
A&A 664, A20 (2022)
https://doi.org/10.1051/0004-6361/202140888
c© ESO 2022

Astronomy
&Astrophysics

The BINGO project

VII. Cosmological forecasts from 21 cm intensity mapping

Andre A. Costa1, Ricardo G. Landim2, Camila P. Novaes3, Linfeng Xiao4, Elisa G. M. Ferreira5,6,
Filipe B. Abdalla3,5,7,8, Bin Wang1,4, Elcio Abdalla5, Richard A. Battye9, Alessandro Marins5, Carlos A. Wuensche3,

Luciano Barosi10, Francisco A. Brito10,11, Amilcar R. Queiroz10, Thyrso Villela3,12,13, Karin S. F. Fornazier5,
Vincenzo Liccardo3, Larissa Santos1,4, Marcelo V. dos Santos10, and Jiajun Zhang14

(Affiliations can be found after the references)

Received 25 March 2021 / Accepted 11 October 2021

ABSTRACT

Context. The 21 cm line of neutral hydrogen (Hi) opens a new avenue in our exploration of the structure and evolution of the Universe. It provides
complementary data to the current large-scale structure (LSS) observations with different systematics, and thus it will be used to improve our
understanding of the Λ cold dark matter (ΛCDM) model. This will ultimately constrain our cosmological models, attack unresolved tensions,
and test our cosmological paradigm. Among several radio cosmological surveys designed to measure this line, BINGO is a single-dish telescope
mainly designed to detect baryon acoustic oscillations (BAOs) at low redshifts (0.127 < z < 0.449).
Aims. Our goal is to assess the fiducial BINGO setup and its capabilities of constraining the cosmological parameters, and to analyze the effect of
different instrument configurations.
Methods. We used the 21 cm angular power spectra to extract cosmological information about the Hi signal and the Fisher matrix formalism to
study BINGO’s projected constraining power.
Results. We used the Phase 1 fiducial configuration of the BINGO telescope to perform our cosmological forecasts. In addition, we investigated
the impact of several instrumental setups, taking into account some instrumental systematics, and different cosmological models. Combining
BINGO with Planck temperature and polarization data, the projected constraint improves from a 13% and 25% precision measurement at the 68%
confidence level with Planck only to 1% and 3% for the Hubble constant and the dark energy (DE) equation of state (EoS), respectively, within the
wCDM model. Assuming a Chevallier–Polarski–Linder (CPL) parameterization, the EoS parameters have standard deviations given by σw0 = 0.30
and σwa = 1.2, which are improvements on the order of 30% with respect to Planck alone. We also compared BINGO’s fiducial forecast with
future SKA measurements and found that, although it will not provide competitive constraints on the DE EoS, significant information about Hi
distribution can be acquired. We can access information about the Hi density and bias, obtaining ∼8.5% and ∼6% precision, respectively, assuming
they vary with redshift at three independent bins. BINGO can also help constrain alternative models, such as interacting dark energy and modified
gravity models, improving the cosmological constraints significantly.
Conclusions. The fiducial BINGO configuration will be able to extract significant cosmological information from the Hi distribution and provide
constraints competitive with current and future cosmological surveys. It will also help in understanding the Hi physics and systematic effects.
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1. Introduction

Since the first direct measurement indicating the Universe under-
goes an accelerated expansion phase from type Ia supernovae
(SNIa; Perlmutter et al. 1999; Riess et al. 1998), several other
observations have been accumulated. They strengthen the evi-
dence in favor of an accelerated phase in the Universe, whose
standard driving force candidate is a cosmological constant, Λ.

In the current era of precision cosmology, measurements
of the cosmic microwave background (CMB) by the Planck
satellite, among others, provide constraints on the parameters
of the standard Λ cold dark matter (ΛCDM) model with high
precision (Planck Collaboration VI 2020). Other probes pro-
vide additional information about the Universe’s evolution and
are essential to indicate whether alternatives to the ΛCDM
model are more suitable to explain the current observations
(Abdalla & Marins 2020). In this direction, measurements of the
21 cm line of neutral hydrogen (Hi) are expected to be one of the
leading cosmological probes in the next years, opening a new

avenue to survey the large-scale structure (LSS) of our Universe
(Pritchard & Loeb 2012).

Hi is a biased tracer of the galaxy distribution. Although
the Hi distribution can be resolved as in an optical galaxy sur-
vey (Bacon et al. 2020), its radio line requires a very large col-
lecting area to obtain the necessary sensitivity for its detection.
On the other hand, we can also map the total Hi intensity on
large angular scales with much smaller instruments (Battye et al.
2013). Intensity mapping (IM) measurements allow us to probe
large volumes of the Universe in a much shorter amount of
time compared with optical surveys where galaxies have to be
resolved (Battye et al. 2004; Chang et al. 2008; Loeb & Wyithe
2008; Sethi 2005; Visbal et al. 2009). The technique is similar to
measuring the CMB radiation, but with added redshift informa-
tion. It is especially suited to measuring baryon acoustic oscilla-
tions (BAOs) in the post-reionization era, which are imprinted at
large cosmological scales. Due to this combination of large vol-
umes and extra evolutionary information, Hi IM is a powerful
and competitive probe in cosmology.
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The first detection of Hi in a cosmological survey became
a proof of concept that the IM technique can indeed be used to
probe the LSS of our Universe (Kerp et al. 2011; Chang et al.
2010; Switzer et al. 2013; Masui et al. 2013). Even though these
measurements were limited in area and sensitivity to extract cos-
mological information, they highlighted the challenges of such
detections: systematics effects present in the observed Hi data
and astrophysical foregrounds.

Systematic effects can come from the unknown cosmolog-
ical evolution of both the Hi average density and bias. They
can also be due to the 1/ f noise present in the experiment
(see, e.g., Maino et al. 1999; Seiffert et al. 2002; Meinhold et al.
2009), standing waves (Rohlfs & Wilson 2004), and contam-
ination from radio frequency interference (RFI) at the site
(Harper & Dickinson 2018). The presence of foregrounds is
still one of the main challenges for the Hi signal detection
(Battye et al. 2013; Bigot-Sazy et al. 2015). They originate from
galactic and extra-galactic sources and can be orders of magni-
tude above the Hi signal. Our ability to remove foregrounds and
properly understand systematic effects is crucial to adequately
extracting the Hi signal that can be used for cosmological stud-
ies.

Several ongoing and upcoming telescopes will use the IM
technique to measure BAOs from the 21 cm line, such as the
Canadian Hydrogen Intensity Mapping Experiment1 (CHIME;
Bandura et al. 2014), Five-hundred-meter Aperture Spherical
Radio Telescope2 (FAST; Nan et al. 2011), Square Kilome-
ter Array3 (SKA; Santos et al. 2015), Tianlai4 (Chen 2012),
and BAO from Integrated Neutral Gas Observations5 (BINGO;
Battye et al. 2012, 2016; Wuensche & the BINGO Collaboration
2019; Abdalla et al. 2022a). BINGO aims to measure the Hi IM at
low-z precisely enough to constrain the cosmological parameters;
it is projected to be a Stage II6 probe, competitive in the context
of current and future cosmological surveys.

One of the first steps of any proposed experiment is to access
its capability of providing useful data and its theoretical ability
to constrain parameters. In this sense, it is necessary to forecast
its ability and precision to extract valuable physical informa-
tion and constrain various models. In this paper we forecast the
potential of BINGO to constrain the cosmological parameters,
assuming an ideal data output, and to help us understand the
properties of DE, which is one of the main goals of this experi-
ment (Abdalla et al. 2022a).

This is Paper VII in a series of papers describing the BINGO
project. The theoretical and instrumental projects are in Papers I
and II (Abdalla et al. 2022a; Wuensche et al. 2022), the optical
design in Paper III (Abdalla et al. 2022b), the mission simulation
in Paper IV (Liccardo et al. 2022), further steps in component
separation and bispectrum analysis in Paper V (Fornazier et al.
2022), and a mock is described in Paper VI (Zhang et al. 2022).

This paper is organized as follows. Section 2 presents the
theoretical 21 cm angular power spectra, which will be used to
constrain our cosmological models. In Sect. 3 we introduce the
Fisher matrix formalism that is considered in our forecasts. Our
results are described in Sect. 4 for several different experiment
configurations and cosmological models. Finally, we summa-
rize our conclusions in Sect. 5. In Appendix A we compare two
1 https://chime-experiment.ca/
2 https://fast.bao.ac.cn
3 https://www.skatelescope.org/
4 http://tianlai.bao.ac.cn/wiki/index.php/Main_Page
5 https://www.bingotelescope.org/en/
6 Classification according to the Dark Energy Task Force
(Albrecht et al. 2006).

independent 21 cm angular power spectrum codes developed by
members of our collaboration, one of which is used throughout
the present analysis.

2. 21 cm angular power spectra

The 21 cm line of Hi originates from the hyperfine structure of
the hydrogen atom. Some astrophysical mechanisms can lead
to a change in the Hi state and produce such a line, which is
observed (redshifted) on Earth (for a review of 21 cm Cosmol-
ogy, see, e.g., Furlanetto et al. 2006; Pritchard & Loeb 2012).
We relate the photon distribution coming from these sources by
the 21 cm brightness temperature, Tb, which at the background
level is given by Hall et al. (2013)

T̄b(z) =
3(hpc)3n̄HiA10

32πkBE2
21(1 + z)H(z)

= 188 h ΩHi(z)
(1 + z)2

E(z)
mK. (1)

Here A10 is the spontaneous emission coefficient, n̄Hi is the rest-
frame average number density of Hi atoms at redshift z, E21 =
5.88 × 10−6 eV is the difference between the two energy levels
associated with the Hi hyperfine splitting, E(z) = H(z)/H0 is
the normalized Hubble parameter, where the Hubble constant is
defined by H0 = 100 h km s−1 Mpc−1, ΩHi(z) describes the Hi
density parameter in units of the current critical density, and,
finally, c, hp, and kB are the light speed, the Planck constant, and
the Boltzmann constant, respectively.

At large scales we can treat inhomogeneities and
anisotropies assuming small perturbations around the homoge-
neous and isotropic background. Matter density perturbations
will feed the gravitational potentials, which will in turn modify
the density distribution. Assuming the conformal Newtonian
gauge, the metric takes the form

ds2 = a2(η)
[
(1 + 2Ψ(η, x))dη2 − (1 − 2Φ(η, x))dx2

]
, (2)

where η is the conformal time, a(η) is the scale factor, and Ψ and
Φ are the space-time gravitational potentials. Assuming linear
order perturbations, the fractional brightness temperature pertur-
bation in the n̂ direction, at redshift z, is (Hall et al. 2013)

∆Tb (z, n̂) = δHi −
1
H

n̂ · (n̂ · ∇u) +

(
d ln(a3n̄Hi)

dη
−
Ḣ

H
− 2H

)
δη

+
1
H

Φ̇ + Ψ, (3)

where δHi is the Hi density perturbation, u is its peculiar velocity,
and H is the Hubble parameter in conformal time. This expres-
sion takes into account all relativistic and line-of-sight compo-
nents at post-reionization era7, assuming that the comoving num-
ber density of Hi is conserved at low redshifts and using the
Euler equation u̇ +Hu + ∇Ψ = 0.

As described in Hall et al. (2013), the terms in Eq. (3) have
a simple physical explanation. The first term corresponds to the
Hi density perturbation, which we relate to the underlying matter

7 At low redshift, the spin temperature (which relates the population in
the excited state of the 21 cm line to the ground state) is much higher
than the CMB temperature. Therefore, the results are independent of
the spin temperature, and the stimulated emission and absorption can
be neglected.
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distribution through some bias8. The second term is the redshift-
space distortion (RSD) component. The third term originates
from the zero-order brightness temperature calculated at the per-
turbed time of the observed redshift. The fourth term comes
from the part of the integrated Sachs-Wolfe (ISW) effect that is
not canceled by the Euler equation. Finally, the last component
arises from increments in redshift from radial distances in the
gas frame.

Due to the full sky characteristic of 21 cm radio surveys, it
is natural to decompose the brightness temperature in spherical
harmonics. Therefore, for a fixed redshift, we have

∆Tb (z, n̂) =
∑
`m

∆Tb,`m(z)Y`m(n̂). (4)

If we express these perturbations in terms of their Fourier trans-
form, we obtain

∆Tb,` (k, z) = δHi j`(kχ) +
kv
H

j′′` (kχ) +

(
1
H

Φ̇ + Ψ

)
j`(kχ)

−

[
1
H

d ln(a3n̄Hi)
dη

−
Ḣ

H2 − 2
] [

Ψ j`(kχ) + v j′`(kχ)

+

∫ χ

0
(Ψ̇ + Φ̇) j`(kχ′)dχ′

]
, (5)

where j`(kχ) are spherical Bessel functions, which depend on the
wave number k and the comoving distance χ, and their primes
denote derivatives with respect to the argument.

In order to extract information about the Hi distribution, we
need to access the statistical properties of the 21 cm brightness
temperature signal. The first statistical moment is the average,
which corresponds to the background value in Eq. (1). Assum-
ing linear perturbations the second object, the one-point corre-
lation function, should be zero. Therefore, the next term is the
two-point correlation function or its Fourier transform, the power
spectrum. This is related to the angular cross-spectra by

C`(zi, z j) = 4π
∫

d ln kPR(k)∆W
Tb,`

(k, zi)∆W′
Tb,`

(k, z j), (6)

where PR(k) corresponds to the dimensionless power spectrum
of the primordial curvature perturbation R, and

∆W
Tb,`

(k, z) =

∫ ∞

0
dzT̄b(z)W(z)∆Tb,` (k, z) (7)

sums up all the contributions to the signal in the redshift bin
defined by the normalized window function W(z).

Figure 1 shows all the independent contributions to the 21 cm
angular spectrum at the first and last redshift bins of BINGO
with a bandwidth of 9.33 MHz. We can observe that as we go
to higher redshifts the contributions from the ISW effect and
potentials increase. This happens because in a ΛCDM cosmol-
ogy the gravitational potentials decrease with the scale factor
at late times and, as we go to higher redshifts, the ISW effect
sums the contributions over a wider range. The other terms in
the 21 cm spectrum behave differently at large and small scales.
At the first redshift bin of BINGO, they are higher at the largest

8 Following Hall et al. (2013), we calculate the Hi density perturbation

in the comoving gauge as δHi = bHiδ
syn
m +

(
d ln (a3 n̄Hi)

dη − 3H
)

v
k , where bHi

is the Hi bias, δsyn
m is the synchronous-gauge matter overdensity, and v

is the Newtonian-gauge matter velocity.
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Fig. 1. Brightness temperature perturbation power spectrum at z = 0.13
(solid lines) and z = 0.45 (dashed lines) with a 9.33 MHz band-
width. The auto-spectra of the full signal (black) and of each individ-
ual term are shown, generically grouped as Newtonian-gauge density
(red), redshift-space distortions (green), velocity term (blue), all poten-
tial terms evaluated at the source position (cyan), and the ISW compo-
nent (magenta). The power spectrum is dominated by the Hi overden-
sity at small scales and has a significant contribution from RSD at large
scales.

scales and are gradually surpassed by the spectra of the last bin
at small scales.

3. The Fisher matrix

We forecast the constraints from the upcoming 21 cm IM
BINGO telescope using the Fisher matrix formalism. The Fisher
matrix for the parameters θi of a model M is defined as the
ensemble average of the Hessian matrix of the log-likelihood.
Assuming Gaussian probability distribution with zero mean
and covariance C, the Fisher matrix can be calculated as
(Tegmark et al. 1997)

Fi j ≡

〈
−
∂ lnL
∂θi ∂θ j

〉
=

1
2

Tr
[
C−1 ∂C

∂θi
C−1 ∂C

∂θ j

]
· (8)

The covariance C is the sum of the signal and noise spectra esti-
mators. Considering only the thermal and shot noises, it can be
written as

C = C`(zi, z j) + Cshot
` (zi, z j) + N`(zi, z j). (9)

The inverse of the Fisher matrix gives the covariance among
the parameters with diagonal elements corresponding to the 1σ
marginalized constraints.

Analogously to what is done in the CMB case, we use the
alm values for the pixelization scheme, where〈
a`m(zi)a∗`′m′ (z j)

〉
= δ``′δmm′C`(zi, z j). (10)

We note that for the CMB all the a`m values are evaluated at the
same redshift, while the 21 cm signal has information about a 3D
volume that can be analyzed in a tomographic way. Therefore,
to extend the covariance matrix to the case of a 21 cm experi-
ment, we use our pixelization as a`m(z). Then, the CMB diagonal

A20, page 3 of 21



A&A 664, A20 (2022)

matrix is transformed into a diagonal block matrix as

C =


A`=2 0 . . . 0

0 A3 . . . 0
...

... . . .
...

0 0 . . . An

 , (11)

where

A` = (2` + 1)


C`(z1, z1) C`(z1, z2) . . . C`(z1, zn)
C`(z2, z1) C`(z2, z2) . . . C`(z2, zn)

...
... . . .

...
C`(zn, z1) C`(zn, z2) . . . C`(zn, zn)

 . (12)

3.1. Model and parameters

The ΛCDM model is the present cosmological paradigm; it is
the simplest model in exquisite agreement with a wide range of
cosmological data. In this model the Universe is composed of
baryons, photons, neutrinos, DM, and DE, and the gravitational
interaction among them is described by general relativity (GR).
The Universe begins with an extremely dense and hot plasma.
During an early exponential expansion phase, quantum fluctu-
ations in the field driving inflation seeded inhomogeneities in
the primordial plasma, providing the initial conditions to all the
cosmological structures we observe today. CDM yields the nec-
essary gravitational potentials to amplify the initial fluctuations
and DE, assumed as a cosmological constant (Λ), is responsible
for the late-time cosmic acceleration. These two components are
responsible for about 95% of the energy density budget today.

In this model we assume that the Universe is spatially flat
and is governed by six cosmological parameters: Ωb and Ωc,
the baryon and DM density parameters, respectively, with Ωi =
ρi/ρc, where ρc is the critical density today; h, the Hubble con-
stant parameter H0 = 100 h km s−1 Mpc−1; the reionization opti-
cal depth, τ; the amplitude and spectral index of primordial
scalar density perturbations, As and ns, respectively.

The standard model assumes a DE given by a cosmologi-
cal constant with EoS, w = P/ρ = −1. The simplest exten-
sion to this model consists in a dynamical DE with an EoS
different from −1. In most of this paper, we use the Chevallier–
Polarski–Linder (CPL) parameterization (Chevallier & Polarski
2001; Linder 2003) as our fiducial cosmological model, which
allows us to study the constraints on the evolution of the DE
EoS. The CPL parameterization is a z-dependent Ansatz for the
EoS of DE given by

wCPL(z) = w0 + wa
z

1 + z
or wCPL(a) = w0 + wa(1 − a), (13)

where w0 and wa are constants and ΛCDM is recovered when
w0 = −1 and wa = 0. Therefore, we vary the Fisher matrix with
respect to the following set of cosmological parameters:

θ =
{
Ωbh2, Ωch2, h, ln(1010As), ns, w0, wa, bHi

}
. (14)

In addition, the 21 cm spectra also depends on the Hi density
parameter ΩHi, which we fix to its fiducial value. Our ability
to constrain this parameter with BINGO and its effect on the
cosmological constraints is left to Sect. 4.4.

As our fiducial values we have chosen the best fit from
Planck 2018 (Planck Collaboration VI 2020), which we present
in Table 1. We have calculated the partial derivatives numeri-
cally with a step size of ±0.5% × θi. The step size should not
be too large, to avoid a miscalculated derivative, nor too small,

Table 1. Fiducial values for the cosmological parameters in Eq. (14)
from Planck 2018 (Planck Collaboration VI 2020).

Parameter Fiducial value

Ωbh2 0.022383
Ωch2 0.12011
h 0.6732
ns 0.96605
As 2.1 × 10−9

w0 −1
wa 0
bHi 1
ΩHi 6.2 × 10−4

Notes. The last two (extra) parameters come from Hi physics, where we
use the constant value for ΩHi measured by Switzer et al. (2013).

introducing numerical noise. We checked for the stability of our
derivatives to this choice.

BINGO will help put constraints on the late-time Universe
parameters. The combination with other probes can break degen-
eracies among several parameters and improve these constraints.
In particular, Planck has provided precise CMB measurements,
which gives tight constraints on the standard ΛCDM model.
Therefore, we will combine our 21 cm IM forecasts with a prior
obtained from the Planck 2018 TT + TE + EE + lowE likelihood
data (Planck Collaboration VI 2020). Using the publicly avail-
able code CosmoMC (Lewis & Bridle 2002)9, we use the Markov
chain Monte Carlo (MCMC) technique to estimate the covari-
ance for the cosmological parameters from the Planck data. We
then combine the Planck covariance with our 21 cm IM Fisher
matrices. It should be noted that, in general, the maximum like-
lihood from Planck will not coincide with our fiducial values.
Here we assume that these constraints do not change signifi-
cantly over the parameter space.

3.2. Thermal noise

The thermal noise describes the fundamental sensitivity of a
radio telescope. It corresponds to the voltages generated by
thermal agitations in the resistive components of the antenna
receiver. It appears as a uniform Gaussian distribution over the
sky, with theoretical noise level per pixel calculated by the
radiometer equation (Wilson et al. 2013)

σT =
Tsys√
∆ν tpix

, (15)

where Tsys is the total system temperature (antenna plus sky tem-
peratures), ∆ν is the frequency channel width, and tpix is the inte-
gration time per pixel, which is related to the total observational
time tobs by

tpix = tobsnbeamnf
Ωpix

Ωsur
, (16)

where nf denotes the number of feed horns, nbeam is the num-
ber of beams and polarizations in each horn, and Ωpix and Ωsur
describe the pixel and total survey area, respectively.

Assuming the thermal noise between different frequencies
are uncorrelated, the noise covariance can be calculated as

N` = σ2
TΩpix =

T 2
sys

∆ν tobs

Ωsur

2nf
=

T 2
sys

∆ν tobs

(
4π fsky

2nf

)
, (17)

9 https://cosmologist.info/cosmomc/
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Fig. 2. Fractional uncertainties expected for the angular power spec-
trum for the BINGO experiment ( fsky = 0.07) for redshifts z = 0.127
(solid lines) and z = 0.449 (dashed lines) after 1 year of sky integration.
The ratio is plotted between different sources of uncertainty (cosmic
variance, shot noise, and thermal noise) and the Hi angular power spec-
trum, ∆C`/CHi

` , as a function of multipole. For the cosmic variance the
standard formula,

√
2/(2` + 1) fsky, is used, and for the thermal and shot

noise ∆C` is equal to their angular power spectrum multiplied by the
cosmic variance factor.

where fsky is the surveyed fraction of the sky and we have
assumed two polarizations are measured.

The telescope also has a maximum beam resolution that
should be taken into account. This effect reduces the signal by
a factor of b2

` , which is given by (Bull et al. 2015)

b`(zi) = exp
(
−

1
2
`2σ2

b,i

)
, (18)

where σb,i = θB(zi)/
√

8 ln 2 with

θB(zi) = θFWHM(νcenter)
νcenter

νi
, (19)

where νcenter is the middle frequency of the survey. Instead of
reducing the signal power spectrum, we can think of the beam
resolution as an increase in the noise by the inverse of b2

` .

3.3. Shot noise

Due to the discrete nature of the sources emitting an Hi signal,
the measured auto-spectra have a shot noise contribution in addi-
tion to the clustering part described in Sect. 2. The shot noise
power spectrum can be calculated as (Hall et al. 2013)

Cshot
` =

T̄ 2(z)
N̄(z)

, (20)

where N̄(z) is the angular density of the sources; assuming a
comoving number density n = dN

dV = 0.03 h3 Mpc−3 (Masui et al.
2010), the angular density is given by

N̄(z) =
dN
dΩ

= 0.03h3Mpc−3 c
H0

∫
χ2(z)

dz
E(z)
· (21)

Figure 2 presents these contributions with respect to the Hi sig-
nal at the first and last redshift bins of BINGO.

3.4. 1/f noise

In addition to the thermal noise, significant contamination will
come from the receiver system caused by gain fluctuations,
the detector’s temperature changes, quantum fluctuations, and
power voltage variations. The power spectrum of this noise is
expected to behave as a power law of the frequency. It is gen-
erally called pink noise, or more specifically 1/ f noise at low
frequencies. It introduces stripes along the scan direction in the
observed maps (Bigot-Sazy et al. 2015), contaminates the Hi
signal, and can dominate the Gaussian thermal noise. Therefore,
1/ f noise is an important effect that must be taken into account
in order to properly detect the Hi signal from single-dish IM
radio telescopes.

The power spectral density (PSD) combining both the ther-
mal and 1/ f noise is the quadratic addition of the two compo-
nents, given by (Seiffert et al. 2002; Bigot-Sazy et al. 2015)

PSD( f ) = σ2
T

[
1 +

(
fknee

f

)α]
, (22)

where σT is the thermal noise level in Eq. (15), fknee is the fre-
quency where the 1/ f noise has the same amplitude as the ther-
mal noise, and the spectral index α ≈ 1−2 is a parameter. In
order to take into account correlations in the frequency direction,
an extension to this equation has been proposed by Harper et al.
(2018)

PSD( f , ω) = σ2
T

1 +

(
fknee

f

)α (
ω0

ω

) 1−β
β

 , (23)

whereω = 1/ν is another parameter, ranging fromω0 = (N∆ν)−1

to ωN−1 = (∆ν)−1; N is the number of frequency channels with
width ∆ν; and β is the correlation index that describes the 1/ f
noise correlation in frequency with values in the interval [0, 1].
The 1/ f noise will be completely correlated across all frequency
channels for β = 0 and completely uncorrelated if β = 1.

The effect of 1/ f noise on 21 cm angular power spectra and
the final cosmological parameters were analyzed in Chen et al.
(2020) for SKA1-MID band 1 and band 2. Here we extrapolate
these results for the case of BINGO. Given the redshift range of
BINGO, we expect a degradation from 1/ f noise that is more
similar to what was obtained for SKA1-MID band 2.

In Chen et al. (2020) three cases were considered: with effec-
tively no 1/ f noise (completely removed by component separa-
tion techniques, β = 0); partially correlated 1/ f noise (β = 0.5);
and totally uncorrelated 1/ f noise (β = 1). The other 1/ f noise
parameters were kept fixed: the slew speed vt = 1 deg s−1; the
knee frequency fknee = 1 Hz; and the spectral index α = 1. From
the area of the w0×wa joint contour, they found that SKA1-MID
band 2 alone was degraded by ≈1.5 with β = 0.5 and ≈2 with
β = 1. Combining SKA band 2 with Planck the degradation was
less than a factor of ≈1.3 even at β = 1.

As discussed in Chen et al. (2020), higher redshifts and
smaller scales are more affected by 1/ f noise. BINGO will reach
lower redshifts than SKA1-MID band 2 and have a better angular
resolution, which amplifies the 1/ f noise as in our thermal noise
in Sect. 3.2. Therefore, we expect that the 1/ f noise will have a
degradation factor at most of the same order as found for SKA1-
MID band 2 in that paper. Moreover, we aim to obtain with
BINGO a knee frequency of ∼1 mHz (Wuensche et al. 2022),
which would greatly improve our ability to extract the Hi sig-
nal. In this paper we do not consider further the effect of 1/ f
noise.
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Table 2. Fiducial parameters of the BINGO telescope.

Parameters BINGO

Frequency range [980, 1260] MHz
Redshift range [0.127, 0.449]
Number of frequency channels (a) 30
Number of feed horns 28
Sky coverage with Galactic mask (b) 2900 deg2

Observational time (tobs) 1 year
System temperature (Tsys) 70 K
Beam resolution (θFWHM) 40 arcmin

Notes. (a)According to BINGO’s instrument paper (Wuensche et al.
2022), the actual number of frequency channels is much larger than
considered here. Our value takes into account a smoothing in the
raw data for cosmological analysis. (b)If we consider the sky cover-
age with the horns moving ±30 cm and a mask that removes about
20% of the sky, the area effectively covered can be increased to about
4000 square degrees (Abdalla et al. 2022b).

3.5. Foreground residuals

The success of a 21 cm IM experiment will require the effec-
tive removal of galactic and extra-galactic foregrounds that can
be up to ∼104 times stronger than the Hi signal. This requires
refined component separation methods able to properly recon-
struct the Hi signal immersed in the foreground contamina-
tion (Olivari et al. 2016). The foreground cleaning process we
plan to apply to the BINGO data are presented in the compan-
ion papers (Liccardo et al. 2022; Fornazier et al. 2022). In this
paper, we assume the foreground cleaning process has already
been performed as part of the BINGO pipeline. However, the
foreground cleaning procedure leaves some residuals which are
also sources of uncertainties. The component separation method
GNILC (Remazeilles et al. 2011a,b; Olivari et al. 2016) projects
the observed data into a subspace dominated by Hi plus noise
and performs an ILC analysis restricted to that space. Therefore,
by construction, the foreground residuals should be subdomi-
nant. On the other hand, these residuals can introduce a bias in
the determination of the 21 cm power spectra and, hence, affect
our final cosmological constraints.

We can add this bias to our Fisher matrix formalism follow-
ing the procedure in Amara & Refregier (2008). For small resid-
ual systematics, the bias in the parameter estimation is

b[θi] = 〈θi〉 − 〈θ
true
i 〉 =

∑
j

(F−1)i jB j, (24)

where θtrue
i is the true value of the parameters and the bias vector

B j is given by

B j = Tr
[
C−1Csys

`
C−1 ∂C

∂θ j

]
, (25)

which is similar to the Fisher matrix. In this case the total error
covariance matrix is

Cov[θi, θ j] = 〈
(
θi − θ

true
i

) (
θ j − θ

true
j

)
〉

= (F−1)i j + b[θi]b[θ j], (26)

including both statistical and systematical errors. Therefore, the
presence of foreground residuals should not only increase the
parameter uncertainties, but also shift the center of the error
ellipses away from the fiducial model.

4. Results

In this section we discuss the expected constraints from the
BINGO survey. We adopt the Fisher matrix formalism described
in Sect. 3 with the 21 cm angular power spectra presented
in Sect. 2. Unless stated otherwise, we consider an optimal
scenario where 1/ f noise and foreground contamination were
already removed using a component separation method (see
Liccardo et al. 2022; Fornazier et al. 2022). Therefore, in most
of the analysis below we consider the cosmic variance, thermal
noise and shot noise only.

First, we discuss the constraints in the basic ΛCDM and in
a simple extension, the wCDM model. Then, under the scope
of the CPL parameterization, we test the effect of several exper-
imental setups on the final cosmological parameters. We con-
sider the effect of varying the number of feed horns, the total
observational time, the number of redshift bins, considering or
not cross-correlations between redshift bins, and the effect of
RSD. In Sect. 4.3.6 we add foreground residuals in our analy-
sis. Finally, in Sect. 4.3.7 we compare the expected results with
SKA band 1 and SKA band 2. Our fiducial experimental setup
is given in Table 2 and a more detailed description of the instru-
ment can be found in the companion Paper II (Wuensche et al.
2022).

BINGO will shed light on the Hi distribution and evolution
at low redshift. In Sect. 4.4 we study the expected constraints on
the Hi density and bias. We also analyze how BINGO can help
constraining the total neutrino mass in Sect. 4.5 and alternative
cosmologies in Sect. 4.6.

4.1. The ΛCDM model

The ΛCDM model has been well constrained by the latest CMB
measurements made by the Planck satellite, with precision of
percent to the sub-percent level on the cosmological parameters
(Planck Collaboration VI 2020). In this section we investigate
how BINGO can help constrain these parameters.

We performed the Fisher matrix analysis described in
Sect. 3 for BINGO and for BINGO and Planck combined
(BINGO + Planck). The results are presented in Table 3. In the
second column of Table 3 we note that BINGO alone can-
not put competitive constraints on the cosmological parameters
from Table 1. However, the combination of the two surveys can
improve the confidence in all cosmological parameters (Col. 4
of Table 3). The most significant improvements are in the DM
density parameter, Ωch2, and the Hubble parameter, h, by more
than 25% in both of them. This is on the same order as what
has been currently obtained by adding CMB lensing and BAO to
the final Planck temperature and polarization results (cf. Table 2
in Planck Collaboration VI 2020). We can also see that the pri-
mordial density parameters, As and ns, are mostly constrained
by Planck itself with an enhancement of 3.8% and 8.7%, respec-
tively. The uncertainty on the baryon fraction, parameterized by
Ωbh2, decreases by 11%.

On the other hand, the most important contribution from
21 cm experiments will not be reducing these error bars, but
providing additional information from a different tracer of the
matter distribution. Although the ΛCDM model has been in
good agreement with data, recent observations have pointed out
severe tensions between the CMB and low redshift data under
the ΛCDM scenario. Riess et al. (2019) obtained a 4.4σ devi-
ation of the value for the Hubble constant measured by Planck
and the one using Cepheids in the Large Magellanic Cloud. Mea-
surements from weak gravitational lensing have also pointed
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Table 3. ΛCDM model.

BINGO Planck BINGO + Planck
Parameter ±1σ (100% × σ/θfid

i ) ±1σ (100% × σ/θfid
i ) ±1σ (100% × σ/θfid

i ) 100% × |σtotal − σref |/σref

Ωbh2 0.014 (63%) 0.00015 (0.7%) 0.00013 (0.6%) 11%
Ωch2 0.045 (38%) 0.0014 (1.1%) 0.0010 (0.8%) 25%
h 0.13 (19%) 0.0061 (0.9%) 0.0045 (0.7%) 26%
ln(1010As) 0.68 (22%) 0.016 (0.5%) 0.015 (0.5%) 3.8%
ns 0.089 (9.2%) 0.0043 (0.4%) 0.0039 (0.4%) 8.7%
bHi 0.041 (4.1%) 0.011 (1.1%) 74%

Notes. Expected 1σ constraints on the ΛCDM cosmological parameters from BINGO, Planck, and BINGO + Planck. The last column shows the
improvement in combining BINGO + Planck with respect to the case with Planck only, except for bHi, which is compared with BINGO only.

Table 4. wCDM model.

BINGO Planck BINGO + Planck
Parameter ±1σ (100% × σ/θfid

i ) ±1σ (100% × σ/θfid
i ) ±1σ (100% × σ/θfid

i ) 100% × |σtotal − σref |/σref

Ωbh2 0.014 (63%) 0.00015 (0.7%) 0.00014 (0.6%) 8.1%
Ωch2 0.046 (38%) 0.0014 (1.2%) 0.0011 (0.9%) 21%
h 0.13 (20%) 0.089 (13%) 0.0073 (1.1%) 92%
ln(1010As) 0.73 (24%) 0.016 (0.5%) 0.016 (0.5%) 0.7%
ns 0.090 (9.3%) 0.0044 (0.5%) 0.0040 (0.4%) 8.5%
w0 0.17 (17%) 0.26 (25%) 0.033 (3.3%) 87%
bHi 0.052 (5.2%) 0.023 (2.3%) 57%

Notes. Expected 1σ constraints on the wCDM cosmological parameters from BINGO, Planck, and BINGO + Planck. The last column shows the
improvement in combining BINGO + Planck with respect to the case with Planck only, except for bHi, which is compared with BINGO only.

out a disagreement of 2.3σ for the value of S 8 = σ8
√

Ωm/0.3
obtained with Planck data (Hildebrandt et al. 2020). Therefore,
a new and independent tracer of the matter distribution, with
different systematics, will provide valuable information and
improve our understanding of the evolution of the Universe.
Our projected constraints show that BINGO alone will not have
enough power to solve these tensions; however, it can be com-
bined with other constraints and will also open the way to more
precise 21 cm experiments in the future.

4.2. wCDM model

Because of the extra freedom in the parameter space, the previ-
ous constraint from Planck data in the Hubble constant is loos-
ened. The 1% precision measurement for the Hubble constant at
1σ in the ΛCDM model goes to ∼13% in the wCDM model. The
ability to constrain the DE EoS using CMB information only is
also rather weak, providing 25% uncertainty at a 1σ confidence
level (CL). In this case additional data at low redshifts where DE
dominates is crucial.

The 21 cm IM power spectra measured by BINGO will
be able to improve these constraints. In Table 4 we show the
expected constraints in the wCDM model by BINGO and in
combination with Planck. We can see that BINGO alone will
be able to put similar constraints to those from Planck on the
Hubble constant and a 17% precision measurement at 1σ CL on
the DE EoS. Combining them can greatly improve these results,
reaching a remarkable precision of 1.1% for H0 and 3.3% for
the EoS, which are consistent with previous results obtained
by Olivari et al. (2018). The reason for this improvement can
be observed in Fig. 3. BINGO can help break the degeneracy
between H0 and w in the Planck data, dramatically improving
the constraints.

−1.3 −1.2 −1.1 −1.0 −0.9 −0.8 −0.7

w0

0.62

0.64

0.66

0.68

0.70

0.72

0.74

h

BINGO

Planck

BINGO + Planck

Fig. 3. Marginalized constraints (68% and 95% CL) on the DE EoS and
Hubble parameters for the wCDM model using BINGO, Planck, and
BINGO + Planck.

As a comparison, recent measurements from the three years
of the Dark Energy Survey (DES) (Abbott et al. 2021) using
three two-point correlation functions (from cosmic shear, galaxy
clustering, and cross-correlation of source galaxy shear with lens
galaxy positions) over 5000 deg2 obtained a constraint on the
DE EoS of w = −0.98+0.32

−0.20. Combining their measurement with
Planck (no lensing), their marginalized constraint is given by
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Table 5. CPL model.

BINGO Planck BINGO + Planck
Parameter ±1σ (100% × σ/θfid

i ) ±1σ (100% × σ/θfid
i ) ±1σ (100% × σ/θfid

i ) 100% × |σtotal − σref |/σref

Ωbh2 0.015 (68%) 0.00016 (0.7%) 0.00014 (0.6%) 6.9%
Ωch2 0.052 (43%) 0.0013 (1.1%) 0.0011 (0.9%) 19%
h 0.14 (20%) 0.088 (13%) 0.019 (2.9%) 78%
ln(1010As) 0.92 (30%) 0.016 (0.5%) 0.016 (0.5%) 0.6%
ns 0.11 (11%) 0.0044 (0.5%) 0.0041 (0.4%) 8.0%
w0 0.55 (55%) 0.46 (46%) 0.30 (30%) 34%
wa 2.8 1.8 1.3 31%
bHi 0.081 (8.1%) 0.023 (2.3%) 72%

Notes. Expected 1σ constraints on the CPL cosmological parameters from BINGO, Planck, and BINGO + Planck. The last column shows the
improvement in combining BINGO + Planck with respect to the case with Planck only, except for bHi, which is compared with BINGO only.
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BINGO
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Fig. 4. Marginalized constraints (68% and 95% CL) on the DE EoS
parameters for the CPL parameterization using BINGO, Planck, and
BINGO + Planck.

w = −1.090+0.128
−0.113. Therefore, although we are still performing

an optimistic analysis, we can see that BINGO has the poten-
tial to put constraints that is competitive with the current LSS
surveys.

4.3. CPL parameterization

Considering the BINGO fiducial setup, we show the forecast
constraints on the CPL parameterization in Table 5. The addi-
tional parameter increased the uncertainties on the cosmologi-
cal variables, as expected. The combination of 21 cm IM from
BINGO with CMB data from Planck can put a 2.9% constraint
on the Hubble constant, 30% on the DE EoS parameter w0, and a
σwa = 1.2 at 68% CL. Although these constraints are still large,
BINGO has improved the results from Planck alone by 78% for
H0, 34% for w0, and 31% for wa. Figure 4 shows the 68% and
95% confidence contours in the w0 × wa parameter space.

Yohana et al. (2019) have made a forecast for BINGO using
the angular power spectra under the CPL parameterization. Their
analysis considers the same cosmological parameters used here
plus the effective number of relativistic neutrinos, Neff , and the

sum of neutrino masses,
∑

mν. The Hi bias was kept fixed. Their
projected constraints for the DE EoS parameters were signifi-
cantly weaker than ours, while for the Hubble constant it was
more than two times stronger. Although the degradation in the
DE EoS parameters can be understood in terms of the extra
degrees of freedom, the difference in the Hubble constant may
be related to differences in the analysis and BINGO setup.

4.3.1. Effect of total observational time

Using the CPL parameterization as our fiducial cosmology, we
analyze how different experimental setups can impact our final
measurements of cosmological parameters. We start by consid-
ering the impact of BINGO’s total observational time. Figure 5
presents the results for 1, 2, 3, 4, and 5 years of the BINGO sur-
vey. We show the results for BINGO only and in combination
with Planck. Considering BINGO alone, a five-year experiment
can improve the constraints in a range from 21% to 35%. We can
observe that the inclination of these curves decreases, going to a
plateau, but it has not yet been achieved at five years.

In order to better evaluate the improvement in our parame-
ter space, we calculate the figure of merit (FoM), defined as the
volume of the error ellipsoid FoM ≡ V ∝ det(F)−1/2. Table 6
presents these values for BINGO and BINGO + Planck as a
function of the total observational time. We can observe that the
ellipsoid volume decreases by 11 times from 1 year to 5 years
with BINGO only, and significantly flattens after year 3.

On the other hand, the combination with Planck data shows
that some parameters are not strongly dependent on the BINGO
setup since they are mostly constrained by Planck. BINGO
will mainly affect the measurement of the Hubble constant, DE
EoS parameters, and the Hi bias, as has already been observed
(Olivari et al. 2018). A five-year experiment can improve the
bias measurement by 19%, the EoS parameters (w0 and wa) by
about 21% each, and the Hubble constant by 25% compared to
the standard case. Combining the two surveys, the error ellipsoid
decreases by 2.7 times from 1 to 5 years of IM survey.

4.3.2. Effect of varying the number of horns

In this section we consider the effect of the total number of
feed horns. As described in Table 2, the BINGO standard
setup will consist of 28 feed horns. In Fig. 6 we represent the
BINGO + Planck standard scenario by a star. Then, keeping
all parameters fixed and only varying the number of horns as
Nhorns = 20, 30, 40, 50, 60, we observe its effect on the cosmo-
logical constraints. We observe that some parameters are mainly
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Fig. 5. Constraints on the cosmological and Hi parameters as a function
of the total observational time relative to those with tobs = 1 year for
BINGO (top) and BINGO + Planck (bottom). We vary tobs in a range of
[1, 2, 3, 4, 5] years. In the bottom plot wa is on top of w0, which cannot
be seen.

Table 6. Figure of merit as a function of the total observational time for
BINGO and BINGO + Planck under the CPL parameterization.

FoM ≡ det(F)−1/2

tobs BINGO BINGO + Planck

1 year 2.6 × 10−12 4.5 × 10−18

2 years 8.2 × 10−13 2.8 × 10−18

3 years 4.6 × 10−13 2.2 × 10−18

4 years 3.1 × 10−13 1.9 × 10−18

5 years 2.4 × 10−13 1.7 × 10−18

constrained by Planck and, therefore, will not be very sensitive
to BINGO’s number of horns. The most affected parameters are
the DE EoS parameters, the Hubble constant, and the Hi bias.
They improve by about 15% with respect to Nhorns = 20, more
specifically δw0 and δwa = 14%, δbHi = 16%, and δh = 17%.

We observe, however, that these curves are only taking into
account how the number of horns affects the thermal noise
without changing the total observational area. A simple tele-
scope design with drift scan only may not be able to cover the
same fraction of the sky if the number of horns is too small.
Several horn arrangements are discussed in the BINGO com-
panion paper (Abdalla et al. 2022b): a rectangular configuration
(nf = 33), a double-rectangular configuration (nf = 28), and
a hexagonal configuration (nf = 49). In all cases the total sur-
veyed area was kept constant. In this case, as can be observed in
Eq. (17), varying the total observational time or the number of
horns produces the same result if they change accordingly.
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Fig. 6. Constraints on the cosmological and Hi parameters as a function
of the number of feed horns for BINGO + Planck.

4.3.3. Effect of the number of redshift bins

Our analysis of the volume surveyed by BINGO was done using
the 21 cm angular power spectra in redshift bins. The angular
power spectrum projects all contributions inside a thin shell.
Therefore, we can make a tomographic analysis of the Universe
volume. If we sliced that volume into thinner shells, we could
obtain a more detailed observation; however, as can be observed
in Eq. (17), thinner shells also mean larger thermal noise. There-
fore, we expect an optimal number of slices beyond which no
more cosmological information could be extracted from a spe-
cific survey. In addition, the number of necessary calculations
to take all auto- and cross-correlated C`s into account increases
as we increase the number of redshift bins, hence it is desirable
to keep this number as small as possible for computational pur-
poses.

We study this behavior with the BINGO telescope consid-
ering Nbin = 2, 4, 8, 16, 32, 64, 128, which implies in equally
spaced frequency bins with bandwidths equal to ∆ν =
140, 70, 35, 17.5, 8.75, 4.375, 2.187 MHz. Figure 7 presents our
results for BINGO and for BINGO + Planck. We can see that
increasing the number of bins can greatly improve several cos-
mological constraints, especially those related to the late-time
cosmic acceleration. On the other hand, there is not much dif-
ference from Nbin = 64 to Nbin = 128 and a plateau has been
reached for several parameter uncertainties. The projected uncer-
tainties with BINGO for Nbin = 128 relative to Nbin = 2 have
improved by about 92 times for wa, 74 times for w0, 55 times for
bHi, 18 times for ln(1010As) and h, 17 times for Ωbh2, 15 times
for Ωch2, and 12 times for ns. On the other hand, if we com-
pare our results for Nbin = 128 with Nbin = 64, the maxi-
mum improvement is of 1.8 times for wa. The comparison with
Nbin = 32, which is close to our fiducial value, shows that
Nbin = 128 improves our constraints by about 4 times for the
DE EoS parameters w0 and wa, 3 times for bHi, and 2 times for
the other parameters. In the case of BINGO + Planck, the con-
straints with Nbin = 128 are smaller than those with Nbin = 2
by about 11 times for bHi, 5 times for h, 3 times for w0 and
wa, 1.7 times for Ωch2, 1.2 times for Ωbh2 and ns, and is neg-
ligible for ln(1010As). Comparing Nbin = 128 with Nbin = 64,
the largest improvements are 1.5 times for the DE EoS parame-
ters, followed by the Hubble constant with an uncertainty that is
1.4 times smaller.
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Fig. 7. Projected constraints on the cosmological and Hi parameters as
a function of the number of bins for BINGO (top) and BINGO + Planck
(bottom). They show that w0, wa, and h can have their constraints further
improved for Nbin > 30.

4.3.4. Effect of cross-correlations

Previous analyses in the literature considered the Limber approx-
imation to forecast 21 cm IM constraints (Olivari et al. 2018).
The Limber approximation does not take into account the cross-
correlations between redshift bins, only the auto-correlation
spectra. Although this allows a faster and simpler calculation,
we miss part of the information contained in the whole spectra.
Here we study the effect including all information using the full
power spectra. We demonstrate that effect in Fig. 8, where we
calculate the percentage difference between the results with and
without cross-correlation (∆σθ/σθ = σθwithout/σθwith − 1) as a
function of the number of bins. As can be seen, the importance of
cross-correlations increases as we increase the number of bins,
but it eventually reaches a plateau. For Nbin = 32, which is close
to the fiducial BINGO setup, we find that the cross-correlations
improve the constraints by δln(1010As) = 0.4%, δΩbh2 = 6.8%,
δns = 7.2%, δh = 8.3%, δw0 = 8.8%, δwa = 11%, δΩch2 =
22%, and δbHi = 31%. The primordial spectrum amplitude, As,
is the least affected by cross-correlations as it is basically con-
strained by Planck data. At the maximum number of bins con-
sidered, these constraints have improved to δln(1010As) = 1.7%,
δΩbh2 and δns = 14%, δh = 25%, δw0 = 29%, δwa = 31%,
δΩch2 = 65%, and δbHi = 90%.

4.3.5. Effect of RSD

Another feature that is worth investigating is the effect of RSD.
First, we observe that without RSD the primordial scalar ampli-
tude and the Hi bias are completely degenerate. RSD is able to
break that degeneracy and allows us to constrain these parame-
ters individually with 21 cm data alone. We show the percentage
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Fig. 8. Percentage difference between using and not using informa-
tion from the cross-correlations in the projected cosmological parameter
constraints expected for BINGO + Planck.

difference between the Fisher matrix results with and without
RSD (∆σθ/σθ = σθwithout/σθwith − 1) in Fig. 9. The parame-
ters As and bHi go from a complete ignorance to constraints on
the order of the percent level, and therefore we do not include
them in the plot with BINGO alone. Second, we expect RSD
to become more and more important as the frequency (or red-
shift) smoothing width gets narrower. This happens because the
angular spectra sum up all contributions inside the bin, and
hence a large bandwidth will cancel out the contributions. This
behavior can be seen in Fig. 9, where there is a tendency for
RSD to improve the cosmological constraints as we decrease the
bandwidth.

Considering BINGO alone, the most significantly affected
parameters by RSD at Nbin = 32 are the EoS parameters, with
δw0 = 13% and δwa = 30%. The other parameters improve by
at most ∼3%. Increasing the number of bins, we achieve a dif-
ference between using and not using RSD in a range from ∼15%
to ∼57% at Nbin = 128. If we combine our Hi results with CMB
data from Planck, the CMB measurements can put constraints
on the amplitude of the primordial spectrum, As, and break the
degeneracy with our Hi bias even if we do not consider RSD.
Figure 9 also includes the results in combination with CMB
data. The addition of Planck data will put tight constraints on
and will affect the correlation between several parameters; there-
fore, RSD from our 21 cm IM spectra will behave differently
from the earlier results. We can observe this in the behavior of
the Hubble constant parameter, which increases the uncertainty
with the inclusion of RSD for several values of redshift bins. At
Nbin = 128 the improvements from RSD are given by δh = 1%,
δln(1010As) = 2.2%, δΩbh2 = 7.8%, δns = 9.5%, δw0 = 14%,
δwa = 34%, δΩch2 = 44%, and δbHi = 176%.

4.3.6. Effect of foreground residuals

Our results so far have considered a perfect foreground clean-
ing process. However, as discussed in Sect. 3.5, these proce-
dures leave residuals that can bias the parameter estimation and
increase the statistical noise. In order to take these effects into
account, we assume that there has already been some sort of
foreground removal technique and model the residual contam-
ination as the sum of Gaussian processes with angular power
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Fig. 9. Percentage difference between using and not using information
from RSD in the cosmological parameter constraints from BINGO (top)
and BINGO + Planck (bottom).

Table 7. Foreground model parameters taken from Santos et al. (2005)
with `ref = 1000 and νref = 130 MHz.

Foreground A (mK2) β α ξ

Galactic synchrotron 700 2.4 2.80 4.0
Point sources 57 1.1 2.07 1.0
Galactic free-free 0.088 3.0 2.15 35
Extragalactic free-free 0.014 1.0 2.10 35

spectra given by (Santos et al. 2005; Bull et al. 2015)

CFG
` (ν1, ν2) = ε2

FG

∑
i

Ai

(
`ref

`

)βi
 ν2

ref

ν1 ν2

αi

exp
− log2(ν1/ν2)

2 ξ2
i

 ·
(27)

We assume four foreground contributions with the parameters
described in Table 7. The overall scaling, εFG, parameterizes the
efficiency of the foreground removal technique, with εFG = 1
corresponding to no foreground removal.

The additional contribution from foreground residuals
increases the covariance given by Eq. (9), and consequently
enlarges the statistical errors on the final cosmological param-
eters. The ratios of the marginalized 1σ constraints with respect
to the case without foreground residuals are plotted in Fig. 10 as
a function of the residual amplitude εFG. We find the constraints
are degraded by at most 16% in the case of BINGO only, and 6%
for BINGO + Planck. If the efficiency of foreground removal is
εFG < 10−5, these effects are negligible.

The residuals will also shift the cosmological parameters
from their true value according to Eq. (24), with Csys

`
= CFG

`
.

FG
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Fig. 10. Marginalized statistical errors as a function of the resid-
ual foreground contamination amplitude, εFG, from BINGO (top) and
BINGO + Planck (bottom).

Figure 11 shows the ratio of bias to the marginalized statistical
errors as a function of εFG. We find that unlike the marginalized
constraints that always decrease as εFG goes to zero, the bias
presents an unpredictable behavior for large values of the resid-
ual amplitude. This can be understood from Eq. (25), which basi-
cally depends on the foreground residuals as CFG

`

(C`+Cshot
`

+N`+CFG
`

)2 .

This function increases as we decrease CFG
`

, and has a maxi-
mum at CFG

`
= C` + Cshot

` + N`. The bias procedure in Eq. (24)
is valid when Csys

`
is small compared to C, which in our case

happens for εFG . 10−4. Considering a foreground removal pro-
cess with εFG = 10−4, the largest bias was |b[Ωch2]| = 0.9σ
and |b[Ωch2]| = 1σ for BINGO and BINGO + Planck, respec-
tively. Figure 12 shows the marginalized constraints for the DE
EoS parameters considering both statistical and systematic errors
with BINGO.

4.3.7. Comparison with SKA

We now compare the expected constraints from BINGO with
the experiment design for SKA1-MID band 1 and SKA1-MID
band 2 (Bacon et al. 2020). We consider the same experimental
setup for SKA as used in Chen et al. (2020), except that we use
a bandwidth of 10 MHz. In order to have a proper comparison
between them, in this section we only use 28 redshift bins for
BINGO, which implies a bandwidth of 10 MHz, consistent with
the value used for the SKA results. This produces a small degra-
dation in our forecast in comparison with the fiducial scenario
presented in Table 5. We compare the marginalized constraints
on our eight-parameter space in Fig. 13 and Table 8. For a bet-
ter comparison, we also repeat the constraints from Planck alone
from Table 5.
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2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25
w0

8

6

4

2

0

2

4

6

8

w
a

2 = 2
sta + 2

sys

2 = 2
sta

Fig. 12. Marginalized constraints (68% and 95% CL) on the DE EoS
parameters for the CPL parameterization with BINGO, considering the
effect of foreground residuals on the statistical and systematic errors.
The star corresponds to our fiducial value and the cross shows the value
recovered given the Fisher matrix bias. We have fixed εFG = 10−4.

Even considering the power of SKA, we can observe that
several cosmological parameters are mainly constrained by
Planck, although small improvements are still possible, espe-
cially breaking degeneracies in the parameter space. Their main
contributions are in the DE EoS parameters and the Hubble con-

stant. The Hubble constant improved from a projected constraint
of 13% with Planck alone to 2.9%, 1%, and 0.5% in combina-
tion with BINGO, SKA Band 1, and SKA Band 2, respectively.
In addition, the DE EoS parameter w0 goes from 46% to 31%,
8%, and 3.2%. Finally, we obtained a projected constraint for wa
of 1.8, 1.2, 0.26, and 0.037 from Planck, BINGO + Planck, SKA
Band 1 + Planck, and SKA Band 2 + Planck, respectively. For
all these parameters, SKA Band 2 showed the best constraints.
Generally, these results are in agreement with what was found
in Chen et al. (2020) for the SKA. Some discrepancies may be
related to our larger number of bins and the fact that we are
considering dimensional C`s. This better takes into account the
dependence with the brightness temperature in the Fisher matrix
derivatives.

Both SKA band 1 and band 2 will survey a larger fraction of
the sky than BINGO. They are also designed to explore a wider
redshift range. In addition, although BINGO has a better angu-
lar resolution, the number of antennas is much lower than for
SKA and the system temperature is higher. Combining all these
aspects favors SKA in the ability to constrain cosmology. On
the other hand, SKA will require a more complicated technique
combining the dish array for a IM single-dish mode. Therefore,
the simplicity of the BINGO instrument will be a pathfinder for
IM with SKA. In particular, Table 8 shows BINGO can provide
valuable information for the Hi bias.

4.4. HI,density and bias

Using the 21 cm line of Hi as a tracer of the underlying matter
distribution requires the knowledge of the Hi mean density and
bias. If we are only interested in the cosmological constraints,
they can be considered nuisance parameters that we marginalize
over. On the other hand, we can also use our 21 cm survey to
learn about their distribution and evolution.

In the previous sections we fix the value for the Hi density
parameter, ΩHi = ρHi/ρc, and described the bias by a constant in
the whole redshift range. We now extend these assumptions and
see their impact in our cosmological parameters and our ability
to constrain them with BINGO.

First we fix the Hi density parameter and assume a con-
stant bias. Table 3 shows that we can achieve a 4.1% precision
measurement in the bias with BINGO under the ΛCDM model,
which can be improved to 1.1% if we combine with Planck data.
Beyond the ΛCDM model, the constraints are degraded by the
extra cosmological parameters, but we still obtain a 2.3% preci-
sion measurement at 1σ in the joint analysis BINGO + Planck,
as calculated in Tables 4 and 5.

Next, we extend this simplest model and allow ΩHi to be
a free parameter. Equations (1), (6), and (7) tell us that in this
case ΩHi and As are completely degenerate, and therefore we
cannot constrain them with BINGO alone. In order to break that
degeneracy, we combine our analysis with Planck. Our results
are presented in Table 9. We obtain

σΩHi = 4.1 × 10−5 (6.6%), (28)

σbHi = 3.6 × 10−2 (3.6%). (29)

Compared with the fiducial model presented in Table 5, the
parameter most affected by the inclusion of ΩHi is the bias, with
a degradation of 61%. The next most sensitive is the DM density
parameter, Ωch2, which is degraded by 15%, followed by the DE
EoS parameter, wa, which has its uncertainty increased by 9.5%.
The other parameters change by at most ∼5%.
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Fig. 13. One- and two-dimensional (68% and 95% CL) cosmological constraints for a CPL parameterization from BINGO, SKA1-MID band 1,
and SKA1-MID band 2 in combination with Planck data. This illustrates that BINGO can be considered a pathfinder for constraints obtained by
SKA.

Table 8. Expected 1σ constraints on the CPL cosmological parameters from BINGO, SKA1-MID band 1, and SKA1-MID band 2 in combination
with Planck.

Planck BINGO + Planck SKA Band 1 + Planck SKA Band 2 + Planck
Parameter ±1σ (100% × σ/θfid

i ) ±1σ (100% × σ/θfid
i ) ±1σ (100% × σ/θfid

i ) ±1σ (100% × σ/θfid
i )

Ωbh2 0.00016 (0.7%) 0.00015 (0.7%) 0.00013 (0.6%) 0.00013 (0.6%)
Ωch2 0.0013 (1.1%) 0.0011 (0.9%) 0.00065 (0.5%) 0.00084 (0.7%)
h 0.088 (13%) 0.020 (2.9%) 0.0068 (1%) 0.0035 (0.5%)
ln(1010As) 0.016 (0.5%) 0.016 (0.5%) 0.015 (0.5%) 0.015 (0.5%)
ns 0.0044 (0.5%) 0.0041 (0.4%) 0.0035 (0.4%) 0.0036 (0.4%)
w0 0.46 (46%) 0.31 (31%) 0.080 (8%) 0.032 (3.2%)
wa 1.8 1.2 0.26 0.037
bHi 0.024 (2.4%) 0.011 (1.1%) 0.012 (1.2%)

A natural extension to this model is to assume that the Hi
parameters evolve with redshift. We use a stepwise model, which
is simple and provides an agnostic way to describe the evolution
of these parameters over redshift. Therefore, we combine our 30
redshift bins into three groups and define the parameters as Ωi

Hi
and bi

Hi inside each group. We first consider the Hi density as a
function of redshift, keeping the bias constant. In this case our
constraints are given by

σΩ1
Hi

= 4.5 × 10−5 (7.2%), (30)

σΩ2
Hi

= 4.6 × 10−5 (7.4%), (31)

σΩ3
Hi

= 4.8 × 10−5 (7.7%), (32)

σbHi = 3.7 × 10−2 (3.7%), (33)

where the indices 1, 2, and 3 represent each group of ten red-
shift bins. The projected constraints are very similar in all three
groups of bins, but lower redshifts show slightly better results.
In addition, the projected bias is only marginally affected by the
extra degrees of freedom in the Hi density parameter.
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Table 9. Expected 1σ constraints on the CPL cosmological parameters from BINGO + Planck for three different models of the Hi density and
bias.

ΩHi = const. ΩHi(z) bHi(z)
Parameter ±1σ (100% × σ/θfid

i ) ±1σ (100% × σ/θfid
i ) ±1σ (100% × σ/θfid

i )

Ωbh2 0.00015 (0.7%) 0.00015 (0.7%) 0.00015 (0.7%)
Ωch2 0.0013 (1%) 0.0013 (1.1%) 0.0013 (1.1%)
h 0.02 (2.9%) 0.024 (3.5%) 0.024 (3.6%)
ln(1010As) 0.016 (0.5%) 0.016 (0.5%) 0.016 (0.5%)
ns 0.0043 (0.4%) 0.0043 (0.4%) 0.0043 (0.4%)
w0 0.31 (31%) 0.32 (33%) 0.34 (34%)
wa 1.3 1.4 1.5
bHi or b1

Hi 0.036 (3.6%) 0.037 (3.7%) 0.069 (6.9%)
b2

Hi 0.058 (5.8%)
b3

Hi 0.059 (5.9%)
ΩHi or Ω1

Hi 0.000041 (6.6%) 0.000045 (7.2%) 0.000054 (8.7%)
Ω2

Hi 0.000046 (7.4%) 0.000052 (8.4%)
Ω3

Hi 0.000048 (7.7%) 0.000056 (9%)

Finally, we consider the case where both ΩHi and bHi are
functions of redshift. Our results are presented in Table 9
together with the previous scenarios. The extra parameters
describing the Hi distribution and evolution mainly affect our
uncertainties on the cosmological parameters describing the DE
EoS (degrading by δw0 = 4.9% and δwa = 5.5%) and the Hubble
constant (with δh = 2.3%) compared with the previous case. The
other CPL parameters are not significantly impacted as Planck is
mainly responsible for their constraints. On the other hand, the
Hi bias constraints vary by at most 88%. This last scenario can
put constraints on the Hi parameters with uncertainties of around
8.5% and 6% for the Hi density parameter and bias, respectively:

σΩ1
Hi

= 5.4 × 10−5 (8.7%), (34)

σΩ2
Hi

= 5.2 × 10−5 (8.4%), (35)

σΩ3
Hi

= 5.6 × 10−5 (9%), (36)

σb1
Hi

= 6.9 × 10−2 (6.9%), (37)

σb2
Hi

= 5.8 × 10−2 (5.8%), (38)

σb3
Hi

= 5.9 × 10−2 (5.9%). (39)

Further details about the Hi distribution using N-body sim-
ulations can be obtained in our BINGO companion paper
(Zhang et al. 2022).

4.5. Massive neutrinos

It is well known that neutrinos should have a low mass in order to
explain their change of flavors, observed in both solar and atmo-
spheric neutrinos (Fukuda et al. 1998; Ahmad et al. 2002). How-
ever, the experiments only allow us to determine two squared
mass differences. On the other hand, it is possible to constrain
the sum of neutrino masses,

∑
mν, from a combination of the

CMB and matter power spectrum.
Massive neutrinos can impact the CMB spectrum in different

ways. At the background level they may change the redshift of
matter-to-radiation equality, the angular diameter distance to the
last scattering surface, and the late ISW effect, while neutrino
perturbations affect the early ISW effect (Lesgourgues & Pastor
2012). In order to analyze the constraints on the total neutrino

mass, we consider an extension to the ΛCDM model allow-
ing for an extra degree of freedom on the sum of neutrino
masses, ΛCDM +

∑
mν. We performed a MCMC sampling with

the Planck 2018 TT + TE + EE + lowE likelihood, assuming one
massive neutrino with total mass equal to

∑
mν. Our result is

given by

σ∑
mν
< 0.36 eV (95% CL,Planck). (40)

This is higher than the value of 0.26 eV reported in
Planck Collaboration VI (2020) using the Plik likelihood, but
below the value of 0.38 eV from the CamSpec likelihood. For
the purpose of this forecast paper, we use the value we report
above.

The combination of CMB data with other cosmological
observations, such as measurements of the Hi power spectrum,
can break the geometric degeneracy in the parameter space of
the ΛCDM +

∑
mν model and improve the constraints. We com-

bined the covariance matrix from the Planck data with our 21 cm
Fisher analysis, and this leads to

σ∑
mν
< 0.14 eV (95% CL,BINGO + Planck), (41)

which is slightly higher than what was obtained in
Planck Collaboration VI (2020) for the combination between
Planck temperature and polarization with other BAO data.
Therefore, if BINGO’s systematic noise can be properly taken
into account, it will be able to put competitive constraints on
the sum of neutrino masses compared with the present available
constraints, but using a completely independent tracer of LSS.

4.6. Alternative cosmologies

4.6.1. Modified Gravity: µ and Σ parameterization

An alternative explanation for the accelerated expansion of the
Universe is to invoke modifications of GR. To properly describe
the current data, these modifications must explain the current
acceleration with background dynamics very close to the ΛCDM
predictions today, while maintaining the local and astrophysical
tests of GR. There are several proposed modifications of grav-
ity in the literature (for a review see Clifton et al. 2012) with the
most studied being scalar-tensor theories and higher-derivative
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theories, such as f (R). The f (R) theory is the simplest mod-
ification of GR and can be mapped onto a scalar-tensor the-
ory via field redefinition and conformal transformation. A more
general class of scalar-tensor theories are the Horndeski mod-
els (Horndeski 1974), a class of models that modify GR while
still maintaining up to second-order derivatives in the equations
of motion, avoiding instabilities (Deffayet et al. 2011). Although
the background evolution of these modifications of GR needs
to behave close to ΛCDM today, the evolution of their pertur-
bations might behave very differently, and that represents an
avenue to test these models.

Modified gravity (MG) models can be parameterized through
two phenomenological functions, µ and γ. On sub-Hubble
scales, the Poisson equation and the relation between the gravita-
tional potentials receive corrections if gravity is modified, given
by
−k2Ψ = 4πGa2µ(a, k)ρ̄∆,

Φ = γ(a, k)Ψ, (42)
where ρ̄ is the background value of the matter energy density,
∆ = δ + 3Hv/k is the comoving density perturbation with H
the conformal time Hubble parameter, δ is the density contrast,
and where the anisotropic stress from relativistic species was
neglected. The parameters µ and γ represent deviations from
GR, since in GR µ = γ = 1 at all times, while for alternative
models both functions can depend upon time and scale. Using
these equations, the variation of the energy-momentum tensor of
a scalar tensor theory in the Jordan frame yields the continuity
and Euler equations on sub-Hubble scales (Hall et al. 2013)

δ̈ +H δ̇ − 4πGa2µρ̄δ = 0, (43)

v̈ +

(
2H −

µ̇

µ

)
v̇ +

(
˙H +H2 −H

µ̇

µ
− 4πGa2µρ̄

)
v = 0. (44)

These equations show that the density perturbation and veloc-
ity depend only on changes in µ on subhorizon scales. Changes
in the density and velocities can be probed by experiments like
BINGO since the 21 cm brightness temperature is sensitive to
density and RSD, offering a chance to probe the time and scale
dependence of the parameter µ.

To project constraints on the cosmological parameters, we
use the results from BINGO combined with data from the CMB.
Modifications of gravity that aim to explain the late-time acceler-
ation only affect the CMB at perturbed level via the ISW effect in
the CMB temperature anisotropies and via CMB weak lensing.
This is a result of the time dependency of the potentials Φ and
Ψ. The CMB is sensitive to modifications of the Weyl potential,
given by (Φ + Ψ)/2, which can be related to the density pertur-
bation from Eq. (42),
−k2(Φ + Ψ) = 8πGa2Σ(a, k)ρ̄∆, (45)
where Σ(a, k) ≡ µ(1 + γ)/2. Due to the degeneracy between µ
and γ, it can be more convenient to work with this new function
Σ (Daniel et al. 2010).

In order to forecast constraints on MG models with the
BINGO telescope, we consider a specific form for that param-
eterization that is related to f (R) theories of gravity. The B0-
parameterization of f (R) gravity provides a good approximation
on quasi-static scales (Hu & Sawicki 2007; Giannantonio et al.
2010; Hojjati et al. 2012), and has a parameterization given by

µ(a, k) =
1

1 − 1.4 × 10−8|λ/Mpc|2a3

1 + 4λ2k2a4/3
1 + λ2k2a4 , (46)

γ(a, k) =
1 + 2λ2k2a4/3
1 + 4λ2k2a4/3

, (47)
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Fig. 14. Marginalized constraints (68% and 95%) CL on the modified
gravity parameter B0 and the Hubble parameter from BINGO, Planck,
and BINGO + Planck.

where B0 ≡ 2H2
0λ

2. Therefore, considering the ΛCDM parame-
ters plus B0, we obtained a projected constraint of

σB0 = 3.1 × 10−5 (BINGO), (48)

σB0 = 5.3 × 10−2 (Planck), (49)

σB0 = 1.1 × 10−5 (BINGO + Planck). (50)

Figure 14 shows the 2D marginalized contours for B0 and h. We
can see that BINGO will lead to a tight constraint on the MG
parameter and also how the combination with Planck breaks the
degeneracy in the parameter space. We note that the tight con-
straint on the Hubble constant from Planck comes from the fact
we have assumed the ΛCDM model for the cosmological back-
ground.

4.6.2. Interacting dark energy

Another possible modification of the ΛCDM is to consider an
interaction in the dark sector (Wetterich 1995; Amendola 2000).
Since the dark sector is only detected gravitationally, different
types of interaction of DE and DM are possible (Wang et al.
2016). In a field theory description of these components, this
interaction is allowed and even mandatory (Micheletti et al.
2009). It can also alleviate the coincidence problem, given an
appropriate interaction and a dynamical mechanism to make
DE leave the scaling solution and produce late acceleration
(Copeland et al. 2006).

The study of the interacting dark sector model is challenging
because of the unknown nature of the two components, which
makes it hard to describe the origin of such an interaction from
first principles. Many different models of this interaction have
been studied in the literature either from a phenomenological or
from a field theory point of view. Here we take a purely phe-
nomenological approach to describe the interacting dark sector
(for a more general description of the classification of these mod-
els see Wang et al. 2016; Koyama et al. 2009; Pu et al. 2015;
Ferreira et al. 2017; Costa et al. 2014, 2015; Marcondes et al.
2016; Landim & Abdalla 2017; Landim et al. 2018).
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Table 10. Stability conditions on the (constant) EoS and interaction for
the interacting DE models considered in this work.

Case Condition

Q ∝ ρde (ξdm = 0) w < −1 and ξde > 0; or
−1 < w < 0 and ξde < 0

Q ∝ ρdm (ξde = 0) w < −1, ∀ ξdm

The interaction acts so that the energy-momentum of the dark
sector components alone does not obey a conservation law,

∇µT µν
(i) = Qν

(i), (51)

where conservation of the total energy-momentum implies that
the right-hand sides add up to zero,

∑
i Qν

(i) = 0. This is how the
interaction can be realized.

Given the energy conservation of the full energy-momentum
tensor, we represent DE and DM as fluids in a Friedmann-
Lemaître-Robertson-Walker (FLRW) Universe obeying

ρ̇dm + 3Hρdm = +Q,
ρ̇de + 3H (1 + wde) ρde = −Q, (52)

where ρdm and ρde are the energy densities of DM and DE,
respectively, and the interaction Q can be a function of ρdm, ρde,
or both. We assume that the EoS is constant in this simple model.
By this definition if Q > 0, we have DE decaying in DM and for
Q < 0 we have DM decaying in DE. The second case favors a
Universe dominated by DM in the past and DE in the future. The
interaction Q(ρdm, ρde) can be expanded in a Taylor series, and
the phenomenological term (Feng et al. 2008; He et al. 2011)

Q = 3H(ξdmρdm + ξdeρde) (53)

is considered, where ξdm and ξde are constants.
This model presents two extra parameters when compared to

the ΛCDM. However, due to instabilities in the DE perturbations
and curvature (Valiviita et al. 2008; He et al. 2009), the parame-
ter space of this model is reduced; the allowed regions are listed
in Table 10 (He et al. 2009; Gavela et al. 2009).

In addition to the energy transfer in the background con-
tinuity equations, the phenomenological interaction will affect
the time evolution of the first-order perturbations, which in the
synchronous gauge are given by (He et al. 2011; Costa et al.
2014)

δ̇dm = −

(
kvdm +

ḣ
2

)
+ 3Hξde

1
r

(δde − δdm) , (54)

δ̇de = − (1 + w)
(
kvde +

ḣ
2

)
+ 3H(w − c2

e)δde

+ 3Hξdmr (δde − δdm)

− 3H
(
c2

e − c2
a

) [
3H (1 + w) + 3H (ξdmr + ξde)

] vde

k
,

(55)

v̇dm = −Hvdm − 3H
(
ξdm +

1
r
ξde

)
vdm, (56)

v̇de = −H
(
1 − 3c2

e

)
vde +

3H
1 + w

(
1 + c2

e

)
(ξdmr + ξde) vde

+
kc2

eδde

1 + w
, (57)

where δdm (δde) and vdm (vde) refer respectively to the overdensity
and peculiar velocity of DM (DE), h is the metric perturbation in

the synchronous gauge, ce represents the effective sound speed,
ca refers to the adiabatic sound speed for the DE fluid at the rest
frame, and r ≡ ρdm/ρde. Through Eqs. (52)–(57) the expansion
history and the growth of LSS are seen to be changed by the
phenomenological interaction, and thereby the deviated Hi IM
signals relative to standard cosmology can be used to character-
ize and/or constrain the interacting DE model.

We observe that Eq. (3) was obtained assuming the Euler
equation. However, in an interacting DE model, the DM compo-
nent exchanges energy-momentum with DE and does not obey
the same relation as the regular matter. This can be observed
in Eq. (56). This leads to an additional contribution to the frac-
tional brightness temperature perturbation, assuming that the Hi
velocity follows the standard relation v = (ρ̄bvb + ρ̄dmvdm)/ρ̄. A
more detailed discussion about the imprints that interacting DE
models can leave on the 21 cm power spectrum can be found in
Xiao et al. (2021).

It is known that an interaction in the dark sector can mod-
ify the CMB spectrum at small ` and shift the acoustic peaks
at large multipoles (Costa et al. 2014). On the other hand, the
DE EoS only modifies the low multipoles in the CMB spec-
trum. Combining information from the late Universe can fur-
ther break degeneracies and improve the parameter constraints.
Figure 15 presents the 2D marginalized contours for two inter-
acting DE scenarios with Q ∝ ρde and Q ∝ ρdm. Because of the
stability conditions, the Q ∝ ρde model needs to be divided into
two regions, as described in Table 10. This will not be impor-
tant in our Fisher matrix analysis with BINGO, as we only need
to calculate derivatives around the fiducial model. However, our
covariance matrices from Planck were obtained from a MCMC
process, and therefore will depend on these priors. In Fig. 15 we
do not distinguish between these regions and plot the results for
Q ∝ ρde and w < −1.

Our results show that BINGO can put a better constraint on
the interaction parameter ξde than Planck for the model with
Q ∝ ρde and w > −1. However, the constraint on the DE EoS is
weakened. If w < −1, we do not observe appreciable difference
in our Hi Fisher matrix compared with the previous case, but
Planck possesses better constraints for both the DE EoS and the
interaction parameter. In general, the combination with Planck
yields results of δw ∼ 5% and σξde ∼ 0.02 for Q ∝ ρde. If the
interaction is proportional to the DM energy density, BINGO and
Planck have opposite behaviors, with BINGO providing tighter
constraints on the DE EoS, but allowing a wider uncertainty in
the interaction, and Planck having looser constraints on the EoS,
but tight contours for the interaction parameter. This is expected,
as shown in Fig. 1 of Costa et al. (2019) where the BAO scale
is more affected by the interaction at higher redshifts, and was
also obtained in Table 10 of Costa et al. (2017) comparing low-
redshift data with Planck data. Finally, the combination of the
two surveys greatly improves the cosmological constraints. We
summarize our results in Table 11.

Projected constraints with Hi IM experiments for interacting
DE models were also considered in Xu et al. (2018). Their result
for BINGO, however, could be about ten times stronger for the
DE EoS and about four times stronger for the interacting param-
eter under the model with Q ∝ ρde and w > −1. Although there
are some differences in the BINGO setup, we were only able to
obtain this level of constraint in combination with Planck data.

5. Conclusions

BINGO will be a single-dish radio telescope designed to
observe the LSS using Hi intensity mapping as a tracer of the
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Fig. 15. Marginalized constraints (68% and 95% CL) for two interacting
dark energy models with Q ∝ ρde and w < −1 (top) or Q ∝ ρdm (bottom)
from BINGO, Planck, and BINGO + Planck.

underlying matter distribution. Therefore, it will provide addi-
tional data, susceptible to different systematic effects, that can
help improve our current understanding of the late-time cosmo-
logical expansion and structure formation. In this work we used
the 21 cm angular power spectra and the Fisher matrix formal-
ism to forecast the constraining power of BINGO on standard
and alternative cosmological models, and analyzed the depen-
dency with different instrument configurations. In summary, we
obtained the following:

– If we assume the ΛCDM model, the fiducial BINGO setup
(see Table 2) cannot put competitive constraints on Planck.

Table 11. Expected constraints on the DE EoS and the coupling con-
stant from BINGO, Planck, and BINGO + Planck combined.

BINGO Planck BINGO + Planck
Q ∝ ρde, w > −1

σw 0.37 0.072 0.047
σξde 0.060 0.078 0.018
Q ∝ ρde, w < −1
σw 0.37 0.26 0.056
σξde 0.059 0.026 0.015
Q ∝ ρdm
σw 0.12 0.40 0.078
σξdm 0.016 0.001 0.0007

However, their combination can improve the confidence
in all cosmological parameters; the Hubble constant and
the DM parameter (Ωch2) are the most significant with an
improvement of ∼25% in both. This is competitive with cur-
rent combined constraints from CMB and BAO data.

– BINGO plays a more significant role if we leave the DE EoS
as a free parameter. In the wCDM model, BINGO alone can
establish better constraints than Planck for the EoS. Their
combination can reach 1.1% precision for H0 and 3.3% for
w at 68% CL, which have improved by respectively 92% and
87% in comparison with Planck alone.

– Under the CPL parameterization, BINGO + Planck achieves
a 2.9% precision in the Hubble constant, 30% in the DE
parameter w0, and σwa = 1.2 for wa at one standard devi-
ation. Although these constraints can be considered large,
BINGO has improved the constraints from Planck alone by
up to 78%.

– Fixing the CPL parameterization as our fiducial cosmologi-
cal model, we considered how the cosmological constraints
should be affected by several different instrumental scenar-
ios:
Total observational time: We considered the impact of the
total observational time on our cosmological constraints,
which affects the thermal noise level of our experiment. We
observe that BINGO will mainly affect the constraints on the
Hubble constant and the DE EoS. A five-year experiment can
improve these constraints by δσH0 = 25%, δσw0 and δσwa ∼

21% compared to the one-year survey. The FoM defined by
the error ellipsoid improved by 11 times for BINGO only and
2.7 times in combination with Planck. Although our con-
straints have improved for longer total observational time,
they significantly flatten after three years, suggesting this as
an optimal observational time.
Number of feed horns: The fiducial setup assumes 28 feed
horns. Considering the effect on the noise level only, increas-
ing the number of horns to a maximum value of 60 can
improve the constraints by at most 10%. Given the costs nec-
essary to increase the number of horns and its connection
with the total observational time, it may be more significant
to increase the number of horns in such way to cover a larger
area in the sky.
Number of redshift bins: The constraints are significantly
affected by the number of bins considered; however, we
observe small deviations from Nbin = 64 to Nbin = 128,
suggesting that we have reached a plateau. As the actual
number of redshift bins in the raw data of BINGO will be
much larger, this choice must take into account the necessary
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computational calculations. Our analysis suggests that Nbin =
64 is optimal.
Cross-correlations: Some previous analysis considered the
Limber approximation to extract the 21 cm information. We
analyzed the effect of including all the spectra on the final
constraints. The importance of cross-correlations increases
as we increase the number of bins, but eventually reaches a
plateau. For Nbin = 32, near BINGO standard configuration,
we obtain improvements of δ ln(1010As) = 0.4%, δΩbh2 =
6.8%, δns = 7.2%, δh = 8.3%, δw0 = 8.8%, δwa = 11%,
δΩch2 = 22%, and δbHi = 31%.
RSD: RSD can break the degeneracy between As and bHi and
improve the constraints on the other cosmological parame-
ters. At Nbin = 128 the improvements from RSD are given by
δh = 1%, δln(1010As) = 2.2%, δΩbh2 = 7.8%, δns = 9.5%,
δw0 = 14%, δwa = 34%, δΩch2 = 44%, and δbHi = 176%,
combining BINGO with Planck data.
Foreground residuals: Foreground residuals will both
increase the statistical errors and introduce biases in our final
cosmological parameter estimation. We take these effects
into account assuming that some sort of foreground removal
technique has already been accomplished, and model the
residual contamination as the sum of Gaussian processes.
We obtain that the statistical error bars are not strongly
enhanced; the maximum degradation was of 16% for BINGO
only and 6% for BINGO + Planck with the overall scaling
factor εFG = 1 (no foreground removal). On the other hand,
we found that the bias in our cosmological constraints will
be at maximum 1σ if εFG = 10−4, and can be significantly
smaller if we can achieve smaller values for εFG.

– We also compared the BINGO constraints to those from
SKA1-MID band 1 and SKA1-MID band 2. Given the larger
surveyed area, deeper redshift range, larger number of anten-
nas, and lower system temperature, BINGO cannot compete
with them. However, SKA will have more complicated sys-
tematic effects and BINGO can be a pathfinder to better
understand them.

– In addition to our cosmological parameters, BINGO will
help us understand the Hi evolution and distribution. This
is affected by the cosmological model and the Himodel con-
sidered. Combining BINGO and Planck data, we obtained
a 2.3% precision fixing the Hi density parameter under
the CPL parameterization. Our worst scenario is obtained
assuming that ΩHi and bHi vary with redshift as a free param-
eter over three groups of redshift bins. In this case we have
σΩi

Hi
∼ 8.5% and σbi

Hi
∼ 6%.

– Measurements from the Hi power spectrum can break the
geometric degeneracy in the parameter space of ΛCDM +∑

mν. In combination with BINGO, we obtained σ∑
mν

<
0.14 eV at 95% CL, which is on the same order of current
constraints.

– BINGO can also help constrain alternative cosmological
models breaking degeneracies in the parameter space. In par-
ticular, under the B0-parameterization of f (R) gravity, we
obtained σB0 = 3.1 × 10−5 with BINGO against σB0 =
5.3 × 10−2 from Planck. On the other hand, we forecast
that BINGO + Planck will be able to put constraints of
σξde ∼ 0.02 and σξdm = 0.0007 on the interacting dark energy
parameters.

We would like to note some limitations and future extensions of
the present work:

– First, we considered the full 21 cm angular power spectrum.
Although this has more information than the BAO data alone,
it is also more contaminated by the Hi physics.

– In our analysis we used the Fisher matrix formalism. It is
well known that the Fisher matrix produces the optimal sce-
nario, thus we should expect deviations from the present con-
straints in a more robust MCMC sampling of the parameter
space through the 21 cm likelihood. Because of the tomo-
graphic nature of our 21 cm angular spectra, spanning a 3D
volume, the number of necessary computations can increase
dramatically compared to the CMB angular spectra. There-
fore, given our computational resources at the moment, we
decided to adopt the Fisher matrix formalism, which has
been widely used in the literature to forecast cosmological
constraints and can provide consistent results.

– As discussed before, BINGO will be mainly affected by
the presence of foregrounds. Here the bulk of our analy-
sis considers a perfect foreground removal technique. Of
course, this will not be the case, and foreground residuals
must be taken into account. In the BINGO companion papers
(Liccardo et al. 2022; Fornazier et al. 2022), the foreground
cleaning process is further discussed.

– The real situation will also be contaminated by other effects.
The 1/ f noise will be the most prominent of them for the
BINGO configuration. Other effects that must be taken into
account in the final analysis include standing waves, side
lobes, RFI, and atmospheric effects.

– Although BINGO’s beam resolution will suppress most non-
linear effects, very thin redshift bins can have a significant
contribution from nonlinearities. Nonlinear effects are fur-
ther discussed in our BINGO companion paper (Zhang et al.
2022) and their impact on the cosmological parameters will
be analyzed in a future work.
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Appendix A: Code comparison

In order to check the outputs of the code used throughout this
work, we show here a comparison between the C` values (and
their derivatives) calculated using this code and those obtained
from the Unified Cosmological Library for C`s code (UCLCL;
McLeod et al. 2017; Loureiro et al. 2019), matching cosmolo-
gies as closely as possible. UCLCL uses the power spectra and
transfer functions from the CLASS code (Blas et al. 2011) to con-
struct the angular power spectrum C`,

Ci j
`

=
2
π

∫
W i
`(k)W j

`
(k)k2P(k)dk, (A.1)

where the indices i and j denote the different redshift bins, P(k)
is the underlying matter density field power spectrum at zero
redshift, and W`(k) is the window function that accounts for pro-
jection effects and all the processes involved in the evolution,
including RSD (see discussion in Loureiro et al. 2019).
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Fig. A.1. Comparison between the auto-correlation Ci j
` s (for i = j)

calculated in this work and those obtained with the UCLCL code at
three BINGO redshift bins, centered at the frequencies 985, 1105, and
1225 MHz (redshifts z ≈ 0.44, 0.28, and 0.16, respectively), and band-
widths of 10 MHz. The upper panel shows the UCLCL results overplotted
as dotted lines on each of the calculated curves (colored lines), while the
lower panel shows the percentage relative difference among them.
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Fig. A.2. Same as Fig. A.1, but for the cross-correlation Ci j
` s (i , j)

between the frequency bin centered at 1105 MHz (z = 0.28) and the
five following frequency bins, with bandwidth of 10 MHz.
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Fig. A.3. Comparison between the auto-correlation Ci j
` s calculated

in this work and using the UCLCL code for four different band-
widths between 2 and 75 MHz, all of them centered at a frequency of
1110 MHz. Again, the upper panel shows the results overplotted and the
lower panel shows the percentage difference among them.
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Fig. A.4. Percentage relative difference comparing the derivatives,
δCi j

` = dCi j
` /dx (for auto-correlation, i = j), with x representing each

cosmological and 21 cm parameter, calculated in this work and by using
the UCLCL code. All the cases correspond to a frequency channel with a
bandwidth of 10 MHz centered at 1110 MHz.

We set the cosmological parameters to the most recent
Planck results for ΛCDM as fiducial values (Ωbh2 = 0.0224,
Ωch2 = 0.120, h = 0.673, Ωkh2 = 0, w0 = −1, wa = 0,
ns = 0.965, ln(1010As) = 3.096; Planck Collaboration VI 2020).

We performed several tests and comparisons, and here we
present a set of them as illustrative examples in order to give
the overall picture of the level of agreement among the results
of each code. We first compared the results obtained for a total
of 30 frequency bands, each with 10 MHz bandwidths, cover-
ing the BINGO frequency range. Some examples of the result-
ing auto- and cross-correlation spectra are shown in the upper
panel of Figs. A.1 and A.2, respectively. The lower panel in each
figure presents the respective relative difference, in percentage,
and shows that the codes deviate from each other by less than
1% for the auto-Ci j

`
s and less than 2% for the cross-Ci j

`
s at mul-

tipoles up to ` ∼ 100. A larger discrepancy for higher multipoles
is introduced not only by small numerical errors (characterized
by the noisy behavior), but mainly because the Ci j

`
s have very

small absolute values at this region, reaching zero, especially in
the case of cross-correlation. This is evident from the blue line in
Fig. A.2, representing the cross-correlation among the frequency
bins centered at 1105 MHz and 1085 MHz, which present Ci j

`
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values near zero at the first multipoles (upper panel), resulting
in a larger relative difference at these multipoles as well (lower
panel).

We also investigated the influence of different bandwidths
when comparing the codes. We tested four bandwidths (2 MHz,
10 MHz, 35 MHz and 75 MHz) centered at the frequency of
1110 MHz. The comparison among some of the auto-Ci j

`
s result-

ing from each code is depicted in Fig. A.3. Again, the level
of agreement is better than 99.5% for the thinner bandwidths,
while it reaches 99% for the thicker bandwidth, showing that the
smaller the bandwidth the better the level of agreement between
the codes.

Finally, we compared the two codes in the context of the
derivatives of the Ci j

`
s with respect to a set of cosmological and

21 cm parameters, calculated with a variation of 1% on the corre-
sponding fiducial values. The comparison, presented in Fig. A.4
for a bandwidth of 10 MHz centered at 1110 MHz, shows an
agreement of more than 99%, for all parameters considered, for
multipoles up to ` ∼ 100, and of more than 98% for larger mul-
tipoles. The same comparison was performed for other differ-
ent bandwidths, obtaining results similar to those observed in
Fig. A.4 for bandwidths of 2 MHz and 35 MHz, and a larger dis-
crepancy for the broader band, 75 MHz, but still following the
expected from Fig. A.3.
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