfwhm ∼ 45′, the largest beam size.
The foreground residual for each z-bin was estimated as before.
It was added to a realization after each frequency map, contain-
ing the 21 cm signal (FLASK mocks), convolved with the corre-
sponding beam size, and the thermal noise, was converted into
the common θfwhm. The BAO fitting results from this set of
1500 mock realizations are presented in the last part of Tables 2
and 3. These results show that for the two clustering estima-
tors, a frequency-dependent beam size has a negligible impact
on the BAO analyses for lower and intermediate redshift ranges.
At higher z-bins, the bias on 〈α〉 forω(θ) and C` is slightly larger,
but still quite smaller than the error estimates, and in addition,
the Ns and Nd fractions for C` and ω(θ) slightly decrease and
increase, respectively. We find that the foreground residuals have
a larger amplitude in the higher z-bins than when the beam size
is fixed (Fig. 2), which mainly contributes at larger multipoles
(a deeper investigation of the impact of the frequency-dependent
beam size in the foreground cleaning is necessary, but beyond the
scope of this paper and will be considered in future work). Still,
even with a larger contribution, the foreground residual does not
seem to have a significant impact on BAO results. This allows us
to keep the previous conclusions.

6.4. Robustness tests

Here we test the aspects of the fiducial configuration, that is, we
consider variations of (a) the angular (∆θ) and multipole (∆`)
binning and (b) the q index in the templates, Eqs. (15) and (16).
These robustness tests were performed over the BINGO-like
simulations because they are the closest to what BINGO will
observe. We varied only one aspect of the fiducial configuration
at a time. This aspect is listed in the first column of Tables 2
and 3, where the results of all robustness tests are summarized.

From testing the ∆θ width, Table 2 shows that the different
binning leads to small changes at distinct statistics. The most
discrepant result concerns the larger bias on αm obtained from
the mean ω(θ) at all the redshift ranges for ∆θ = 0.25◦. More-
over, although ∆θ = 0.40◦ shows slightly better results for some
statistics, for example, larger Ns and Nd fractions at some red-
shift ranges, we find a smaller bias on 〈α〉 at higher z-bins for
∆θ = 0.50◦. In this sense, and in order to have a more diagonal
covariance matrix, we chose to use ∆θ = 0.50◦ as the fiducial
configuration. Similar conclusions can be drawn from the tests
on the ω(θ) template, showing that some choices of q can help
to improve different statistics. However, by comparing all tem-
plate tests, we note the large reduced 〈χ2〉 for all redshift ranges,
using q = −2, 0, 1, and the large bias on 〈α〉 and αm for the ACF
at small z-bins for q = 0, 1. In general, cases q = 0, 1, 2 and
q = −1, 0, 1, 2 present the better results, especially in terms of
the fraction Nd of mocks with BAO detection. The first case pro-
duces larger Ns and Nd for lower z-bins, while the second case
provides larger fractions at higher z-bins. Given the smaller bias
amplitude in 〈α〉 at higher z-bins, we chose q = 0, 1, 2 as part of
the fiducial configuration.

Results from testing ∆` width, presented in Table 3, show
a good concordance between the different uncertainties from
all three cases considered, but a clearly poorer performance for
∆` = 20. While this larger bin width gives larger Ns and Nd frac-
tions, it also introduces large bias on 〈α〉 and αm for most of the
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redshift ranges. When ∆` = 10 and 15 are compared, the second
case leads to slightly larger Ns and Nd fractions, but also to a
larger bias on 〈α〉 and αm, as well as a larger 〈χ2〉, for the lower
z-bins. It is therefore more appropriate to use ∆` = 10 as part of
the fiducial configuration. Finally, testing the different templates
to fit C` measurements, we again searched for the one with the
smallest bias and uncertainty, combined with the largest Ns and
Nd. In this sense, q = 0, 1, 2 and q = −1, 0, 1, 2 have the best
results, but the latter gives a larger fraction of the mocks with
BAO detection, Nd, and also larger Ns. We therefore chose it as
part of the fiducial configuration.

From all the robustness tests, considering each redshift range
individually, we might conclude that each of them would require
a slightly different configuration. However, for simplicity, we
chose to use the same θ/` binning and ω(θ)/C` templates for all
three redshift ranges, that is, the (a) and (b) aspects of the fiducial
configuration, as discussed.

6.5. Tests of N-body mocks

An additional test of the BAO fitting pipeline was its appli-
cation on the set of 500 N-body mocks, generated through a
completely different method, as described in Sect. 4.1.1. We
employed the fiducial configuration to analyze the 21 cm only
simulations and the BINGO-like simulations, constructed using
the N-body mocks. We used the same ten foreground residual
maps as before and a fixed beam size θfwhm = 40 arcmin. The
summary statistics from these analyses are presented in Tables 4
and 5 for ACF and APS, respectively.

From the 21 cm only analyses, we find small differences with
respect to what is obtained from the FLASKmocks, more expres-
sive for the APS estimator, especially the smaller amplitude of
〈χ2〉 and fractions Ns and Nd for all the redshift ranges. How-
ever, these differences can be partially explained by the number
of available N-body mocks: one-third of the number of FLASK
mocks. The smaller number of simulations implies, for exam-
ple, a lower signal-to-noise ratio from the mean clustering mea-
surements, providing a poorer fitting over them (note the slightly
large bias on αm from small and intermediate z-bins for both esti-
mators). Additionally, for the APS (ACF), the number of d.o.f.,
increases (decreases) with the redshift, making the covariance
matrix and its inverse the more biased the higher (lower) the
redshift, explaining the discrepancy in the 〈χ2〉 and the uncer-
tainty estimates. In this sense, we can argue that the slight differ-
ences between other summary statistics from N-body and FLASK
mocks seems to be of statistical origin, although we also need to
take into account that the two types of mocks were generated
following very different methods.

The impact of introducing noise and foreground residuals
to the N-body mocks is very similar to that obtained using the
FLASK mocks. The greater impact appears in intermediate and
high z-bins for the same reasons as previously discussed (see
Sects. 6.2 and 6.3).

6.6. Wiggle versus no-wiggle template fitting

In order to evaluate the goodness of fit of the ω(θ) and C`

templates to the corresponding measurements from each mock,
we compared the minimum χ2, evaluated at the best-fit αbf
value, to that obtained by using a no-BAO template, χ2

nw. To
do this, we constructed a template model for each estimator
(the same Eqs. (15) and (16)) using Ctemp(`) obtained by impos-
ing Ptemp(k) = Pnw, instead of using the parameterization from
Eq. (14). The square root of the difference among the two quan-
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Fig. 6. Histogram distribution of the significance, S =
√

∆χ2, of the
BAO signal, in terms of number of σ, estimated for each of the FLASK
simulations (i.e., the corresponding Ns fraction of mocks) considering
each clustering estimator. These results are obtained by evaluating the
BINGO-like simulations combining all the 30 z-bins.

tities, S =
√

∆χ2 =
√
χ2 − χ2

nw(αbf), given in term of number
of σ, is commonly used to evaluate the statistical significance
of the BAO signal detection (see, e.g., Villaescusa-Navarro et al.
2017; Camacho et al. 2019; Abbott et al. 2022). This means that
the BAO model (baryon signature) is preferred by ∆χ2 compared
to a model without the BAO.

To evaluate the effective significance of our BAO detec-
tion over BINGO-like simulations, we considered the com-
plete BINGO redshift range, fitting all the 30 z-bins together
instead of three subsets of them. Because the number of d.o.f.
increases significantly in this case, namely, 256 and 604 for
ACF and APS, respectively, an unbiased estimate of the covari-
ance matrix and its inverse requires a larger set of simulations,
which directly influences the χ2 estimate (see the discussion in
Sect. 6.5). To do this, we rotated the original 1500 FLASKmocks
six times, similarly to the procedure used to enlarge the num-
ber of N-body mocks, as described in Sect. 4.1.1, achieving a
total of 10 500 mocks. The clustering statistics measured from
the 10 500 BINGO-like simulations were used to estimate the
covariance matrix, while the ∆χ2 quantity was calculated only
for the 1500 original mocks. The distribution of

√
∆χ2 from

the corresponding Ns ∼ 90% and 94% of the mocks for ACF
and APS, with average significance of 〈S 〉 = 1.48σ and 1.61σ,
respectively, are presented in Fig. 6. From the Ns fraction of
mocks, we find ∼14% and ∼24% of them with S =

√
∆χ2 > 2σ,

for ACF and APS, respectively. Confirming the slightly better
performance of the APS over the ACF estimator, the first seems
to provide a BAO detection with a higher significance than the
last. Moreover, although the

√
∆χ2 distribution is shown only for

the BINGO-like simulations, it is impacted by systematic effects
similarly to other summary statistics. Compared to 21 cm only
case,

√
∆χ2 is significantly shifted to lower values due to the

inclusion of thermal noise, while the contribution of foreground
residual has a negligible impact.

7. Conclusions

The BAO feature measured from galaxy distribution is currently
recognized as one of the most important cosmological probes. Its
dependence on the evolution and the components of the Universe
makes it a powerful tool for investigating the physical nature of
dark energy. Since its first detection, the BAO scale has been

A83, page 15 of 17



A&A 666, A83 (2022)

measured using different matter tracers in several redshift ranges,
and now the radio 21 cm IM experiments, such as BINGO, plan
to provide a complementary route for studying the BAO.

We assessed the BINGO telescope potential in its phase 1
operation to detect the transversal BAO signal. To do this, we
developed a template fitting pipeline with two clustering esti-
mators, ω(θ) and C`, to extract the BAO information from two
different sets of simulations, FLASK and N-body mocks. Our
analyses accounted for the BINGO sky coverage and beam
effect and evaluated the impact of including thermal noise and
foreground residual. The fitting procedure to measure the shift
parameter, α, from the mocks was performed over three sets of
consecutive z-bins using a maximum likelihood estimator. Most
of our analyses were performed employing the fiducial config-
uration (aspects a and b defined in Sect. 6), optimized to be
applied to all redshift ranges. Our main results are summarized
below.

– We found that both estimators perform better at higher red-
shifts, but show different sensitivities to specific redshift
ranges. The bias amplitude in 〈α〉, the σ68 uncertainty, and
the selection and detection fractions, Ns and Nd, suggest that
the APS slightly outperforms the ACF estimator, although
the ACF presents slightly smaller σ68 at lower z-bins. The
APS also leads to a greater average significance, 〈S 〉, than
the ACF. This behavior is observed by analyzing 21 cm
only simulations and remains after contaminant signals and
redshift-dependent beam size are included (see Tables 2–5).

– Accounting for the impact of including thermal noise and
foreground residual one at a time, we found that the first
affects the two clustering estimators more. It affects the
results more significantly the higher the redshift. It enlarges
the σ68 error significantly, in particular for the APS estima-
tor, for which it reaches 122% in higher z-bins. The reason
for this is that the BAO wiggles appear at higher multipoles
(smaller angular scales) the higher the redshift. At these
scales, the thermal noise starts to dominate. The inclusion
of the foreground residual, on the other hand, does not seem
to have a significant impact in our results.

– Robustness tests of the fiducial configuration, considering
different ∆θ and ∆` binning and alternative template models
(q indexes), suggested that a more appropriate choice would
be to select an optimal configuration for each of the three
redshift ranges.

– In the fiducial configuration, the BAO fitting pipeline applied
to 500 N-body mocks (Tables 4 and 5) showed a few aspects
that differed from those in the analysis of FLASKmocks. This
is caused mainly by the smaller number of N-body mocks.

– We also evaluated how preferred a BAO model is when com-
pared to a fit of a non-BAO model, and found an average
significance for the BAO detection of ∼1.48σ for ACF and
∼1.48σ for APS, combining all 30 z-bins. A fraction of 14%
and 24% of the FLASKmocks for ACF and APS, respectively,
provide a >2σ BAO detection.

We emphasize that some aspects of the analysis presented here
might benefit from the inclusion of more realistic choices of
instrumental issues, such as the structure of the beam and instru-
mental effects such as 1/ f noise and polarization leakage, or
even aspects of the method that can be improved and deserve
further study. These include a test of alternative component sep-
aration procedures, a different number of z-bins for the BAO fit-
ting (see the results from the BINGO paper, Mericia et al. 2022),
and a different fitting method from MLE.

Moreover, it is well known (Eisenstein et al. 2007b) that the
nonlinear gravitational evolution of the Universe smears out the

acoustic signature by inducing a damping and broadening on the
BAO peak in addition to shifting its position so that the lower the
redshift, the more difficult an accurate measurement of the BAO
features. Because BINGO will survey a large volume of the Uni-
verse at relatively low redshifts, we also expect to improve our
BAO fitting results, in particular at lower redshifts, by consider-
ing a reconstruction procedure (Obuljen et al. 2017).

In summary, we conclude that intermediate and higher red-
shift intervals are the most promising for measuring the BAO
scale, with a probability of detection of more than ∼80% (∼70%)
with the APS (ACF) estimator. These numbers are obtained
using a fixed fiducial configuration and can be significantly
improved by the choice of an optimal configuration for each red-
shift interval. Although we showed that systematic effects have
a non-negligible impact on α estimates, our analyses of a semi-
realistic scenario (BINGO-like mocks) confirmed that BINGO
should be able to successfully detect the BAO signal at radio
frequencies.

Acknowledgements. The BINGO project is supported by São Paulo Research
Foundation (FAPESP) grant 2014/07885-0. C.P.N. would like to thank Edil-
son de Carvalho, Armando Bernui, Henrique Xavier, and Hugo Camacho for
very enlightening and useful discussions. C.P.N. also acknowledges FAPESP
for financial support through grant 2019/06040-0. J.Z. acknowledges sup-
port from the Ministry of Science and Technology of China (grant Nos.
2020SKA0110102). R.G.L. thanks CAPES (process 88881.162206/2017-01)
and the Alexander von Humboldt Foundation for the financial support. L.S. is
supported by the National Key R&D Program of China (2020YFC2201600).
A.A.C. acknowledges financial support from the National Natural Science Foun-
dation of China (grant 12175192). L.B., F.A.B, A.R.Q., and M.V.S. acknowl-
edge PRONEX/CNPq/FAPESQ-PB (Grant no. 165/2018). E.F.: The Kavli
IPMU is supported by World Premier International Research Center Initiative
(WPI), MEXT, Japan. We thank an anonymous referee for her/his very insight-
ful comments. This research made use of astropy (Astropy Collaboration
2018), healpy (Zonca et al. 2019), numpy (Van Der Walt et al. 2011), scipy
(Virtanen et al. 2020) and matplotlib (Hunter 2007).

References
Abbott, T., Abdalla, F., Alarcon, A., et al. 2019, MNRAS, 483, 4866
Abbott, T., Aguena, M., Allam, S., et al. 2022, Phys. Rev. D, 105, 043512
Abdalla, E., & Marins, A. 2020, Int. J. Mod. Phys. D, 29, 2030014
Abdalla, E., Ferreira, E. G. M., Landim, R. G., et al. 2022a, A&A, 664, A14
Abdalla, F. B., Marins, A., Motta, P., et al. 2022b, A&A, 664, A16
Ade, P., Aghanim, N., Alves, M., et al. 2016, A&A, 594, A25
Alam, S., Ata, M., Bailey, S., et al. 2017, MNRAS, 470, 2617
Alam, S., Aubert, M., Avila, S., et al. 2021, Phys. Rev. D, 103, 083533
Alonso, D., Bull, P., Ferreira, P. G., & Santos, M. G. 2015, MNRAS, 447, 400
Alonso, D., Sanchez, J., & Slosar, A. 2019, MNRAS, 484, 4127
Anderson, L., Aubourg, E., Bailey, S., et al. 2012, MNRAS, 427, 3435
Anderson, L., Aubourg, E., Bailey, S., et al. 2014, MNRAS, 441, 24
Anderson, C. J., Switzer, E. R., & Breysse, P. C. 2022, MNRAS, 514, 1169
Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123
Ata, M., Baumgarten, F., Bautista, J., et al. 2018, MNRAS, 473, 4773
Avila, F., Novaes, C. P., Bernui, A., & de Carvalho, E. 2018, JCAP, 2018, 041
Avila, S., Vos-Ginés, B., Cunnington, S., et al. 2022, MNRAS, 510, 292
Bandura, K., Addison, G. E., Amiri, M., et al. 2014, Int. Soc. Opt. Photon., 9145,

914522
Battye, R., Browne, I., Dickinson, C., et al. 2013, MNRAS, 434, 1239
Bigot-Sazy, M.-A., Dickinson, C., Battye, R. A., et al. 2015, MNRAS, 454, 3240
Blas, D., Lesgourgues, J., & Tram, T. 2011, JCAP, 2011, 034
Brown, M. L., Castro, P., & Taylor, A. 2005, MNRAS, 360, 1262
Camacho, H., Kokron, N., Andrade-Oliveira, F., et al. 2019, MNRAS, 487, 3870
Carnero, A., Sánchez, E., Crocce, M., Cabré, A., & Gaztanaga, E. 2012,

MNRAS, 419, 1689
Carter, P., Beutler, F., Percival, W. J., et al. 2018, MNRAS, 481, 2371
Carucci, I. P., Irfan, M. O., & Bobin, J. 2020, MNRAS, 499, 304
Carvalho, G., Bernui, A., Benetti, M., Carvalho, J., & Alcaniz, J. 2016, Phys.

Rev. D, 93, 023530
Carvalho, G., Bernui, A., Benetti, M., et al. 2020, Astropart. Phys., 119, 102432
Chan, K. C., Crocce, M., Ross, A., et al. 2018, MNRAS, 480, 3031

A83, page 16 of 17

http://linker.aanda.org/10.1051/0004-6361/202243158/1
http://linker.aanda.org/10.1051/0004-6361/202243158/2
http://linker.aanda.org/10.1051/0004-6361/202243158/3
http://linker.aanda.org/10.1051/0004-6361/202243158/4
http://linker.aanda.org/10.1051/0004-6361/202243158/5
http://linker.aanda.org/10.1051/0004-6361/202243158/6
http://linker.aanda.org/10.1051/0004-6361/202243158/7
http://linker.aanda.org/10.1051/0004-6361/202243158/8
http://linker.aanda.org/10.1051/0004-6361/202243158/9
http://linker.aanda.org/10.1051/0004-6361/202243158/10
http://linker.aanda.org/10.1051/0004-6361/202243158/11
http://linker.aanda.org/10.1051/0004-6361/202243158/12
http://linker.aanda.org/10.1051/0004-6361/202243158/13
http://linker.aanda.org/10.1051/0004-6361/202243158/14
http://linker.aanda.org/10.1051/0004-6361/202243158/15
http://linker.aanda.org/10.1051/0004-6361/202243158/16
http://linker.aanda.org/10.1051/0004-6361/202243158/17
http://linker.aanda.org/10.1051/0004-6361/202243158/18
http://linker.aanda.org/10.1051/0004-6361/202243158/18
http://linker.aanda.org/10.1051/0004-6361/202243158/19
http://linker.aanda.org/10.1051/0004-6361/202243158/20
http://linker.aanda.org/10.1051/0004-6361/202243158/21
http://linker.aanda.org/10.1051/0004-6361/202243158/22
http://linker.aanda.org/10.1051/0004-6361/202243158/23
http://linker.aanda.org/10.1051/0004-6361/202243158/24
http://linker.aanda.org/10.1051/0004-6361/202243158/25
http://linker.aanda.org/10.1051/0004-6361/202243158/26
http://linker.aanda.org/10.1051/0004-6361/202243158/27
http://linker.aanda.org/10.1051/0004-6361/202243158/27
http://linker.aanda.org/10.1051/0004-6361/202243158/28
http://linker.aanda.org/10.1051/0004-6361/202243158/29


C. P. Novaes et al.: The BINGO project. VIII. Recovering the BAO signal on Hi IM simulations

Chang, T.-C., Pen, U.-L., Peterson, J. B., & McDonald, P. 2008, Phys. Rev. Lett.,
100, 091303

Chen, X. 2012, Int. J. Mod. Phys.: Conf. Ser., 12, 256
Cole, S., Percival, W. J., Peacock, J. A., et al. 2005, MNRAS, 362, 505
Costa, A. A., Landim, R. G., Novaes, C. P., et al. 2022, A&A, 664, A20
Crichton, D., Aich, M., Amara, A., et al. 2022, J. Astron. Telesc. Instrum. Syst.,

8, 011019
Crocce, M., Cabré, A., & Gaztañaga, E. 2011, MNRAS, 414, 329
Cunnington, S., Irfan, M. O., Carucci, I. P., Pourtsidou, A., & Bobin, J. 2021,

MNRAS, 504, 208
De Carvalho, E., Bernui, A., Carvalho, G., Novaes, C., & Xavier, H. 2018, JCAP,

2018, 064
De Carvalho, E., Bernui, A., Xavier, H., & Novaes, C. 2020, MNRAS, 492, 4469
de Carvalho, E., Bernui, A., Avila, F., Novaes, C., & Nogueira-Cavalcante, J.

2021, A&A, 649, A20
de Simoni, F., Sobreira, F., Carnero, A., et al. 2013, MNRAS, 435, 3017
Delabrouille, J., Betoule, M., Melin, J.-B., et al. 2013, A&A, 553, A96
Dickinson, C., Davies, R., & Davis, R. 2003, MNRAS, 341, 369
Dodelson, S. 2003, Modern Cosmology (Elsevier)
Dunkley, J., Komatsu, E., Nolta, M., et al. 2009, ApJS, 180, 306
Eisenstein, D. J., & Hu, W. 1998, ApJ, 496, 605
Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560
Eisenstein, D. J., Seo, H.-J., & White, M. 2007a, ApJ, 664, 660
Eisenstein, D. J., Seo, H.-J., Sirko, E., & Spergel, D. N. 2007b, ApJ, 664, 675
Fornazier, K. S. F., Abdalla, F. B., Remazeilles, M., et al. 2022, A&A, 664,

A18
Gorski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Hall, A., Bonvin, C., & Challinor, A. 2013, Phys. Rev. D, 87, 064026
Harper, S., Dickinson, C., Battye, R., et al. 2018, MNRAS, 478, 2416
Hartlap, J., Simon, P., & Schneider, P. 2007, A&A, 464, 399
Hinton, S. R., Kazin, E., Davis, T. M., et al. 2016, MNRAS, 464, 4807
Hivon, E., Górski, K. M., Netterfield, C. B., et al. 2002, ApJ, 567, 2
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
Jarvis, M., Bernstein, G., & Jain, B. 2004, MNRAS, 352, 338
Kennedy, F., & Bull, P. 2021, MNRAS, 506, 2638
Kim, J., Park, C., L’Huillier, B., & Hong, S. E. 2015, J. Korean Astron. Soc., 48,

213
Lesgourgues, J. 2011, ArXiv e-prints [arXiv:1104.2932]
Li, Y., Santos, M. G., Grainge, K., Harper, S., & Wang, J. 2021, MNRAS, 501,

4344
Liccardo, V., de Mericia, E. J., Wuensche, C. A., et al. 2022, A&A, 664, A17
Loeb, A., & Wyithe, J. S. B. 2008, Phys. Rev. Lett., 100, 161301
Loureiro, A., Moraes, B., Abdalla, F. B., et al. 2019, MNRAS, 485, 326
McLeod, M., Balan, S. T., & Abdalla, F. B. 2017, MNRAS, 466, 3558
Mericia, E. J., Santos, L., Wuensche, C. A., et al. 2022, A&A, submitted

[arXiv:2204.08112]
Miville-Deschênes, M.-A., Ysard, N., Lavabre, A., et al. 2008, A&A, 490, 1093
Moura-Santos, E., Carvalho, F., Penna-Lima, M., Novaes, C., & Wuensche, C.

2016, ApJ, 826, 121
Nan, R., Li, D., Jin, C., et al. 2011, Int. J. Mod. Phys. D, 20, 989
Nicola, A., Alonso, D., Sánchez, J., et al. 2020, JCAP, 2020, 044
Obuljen, A., Villaescusa-Navarro, F., Castorina, E., & Viel, M. 2017, JCAP,

2017, 012
Olivari, L., Remazeilles, M., & Dickinson, C. 2016, MNRAS, 456, 2749
Peel, M. W., Wuensche, C. A., Abdalla, E., et al. 2019, J. Astron. Instrum., 8,

1940005
Planck Collaboration VI. 2020, A&A, 641, A6
Remazeilles, M., Delabrouille, J., & Cardoso, J.-F. 2011, MNRAS, 418, 467
Remazeilles, M., Dickinson, C., Banday, A., Bigot-Sazy, M.-A., & Ghosh, T.

2015, MNRAS, 451, 4311
Sánchez, E., Carnero, A., García-Bellido, J., et al. 2011, MNRAS, 411, 277
Santos, M. G., Cluver, M., Hilton, M., et al. 2017, ArXiv e-prints

[arXiv:1709.06099]

Seehars, S., Paranjape, A., Witzemann, A., et al. 2016, JCAP, 2016, 001
Seo, H.-J., & Eisenstein, D. J. 2007, ApJ, 665, 14
SKA Cosmology SWG (Bacon, D. J., et al.) 2020, PASA, 37, e007
Sobreira, F., de Simoni, F., Rosenfeld, R., et al. 2011, Phys. Rev. D, 84, 103001
Tinker, J., Kravtsov, A. V., Klypin, A., et al. 2008, ApJ, 688, 709
Van Der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Comput. Sci. Eng., 13,

22
Villaescusa-Navarro, F., Alonso, D., & Viel, M. 2017, MNRAS, 466, 2736
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Meth., 17, 261
Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2013, Phys. Rep.,

530, 87
Wuensche, C. A., Villela, T., Abdalla, E., et al. 2022, A&A, 664, A15
Xavier, H. S., Abdalla, F. B., & Joachimi, B. 2016, MNRAS, 459, 3693
Zhang, J., Motta, P., Novaes, C. P., et al. 2022, A&A, 664, A19
Zonca, A., Singer, L. P., Lenz, D., et al. 2019, J. Open Sour. Softw., 4, 1298

1 Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas
1758, Jardim da Granja, São José dos Campos, SP, Brazil
e-mail:camila.novaes@inpe.br,camilapnovaes@gmail.com

2 Shanghai Astronomical Observatory, Chinese Academy of Sciences,
Shanghai 200030, PR China

3 University College London, Gower Street, London WC1E 6BT,
UK

4 Instituto de Física, Universidade de São Paulo, R. do Matão, 1371 –
Butantã, 05508-09 São Paulo, SP, Brazil

5 Department of Physics and Electronics, Rhodes University, PO Box
94, Grahamstown 6140, South Africa

6 CNRS-UCB International Research Laboratory, Centre Pierre
Binétruy, IRL2007, CPB-IN2P3, Berkeley, USA

7 Laboratoire Astroparticule et Cosmologie (APC), CNRS/IN2P3,
Université Paris Diderot, 75205 Paris Cedex 13, France

8 IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
9 Department of Astronomy, School of Physical Sciences, Univer-

sity of Science and Technology of China, Hefei, Anhui 230026, PR
China

10 Instituto de Física de Cantabria (CSIC-Universidad de Cantabria),
Avda. de los Castros s/n, 39005 Santander, Spain

11 Jodrell Bank Centre for Astrophysics, Department of Physics and
Astronomy, The University of Manchester, Oxford Road, Manch-
ester M13 9PL, UK

12 Center for Gravitation and Cosmology, College of Physical Science
and Technology, Yangzhou University, Yangzhou 225009, PR China

13 School of Aeronautics and Astronautics, Shanghai Jiao Tong Uni-
versity, Shanghai 200240, PR China

14 Technische Universität München, Physik-Department T70, James-
Franck-Strasse 1, 85748 Garching, Germany

15 Unidade Acadêmica de Física, Universidade Federal de Camp-
ina Grande, R. Aprígio Veloso, Bodocongó, 58429-900 Campina
Grande, PB, Brazil

16 Centro de Gestão e Estudos Estratégicos SCS Qd 9, Lote C, Torre C
S/N Salas 401 a 405, 70308-200 Brasília, DF, Brazil

17 Instituto de Física, Universidade de Brasília, Campus Universitário
Darcy Ribeiro, 70910-900 Brasília, DF, Brazil

18 College of Science, Nanjing University of Aeronautics and Astro-
nautics, Nanjing 211106, PR China

19 Kavli IPMU (WPI), UTIAS, The University of Tokyo, 5-1-5 Kashi-
wanoha, Kashiwa, Chiba 277-8583, Japan

A83, page 17 of 17

http://linker.aanda.org/10.1051/0004-6361/202243158/30
http://linker.aanda.org/10.1051/0004-6361/202243158/30
http://linker.aanda.org/10.1051/0004-6361/202243158/31
http://linker.aanda.org/10.1051/0004-6361/202243158/32
http://linker.aanda.org/10.1051/0004-6361/202243158/33
http://linker.aanda.org/10.1051/0004-6361/202243158/34
http://linker.aanda.org/10.1051/0004-6361/202243158/34
http://linker.aanda.org/10.1051/0004-6361/202243158/35
http://linker.aanda.org/10.1051/0004-6361/202243158/36
http://linker.aanda.org/10.1051/0004-6361/202243158/37
http://linker.aanda.org/10.1051/0004-6361/202243158/37
http://linker.aanda.org/10.1051/0004-6361/202243158/38
http://linker.aanda.org/10.1051/0004-6361/202243158/39
http://linker.aanda.org/10.1051/0004-6361/202243158/40
http://linker.aanda.org/10.1051/0004-6361/202243158/41
http://linker.aanda.org/10.1051/0004-6361/202243158/42
http://linker.aanda.org/10.1051/0004-6361/202243158/43
http://linker.aanda.org/10.1051/0004-6361/202243158/44
http://linker.aanda.org/10.1051/0004-6361/202243158/45
http://linker.aanda.org/10.1051/0004-6361/202243158/46
http://linker.aanda.org/10.1051/0004-6361/202243158/47
http://linker.aanda.org/10.1051/0004-6361/202243158/48
http://linker.aanda.org/10.1051/0004-6361/202243158/49
http://linker.aanda.org/10.1051/0004-6361/202243158/49
http://linker.aanda.org/10.1051/0004-6361/202243158/50
http://linker.aanda.org/10.1051/0004-6361/202243158/51
http://linker.aanda.org/10.1051/0004-6361/202243158/52
http://linker.aanda.org/10.1051/0004-6361/202243158/53
http://linker.aanda.org/10.1051/0004-6361/202243158/54
http://linker.aanda.org/10.1051/0004-6361/202243158/55
http://linker.aanda.org/10.1051/0004-6361/202243158/56
http://linker.aanda.org/10.1051/0004-6361/202243158/57
http://linker.aanda.org/10.1051/0004-6361/202243158/58
http://linker.aanda.org/10.1051/0004-6361/202243158/59
http://linker.aanda.org/10.1051/0004-6361/202243158/59
https://arxiv.org/abs/1104.2932
http://linker.aanda.org/10.1051/0004-6361/202243158/61
http://linker.aanda.org/10.1051/0004-6361/202243158/61
http://linker.aanda.org/10.1051/0004-6361/202243158/62
http://linker.aanda.org/10.1051/0004-6361/202243158/63
http://linker.aanda.org/10.1051/0004-6361/202243158/64
http://linker.aanda.org/10.1051/0004-6361/202243158/65
https://arxiv.org/abs/2204.08112
http://linker.aanda.org/10.1051/0004-6361/202243158/67
http://linker.aanda.org/10.1051/0004-6361/202243158/68
http://linker.aanda.org/10.1051/0004-6361/202243158/69
http://linker.aanda.org/10.1051/0004-6361/202243158/70
http://linker.aanda.org/10.1051/0004-6361/202243158/71
http://linker.aanda.org/10.1051/0004-6361/202243158/71
http://linker.aanda.org/10.1051/0004-6361/202243158/72
http://linker.aanda.org/10.1051/0004-6361/202243158/73
http://linker.aanda.org/10.1051/0004-6361/202243158/73
http://linker.aanda.org/10.1051/0004-6361/202243158/74
http://linker.aanda.org/10.1051/0004-6361/202243158/75
http://linker.aanda.org/10.1051/0004-6361/202243158/76
http://linker.aanda.org/10.1051/0004-6361/202243158/77
https://arxiv.org/abs/1709.06099
http://linker.aanda.org/10.1051/0004-6361/202243158/79
http://linker.aanda.org/10.1051/0004-6361/202243158/80
http://linker.aanda.org/10.1051/0004-6361/202243158/81
http://linker.aanda.org/10.1051/0004-6361/202243158/82
http://linker.aanda.org/10.1051/0004-6361/202243158/83
http://linker.aanda.org/10.1051/0004-6361/202243158/84
http://linker.aanda.org/10.1051/0004-6361/202243158/84
http://linker.aanda.org/10.1051/0004-6361/202243158/85
http://linker.aanda.org/10.1051/0004-6361/202243158/86
http://linker.aanda.org/10.1051/0004-6361/202243158/87
http://linker.aanda.org/10.1051/0004-6361/202243158/87
http://linker.aanda.org/10.1051/0004-6361/202243158/88
http://linker.aanda.org/10.1051/0004-6361/202243158/89
http://linker.aanda.org/10.1051/0004-6361/202243158/90
http://linker.aanda.org/10.1051/0004-6361/202243158/91
mailto:camila.novaes@inpe.br, camilapnovaes@gmail.com

	Introduction
	The BINGO telescope
	Modeling the BAO signal
	Hi clustering
	BAO template

	Synthetic data preparation
	BINGO-like simulations
	Cosmological signal
	Foreground signals, instrumental effects, and sky coverage

	Foreground cleaning process

	Method
	Clustering measurements
	Angular power spectrum
	Angular correlation function

	Covariance matrix
	Parameter inference

	BAO fitting results
	Fitting clustering measurements from 21cm only simulations
	Impact of including instrumental noise
	Foreground residual contamination
	Robustness tests
	Tests of N-body mocks
	Wiggle versus no-wiggle template fitting

	Conclusions
	References

