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ABSTRACT: Smoke from the 2018 Camp Fire in Northern California blanketed a large part of 
the region for 2 weeks, creating poor air quality in the “unhealthy” range for millions of people. 
The NOAA Global System Laboratory’s HRRR-Smoke model was operating experimentally in real 
time during the Camp Fire. Here, output from the HRRR-Smoke model is compared to surface 
observations of PM2.5 from AQS and PurpleAir sensors as well as satellite observation data. The 
HRRR-Smoke model at 3-km resolution successfully simulated the evolution of the plume during 
the initial phase of the fire (8–10 November 2018). Stereoscopic satellite plume height retrievals 
were used to compare with model output (for the first time, to the authors’ knowledge), show-
ing that HRRR-Smoke is able to represent the complex 3D distribution of the smoke plume over 
complex terrain. On 15–16 November, HRRR-Smoke was able to capture the intensification of 
PM2.5 pollution due to a high pressure system and subsidence that trapped smoke close to the 
surface; however, HRRR-Smoke later underpredicted PM2.5 levels due to likely underestimates of 
the fire radiative power (FRP) derived from satellite observations. The intensity of the Camp Fire 
smoke event and the resulting pollution during the stagnation episodes make it an excellent test 
case for HRRR-Smoke in predicting PM2.5 levels, which were so high from this single fire event 
that the usual anthropogenic pollution sources became insignificant. The HRRR-Smoke model was 
implemented operationally at NOAA/NCEP in December 2020, now providing essential support for 
smoke forecasting as the impact of U.S. wildfires continues to increase in scope and magnitude.
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M ajor wildfire events have increasingly intersected with urban communities in recent 
years. Apart from wildfires crossing the wildland–urban interface, wildfire smoke 
can affect communities hundreds of miles away. The Camp Fire, which started on  

8 November 2018 near Paradise, California, is a prime example of an event that had inordinate 
effects on regional air quality and visibility. The Camp Fire destroyed almost 19,000 structures, 
killed 88 people (California’s deadliest fire to date), and displaced over 50,000 people from their 
homes (Ban et al. 2020; Palinkas 2020). In addition, millions of people in Northern California 
were exposed to poor air quality for many days, with potential health impacts including increased 
mortality and other health complications (Palinkas 2020; Balmes 2020; Holm et al. 2021; Reid 
et al. 2016; Wettstein et al. 2018; Liu et al. 2017; Li et al. 2020; Burke et al. 2021). Similarly, 
multiweek air quality impacts were seen during the 2020 fire season due to numerous large 
wildfires throughout the western United States (Rooney et al. 2020; Mass and Ovens 2021).

Air quality forecast guidance is typically produced in a partnership of federal and local 
agencies and disseminated through airnow.gov and other websites. During the Camp Fire 
in 2018, this website was inundated with traffic, rendered unavailable (Knobel 2018), and 
could only report very coarse spatial patterns in the estimated air quality index (AQI) based 
on sparsely distributed air quality sensors. The smoke from the Camp Fire reached the  
San Francisco Bay Area, with a population of about 8 million people, within hours of fire  
ignition. The smoke persisted for about 2 weeks, in many places intensifying during  
the middle of this period due to a high pressure system with subsidence and shallow  
mixing-layer heights. On 10 November 2018 (the third day of the Camp Fire), PM2.5 levels 
reached “unhealthy” levels (151–200 AQI) for the whole Bay Area. On 16–18 November, Bay 
Area air quality worsened further, reported to be among the worst in the world, with the AQI 
reaching higher than 250 in San Francisco (.200 μg m23), prompting widespread school 
closures and flight cancellations (Mass and Ovens 2021).

High-resolution smoke forecasts are needed to provide reliable spatial and temporal infor-
mation during extreme wildfire events. NOAA has been running the High-Resolution Rapid 
Refresh (HRRR) model at 3-km grid spacing to provide hourly convection-permitting weather 
forecasts over the entire continental United States (Benjamin et al. 2016). Since its operational 
implementation in 2014, the HRRR has become an essential tool for weather forecasters.  
It is widely used for predicting hazardous weather in applications ranging from  
severe thunderstorms and heavy rainfall to low cloud ceilings and reduced visibility  
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(see, e.g., Benjamin et al. 2021). In 2016, a single smoke tracer (primary PM2.5), a plume rise 
parameterization (Freitas et al. 2007, 2010), and satellite fire radiative power (FRP) processing 
(Ahmadov et al. 2017) were implemented in an experimental version of the HRRR model, referred 
to as the HRRR-Smoke model. Fire radiative power (measured in watts) is the rate of radiative  
energy emitted by the fire, and is used to prescribe smoke surface fluxes in the model. 
During the Camp Fire event, HRRR-Smoke was operated in real-time demonstration mode by 
the NOAA Global Systems Laboratory (GSL) with graphical forecast output available online 
(https://rapidrefresh.noaa.gov/hrrr/HRRRsmoke/). The HRRR-Smoke model became fully operational 
at NOAA/NCEP in December 2020.

Here we examine the ability of the HRRR-Smoke model to capture the smoke plumes 
generated by the 2018 Camp Fire to produce PM2.5 forecasts for affected communities. The 
HRRR-Smoke model has recently been evaluated in a model intercomparison study for the 
2019 Williams Flats fire (Ye et al. 2021). For the present study, the model has been rerun for 
the Camp Fire case using a more recent version of the code (HRRRv4, implemented operation-
ally in December 2020) to better evaluate its forecasting abilities for such an exceptional air 
quality event. Model outputs are compared to data from the AQS and PurpleAir community 
air quality sensors (see appendix), meteorological station data, and satellite observations.

This paper presents the first in-depth analysis of the ability of the HRRR-Smoke coupled 
weather–smoke model to provide smoke forecasting at 3-km resolution, which is a major 
milestone for a model with a domain of this size (covering the continental United States). The 
coupled modeling framework and hourly refresh cycle make HRRR-Smoke a powerful tool for 
forecasting such extreme smoke pollution events. The Camp Fire is an excellent case study 
due to the relatively clean background air (no other major wildfires in the western United 
States) and the very high concentrations of smoke, which persisted over the region for an 
extended time period. The Camp Fire occurred during November, also making this a unique 
smoke event compared to summertime, when multiple wildfires typically affect air quality 
across urban areas in the western United States and multiday stagnation events typically do 
not occur. Combined with a dense network of sensors (AQS and PurpleAir), this study of the 
2018 Camp Fire also provides an opportunity to envision a more accurate forecast system 
that could ultimately be combined with real-time data to give communities better predictions 
during smoke events.

A number of other studies have presented research simulations of the Camp Fire event. 
Rooney et al. (2020) describe WRF-Chem simulations of the event, demonstrating reasonable 
performance for surface PM2.5, and plume height as verified against Tropospheric Monitoring 
Instrument (TROPOMI) observations. Mass and Ovens (2021) describe nested WRF simulations 
of the meteorology associated with the first day of the Camp Fire, showing accurate forecasts 
of the downslope windstorm contributing to rapid fire spread. Brewer and Clements (2020) 
describe additional high-resolution WRF simulations of the meteorological evolution. Li et al. 
(2020) present ensemble HYSPLIT simulations of surface PM2.5 during the Camp Fire event, 
documenting a very large ensemble spread due to variations in plume rise, meteorological 
input, emissions datasets, and model configuration.

The National Weather Service report after the Camp Fire recommended “a consistent 
source of smoke transport model guidance (e.g., HRRR-Smoke)” to provide reliable forecasts 
and messaging (NWS Western Region Headquarters 2020). This model guidance will be 
particularly useful as the frequency of wildfire events near urban areas increases due to 
climate change (such as the fire incidents in the western United States in 2018–21) and for 
managing prescribed burns designed to prevent catastrophic wildfires (Miller et al. 2020). 
Improved forecasts, combined with dense networks of community-installed air quality 
sensors, will enable government agencies to give better guidance about smoke exposure 
to help protect disadvantaged communities and at-risk individuals and to more accurately 
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plan hospital emergency room demand. Predictions with increased spatial resolution 
can also help to provide more specific local guidance about limiting outdoor activities. 
In addition, weather prediction models can be improved by including smoke impacts on 
solar radiation reaching the surface; HRRR-Smoke has this capability (James et al. 2019; 
NESDIS 2021), but many operational weather prediction models do not, which can lead 
to significant forecast errors during intense smoke events. This feedback mechanism has 
been documented by the modeling studies of Grell et al. (2011) and Rooney et al. (2020), 
and the smoke impact on surface radiation was observed in measurements from the Camp 
Fire (Mass and Ovens 2021).

This paper begins with a description of the smoke plume evolution during the first few 
days of the Camp Fire event with comparisons to AQS and PurpleAir monitors at the surface 
and novel comparisons to stereoscopic satellite plume height data, followed by comparison 
with meteorological observations. The paper concludes with further comparison to satellite 
observations, including a discussion of model errors and future research areas related to 
satellite fire detection algorithms.

Spatial evolution of winds and smoke
Figure 1 shows the dramatic spread of wildfire smoke from the Camp Fire across Northern 
California, with snapshots of HRRR-Smoke PM2.5 concentrations overlaid with wind vectors. 
Images are shown at 3-hourly intervals for 3–12 h after the fire was initialized in the model, 
at the surface and aloft. Details of the HRRR-Smoke model configuration are provided in the 
appendix. Near the ground, the east winds over the Sierras moved smoke into the Central 
Valley, where downvalley winds pushed the smoke southward toward the Bay Area. Aloft, 
the strong north-northeast winds drove the smoke across the Central Valley to the coastal 
mountain range. Continued north-northwest winds along the Central Valley created a V-shape 
in the near-surface smoke plume, as seen in Fig. 1.

The smoke prediction from HRRR-Smoke is dependent on the ingested satellite fire detec-
tions. The Camp Fire began around 1430 UTC 8 November 2018 (0630 local time) (NWS Western  
Region Headquarters 2020). The MODIS instrument on board the Terra satellite detected the 
fire about 4 h later at 1810 UTC (1010 local time). The HRRR-Smoke model therefore lags  
the observations by ~4–5 h on the day of the fire ignition, but is nevertheless able to capture the 
relative timing of the smoke arrival at different locations. Additionally ingesting geostationary 
satellite FRP data into the model could help to mitigate this detection delay issue in the future 
(O’Neill and Raffuse 2021), as described further in the “Satellite FRP detection challenges” 
section. As wildfires can start any time or evolve rapidly, it is important to ingest the satellite 
detections into the smoke forecast models with the shortest delay possible. Because new  
HRRR forecasts start every hour (rapid-update cycling) by assimilating the latest meteo-
rological observations, this framework also allows ingesting the “latest” FRP detections into 
the model.

Figure 2 shows a snapshot of surface winds and smoke concentrations from HRRR-Smoke 
compared to surface PM2.5 measurements from AQS and PurpleAir sensors. There is good 
qualitative agreement in the spatial structure of the plume observed by HRRR-Smoke and 
the collection of PM2.5 sensors. Small errors in modeled wind speed and direction will affect 
the detailed shape of the modeled plume (see, e.g., Fig. 11 later), but there are large areas 
of agreement, despite the time delays mentioned above. The PurpleAir community-based 
sensors provide more spatially detailed PM2.5 data with significantly less expensive sen-
sors, and allow tracking of the smoke plume spatial variability, as seen, e.g., in the videos 
in the online supplemental material. The PurpleAir sensors have been validated in a few 
studies, e.g., Gupta et al. (2018), Delp and Singer (2020), and Barkjohn et al. (2021), which 
found that while the sensors are not as accurate as the quality-controlled AQS sensors, they 
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do capture trends and spatial variability. The PurpleAir data used here are adjusted by a 
factor of 0.48, following the analysis of Delp and Singer (2020), who compared PurpleAir 
with AQS sensors specifically during the 2018 Camp Fire event. The PurpleAir dataset 
was also filtered by removing indoor sensors and sensors with missing data as described 
in the appendix.

A more detailed comparison with surface observations for selected sensors (locations shown 
in Fig. 3) illustrates the ability of HRRR-Smoke to capture the smoke plume spread. Figure 4 

Fig. 1. Snapshot of (left) surface smoke ~8 and (right) 1829 m AGL smoke concentrations  
(PM2.5, μg m23, contours on log scale) and wind vectors (cyan) from HRRR-Smoke every 3 h from 
2100 UTC 8 Nov to 0900 UTC 9 Nov 2018 during the Camp Fire.
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shows several time series of PM2.5 concentrations at various distances along the main direc-
tion of the smoke plume: Sacramento (south of Paradise), East Bay (farther west), and South 
Bay (farther south). The PurpleAir sensors recorded ~1.6-h shifts in the arrival of the smoke 
plume at each subsequent location as measured by the time the 10 μg m23 concentration 
threshold was crossed on 8 November 2018. These time shifts are seen by the HRRR-Smoke 
model as well, recording ~2.3 h shifts in the modeled plume arrival at the three designated 
sites, albeit delayed from the observations by 4.4, 5.1, and 5.8 h, respectively, due to late 
initiation of the fire and subsequent differences in meteorological forcing in the model at the later 
times. Comparisons between selected individual high-quality AQS sensors and HRRR-Smoke 
output in Fig. 5 show similar agreement between the model and the AQS observations, with 
data shown over the entire 2-week duration of the smoke event in the Bay Area, 8–21 November 
2018. The shifted arrival times of the smoke plume are seen again here. The delay in the 
modeled smoke arrival time is also visible above in the contour plots of surface PM2.5 
concentration from HRRR-Smoke with PurpleAir and AQS sensors in Fig. 2, and in Fig. ES1 
in the supplemental material. This delay is most apparent 3–24 h after the fire initialization 
in the model, where the sensors generally show higher values (brighter colors) in the earlier 
hours of the simulation, compared to HRRR-Smoke.

Further intensification of the smoke event during the second week illustrates the complex 
interaction of meteorology and emissions and points to the need for improved models and ob-
servations that can capture these details. After some initial improvement on days 3–6, there 
is a distinct worsening of air quality during days 7–9 of the event (14–16 November 2018).  

Fig. 2. Comparison of surface smoke concentrations (PM2.5, μg m23) from HRRR-Smoke (contours) 
with PurpleAir (squares) and AQS (circles) stations at 1800 UTC 9 Nov. Surface wind vectors (cyan) 
also shown. Additional snapshots and a video are available in the supplemental material.
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The HR R R-Smoke model in 
general underpredicts con-
centrations during the second 
week, likely due to significant 
underestimations in the FRP 
data (see “Satellite FRP detec-
tion challenges” section). It 
appears that the reduction in 
smoke during the intermediate 
period from 11 to 14 November 
2018 occurred because winds 
shifted to weak southerly, which 
pushed the smoke plume to 
the north. When winds shifted 
again to the north-northwest, 
the plume brought new smoke 
toward the Bay Area, which 
when combined with subsid-
ence and a very stable capping 
inversion, led to very high near-
surface concentrations of PM2.5. 
This worsening of air quality prompted widespread school closures in the Bay Area with 
the highest-ever-recorded AQI values of 256 observed in Oakland (206 μg m23) and 271 in 
San Francisco (221 μg m23) on 16 November 2018 (Mass and Ovens 2021). HRRR-Smoke 
captures the sharp increase in PM2.5 values at the start of this intensification period, though 
again with some delay, but greatly underpredicts smoke values for the duration of the Camp 
Fire smoke event.

Figure 6 shows a scatterplot of PM2.5 daily averages (using local time) for the 53 AQS sen-
sors located in the map area shown in Fig. 2 (only sensors without any missing data during 
this period were included). The color of each data point becomes lighter as a function of time, 
illustrating the underprediction of HRRR-Smoke during the second week of the smoke event 
(shown by the lighter red dot colors).

Model error statistics are computed for PM2.5 daily averages from the HRRR-Smoke 
versus the AQS sensor data. Standard metrics for the HRRR-Smoke model daily averaged 
PM2.5 compared to the 53 AQS sensors yield r ~ 0.42 (r2 ~ 0.17), RMSE ~ 63.3 μg m23, and 
normalized mean error (NME) of 70.6%. These values are similar to those in the model 
intercomparison study of Ye et al. (2021), who report that all 13 of the models in their study 
of the Williams Flat fire showed r , 0.35 (r2 , 0.13), RMSE . 9.8 μg m23, and NME . 70%.  
Atmospheric dispersion model skill statistics are notoriously poor, and are difficult to 
compute and interpret because of small misalignments in wind direction and, hence, 
plume development, which can produce very large errors in the concentration field. For 
example, Fig. 4 shows a delay in the modeled arrival of the plume compared to observa-
tions, yet there is still predictive power in the simulations. For the Camp Fire event, the 
underprediction of HRRR-Smoke of the smoke intensification during the second week is 
evident by performing separate error calculations; errors from the first and second weeks 
of the event, shown in Table ES1 in the supplemental material, indicate an increase of 
RMSE from 44.05 in the first week to 80.01 in the second week, with a similar pattern in 
the other error metrics. It should also be noted that HRRR-Smoke does not include nonfire 
emission sources (e.g., anthropogenic) or gas/aerosol chemistry, hence the model cannot 
fully capture the observed PM2.5.

Fig. 3. RAWS, sounding, AQS, and PurpleAir data sampling 
locations used in this study. The Camp Fire was located 
near Paradise, CA. Cities of interest are marked in orange. 
Investigation areas are outlined with blue boxes.
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To examine the vertical extent of the smoke plume, Fig. 7 shows two vertical cross sections 
of the PM2.5 concentration from HRRR-Smoke compared with stereoscopic satellite estimates 
of plume height from Carr et al. (2019). The satellite plume height retrieval has ~8-km spatial 
resolution and retrieves the topographic height in regions without optically thick features 
like clouds or dense smoke. The satellite retrieved heights track the topography of the Sierra 
peaks seen in the HRRR-Smoke data, with an estimated error of 6200 m (Carr et al. 2019), 
meaning that no dense smoke was detected in this area, in agreement with the HRRR-Smoke 
prediction. The HRRR-Smoke plume evolves rapidly, with changes in the smoke plume alti-
tude occurring each hour; several time snapshots were examined and the peak plume height 
varied considerably near the source at 39.6°N.

Figure 7a shows results at 39.6°N latitude, near the fire source in Paradise, with the Aqua/
MODIS and GOES-16 joint stereo retrieval from 1855 UTC 9 November 2018 (see Fig. 31 from Carr 
et al. 2019), and HRRR-Smoke is shown at 0000 UTC 10 November 2018. This model time was 
selected as it shows the best qualitative agreement with the observed plume height during this 
time period; additional time slices are shown in the supplemental material. The satellite data 
show a rapid drop of the smoke plume height from 4 km elevation near the fire source at 126°W, 
to 2-km elevation on the left at 122.5°W, and this trend is largely captured by HRRR-Smoke.

Figure 7b shows a slice from 2115 UTC 10 November 2018 at 37.8°N latitude, crossing near 
San Francisco airport and near the site of the Oakland sounding (see Fig. 32 from Carr et al. 
2019), with plume tops of about 1.2 km over the ocean and rapidly rising to a height of 2500 m  
over the East Bay hills (at ~122°W). HRRR-Smoke shown at 2100 UTC also shows elevated 
concentrations centered over the Bay Area (122.5°–122°W) with the plume top reaching 
2000–2500 m in the East Bay.

Vertical profiles of HRRR-Smoke output are included in sounding profiles in the fol-
lowing section. The time variability of the vertical structure of the HRRR-Smoke plume is 
also captured at 6-h intervals in the ceilometer data shown in Fig. A2 of the appendix. The 
complex 3D distribution of smoke over this region is driven by the fire plume rise, trans-
port, and boundary layer mixing. The qualitative agreement of the model forecast with the 
stereo-tracking satellite data shows that the model is able to simulate the dynamic processes 
which drive the smoke distribution. The next section shows that the model forecast the 
meteorological fields well.

Fig. 4. Time series of PM2.5 concentrations (μg m23) from HRRR-Smoke (dashed lines) at Sacramento, 
East Bay, and South Bay locations compared to averaged PurpleAir sensors (solid lines) during the 
initial phase of the Camp Fire event (8–12 Nov 2018). Dashed lines are the model mean over the 
selected areas, with shading indicating min and max values.
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Fig. 5. Time series of PM2.5 concentrations (μg m23) from HRRR-Smoke and AQS stations in  
(a) Sacramento, (b) East Bay, and (c) South Bay. Individual AQS sensors (dashed lines) and the 
nearest HRRR-Smoke grid point for each of the sensors (solid lines) are plotted. Note the different 
axis limits.
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Comparison to meteorological observations
To further explain the observed behavior of the smoke plume in observations and in the model, 
we examine the meteorological conditions driving the smoke event, including surface obser-
vations and vertical profiles. The Camp Fire event was characterized by an east–west surface 
pressure gradient causing very strong downslope winds combined with very dry conditions 
(very low relative humidity, 10% during the day and in the teens at night). Wind speeds were 
12–14 m s21, and a 23 m s21 (52 mph) gust was recorded at the Jarbo Gap site near Paradise, 
California, early that morning (NWS Western Region Headquarters 2020). A detailed analysis 
of synoptic flow conditions is found in Brewer and Clements (2020).

Time series and vertical sounding comparisons of surface temperatures, wind speed, and 
wind direction confirm that HRRR-Smoke matched observations quite well. Figure 8 
shows the vertical sounding upwind at Reno, Nevada, indicating stable conditions at night 
(1200 UTC 5 0400 local time) with a capping inversion near mountain crest height, winds  
from the East, and a very dry boundary layer, leading to the downslope windstorm that 
fueled the Camp Fire on the lee side of the ridge (Brewer and Clements 2020). During the day 
(0000 UTC 5 1600 local time) a mixed layer develops with stable conditions aloft and per-
sistent low moisture. Profiles of smoke concentration (mass density) are negligibly small in 
Reno, located upwind of the fire. In the Oakland soundings in Fig. 8, we see a set of layered 
stable regions near the ground at night and a mixed layer during the day, with winds largely 
from the northeast. The boundary layer is quite dry. The smoke concentration increases to over  
50 μg m23 at the surface on 1200 UTC 9 November. By 15–16 November, with very weak winds 
and very stable conditions near the ground even during the daytime, smoke concentrations in 
Oakland are 50 μg m23 at the surface (see Fig. 5b) and have increased to more than 100 μg m23  
at about 1 km MSL (Fig. 9). These comparisons, in addition to the corresponding 0000 UTC 
comparisons shown in Figs. ES3 and ES4, demonstrate the relatively good agreement between 
HRRR and the observed profiles.

Fig. 6. Scatterplot of daily averaged PM2.5 concentrations (μg m23) from HRRR-Smoke vs AQS 
sensors located in the domain shown in Fig. 2. The dot color value indicates the time since the start 
of the fire, with darker red colors indicating measurements during the first week, and the lighter 
color indicating measurements during the second week of the smoke event. Daily averages are 
computed using values from midnight to midnight local time.
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Figure 10 shows time series for the first few days of the Camp Fire of wind speed, wind  
direction, and temperature at Reno and at two stations near Paradise, namely, Jarbo Gap on 
the slope and Openshaw in the valley, shown in Fig. 3. Again the model shows good agreement 
with observations, capturing the northeast wind direction (~45°) during 0600–1200 UTC and 
later the increasing wind speeds at Reno upwind of the Sierras. Time series at Jarbo Gap, near 
the location of the fire, show the dramatic increase in winds on the downslope side of the 
Sierras, of 12–14 m s21 from 0600 to 1200 UTC 8 November coming from the northeast. At 
the Openshaw station, located south of Chico in the Central Valley, winds were down valley 
from the north-northwest with periodic interruptions of north-northeast downslope flows 
from the Sierra Nevada range. Further analysis and quantification of model errors compared 
to observations are included in the appendix.

Satellite FRP detection challenges
The meteorological variables are captured very well by HRRR-Smoke at 3-km resolution over 
the complex terrain of the western United States, as seen by the foregoing discussion and 

Fig. 7. Vertical cross section at (a) 39.6° and (b) 37.8°N showing contours of PM2.5 concentrations (μg m23) from  
HRRR-Smoke compared to stereoscopic satellite plume height retrievals (open circles) reported as elevation (m MSL). (a) 
HRRR-Smoke data at 0000 UTC 10 Nov 2018 with the Aqua/MODIS and GOES-16 joint stereo retrieval from 1855 UTC 
9 Nov 2018. (b) HRRR-Smoke data at 2100 UTC 10 Nov 2018 with the Aqua/MODIS and GOES-16 joint stereo retrieval from 
2115 UTC 10 Nov 2018. Stereo plume height data are shown within 60.025° latitude of the specified latitude. HRRR-Smoke 
values at this latitude are obtained via interpolation.

Unauthenticated | Downloaded 08/26/22 11:09 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J U N E  2 0 2 2 E1542

Fig. 8. Vertical profiles of (from left to right) potential temperature, wind speed, wind direction, specific humidity, and 
PM2.5 concentration (modeled only) at (top) Reno and (bottom) Oakland at 1200 UTC 8 Nov 2018 from HRRR-Smoke  
and from observations. 12-h HRRR is the 12-h lead-time forecast (i.e., forecast made at 0000 UTC 8 Nov 2018). Note the 
different axis limits.
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Fig. 9. As in Fig. 8, but at 1200 UTC 15 Nov 2018. 12-h HRRR is the 12-h lead-time forecast (i.e., forecast made at 0000 UTC 
15 Nov 2018). Note the different axis limits.
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further analysis included in the appendix. The evolution of the smoke concentration is also well 
represented by HRRR-Smoke, considering the complexity of the domain and the uncertainties 
regarding the fire detection and forecasting the fire emissions and spread. Figure 11 shows 
qualitative comparisons of the vertically integrated smoke and VIIRS satellite images captured 
in the afternoon on selected dates (a video from the model output is included in the supplemen-
tal material). Qualitative agreement is best at the beginning of the time period, and the images 
show remarkable similarities in the smoke plume structures, including the initial high-altitude 
spread of the plume on 8 November, the V-shaped structure on 9 November, the thick smoke 
concentrated near Paradise on 12 November, and the stagnant smoke that settles over the Central 
Valley and the Bay Area around 15 November. By 12 and 15 November, as seen earlier in Fig. 5, 
the agreement of the HRRR-Smoke PM2.5 concentrations with observations has decreased, with 
the model showing a significantly lower PM2.5 concentration spread over California.

HRRR-Smoke represents wildfires by surface fluxes prescribed by satellite detection of FRP 
(Ahmadov et al. 2017). A climatological diurnal cycle is used to represent hourly variability of 
the biomass-burning emissions in HRRR-Smoke. A plume rise model also plays a vital role in 
injecting smoke directly into the free troposphere (Freitas et al. 2007, 2010). Figure 12 shows 
time series of the FRP data ingested from polar-orbiting satellites during the Camp Fire event, 
showing the dramatic decrease in FRP after 8 November. (Note that Fig. 5 shows very high 
smoke concentrations measured even during times when the FRP detected was low.) The FRP 
is retrieved for pixels flagged as fire in the VIIRS I-band and MODIS fire products (Li et al. 
2018). The model ingests the FRP data from 2 VIIRS (NOAA-20 and Suomi NPP) and 2 MODIS 
(Terra and Aqua) sensors in real time. Each of these sensors on polar-orbiting satellites can 
detect fires two or more times per day in the midlatitudes unless the satellite view is blocked 
by clouds or dense smoke. The daily sequence of daytime Suomi NPP images shows a good 
delineation of the fire front of the Camp Fire event between 8 and 12 November (see Fig. ES5 in 
the supplemental material). On 13 November, however, no daytime detections were reported 
by the algorithm due to persistent (though not totally opaque) cloud cover. NOAA-20 and 
Terra/Aqua FRP data (not shown) follow similar patterns. Because the fire intensities are usu-
ally high during daytime, such omission of the satellite FRP data entirely during the daytime 
leads to very low biomass burning flux estimates ingested into the model. The HRRR-Smoke 
model cycles smoke between subsequent forecasts, therefore the following forecast cycles 

Fig. 10. Time series of (top) wind speed, (middle) wind direction, and (bottom) temperature surface station data (dots) at 
(left) Jarbo Gap (blue), (center) Openshaw (green), and (right) Reno (red) compared to HRRR output at nearest grid point 
(solid lines).
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Fig. 11. (left) HRRR-Smoke vertically integrated smoke compared to (right) Suomi NPP visible  
images. Dates are (a),(b) 8, (c),(d) 9, (e),(f) 12, (g),(h) 15 Nov 2018. HRRR-Smoke output is shown at 
2000 UTC, which roughly matches the satellite crossover times, except for the first HRRR-Smoke 
image, which is shown at 0000 UTC 9 Nov to account for the delay in fire ignition in the model.
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are also impacted by the daytime FRP omission on 13 November. From 14 to 20 November, 
daytime detections were reported again by the algorithm, but with the omission of some 
areas of active burning. Nighttime detections (not shown) provided more complete spatial 
coverage of the areas of active burning throughout the entire time period of 8–20 November 
analyzed. The loss of detection of active burning during the daytime in this instance is likely 
the result of an increase in near-infrared reflectance from heavy smoke, which can trigger 
various internal nonfire tests within the detection algorithm which exclude the pixel from 
further consideration as possibly containing a fire. In contrast, very windy conditions tend 
to push thick smoke away from the path of radiance between the fire and the satellite sensor 
and hence allow for a more unobstructed observation of the fire; this increases the likelihood 
of detection and FRP retrieval. Such windy conditions were observed in particular on 8–9 
and 12 November, with relative drops in FRP recorded in between (see Fig. 12).

Conclusions and future work
With wildfires now creating large-scale smoke events which regularly affect large popula-
tions in the western United States, the need for a robust wildfire smoke prediction model like 
HRRR-Smoke is clear. The 2018 Camp Fire event allowed detailed comparison of PM2.5 from 
the wildfire smoke with AQS and PurpleAir observations to validate HRRR-Smoke because 
of the very low background PM2.5 levels during that time period. HRRR-Smoke captured the 
meteorology very well and hence captured the qualitative spatial structure of the smoke  
(Fig. 11) over Northern California, particularly during the first few days of the Camp Fire 
event. Comparisons with satellite stereo plume height data were used for the first time, to  
the authors’ knowledge, to verify the 3D plume transport in the model. The HRRR-Smoke 
model also includes smoke feedback on meteorology and captured the stagnation event  
during the second week of the event. Comparisons to new dense surface station networks from 
PurpleAir and AQS sites allowed spatial patterns in smoke evolution to be verified.

One of the limitations of the HRRR-Smoke model is its reliance on relatively infrequent 
and possibly degraded observations of FRP derived from satellite observations. The satellite 
FRP was underestimated overall during the second half of the smoke event. The VIIRS data 
at 375-m resolution is the highest resolution instrument for satellite fire detection, thus with 
respect to sensitivity and spatial fidelity VIIRS imagery will often be the source of choice 
for FRP data. At present only data from polar-orbiting satellites are employed in the model, 
reducing sampling frequency to a few daytime and a few nighttime observations. Inclusion 
of data from the geostationary GOES-R platforms will significantly improve temporal 

Fig. 12. Time series of the instantaneous fire radiative power for the Camp Fire, as detected by the two VIIRS and two 
MODIS instruments, spatially aggregated for the entire Camp Fire area.
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coverage (O’Neill and Raffuse 2021). Another approach to account for FRP errors would be 
to use source inversion modeling based on the dense surface station networks, to adjust the 
smoke emissions from the fires (see, e.g., Kim et al. 2020). Additionally, data assimilation 
can be used to compensate for errors in the source terms. For instance, assimilating the  
surface PM2.5 measurements in conjunction with the satellite aerosol optical depth data into the 
smoke forecasting models can improve the accuracy of the smoke forecasts in the future (Saide  
et al. 2014). Emerging comparisons with ceilometer data will also allow better evaluation of 
the vertical structure of wildfire smoke plumes (Huff et al. 2021; Li et al. 2021), as will further 
model comparisons to satellite stereoscopic plume height observations (Carr et al. 2019).

HRRR-Smoke is becoming an essential tool for providing real-time operational support 
for weather and air quality forecasters. Because the model includes radiation feedback from 
the smoke, which affects surface temperatures, it is able to capture smoke-induced events 
like the “orange skies” seen in California lightning complex fires of August 2020 (NESDIS 
2021). HRRR-Smoke currently restarts hourly, which allows it to ingest new satellite detec-
tion data at a very high frequency compared to other air quality models. Further validation 
and improvement of the model are needed to enable more accurate prediction of wildfire or 
prescribed burn smoke events for community health and safety. Ultimately, modeling and 
sensor networks can be combined to provide robust nowcasts and forecasts for poor air qual-
ity events due to wildfire smoke.
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Appendix: Model and sensors
Model. The HRRR is an hourly data assimilation and weather forecast system. There are  
50 vertical levels, and the model top is at 15 hPa. The center of the lowest model level is 
~8 m AGL at sea level. The model is run over the CONUS domain (1800 3 1060 grid points). 
The HRRR uses the MYNN PBL scheme (Olson 2019), the RUC land surface model (Smirnova 
et al. 2016), RRTMG shortwave and longwave radiation schemes (Iacono et al. 2008), and 
the Thompson microphysics scheme (Thompson and Eidhammer 2014). A smoke tracer, a 
plume rise parameterization (Freitas et al. 2007, 2010), and fire radiative power processing 
(Ahmadov et al. 2017) were added to create HRRR-Smoke. HRRR-smoke includes only a single 
smoke tracer, with no gas or aerosol chemistry, although wet and dry removal are included. 
A climatological diurnal cycle is used to represent hourly variability of the biomass burning 
emissions in HRRR-Smoke. HRRR-Smoke ingests FRP from the polar-orbiting satellite data. 
Each simulation uses FRP detections from the 24 h prior to initialization time. The plume 
rise parameterization describes plume rise due to the fire heat flux. Some details of the HRRR 
configuration differ between what was run in real time in 2018 versus what was run retro-
spectively (in forecast mode) for this study. The retrospective simulations used for this study 
carried out hybrid ensemble 3DVar data assimilation for meteorology (Hu et al. 2017) based 
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on the community Gridpoint Statistical Interpolation (GSI; Kleist et al. 2009). Background 
error covariances are a blend of ensemble covariances from the 80-member Global Data  
Assimilation System (GDAS) ensemble and static covariances (Wang 2010). Many conventional 
observations are assimilated hourly in a manner analogous to the 13-km Rapid Refresh (RAP) 
system (Benjamin et al. 2016); HRRR does not assimilate any smoke or chemistry observa-
tions. The background for the HRRR data assimilation comes from a 1-h “preforecast” in which 
15-min radar reflectivity observations are assimilated. The preforecast is initialized from a 
downscaled RAP 0-h analysis; boundary conditions for both the preforecast and full forecast 
come from the RAP. The model component of the HRRR is based on WRF-ARW (Powers et al. 
2017), with advanced physics parameterizations (Benjamin et al. 2016). For the retrospec-
tive analysis done here, HRRR was rerun at 6-h forecast intervals to conserve computational 
resources (compared to hourly restarts done operationally). Frequent restarts are important 
to capture the onset of the fire, where MODIS Terra detected it at 1810 UTC 8 November (1010 
local time), and HRRR ingested it. The retrospective forecast was done using VIIRS I-band 
(375-m resolution) as input as opposed to M-band (750-m resolution), which was used in the 
real-time modeling. Simulations were initialized at 0000, 0600, 1200, and 1800 UTC, and 
forecasts extended to 24-h lead time.

Figure A1 shows time series of model 10-m wind bias and RMSE compared to all METAR 
surface stations in the northwest continental United States during the entire duration of the 
Camp Fire. Absolute bias values are generally below 0.5 m s21, and RMSE generally stays 
below 3 m s21 except during 14–16 November when the peak errors of 3.3 m s21 occur dur-
ing the daytime for the 12- and 18-h forecasts; the timing of these peak errors corresponds 

Fig. A1. (top) Bias and (bottom) RMSE plots for 10-m wind speed from 9 to 22 Nov 2018 comparing HRRR-Smoke output 
with all METAR surface stations in the northwestern continental United States.
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to the passage of upper-level shortwave troughs across British Columbia. The 6-h forecast 
performs considerably better throughout the entire period, both in terms of bias and RMSE, 
illustrating the benefit of frequent data assimilation. Similar statistics (not shown) are found 
in comparisons to upper-air observations (radiosondes). These statistics, combined with 
detailed comparisons at specific locations (as seen in Figs. 8–10) confirm that the meteoro-
logical representation from HRRR-Smoke was overall in good agreement with surface and 
upper-air observations.

A final additional comparison of model output and observations is offered in Fig. A2, 
which compares ceilometer observations with vertical profiles of smoke from HRRR-Smoke. 
We can see elevated layers of smoke that sometimes correspond with ceilometer cloud levels. 
The ceilometer readings are from Automated Surface Observing System (ASOS) stations, which 
are collected from ceilometers at airports across the United States. As shown in Fig. A2, the 
ceilometer data are not the raw output, but rather passed through an algorithm to obtain 
several cloud levels. The cloud levels are intended to represent the base of cloud banks in 
the upper atmosphere that cause backscattering of the ceilometer beam. In Fig. A2, the cloud 
level with the lowest altitude is plotted as “Cloud Level 1.” In cases where fog conditions mask 
the base of a cloud, readings from the ceilometer are then interpreted as restricted vertical 
visibility (NOAA 1998). The ASOS algorithm is calibrated to calculate the vertical visibility 
for foggy conditions, and the variation in the cloud level data for the smoke suggests that it 
may be treating the smoke as a near-surface fog layer, likely depending on the near-surface 
density of smoke. Although not available at these sites, raw ceilometer data could provide a 
detailed characterization of smoke plumes aloft and near the surface. Wu et al. (2018) showed 
that raw ceilometer data provided a clear picture of the smoke plume from Canadian wildfires 
in 2016. These emerging comparisons with ceilometer networks will allow better evaluation 
of the vertical structure of wildfire smoke plumes in the future (National Research Council 
2009; Huff et al. 2021).

Sensors. The PurpleAir network consists of low-cost PM2.5 sensors, predominantly marketed 
for monitoring local air quality near homes or work places. The low cost of the sensors has 
increased their rate of adoption and created a relatively dense real-time air quality sensor 

Fig. A2. Time–height contours of HRRR-Smoke PM2.5 concentration overlaid with the first cloud 
level from Oakland airport METAR ceilometer data (dots).
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network in and around the populated areas of California. Direct comparisons with groups of 
PurpleAir sensors in the Bay Area were made in three areas of interest with adequate density 
of PurpleAir sensors: East Bay, South Bay, and Sacramento. High sensor densities in these 
three areas increase the robustness of the comparison with the HRRR-Smoke model.

Publicly maintained low-cost air sensors are subject to more errors than the AQS sensors 
maintained by air quality agencies, but can provide detailed information about local spatial 
variations in PM2.5. Common issues with the low-cost sensors include data gaps, extremely high 
or low values, and some loss of accuracy in high-relative-humidity and high-coarse-particle-
concentration conditions (Stavroulas et al. 2020). To minimize any such errors, we focused 
on areas with dense sensor networks to ensure that individual sensors could be compared 
to the aggregate network to remove outliers. Further, any sensors with gaps in data over the 
time period of interest were removed. Finally, the two separate channels on the PurpleAir 
sensors were compared to determine if the sensor had any technical issues causing internal 
discrepancies.

PurpleAir sensors are known to overall overpredict PM values compared to Federal 
Reference Method (FRM) data. Recently, a new EPA correction formula (Barkjohn et al. 
2021) has become available in the lower-left drop-down menu on the PurpleAir website. 
This EPA correction formula accounts for variability in relative humidity across the United 
States. The formula provides a linear best-fit adjustment factor and an intercept based on 
U.S.-wide data, which overall is based on lower-concentration data (non-wildfire data). 
The EPA correction is very similar to the 0.48 PurpleAir adjustment factor determined by 
Delp and Singer (2020) for the Camp Fire. Both approaches give similar results within 5% 
during wildfire events. Because the Delp and Singer (2020) data were adjusted specifically 
for the 2018 Camp Fire, we have selected to use the simpler 0.48 correction factor in all 
presentations of the PurpleAir data. The reader is referred to Delp and Singer (2020) for 
further detailed analysis.

Using these constraints to filter the PurpleAir data, the averaged HRRR-Smoke data could 
be compared to the averaged PurpleAir data from sensors within each area (Fig. 4). While 
AQS sensors provide more reliable information, the density of the AQS network was not high 
enough to generate a fair comparison between AQS sensors and the average HRRR value. 
As a result, we opted instead to compare individual AQS sensors with their closest gridded 
HRRR data points (Fig. 5).
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