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ABSTRACT

Context. Observing the neutral hydrogen distribution across the Universe via redshifted 21 cm line intensity mapping constitutes a powerful probe
for cosmology. However, the redshifted 21 cm signal is obscured by the foreground emission from our Galaxy and other extragalactic foregrounds.
This paper addresses the capabilities of the BINGO survey to separate such signals.
Aims. We show that the BINGO instrumental, optical, and simulations setup is suitable for component separation, and that we have the appropriate
tools to understand and control foreground residuals. Specifically, this paper looks in detail at the different residuals left over by foreground
components, shows that a noise-corrected spectrum is unbiased, and shows that we understand the remaining systematic residuals by analyzing
nonzero contributions to the three-point function.
Methods. We use the generalized needlet internal linear combination, which we apply to sky simulations of the BINGO experiment for each
redshift bin of the survey. We use binned estimates of the bispectrum of the maps to assess foreground residuals left over after component
separation in the final map.
Results. We present our recovery of the redshifted 21 cm signal from sky simulations of the BINGO experiment, including foreground components.
We test the recovery of the 21 cm signal through the angular power spectrum at different redshifts, as well as the recovery of its non-Gaussian
distribution through a bispectrum analysis. We find that non-Gaussianities from the original foreground maps can be removed down to, at least,
the noise limit of the BINGO survey with such techniques.
Conclusions. Our component separation methodology allows us to subtract the foreground contamination in the BINGO channels down to levels
below the cosmological signal and the noise, and to reconstruct the 21 cm power spectrum for different redshift bins without significant loss at
multipoles 20 . ` . 500. Our bispectrum analysis yields strong tests of the level of the residual foreground contamination in the recovered 21 cm
signal, thereby allowing us to both optimize and validate our component separation analysis.
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1. Introduction

Over the last century dedicated experiments mapping differ-
ent large-scale observables in the Universe have increased our
understanding of the cosmic history, and established modern
observational cosmology as a precise and quantitative science.
However, despite great successes in building a cosmological
concordance model with tightly constrained parameters, a num-
ber of questions regarding the constituents of the Universe are
yet to be fully answered. The nature of dark energy, which leads
to the observed accelerated expansion of the Universe, is one of
the great mysteries in modern cosmology. The Baryon Acoustic
Oscillations from Integrated Neutral Gas Observations (BINGO)
telescope, which is designed to measure one of the most pow-
erful observables used to characterize dark energy, the Baryon
Acoustic Oscillations (BAO), may enlighten this late evolution
of the Universe (Abdalla et al. 2022a; Wuensche et al. 2022;
Costa et al. 2022).

BINGO will map the integrated sky emission of the neutral
hydrogen (Hi signal) 21 cm line transition within a redshift inter-
val of 0.127 < z < 0.449. The intensity mapping (IM) technique
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(Peterson et al. 2006; Battye et al. 2013) thus allows the mea-
surement of the entire Hi flux density of a wide patch of the sky
at different redshift bins, producing Hi maps that can be used
as input data to estimate cosmological parameters (Abdalla &
Rawlings 2005).

However, a crucial intermediate stage comes before the
production of Hi maps and the estimation of cosmological
parameters. Mitigating the foreground emission in radio sky
observations is critical for the reliable recovery of the 21 cm
signal, which is much fainter than the diffuse emission from
the Galactic interstellar medium (ISM). Several methods have
been proposed in the literature to separate the astrophysical fore-
grounds from the cosmological 21 cm signal, with the aim of
accurately reconstructing the power spectrum of the 21 cm signal
without biasing the estimation of the cosmological parameters.

Most component separation methods in the literature have
been devised to primarily deal with foreground contamination
in cosmic microwave background (CMB) data, for which one
can rely on the known blackbody frequency spectrum of the
CMB to disentangle the signal from the foregrounds through
multi-frequency observations. Some of these methods rely on
a parametric model for the foregrounds, such as Commander
(Eriksen et al. 2004, 2008), a joint CMB and foreground
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Bayesian fitting method based on Gibbs sampling. Other meth-
ods, the so-called blind (or semi-blind) methods, do not rely
on any assumption about the frequency dependence of the fore-
grounds, but mostly exploit statistical correlations between fre-
quency channels to mitigate the foreground contamination. Such
blind methods include internal linear combinations (ILCs) such
as the needlet ILC (NILC; Delabrouille et al. 2009; Basak &
Delabrouille 2012, 2013), a constrained variance minimization
implemented on spherical wavelets; the Spectral Matching Inde-
pendent Component Analysis (SMICA; Delabrouille et al. 2003;
Cardoso et al. 2008); and the Correlated Component Anal-
ysis (CCA; Bedini et al. 2005; Bonaldi et al. 2006), which
use statistical decorrelation to disentangle independent compo-
nents; the Spectral Estimation Via Expectation Maximization
(SEVEM; Fernandez-Cobos et al. 2012), which builds inter-
nal foreground templates from different maps between pairs
of channels; the Generalized Morphological Component Anal-
ysis (GMCA; Chapman et al. 2013), which exploits sparsity
to separate CMB and foregrounds; the Independent Compo-
nent Analysis (ICA), which maximizes some measure of non-
Gaussianity (NG) to disentangle independent sources, such as
FastICA (Maino et al. 2002); and Bayesian formulations of the
ICA (Vansyngel et al. 2016).

In contrast to the CMB, the frequency dependence of the cos-
mological 21 cm signal is nontrivial, and the emission law some-
what random or decorrelated across frequencies, hence making
it more challenging to model 21 cm emission. For this reason,
component separation algorithms dedicated to 21 cm data analy-
sis in the literature mostly reduce to foreground subtraction tech-
niques, with a known risk of partial loss of the 21 cm signal
during the subtraction. Typical component separation algorithms
that have been applied to 21 cm data include principal compo-
nent analysis (PCA; Alonso et al. 2015; Zuo et al. 2019), inde-
pendent component analysis (ICA; Chapman et al. 2012; Wolz
et al. 2014), and generalized morphological component anal-
ysis (GMCA; Chapman et al. 2013; Carucci et al. 2020). For
the present analysis we use the generalized needlet ILC (GNILC;
Remazeilles et al. 2011b; Olivari et al. 2016), an extension of the
blind NILC method that compensates for the lack of information
on the frequency dependence of the cosmological signal by some
prior information on its spatial statistics (power spectrum), and
also exploits here the decorrelation between cosmological sig-
nals originating from different redshift bins.

Here we present the reconstructed maps and power spec-
tra of the cosmological 21 cm signal in the presence of var-
ious foregrounds and white noise. However, differently from
the primordial fluctuations generated by inflationary models, the
21 cm brightness temperature fluctuations depend on the densi-
ties, temperatures, and velocity gradients at late cosmic times,
hence giving rise to NGs. Higher order statistics are thus neces-
sary to completely characterize the intrinsic non-Gaussian 21 cm
field. However, residual foreground contamination can also leave
a non-Gaussian imprint in the reconstructed 21 cm field after
the component separation step. We can hence use higher order
statistics to probe the non-Gaussian features of our signal at
different scales and discern them from foreground residuals.
The bispectrum, which is the Fourier transform of the three-
point correlation function, is well suited to capture NGs, either
intrinsic or left over by foreground residuals, in our recovered
21 cm field.

The map that describes the temperature of our Galaxy as
a function of sky position does not behave at all like a Gaus-
sian random field; therefore, it should have a very large nonzero
bispectrum. We expect this bispectrum to be large compared to

the intrinsic NGs produced by the log-normal large-scale struc-
ture (LSS) field stated above. Estimating the bispectrum should
therefore be a very good test to detect any residual foregrounds
in the recovered 21 cm maps.

One of our goals here is to identify spurious non-Gaussian
features in the recovered 21 cm maps that would be larger than
the intrinsic NG of the 21 cm signal, and which is due to any
residual foreground contamination after component separation
or greater than the noise present in the simulated data set. If we
had such a scenario, it would be clear that residuals from fore-
ground separation have been injected into our output maps, and
we would then have a clear tool to identify if this is the case.

Alternatively, it is possible that we might find non-Gaussian
features in the bispectrum that are partially due to the 21 cm sig-
nal from the above-mentioned nonlinear evolution of matter, but
also due to any poorly subtracted foregrounds. In such scenarios,
measurements of the bispectrum would have to model the con-
tributions to determine if there are any residual non-Gaussian
modes in the final maps that have been left over from the fore-
ground subtraction method. We expect the bispectrum of the
21 cm to be small compared to the non-Gaussian bispectrum sig-
nal from the Galaxy, hence this scenario is unlikely.

It is important to note here that for the conditions we use to
simulate the 21 cm signal in this paper the cosmological non-
Gaussian signal is small, and is compatible with zero within our
error bars. In these conditions, the bispectrum output is used in
this paper as a double-check for the cleaning procedure and not
as a tool to get cosmological information.

This paper is organized as follows. Section 2 describes the
simulation codes used on this work, both for foregrounds and the
21 cm signal with non-Gaussian information. Section 3 describes
our component separation procedure and debiasing approach,
including residual foreground contamination. In Sect. 4 we
present the bispectrum module as well as its abilities for pin-
pointing subtle foreground contamination. In Sect. 5 we present
the conclusion of this work.

This paper is the fifth in a series of papers presenting the
BINGO project. Companion Paper I is the project paper (Abdalla
et al. 2022a), Paper II describes the instrument (Wuensche et al.
2022), Paper III shows the optical design (Abdalla et al. 2022b),
Paper IV describes the mission simulations (Liccardo et al.
2022), Paper VI discusses the 21 cm catalog simulations (Zhang
et al. 2022), and Paper VII presents the cosmological forecasts
for the BINGO telescope (Costa et al. 2022).

2. Simulations

In this paper, we implement the GNILC method on simulated
data sets for the BINGO telescope specifications, as given by
Wuensche et al. (2022). Simulations are crucial to the analy-
sis toolkit in order to test our entire pipeline: from observed
maps to the estimation of the cosmological parameters. We use a
HEALPix (Górski et al. 2005) pixelization scheme at Nside = 256,
a Gaussian beam with a full width at half maximum (FWHM) of
40′, and celestial coordinates for our simulated maps.

Our simulations of the sky as observed by the BINGO tele-
scope include the non-Gaussian 21 cm signal, several fore-
grounds, and white noise. The 21 cm power spectrum is gen-
erated using the Unified Cosmological Library for C`s (UCLCL)
code (McLeod et al. 2017; Loureiro et al. 2019) that enters as
an input to the Full-sky Lognormal Astro-fields Simulation Kit
(FLASK) code (Xavier et al. 2016), which in turn generates the
non-Gaussian simulated 21 cm maps.
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Table 1. BINGO frequency channels (in MHz).

Frequency (MHz)
Channel νmin–νmax Channel νmin–νmax

0 960–971 1 971–982
2 982–993 3 993–1004
4 1004–1015 5 1015–1026
6 1026–1037 7 1037–1048
8 1048–1059 9 1059–1070
10 1070–1081 11 1081–1092
12 1092–1103 13 1103–1114
14 1114–1125 15 1125–1136
16 1136–1147 17 1147–1158
18 1158–1169 19 1169–1180
20 1180–1191 21 1191–1202
22 1202–1213 23 1213–1224
24 1224–1235 25 1235–1246
26 1246–1257 27 1257–1268
28 1268–1279 29 1279–1290

FLASK can generate fast full-sky simulations of cosmological
LSS observables, such as multiple matter density tracers (galax-
ies, quasars, dark matter halos), CMB temperature anisotropies
and weak lensing convergence, and shear fields. UCLCL is a
library for computing two-point angular correlation function of
various cosmological fields that are related to LSS surveys. It
uses the formalism of angular power two-point correlations, and
then derives the exact analytical equations for the angular power
spectrum of cosmological observables. We describe below the
simulated maps of 21 cm emission obtained with FLASK, of fore-
ground components from the PSM code (Delabrouille et al. 2013)
and of instrumental noise.

2.1. Cosmological signal

We simulate our non-Gaussian 21 cm map as a log-normal
field for the 30 redshift bins observed by the BINGO telescope
(see Table 1). The FLASK code produces non-Gaussian fields
by applying a transform to an originally Gaussian field in such
a way that the transformed field obeys the two-point function
originally supplied to the code. This transformation also pro-
duces a modification to the one-point function (to produce a log-
normal field) chosen by the user and an associated bispectrum
that cannot be chosen explicitly by the user. This transforma-
tion produces a non-Gaussian signal that is meant to skew the
Gaussian field into a log-normal field, especially enhancing the
overdensities into higher peaks, which is what is expected by the
gravitational evolution of density perturbations. A summary of
FLASK characteristics and specific choices for the BINGO series
of papers can be found in Paper IV.

2.2. Foregrounds

We use the PSM code (Delabrouille et al. 2013) to generate
our simulated foreground maps (see Table 1 for the frequency
band distribution; we have simulated bands that start slightly
before and extend slightly above the nominal BINGO filter, see
Wuensche et al. 2022 for the full instrument description). We
consider three Galactic foreground emissions: synchrotron, free-
free, and AME (assumed to be spinning dust), which we gener-
ate consistently for all the BINGO channels. The thermal dust

Fig. 1. Frequency scaling of the main foreground components simu-
lated with the PSM. The various curves display the standard deviation
of the maps of the various components as a function of frequency, at
an angular resolution of 40′, and at galactic latitudes greater than 10◦.
The general shapes of the curves illustrate the average frequency scal-
ing, while the relative amplitudes in the BINGO frequency range show
the relative importance of the various components for the detection of
21 cm fluctuations by BINGO. The data points are from the 408 MHz
map of Remazeilles et al. (2015), and the 28.4 and 44.1 GHz maps of
the LFI instrument on board the Planck satellite.

emission is subdominant in the BINGO frequency range and is
neglected in our calculations. Extragalactic foregrounds due to
CMB temperature anisotropies and a background of unresolved
radio point sources are also a significant source of contamina-
tion in the BINGO frequency range, and are included. Figure 1
shows the relative amplitude of all main foreground components
as a function of frequency, also illustrating the average frequency
scaling of those components of emission in the frequency range
of interest for BINGO observations.

Figures 2 and 3 show the maps of the components contribut-
ing to our simulated sky and their power spectra, respectively. As
is evident from Fig. 3, the large foreground contribution to the
sky is a challenge for component separation and for the recov-
ery of the 21 cm signal. We need to suppress the foreground
power down to the level of the expected 21 cm spectrum, which
implies a foreground rejection level better than one part in 104

for the synchrotron, whose power is about eight to nine orders
of magnitude above that of the 21 cm signal in the sky region
observed by BINGO, after masking the brightest regions around
the Galactic plane.

In the next sections we briefly describe the five components
mentioned earlier. For a more detailed description of the physics
behind astrophysical foregrounds, see Abdalla et al. (2022a) and
references therein.

2.2.1. Galactic synchrotron

Galactic synchrotron emission originates from interactions
between the Galactic magnetic field and relativistic cosmic ray
electrons. It is the dominant contaminant for the 21 cm signal
in the frequency range covered by BINGO. The synchrotron
frequency dependence is modeled as a power law, in units of
antenna (Rayleigh-Jeans) temperature, Tsync(ν) ∝ ν−βs . We use
as a template the 408 MHz all-sky map produced by Remazeilles
et al. (2015), which is extrapolated to BINGO frequencies
through a power law considering a non-uniform spectral index,
βs, over the sky (Miville-Deschenes et al. 2008).
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AME

-0.5 1.5mK

CMB
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Free-Free
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Synchrotron

-800 8000mK

21cm Cosmological Signal

-0.16181 0.221757mK

Fig. 2. Simulated maps of the foreground components and the 21 cm cosmological signal in mK units, as observed in the BINGO frequency band
16 (see Table 1): AME (top left), CMB (top right), free-free (middle left), faint radio point sources (FRPS) (middle right), synchrotron (bottom
left), and the 21 cm log-normal cosmological signal (bottom right). All maps are shown in celestial coordinates, have a HEALPix resolution of
Nside = 256, and are convolved with a 40′ beam.

In this simulation, we do not include any effect due to
polarized synchrotron emission. We made this choice because
BINGO will measure the intensity with horns that are specifi-
cally sensitive to the circular polarization that has a high atten-
uation to a linear polarization response. This attenuation is on
the order of 40 dB, as simulated in Wuensche et al. (2022) and
Abdalla et al. (2022b).

In other words, the BINGO collaboration chose to remove
this contamination instrumentally, creating the horns described
in Wuensche et al. (2022) and Abdalla et al. (2022b,
mainly Fig. 18), whose response is polarized, and using a
cross-dragonian optical system that suppresses this type of
polarization.

2.2.2. Galactic free-free

Free-free emission is produced by electron-ion interaction in the
Galactic ISM. It is, together with synchrotron, the main source of

contamination to the 21 cm signal. The free-free emission can be
traced by the Hα emission line, since both depend on the emis-
sion measure EM =

∫
n2

edl. We simulated free-free emission fol-
lowing Dickinson et al. (2003), using their composite template
of Hα and a single spectral emission law, which is uniform over
the sky, given by

Tb(Te, ν) = 8.396×103 a(Te, ν) T 0.667
4 ×100.029/T4×1.08 ν−2.1

GHz, (1)

where Te is the electron temperature, T4 = Te/104, and a(T, ν) is
the Gaunt correction factor given by

a(Te, ν) = 0.366 ν0.1
GHz T−0.15

e

×
[
ln

(
4.995 × 10−2ν−1

GHz

)
+ 1.5 ln (Te)

]
.

This free-free emission law is a slowly varying function of fre-
quency, depending slightly on the electron temperature, which is
assumed here to be constant (Te = 7000 K).
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Fig. 3. Power spectra of the foregrounds and 21 cm signal in the masked
and beam-convolved sky (in the ` range of 0–300) in the BINGO fre-
quency band 15 (∼1125 MHz; see Table 1). Before computing the power
spectrum, all maps were convolved with a 40 arcmin beam, and masked
according to the BINGO sky coverage. We also apply a galactic mask
described in Sect. 2.3.

2.2.3. Galactic anomalous microwave emission

Dipole emission from spinning dust grains is currently the most
commonly accepted explanation for the so-called dust-correlated
anomalous microwave emission (AME). Radio emission is pro-
duced when the electric dipoles in small dust grains spin up.
This component is mainly observed in the frequency range of
10–60 GHz, and is subdominant in the BINGO frequency range.
There is, however, significant uncertainty about the exact emis-
sion spectrum.

Here we use the PSM prescription for the spinning dust, as
described in Delabrouille et al. (2013), which is modeled using
a spinning dust template map extrapolated in frequency using a
single emission law. We use a 353GHz thermal dust template
obtained using GNILC from the Planck satellite observations
(Planck Collaboration Int. XLVIII 2016), which is scaled to the
spinning dust emission at 22.8 GHz on the basis of the scaling
found in Planck Collaboration XXV (2016). To extrapolate to
lower frequencies, the spinning dust emission law is parameter-
ized following the model of Draine & Lazarian (1998), using a
mix of 96.2% warm neutral medium and 3.8% reflection nebu-
lae. Our choice for the AME modeling differs somewhat from
that in companion Paper IV, which used the Planck GNILC dust
optical depth map τ353 (Planck Collaboration Int. XLVIII 2016)
instead of the GNILC dust intensity map at 353 GHz, and scaled
it down from 22.8 GHz to the BINGO frequencies of ∼1 GHz
using the publicly available spdust2 code instead of the Draine
and Lazarian model as implemented in the PSM. The differences
between the two are representative or current uncertainties. They
do not matter much as for both models spinning dust emission is
subdominant.

2.2.4. Cosmic microwave background

Most of the electromagnetic radiation in the Universe is in the
form of a near-isotropic background of thermal radiation orig-
inating from the time when free electrons and nuclei in the
primordial plasma first combined to form neutral atoms, the cos-
mic microwave background (CMB). The spectrum of emission
is very close to that of a blackbody at an average temperature of
TCMB ' 2.726 K, with small temperature fluctuations across the
sky, at a level on the order of 100 µK. In the BINGO frequency

range, the corresponding brightness fluctuations are comparable
in amplitude to those of the 21 cm signal of interest (see Fig. 2).

In our sky simulations, we generate random CMB tempera-
ture fluctuations with a harmonic power spectrum based on the
best fit spectrum from Planck Collaboration VI (2020). We note,
however, that CMB maps from the Planck satellite could also be
used to subtract most of this component from the BINGO obser-
vations.

2.2.5. Radio point sources

In addition to emission from the diffuse interstellar medium in
our own Galaxy, we must take into account emission from the
background of distant compact radio sources, both Galactic and
extragalactic. The most luminous of these objects can be iden-
tified as individual sources, while the rest contribute a diffuse
background from the integrated emission of faint objects that
cannot be detected individually.

Although not resolved by BINGO, the brightest objects are
gathered in a catalog that contains sources characterized by their
parameters: type of the source, position on the sky, flux den-
sity, and polarization fraction as a function of frequency. In
the model we adopt the objects in this catalog are described
as a population of point sources. On the other hand, the dif-
fuse background of sources that are not detected individually is
gathered in the form of sky background inhomogeneities repre-
sented using frequency-dependent brightness fluctuation maps.
Although individual sources are not kept in the format of a cat-
alog at each frequency, maps are effectively produced by sum-
ming the contribution of a large population of sources.

The population of radio sources is based on observations at
0.8, 1.4, and 4.85 GHz. The emission of each source in the fre-
quency range of interest for BINGO is modeled as a power law,
with a distribution of spectral indices for steep and flat radio
sources. Details of the radio source model can be found in the
description of the Planck Sky Model (Delabrouille et al. 2013).

Sources with flux densities above than the Planck 5σ detec-
tion limit in the 30, 70, 353, and 857 GHz are considered
“bright” and are not included in the simulation as it is assumed
that their contribution will be cut out or fitted out from the
BINGO data.

2.3. BINGO sky coverage

After simulating full sky maps containing foregrounds and the
21 cm signal, it is necessary to apply a mask to the maps in
order to have the BINGO sky coverage assumed for this work.
Our mask excludes pixels in the ranges of latitudes that are not
observed by BINGO (i.e., only the sky pixels for which −22.5 ≤
δ ≤ −7.5 are kept).

Inside the region observed by BINGO there are regions
where the Galactic emission is too high to hope to detect the
21 cm emission. We generate a Galactic mask using a smoothed
version of the intensity map of the total Galactic emission in
one of the BINGO channels. This mask is built using the fol-
lowing prescription: All observed pixels are sorted by decreas-
ing Galactic emission amplitude, after smoothing with a 10◦
Gaussian beam. The brightest 10% are set to 0. The next 30%
are attenuated with a cosine apodization function f (x) which
smoothly increases from 0 when x = 10% to 1 when x = 40%.

Figure 4 shows the apodized mask map and gnomonic
views of the foreground and 21 cm cosmological signals after
masking.
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Fig. 4. Effects of apodization in the maps. Top: BINGO apodized mask
format (5◦). The zeros in the scale correspond to non-observed spots
and the transition between the observed and non-observed regions is
done through the apodization (pixels with values >0 and ≤1). Bottom
left: region centered (`, b) = (270◦,−20◦), where the mask was applied
to the 21 cm signal map (gnomonic projection). Bottom right: same
configuration as bottom left for the total foreground map.

2.4. BINGO noise simulation

As outlined by the instrument paper, Paper II, this work con-
siders the BINGO Phase 1 configuration with 28 horns, where
each horn observes the sky for a long period of time at a given
elevation, which corresponds to a fixed declination. We assume
that it is possible to change the elevation of the horns after a cer-
tain amount of observing time, as defined in Papers III and IV.
We also assume that each horn feeds two channels measuring
(I + V)/2 and (I − V)/2, respectively, with a system temperature
Tsys = 70 K in each channel, where I is the intensity and V is the
circular polarization. The value of I is measured by summing the
two outputs, and we analyze here only the I maps.

The white noise level in the I signal for a band of total width
δν is

σnoise = K
Tsys
√
δν

s
1
2 , (2)

where K =
√

2 for a correlation receiver and σ can be related
to the minimum detectable flux density for the telescope, see
Eq. (3) in Wuensche et al. (2022), and the s is in units of one
over δν.

Assuming that the observation time for Nhorns horns is uni-
formly spread across the BINGO survey area, and a pixelized
map with total number of pixels Npix = 12N2

side, with Nside = 512,
the total white noise level per pixel for full observing time τobs
is

σpix = σnoise ×

[
fskyNpix

Nhornsτobs

] 1
2

. (3)

20
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Fig. 5. Noise realizations for the “double retangular” horn arrange-
ments, in Healpix gnomonic coordinates centered in (α = 0◦, δ =
−17.5◦). Left: white noise realization after multiplying the rms by a
Gaussian map, using Nside = 256. Right: rms realization for the double-
rectangular configuration (with time spread between five different horn
offsets) for two years of observation with a 70 K system temperature at
HEALpix Nside = 512. (The rms maps are produced at a higher HEALpix
pixelization and then degraded to the working resolution discussed in
the text). Map of the corresponding rms of the projected white noise
part. The color scale is saturated at five times the rms of a map with
homogeneous coverage and same sky fraction.

We assume that for our survey fsky = 15%, Tsys = 70 K,
Nhorns = 28, and τobs = 1 month gives a noise per pixel at
Nside = 512 (for white noise estimation), which corresponds to
a noise power in each of the 30 BINGO channels of

Nl = 4π
σ2

pix

Npix
= 10.64 µK2 (4)

across multipoles `.
We note that in the limit where the number of data samples

in the BINGO timeline is much larger than the number of pix-
els, each pixel value is obtained as the average of data samples
uniformly spread over the pixel. The signal in each pixel is thus
the integral of the signal coming from beams centered at points
distributed over the pixel area. The signal is thus effectively con-
volved with the beam and with the pixel shape, and the power
spectrum is multiplied by the square of the beam transfer func-
tion B2

l and the pixel window function Wl. The noise spectrum is
directly proportional to Wl.

Two complications must be taken into account for an obser-
vation with a non-ideal instrument. The first is the presence of
low frequency (1/f) noise in the timestreams. We do not consider
low frequency noise in this paper and leave it for future analysis.
The second is the non-uniformity of the coverage because of the
layout of the BINGO horns in the focal plane. This second issue
has been solved with the vertical displacement of the horns in the
focal plane as described in the optics and simulation Papers III
and IV.

This work uses the “double rectangular” horn arrangement
described in Abdalla et al. (2022b), with 28 horns. Figure 5
shows an example noise realization for this configuration. Over-
all, we are able to produce reasonably homogeneous noise maps,
apart from edge effects above the minimum and maximum dec-
lination covered with this horn arrangement, which should be
masked in the final map analysis.

3. Component separation analysis

Observations of the radio sky encompass a mixture of cosmo-
logical signals emitted in the early Universe (e.g., CMB and
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cosmological Hi signal), astrophysical sources emitting in the
late Universe (e.g., Galactic foregrounds and extragalactic point
sources), and instrumental signals (e.g., thermal noise). Com-
ponent separation is a term that refers to any data processing
that tries to disentangle these emissions by exploiting corre-
lations in observations made at separate frequencies, external
constraints, and/or physical models of the different sources of
emission (Delabrouille & Cardoso 2007).

Component separation techniques can be divided into two
categories: parametric methods and blind (or nonparametric)
methods. Parametric methods assume a spectral model for the
foregrounds, while blind methods use only the observed data to
recover the cosmological signal, and therefore do not make any
assumption about the foregrounds. We note that in this defini-
tion of blind methods only the use of prior information about the
cosmological signal is allowed.

The component separation problem is particularly rele-
vant to IM because the observed signal is dominated by
astrophysical emission, both from our Galaxy and from extra-
galactic sources. The removal (or the mitigation) of the astro-
physical foreground contamination is a fundamental step in
IM data analysis. Given that the spectral signature of the cos-
mological signal is nontrivial, one of the difficulties for IM
component separation is the preservation of the 21 cm sig-
nal during foreground removal. Either an excess of foreground
residuals in the 21 cm maps or an oversubtraction of the fore-
grounds from the data will result in erroneous cosmological
results.

Several component separation methods have been proposed
in the literature to disentangle cosmological Hi 21 cm emis-
sion and astrophysical foregrounds. Many of them rely on the
assumption that foregrounds are spectrally smooth. However, the
smoothness assumption may be broken by instrumental effects
of the telescope, such as standing waves and calibration uncer-
tainties, although the design of the BINGO telescope has the goal
of minimizing these effects.

Slight departures from spectral smoothness of the observed
foregrounds may result in biases on the detection of the faint
Hi signal for some methods such as COMMANDER (Eriksen
et al. 2004, 2008) or wp-FIT (Harker et al. 2009), given the huge
dynamic range in amplitude between foregrounds and Hi emis-
sion. In the case of the method GNILC (Olivari et al. 2016) that
we adopt in our analysis and describe below, no assumption is
made on the spectral shape of the foregrounds. To disentangle
the cosmological 21 cm signal from the foreground emission,
GNILC relies only on the property that the foreground emis-
sion is much more strongly correlated across frequencies than
the 21 cm signal is.

3.1. GNILC methodology

In this work we use GNILC, a blind component separation
method originally devised for CMB data analysis by Remazeilles
et al. (2011a) and extended to 21 cm data analysis by Olivari
et al. (2016). The main idea of GNILC is to use prior informa-
tion on the power spectrum of the cosmological signal to either
compensate for the lack of knowledge on the frequency depen-
dence of the targeted signal, as in the case for the 21 cm signal
(Olivari et al. 2016), or to overcome spectral degeneracies
between components, as in the case for example between cosmic
infrared background and thermal dust (Planck Collaboration Int.
XLVIII 2016).

Hence, in our case, the only necessary ingredient to GNILC
is a theoretical Hi 21 cm power spectrum across the red-

shift bins as a prior to the algorithm: C21 cm,prior
`

(ν). We also
include additional noise information in the GNILC prior, so
the prior can be described by a power spectrum given by
C21 cm+noise, prior
`

(ν) ≡ C21 cm, prior
`

(ν) + Cnoise, prior
`

(ν). No assump-
tion is made about the foregrounds.

The observed data by BINGO dν(n̂) in any direction of the
sky n̂ (or pixel in the map) and at any frequency ν are a mixture
of signal, foregrounds, and noise

dν(n̂) = s21 cm
ν (n̂) + sfg

ν (n̂) + nν(n̂), (5)

where s21 cm
ν (n̂) is the 21 cm signal at frequency ν that we aim to

recover with GNILC, sfg
ν (n̂) denotes the total foreground emission

at that same frequency, and nν(n̂) is the instrumental noise in this
channel.

The formalism of GNILC has been described in detail in the
literature (Remazeilles et al. 2011a; Planck Collaboration Int.
XLVIII 2016; Olivari et al. 2016). We refer the reader to Olivari
et al. (2016) for a full description of the method in the context of
21 cm intensity mapping. We summarize it below.

We first define a set of functions in harmonic space, h( j)
`

( j = 1, . . . , 4), called needlet windows, which work as bandpass
filters to handle different ranges of angular scales in the maps
independently for component separation. The four needlet win-
dows are chosen to satisfy the constraint

4∑
j=1

(
h( j)
`

)2
= 1 (6)

over the full multipole range in order to conserve the total power
of the sky emission in the data processing. While choosing more
than four needlet windows to partition the multipole range would
allow more localized filtering in harmonic space, by the uncer-
tainty principle the support of the filter would in contrast be less
compact in pixel space and exceed the size of the small area of
sky observed by BINGO. To allow sufficient localization of the
filter in pixel space and capture the variations of the foreground
contamination inside the BINGO stripe, we have to relax local-
ization in harmonic space by limiting the partitioning to four
needlet windows.

The spherical harmonic coefficients of each BINGO channel
map d`m(ν) are bandpass-filtered through each needlet window
as d̃ ( j)

`m (ν) = h( j)
`

d`m(ν). An inverse spherical harmonic transform
of the bandpass-filtered coefficients thus provides four needlet
maps d̃( j)

ν (n̂) at each frequency. These needlet maps contain only
temperature fluctuations of typical angular scales selected by the
needlet window.

In the second step, for each needlet scale ( j) we compute the
n × n data covariance matrix of the needlet maps in each pixel n̂
for all pairs of frequencies (ν, ν′) as

R̂
( j)
νν′ (n̂) =

∑
n̂′∈D(n̂)

d( j)
ν (n̂′)d( j)

ν′ (n̂′), (7)

whereD(n̂) is a domain of pixels centred around pixel n̂, chosen
in such a way to avoid artificial correlations between the signal
and the foregrounds at large angular scales where the statistics is
poor (the so-called ILC bias, see Delabrouille et al. 2009).

Third, using our prior estimate of the 21 cm (+ noise) power
spectrum, C21 cm+noise, prior

`
(ν), we simulate 21 cm (+ noise) maps

yν(n̂) for each channel ν. These simulated 21 cm (+ noise) maps
yν(n̂) receive the same needlet bandpass filtering as the data, thus
leading to four needlet maps y( j)

ν (n̂) for each frequency. As in
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Eq. (7), for each needlet scale ( j) we compute the prior signal
(+ noise) covariance matrix as

R̂
( j)
S νν′ (n̂) =

∑
n̂′∈D(n̂)

y( j)
ν (n̂′)y( j)

ν′ (n̂′). (8)

We note that this prior is independent of the particular realization
of the 21 cm signal in the observed sky.

In step four, as evident from Eq. (5), the data covariance
matrix (Eq. (7)) must receive contributions from signal, fore-
grounds, and noise covariance matrices as

R̂ = R21 cm + Rnoise + Rfg

= RS + Rfg, (9)

where we omitted the implicit pixel, frequency, and needlet-
scale indices to reduce the amount of notations, and defined
RS ≡ R21 cm + Rnoise as the covariance matrix of 21 cm signal
plus noise.

Hence, the whitened data covariance matrix, defined as
R̂
−1/2
S R̂ R̂

−1/2
S , where R̂S is the prior covariance matrix (Eq. (8)),

reduces to

R̂
−1/2
S R̂ R̂

−1/2
S ' R̂

−1/2
S Rfg R̂

−1/2
S + I, (10)

where I is the identity matrix. The eigenvalue decomposition of
matrix Eq. (10) thus yields

R̂
−1/2
S R̂ R̂

−1/2
S ' UN DN UT

N + US UT
S , (11)

where DN collects the m largest eigenvalues departing from
unity, UN the corresponding eigenvectors, and US the (n − m)
eigenvectors whose eigenvalue is close to unity.

The decomposition in Eq. (11) enables GNILC to identify the
signal and foreground subspaces in the data, since the m eigen-
values collected in the m × m diagonal matrix DN indicate sig-
nificant power from the foregrounds in the data, while the n−m
eigenvalues of matrix that are close to unity correspond to power
from the 21 cm signal (+noise) in the data. Hence, the m eigen-
vectors collected in the n×m matrix UN form the principal com-
ponents of the foreground subspace, while the n−m eigenvectors
collected in the n× (n−m) matrix US form the independent com-
ponents of the targeted 21 cm signal subspace.

In step five, unlike PCA, the effective dimension m of the
foreground subspace is not pre-defined in an ad hoc manner by
GNILC, but estimated directly from the data using Eq. (11) and
minimizing the Akaike information criterion (AIC), which in the
GNILC formalism reduces to solving (e.g., Olivari et al. 2016)

min

2m +

n∑
i=m+1

[µi − log µi − 1]

 with m ∈ [1, n], (12)

where µi are the eigenvalues of matrix R̂
−1/2
S R̂ R̂

−1/2
S (Eq. (10)).

The foreground dimension m, which minimizes the AIC crite-
rion, is denoted mAIC in the next sections.

The foreground dimension mAIC is estimated by the AIC
locally across the sky and across the angular scales thanks to
needlet decomposition. Hence, unlike PCA, GNILC also allows
the effective dimension of the foreground subspace mAIC ≡

m( j)
AIC(n̂) to vary with the needlet scale ( j) and the position in

the sky n̂ depending on the local signal-to-foregrounds ratio in
the data (Eq. (10)). For the same reason, the n×(n−mAIC) matrix
US ≡ U( j)

S (n̂), which spans the targeted 21 cm signal subspace,
varies across the sky and the scales.

In the sixth step, for each needlet scale ( j), each pixel n̂, and
each frequency ν, an estimate of the 21 cm signal ŝ 21 cm ( j)

ν (n̂) is
obtained by applying a multi-dimensional ILC filter to the data

ŝ 21 cm ( j)
ν (n̂) =

∑
ν′

W( j)
νν′ (n̂) d( j)

ν′ (n̂), (13)

where the expression for the GNILC weights W ≡ W( j)
νν′ (n̂) is

given by

W = Ŝ (̂S
T

R̂
−1

Ŝ)−1 Ŝ
T
R̂
−1

(14)

and the signal mixing matrix is given by

Ŝ = R̂
1/2
S US . (15)

The mixing matrix (Eq. (15)) is the only information needed to
implement the GNILC filter (Eq. (14)).

The exact amplitude of the 21 cm prior R̂S is not critical
for GNILC because it could be multiplied by a constant factor
while leaving Eq. (14) unchanged. This is only true as long as
this constant factor is not large enough to modify the dimension
of the matrix US .

Finally, we synthesize the needlet-map estimates ŝ 21 cm ( j)
ν (n̂)

of the 21 cm signal to form the complete 21 cm map that includes
all scales. First, we compute the spherical harmonic coefficients
ŝ 21 cm ( j)
`m (ν) of the 21 cm map estimates. These coefficients are

again bandpass filtered by the needlet windows (this step guaran-
tees the normalization of the maps), and the filtered coefficients
are transformed back to real space by inverse spherical harmonic
transform. This operation gives one reconstructed 21 cm map
per needlet scale and per frequency channel. The reconstructed
21 cm map per needlet scales are finally co-added to give the
complete GNILC 21 cm map, ŝ GNILC

ν (n̂), for each frequency
channel.

To perform our analysis, we generated a cube with 30
BINGO channels and/or redshift bins for the simulation of the
21 cm signal, with the 21 cm signal having a different seed
for each frequency channel. Simulated foregrounds and noise at
BINGO frequency channels were then added to the correspond-
ing redshift slices of the 21 cm cube. This cube is labeled as
L0 simulation. We also generated 100 cubes with different real-
izations of 21 cm signal and noise for our debiasing procedure,
which is described in Sect. 3.3.

We apply GNILC to the BINGO channel maps of the L0 sim-
ulation to extract maps of the 21 cm emission at each frequency
ŝ GNILC
ν with reduced foreground contamination, and reconstruct

the 21 cm power spectrum for each redshift bin CGNILC
`

(ν). Error
bars on the reconstructed power spectra are computed analyti-
cally for each channel ν (e.g., Tristram et al. 2005)

σ`(ν) =

√
2

(2` + 1)∆` fsky
CGNILC
` (ν), (16)

where ` is the central multipole of the bin, ∆` is the bin size,
fsky is sky fraction of the BINGO survey, and CGNILC

`
(ν) is the

binned power spectrum of the GNILC 21 cm map in that chan-
nel. The uncertainty calculated by Eq. (16) thus includes cosmic
variance from the 21 cm signal plus contributions from residual
foregrounds and noise.
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3.2. Additive and multiplicative errors

The set of reconstructed 21 cm maps by GNILC across BINGO
channels sGNILC = {sGNILC

ν (n̂)}ν contains residual contamination
by foregrounds and noise

sGNILC = W d = W s21 cm + W sfg + W n, (17)

where W sFG is the residual foreground contribution and W n is
the residual noise contribution to the reconstructed 21 cm maps
after component separation. These additive errors are in prin-
ciple minimized by the GNILC filter Eq. (14). In addition, the
GNILC filter Eq. (14) is built to ensure that Ws21 cm ' s21 cm, so
that GNILC fully recovers the 21 cm signal with minimum fore-
grounds and noise:

sGNILC ' s21 cm + W sfg + W n. (18)

However, a small part of the 21 cm signal can be removed along
with the foregrounds by the filtering because the signal and fore-
ground subspaces are not fully orthogonal in the eigenvector
decomposition outlined in Eq. (11).

Hence, in practice the reconstructed 21 cm signal may suf-
fer from a small multiplicative error or bias b (i.e., Ws21 cm '

b s21 cm) and

sGNILC ' bs21 cm + Wsfg + Wn, (19)

with b < 1. The risk of partial loss of the 21 cm signal is common
to all 21 cm foreground removal techniques.

Therefore, the reconstructed power spectrum of the GNILC
21 cm map CGNILC

`
(ν), at a given frequency ν, may have a small

multiplicative error on the 21 cm signal through a suppression
factor S ` < 1

CGNILC
` = S `C21 cm

` + Cfg, proj
`

+ Cnoise, proj
`

, (20)

along with additive errors due to projected noise
Cnoise,proj
`

≡ C`(Wn) and residual foreground contamination
Cfg,proj
`

≡ C`(Wsfg).

3.3. Debiasing the power spectrum from noise bias and
21 cm signal loss

Using the BINGO specifications, we generated 100 realizations
of white noise maps n(i)

ν (n̂) (1 ≤ i ≤ 100) for each channel ν. We
found that using 100 simulations was enough for a suitable bias
subtraction to be obtained for the purposes of this paper; how-
ever, we cannot guarantee that a covariance arising from such
simulations would not have errors that are large enough for the
purposes of parameter fitting. It is beyond the scope of this paper
to assess the covariance errors from any lack of simulations.

We compute the projected noise realizations n(i), proj
ν (n̂) by

applying the GNILC filter Eq. (14) of the fixed sky realization
L0 to the white noise map realizations:

n(i), proj
ν (n̂) =

∑
ν′

Wν,ν′ n(i)
ν′ (n̂). (21)

We compute the power spectra of the projected noise realizations
(Eq. (21)) (i.e., Ĉnoise (i),proj

`
(ν) ≡ C`(n

(i),proj
ν )) for each realization

(i) and each frequency channel ν. We then average over all the
NSIM realizations to get an estimate of the projected noise power
spectrum in Eq. (20):

Ĉ noise,proj
`

(ν) = 〈Ĉ noise (i), proj
`

(ν)〉 =
1

NSIM

NSIM∑
i=1

Ĉ noise (i), proj
`

(ν). (22)

Finally, we subtract the estimated projected noise power spec-
trum (Eq. (22)) to the GNILC power spectrum (Eq. (20)) as

Ĉ GNILC
` (ν) = CGNILC

` (ν) − Ĉ noise, proj
`

(ν). (23)

The resulting power spectrum Ĉ GNILC
`

(ν) is thus corrected for the
noise bias, so that

Ĉ GNILC
` (ν) ' S ` C21 cm

` (ν) + Cfg, proj
`

(ν),

' S ` C21 cm
` (ν), (24)

where in the second line of Eq. (24) we neglect the residual fore-
ground power that is already strongly mitigated by GNILC.

We then need to correct the reconstructed 21 cm power spec-
trum Ĉ GNILC

`
(ν) for the multiplicative bias as

C̃GNILC
` (ν) =

ĈGNILC
`

(ν)

Ŝ `

≡
CGNILC
`

(ν) − Ĉ noise, proj
`

(ν)

Ŝ `

, (25)

where Ŝ ` is an estimate of the 21 cm suppression factor S `,
which we compute as follows.

Using the prior on the 21 cm power spectrum, we generate
100 pure 21 cm map realizations s21 cm (i)

ν (p) (1 ≤ i ≤ 100) for
each channel ν, which we then pass through the GNILC filter of
the fixed sky realization L0 to obtain the projected 21 cm map
realizations

s21 cm (i),proj
ν =

∑
ν′

Wνν′ s21 cm (i)
ν′ . (26)

For each realization (i) we compute the ratio of the power spectra
of the projected to the input 21 cm realizations

S (i)
`

(ν) =
C21 cm (i),proj
`

(ν)

C21 cm (i)
`

(ν)
, (27)

in other words, the suppression factors for all realizations (i) and
frequency channels ν. By averaging over all realizations we then
get an overall estimate of the 21 cm suppression factor for a
given channel

Ŝ `(ν) = 〈S (i)
`

(ν)〉, (28)

which we use to renormalize the noise-debiased GNILC power
spectrum ĈGNILC

`
(ν) as C̃GNILC

`
(ν) = ĈGNILC

`
(ν)/Ŝ `(ν) following

the prescription in Eq. (25).
The top panels of Figs. 6–8 show, for three different BINGO

channels, the reconstructed 21 cm power spectrum after fore-
ground cleaning by GNILC and debiasing. The green bins cor-
respond to the prior signal (+noise) power spectrum used in
the analysis. We can see that for each channel the recovered
21 cm power spectrum (yellow bins) matches relatively closely
the power spectrum of the input 21 cm signal (blue bins) of
the L0 simulation across multipoles. The difference between the
recovered 21 cm power spectrum and the input 21 cm power
spectrum is shown in the bottom right panels of each figure,
highlighting an unbiased recovery of the 21 cm signal at mul-
tipoles 20 . ` . 800. In the bottom left panels of each figure
we show our estimate of the suppression factor Ŝ ` after fore-
ground cleaning, showing a 2–6% loss (depending on multipole
and channel) of the 21 cm signal before correction.

Our results show that our debiasing procedure applied to
GNILC is quite successful in removing the additive noise bias
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Fig. 6. Different aspects concerning the debias procedure for BINGO channel 10 (1070–1081 MHz). Top: reconstructed 21 cm power spectrum
(yellow dots) for the BINGO channel 10 (1070−1081 MHz) in logarithmic scale (left) and linear scale (right), after foreground cleaning with GNILC
and debiasing. Bottom right: difference between the reconstructed and input 21 cm signal power spectra. Bottom left: estimate of the suppression
factor on the 21 cm signal across multipoles.

and correcting for the small multiplicative bias on the 21 cm sig-
nal, in addition to performing efficient foreground cleaning. We
have obtained similar results for the other BINGO channels. It
is beyond the scope of this paper to investigate the cosmolog-
ical implications of these projections and biases; however, this
will be incorporated into the final BINGO pipeline so that we
take into account the effects that such residual biases have on the
estimation of cosmological parameters.

In the next sections we investigate the residual foreground
contamination in the reconstructed 21 cm maps by looking at
the power spectrum of the projected foreground components
(Sect. 4.2) and the bispectrum of the reconstructed 21 cm maps
(Sect. 4).

4. Bispectrum analysis as a test of residual
foreground contamination

The core science aim of BINGO is to use the angular power
spectrum of the fluctuation of the redshifted Hi 21 cm radia-
tion in order to measure the BAO and redshift-space distortions
(Abdalla et al. 2022a). However, using higher order statistics to
characterize the data can bring important information that cannot
be probed with the power spectrum alone.

If the signal is Gaussian, the power spectrum contains all the
information. However, NGs (i.e., deviations in our maps from
Gaussian statistics) will be present in our data at all redshifts, but
most notably in the low redshift 21 cm signal. They might come
from the early-time evolution of the Universe (what we call pri-
mordial NG), will be imprinted onto the 21 cm maps by gravity
itself (Bernardeau et al. 2002; de Putter 2018), and/or will get
imprinted on the 21 cm maps when these maps are cleaned via
residuals from the Galactic foreground distribution.

From the CMB anisotropy measurements (Planck
Collaboration XIII 2016) we know that our Universe
evolved from adiabatic initial fluctuations that are very
close to Gaussian. Inflation is the most accepted paradigm for
the early evolution of the Universe that generated such initial
fluctuations. There are a plethora of models of inflation, and
also alternatives to inflation models, that explain the evolution
of the Universe at early times and that are in accordance with
current cosmological observations. However, these models
might predict different observables like primordial NGs (PNGs;
for reviews, see Bartolo et al. 2004; Liguori et al. 2010; Chen
2010). In this way NGs represent a distinctive signature of
these models, and measuring them will allow us to exclude and
differentiate models and might teach us about the physics that
happened at earlier times of our Universe. The presence of PNGs
in the initial fluctuations that seed the density perturbations will
also be imprinted in the 21 cm anisotropies measurement at late
times.

However, PNGs are not the only source of NGs in the late
time 21 cm Hi signal. As we already discussed, measuring the
cosmological 21 cm signal is a daunting task since the 21 cm
Hi data are dominated by foregrounds coming from cosmolog-
ical and astrophysical sources. These foregrounds together with
radio frequency interference might be limiting factors of 21 cm
experiments, if not cleaned and mitigated correctly. Foreground
cleaning techniques and RFI mitigation are some of the main
techniques applied to 21 cm maps in order to recover the cos-
mological 21 cm Hi signal. However, these techniques might
introduce NG features in the residual maps, even if NGs are not
present initially. In addition, any residual foreground contami-
nation left over in the reconstructed maps of the 21 cm radiation
would also create a large non-Gaussian imprint on the signal.
These systematic effects are inherent in the 21 cm residual maps
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Fig. 7. Different aspects concerning the debias procedure for the BINGO channel 15 (1125–1136 MHz). Top: reconstructed 21 cm power spectrum
(yellow dots) for the BINGO channel 15 (1125–1136 MHz) in logarithmic scale (left) and linear scale (right), after foreground cleaning with
GNILC and debiasing. Bottom left: estimate of the suppression factor on the 21 cm signal across multipoles. Bottom right: difference between the
reconstructed and input 21 cm signal power spectra.

that will be analyzed since foreground removing is always nec-
essary.

Given that the 21 cm Hi data at late times has a NG
component, we need to use higher order statistics to character-
ize the data and estimate these signatures. The use of the bis-
pectrum in the 21 cm data analysis is not so unusual (see, e.g.,
Cunnington et al. 2021; Jolicoeur et al. 2021; Durrer et al. 2020).
In Cunnington et al. (2021) there is a good description of this
technique over the years. In this work we follow mainly the
description found in Liguori et al. (2010), Komatsu (2001) and
Smith & Zaldarriaga (2011) in order to develop the tool for iden-
tifying the NG. For the contour plot and bispectrum analysis we
follow Regan & Shellard (2010).

As we mention above, the bispectrum output is used as a
double-check for the cleaning procedure; it does not provide
cosmological information on fnl, gnl (the third- and fourth-order
amplitudes, respectively, of non-Gaussianity; see Komatsu 2001
for more details), or any other parameter.

In this sense, no cosmological analysis of information related
to these parameters took part here. In addition, we are not argu-
ing that the bispectrum of the 21 cm radiation is actually zero in
the configurations measured, but we are arguing that in the log-
normal simulations that we are producing it is close enough to
zero for the assumptions made in this paper to be valid.

4.1. Angular bispectrum

We wish to compute higher angular correlation functions for the
first-order brightness temperature fluctuations. We focus here on
the three-point correlation function or on its Fourier transform,
called the bispectrum, given that higher order correlators are usu-
ally subdominant. Since our aim is to determine the angular bis-
pectrum, similarly to what was done for the angular power, we

decompose the brightness temperature fluctuation ∆T (n̂)
T in spher-

ical harmonics

a`m =

∫
d2 n̂

∆T (n̂)
T

Y∗lm(n̂), (29)

where the hats denote unit vectors. Given this, the angu-
lar three-point correlation function with the flat sky approxi-
mation is given by (Liguori et al. 2010; Komatsu 2001; Smith
& Zaldarriaga 2011)

〈a`1m1 a`2m2 a`3m3〉 ≡ Bm1m2m3
`1`2`3

= 〈B`1`2`3〉

(
`1 `2 `3
m1 m2 m3

)
, (30)

where Bm1m2m3
`1`2`3

is the angular bispectrum and B`1`2`3 is the aver-
aged angular bispectrum given by

B`1`2`3 =
∑

m

(
`1 `2 `3
m1 m2 m3

)
· Bm1m2m3

`1`2`3
. (31)

The matrix denotes the Wigner-3 j symbol, representing the
azimuthal angle dependence of the bispectrum, which is invari-
ant under permutations. It describes three angular momenta that
form a triangle L1 +L2 +L3 = 0, where m1 +m2 +m3 = 0, which
implies that the matrix is only nonzero if the triangle conditions
are satisfied: |`i− ` j| ≤ `k ≤ `i + ` j. The angular correlation func-
tion is invariant under parity, which implies that `1 + `2 + `3 is
even. In this way, B`1`2`3 is only nonvanishing if the above trian-
gle and parity conditions are met.

We note here that we neglect the contributions from the shot
noise in the theoretical and simulated estimation of the bispec-
trum and the power spectrum. We assume that the contribution
from the shot noise is small assuming that it arises from the num-
ber density of galaxies which emit in Hi (Olivari et al. 2018). It
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Fig. 8. Different aspects concerning the debias procedure for the BINGO channel 20 (1180−1190 MHz). Top: reconstructed 21 cm power spectrum
(yellow dots) for the BINGO channel 20 (1180–1190 MHz) in logarithmic scale (left) and linear scale (right), after foreground cleaning with
GNILC and debiasing. Bottom left: estimate of the suppression factor on the 21 cm signal across multipoles. Bottom right: difference between the
reconstructed and input 21 cm signal power spectra.

is beyond the scope of this analysis to check if this assumption is
accurate and this term can be neglected or if there are conditions
under which this term can be large; however, there are simu-
lations that show that this can in fact be larger than the value
suggested by Olivari et al. (2018) and in Sect. 4 of Zhang et al.
(2020).

The angular three-point correlation is invariant under rota-
tions, thus the bispectrum can be written as

Bm1m2m3
`1`2`3

= Gm1m2m3
`1`2`3

b`1`2`3 , (32)

where b`1`2`3 is the reduced bispectrum, which is a real and sym-
metric function of `1, `2, and `3, and Gm1m2m3

`1`2`3
is the Gaunt inte-

gral defined as

Gm1m2m3
`1`2`3

=

∫
d2 n̂Y`1m1 (n̂)Y`2m2 (n̂)Y`3m3 (n̂)

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

) (
`1 `2 `3
m1 m2 m3

)
.

(33)

The Gaunt integral obeys the conditions mentioned above. As
all the dependencies on the Wigner-3 j symbol appears only in
the Gaunt integral, it is easier to study the physical properties
of the bispectrum using bl1l2l3 . We can then rewrite the angular
averaged bispectrum B`1`2`3 in terms of the reduced bispectrum
b`1`2`3 :

B`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
b`1`2`3 . (34)

The bispectrum can form different triangles depending on
the relation between `1, `2, `3. The type of triangle describes
the shape of the bispectrum, with the following known
shapes (Jeong & Komatsu 2009): equilateral `1 = `2 = `3,

squeezed `1 h `2 � `3, isosceles `2 = `3, elongated `1 = `2 + `3,
and folded `1 = 2`2 = 2`3. We use certain combinations of the
above-defined bispectrum in later sections to show how its mea-
surements can impose strict tests to the nature and level of the
foreground residuals in the simulations and data extraction we
presented at the beginning of this paper.

For the purposes of this work, different than the forms cited
above, it is useful to define a specific subset of bispectrum values
where `1 + `2 + `3 = N, where the sum of the `s equals a given
factor. We call this shape “equisize”. This configuration corre-
sponds to triangles of roughly similar size in ` space. We define
the quantity

B`1+`2+`3=N =

N∑
`1=1

N∑
`2=1

N∑
`3=1

B`1`2`3δ`1+`2+`3,N , (35)

which is the sum of the entries of the nonzero bispectrum mea-
surements, where the configurations obey `1 + `2 + `3 = N
from the Kronecker delta. We note that the specific case where
N is divisible by three, one of the above-mentioned configu-
rations will correspond to the equilateral configuration where
`1 = `2 = `3.

4.2. GNILC foreground residuals

The AIC criterion Eq. (12) is used by GNILC to determine the
effective dimension mAIC ≡ m( j)

AIC(n̂) of the foreground subspace
(i.e., the number of principal components of matrix Eq. (10))
favored by the data among the class of models 1 ≤ m ≤ n,
depending on the local signal-to-foreground ratio (Eq. (10))
across the sky and the scales. Without the AIC penalty the
maximum likelihood solution would tend to overestimate the
dimension of the foreground subspace (i.e., m . n, where n
is the number of available channels), and thus would tend to
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Fig. 9. Suppression factor of the 21 cm signal for different values of the
foreground dimension: (mAIC − 1) (blue), mAIC (yellow), and (mAIC + 1)
(green).

remove the 21 cm signal from the data along with the foreground
contamination. The nominal setting for GNILC is to use the AIC
selected value mAIC as the default value.

In this subsection and in the next we purposefully run GNILC
with sub-optimal settings for mAIC in order to have sub-optimal
foreground subtraction to quantify our ability to assess the qual-
ity of the foreground subtraction method via the bispectrum, as
defined in the previous subsection. We aim to establish that we
have tools available to measure and assess the systematic effects
in such residual maps as obtained with the GNILC method, as
described in this paper, although this approach can also be used
for other component separation methods.

Because of the finite number of available frequency chan-
nels, but with a high dimensionality of both foreground and

Fig. 10. Phase comparison between the reconstructed 21 cm signal and
the prior (21 cm signal added to white noise) for different values of
the foreground dimension: mAIC − 1 (top), mAIC (middle), and mAIC + 1
(bottom). Shown here are results for channel 15.

21 cm components, component separation methods face a trade-
off between two directions: removing as much foreground con-
tamination as possible from the data without losing much 21 cm
signal, or conserving as much 21 cm signal as possible at the
cost of accepting more residual foreground contamination. The
AIC enables GNILC to find a sweet spot in this trade-off. How-
ever, the n-dimensional space of the data is not a direct sum of
the foreground and 21 cm subspaces, hence the frontier between
the two subspaces is not strict.

In order to test the robustness of our results, in this and
the following subsections we test GNILC with three different
options for the dimension parameter of the foreground subspace:
mAIC−1, mAIC as selected by the AIC, and mAIC +1 (i.e., the AIC
selected dimension increased by one). It is reasonable to assume
that by increasing the number of dimensions by one or two, we
would have increasingly more aggressive foreground mitigation
strategies, which in turn require a larger correction factor for the
21 cm signal loss, but also a smaller projection of foregrounds in
the respective 21 cm reciprocal space.

When we artificially impose one less dimension for the fore-
ground subspace in GNILC (i.e., mAIC − 1) the power spectrum
of the recovered 21 cm map in channel 15 shows higher residual
foreground contamination at all multipoles. Similarly, when we
impose an extra dimension, the residuals decrease.

In contrast, as shown in Fig. 9, the more aggressive fore-
ground strategy increases the loss of 21 cm signal across multi-
poles, while the default AIC selection mAIC guarantees minimal
loss of 21 cm signal. We find, however, that the signal loss on the
21 cm field decreases slowly, ranging from 2% to 10% (depend-
ing on multipoles) in the ranges of strategies that we have
analyzed.

In addition, in Fig. 10 we present the correlation between the
phases of the recovered and input 21 cm maps for the three cases
studied here. Increasing the default dimension of the foreground
subspace clearly reduces the scatter due to foregrounds in the
correlation. However, the correlation coefficient for pure 21 cm
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Fig. 11. Angular power spectra of the projected foreground components for the default dimension (mAIC − 1) as selected by AIC (top), (mAIC)
(middle), and (mAIC + 1) (bottom) in the absence of noise (left column) or in the presence of white noise (right column) for channel 15. Here the
residuals are calculated with mask and convolved with a 40 arcmin beam.

(i.e., no noise) also degrades because of the increasing loss of
signal according to Fig. 9.

Figure 11 shows the angular power spectrum of the residual
foreground components projected in the recovered 21 cm sig-
nal for the three different options of the foreground dimension
parameter in GNILC. The left column shows the results for noise-
free simulations, while the right column shows the results in the
presence of white noise and the use of 21 cm plus the noise prior
by GNILC.

In the case of a less conservative foreground subtraction than
that suggested by the AIC method (i.e., a dimension of mAIC−1),
we see in the top left panel of Fig. 11 that there is significant
residual contamination from free-free and synchrotron emission
at ` . 40. However, in the case of negligible noise, this config-
uration does manage to recover the majority of the power spec-
trum in the intermediate ` range 40 < ` < 200. The overall
residual foreground contamination is negligible compared to the

21 cm signal over the larger range of multipoles 40 . ` . 500,
which is of interest for BAO measurements.

In the case of mAIC + 1 we can see in Fig. 11 that the residual
foreground contributions, plotted in celestial coordinates, show
little difference in comparison with mAIC; however, the loss of
the 21 cm signal in the reconstruction further increases in all
channels, as highlighted in Fig. 9.

Figure 12 shows maps of the residual foreground contri-
butions to the reconstructed 21 cm map from each individual
component for the three different choices of the dimension of
the foreground subspace, and for either noise-free or noisy sim-
ulations. The first two rows show larger residual foreground
contamination for the mAIC−1 case compared to the more aggres-
sive versions used in GNILC in the middle (mAIC) and bottom
(mAIC + 1) rows. We can see from these results that there is a
trade-off between the aggressiveness of the choice of m where
aggressive versions lose signal but have lower systematics, and
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Fig. 12. Gnomonic view of residual foreground components for dimension mAIC − 1, mAIC and mAIC + 1, with and without noise in the simulation.
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Fig. 13. Contour charts for the equisize configuration of the bispectrum in three different channels: 10 (first column), 15 (second column), and
20 (third column). Each line is related to each case analyzed: total foregrounds (first row), 21 cm + white noise (second row), and white noise
(third row).

Fig. 14. Contour charts for the considered configurations of the bispectrum (where `1 + `2 + `3 = 30) in three different channels: 10 (first column),
15 (second column), and 20 (third column). Each line is related to each case analyzed: GNILC output using mAIC − 1 (first row) and GNILC output
using mAIC (second row). A very similar pattern arises from the results with mAIC − 1 and the first row for the measurements with the input
foregrounds in Fig. 13. These patterns are similar, albeit with a much smaller amplitude, which indicates a severe reduction of foreground levels,
but not a complete removal, which is directly identified in our analysis.
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Fig. 15. Residual values for B`1+`2+`3=N for N = 30 and N = 60, for
the GNILC reconstructed maps as a function of the channel number. We
plot different values of mAIC (top and bottom figures), and the residuals
are a few orders of magnitude smaller than those presented in Fig. 14,
independently of which mAIC is chosen for our bispectrum test for sub-
optimal foreground extractions parameters.

the AIC technique implemented in GNILC is doing a good job at
determining this specific dimension.

4.3. BINGO pipeline: Bispectrum estimation of foreground
residual contamination

We calculate the bispectrum of the reconstructed 21 cm maps as
well as the foreground maps and projections using Eqs. (33) and
(35). Since the bispectrum measures the non-Gaussian statistics
intrinsic to the field, it is expected to return B` values that are
compatible with zero for any Gaussian maps, including the noise
input maps we have generated.

The reconstructed 21 cm maps by GNILC contain non-
Gaussian information from both the intrinsic 21 cm fluctuations,
whose distribution is log-normal given that they were simulated
with FLASK, and the residual foreground contamination after
component separation. The bispectrum module should therefore
be able to detect non-Gaussian features in the input 21 cm maps
generated by FLASK and in the recovered 21 cm obtained by
GNILC, provided it has a sufficient signal-to-noise ratio.

There are several configurations we can select in order to
estimate the non-Gaussian nature of a map via a bispectrum. In
this analysis, as outlined in Sect. 4.1, we select configurations
where `1 + `2 + `3 = N, which we call equisize configurations
for the bispectrum (Regan & Shellard 2010). For the tests in this
section we used a maximum value of N = 30 and N = 60 for the
configurations.

In Fig. 13 we show the results for the B` values from the
input of our simulations (21 cm + noise + foregrounds) in the top
row of the plots, from the 21 cm maps of the FLASK simulations
plus the noise in the second row of the plot, and for the simulated
noise maps for the same simulation in the third row of the results.
The plot shows the results for three different frequency bins in
our simulation. We note that there is clearly a significant signal in
the input foreground maps, which is natural and to be expected.

This signal in the bispectrum is around 16 orders of magni-
tude larger in the bispectrum than the signals obtained in the
second and third rows. We expect the signal from the white
noise configuration to have an expectation value of zero as they
contain no non-Gaussianities, whereas the signal in the second
row should have a non-Gaussian signal in it, although reason-
ably small given that this signal should come only from the
log-normal transformation within FLASK, which is meant to pro-
duce a slightly skewed one-point function. This means that, in
essence, this will enhance some peaks of the density field accord-
ing to the log-normal distribution and will have a reasonably
small amount of non-Gaussianities.

In Fig. 14 we plot the same contours for the bispectrum that
are plotted in Fig. 13, but for the GNILC output maps obtained
with a less aggressive value of mAIC − 1, which we know is a
configuration that is sub-optimal in terms of foreground subtrac-
tion from the previous sections, as well as the GNILC output for
mAIC, which is the preferred value chosen by the AIC algorithm.
We can see that the bispectrum results for the value of mAIC are
comparable to the values obtained in the input signal. Although
it is impossible from these plots alone to indicate if the GNILC
run with mAIC has significant residuals in the bispectrum, we can
certainly state that if there are any, they are at most of the same
level of the noise inputs. However, we can clearly assert that the
level of the signal in the first row, when the code is run with
mAIC − 1, has a measurable bispectrum above the bispectrum of
the noise and the bispectrum of the 21 cm signal.

This indicates that we do have a detection of foreground
residuals, and hence have an independent way to check if the
GNILC results are compatible with an efficient foreground sub-
traction. Although this check was made for GNILC, we can use
such methods to test and reliably check if there are any residual
foregrounds in any such maps that are produced by other meth-
ods than GNILC. We can also test optimal values for the ILC bias,
which is also a parameter choice within GNILC that we have fixed
to be 0.01 in this work.

In order to show this detection in a clearer way, we have also
plotted Eq. (35) as a function of channel number in Fig. 15. In
this figure we can see a clear detection of the residuals, which are
shown to be well measured by our bispectrum test for channels
below 5 and above 15.

Interestingly, the reconstruction for sub-optimal values of
mAIC are reasonable in the regions of channels from 5 to 10,
which are exactly the channels where the suppression factor S `

for the choice of mAIC is close to the suppression factor for
mAIC − 1, whereas the suppression factor for the mAIC case is
closer to the mAIC+1 case above channel 15 and below channel 5.
This clearly shows that there is an interplay between the dimen-
sion and aggressiveness of GNILC as a function of the channel
number, which is dictated by the data, and is encapsulated in the
measurements of the bispectrum shown in this plot.

Finally, we plot the summed bispectrum again in Fig.16
increasing the scale so that we can see all the foreground projec-
tions in our simulations. Given the smaller nature of each com-
ponent, we plot the absolute value of B`1+`2+`3=N and compare
their magnitudes. We can see a channel-dependent structure in
CMB (green curve) and AME (blue curve) foreground residuals,
even though both are placed significantly below the noise level
estimated by the bispectrum analysis (red dashed curve).

On the other hand, the level of the synchrotron residual
(black curve) is equivalent to the white noise (red dashed curve)
and 21 cm (orange curve) projected components. Our tests indi-
cate that GNILC is able to remove foregrounds including any non-
Gaussian residual all the way down to the noise level injected
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Fig. 16. B`1+`2+`3=N for N = 30, for the GNILC reconstructed maps as a function of the channel number. The results are plotted for different
projected components from our foregrounds as well as the noise and 21 cm input field, and show that the residuals can be compared to the original
values expected within the 21 cm field and noise realization.

into the data. However, we cannot conclude that these non-
Gaussian residuals are removed below that noise level.

5. Conclusions

In this paper we have presented an analysis of the GNILC
method to remove foregrounds in a simulated scenario of
BINGO Phase 1 observations. This analysis is based upon the
simulations of the foregrounds and white noise, as expected from
the electronics, and does not include the 1/ f noise contribution.
This paper discusses in more detail the tools that were used in
Paper IV, complementing the time domain analysis described in
that work. It is based upon the project, instrument, and optical
descriptions presented in Papers I, II and III.

We used the simulated maps described in Sect. 2 combined
with white noise realizations and foreground emission to pro-
duce a realistic sky, as should be observed by BINGO. The
simulated maps were also masked to remove the Galactic plane
contribution, so that the subsequent analysis was performed in a
sky map in which we expect low contamination from our Galaxy.

Section 3 described the component separation performed by
GNILC on the simulated sky, as well as the additional steps to
calibrate the residual bias left by the GNILC filter. We conclude
that the recovered Hi power spectrum is compatible with our
input simulations within our noise levels and therefore should
meet our scientific requirements.

The bispectrum module described in Sect. 4 was used to
check for the presence of a non-Gaussian signal in the output Hi
maps, which might indicate they still contain a significant level
of foreground residuals.

We also conclude that the bispectrum module is able to rec-
ognize if a non-Gaussian pattern is present in the output maps
and that, for the BINGO Phase 1 configuration, we are able to
reduce such residuals below the noise levels detected by the bis-
pectrum verification. We also found that the residuals are clearly

identified in the bispectrum analysis in cases where suboptimal
foreground cleaning strategies are used in place of the nominal
GNILC method. This can be a valuable tool for testing and veri-
fication of the quality of the foreground subtraction steps during
the BINGO data analysis.
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