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Abstract: Detecting early deforestation is a fundamental process in reducing forest degradation and
carbon emissions. With this procedure, it is possible to monitor and control illegal activities associated
with deforestation. Most regular monitoring projects have been recently proposed, but most of them
rely on optical imagery. In addition, these data are seriously restricted by cloud coverage, especially
in tropical environments. In this regard, Synthetic Aperture Radar (SAR) is an attractive alternative
that can fill this observational gap. This work evaluated and compared a conventional method
based on time series and a Fully Convolutional Network (FCN) with bi-temporal SAR images. These
approaches were assessed in two regions of the Brazilian Amazon to detect deforestation between
2019 and 2020. Different pre-processing techniques, including filtering and stabilization stages, were
applied to the C-band Sentinel-1 images. Furthermore, this study proposes to provide the network
with the distance map to past-deforestation as additional information to the pair of images being
compared. In our experiments, this proposal brought up to 4% improvement in average precision.
The experimental results further indicated a clear superiority of the DL approach over a time series-
based deforestation detection method used as a baseline in all experiments. Finally, the study proved
the benefits of pre-processing techniques when using detection methods based on time series. On the
contrary, the analysis revealed that the neural network could eliminate noise from the input images,
making filtering innocuous and, therefore, unnecessary. On the other hand, the stabilization of the
input images brought non-negligible accuracy gains to the DL approach.

Keywords: deep learning; deforestation detection; stabilization; synthetic aperture radar; time series;
tropical rainforest

1. Introduction

Tropical forests are one of the most biodiverse ecosystems on Earth, comprising the
most significant portion of terrestrial species in the world. Unfortunately, in the last decades,
with the growth of industrial development, renewable and nonrenewable natural resources
have accelerated alarmingly, which has been reflected in severe environmental changes,
including forest loss and degradation [1,2]. A particularly critical situation is the constant
deforestation process in the Brazilian Legal Amazon (BLA). This region covers an area of
approximately 5,200,000 km2 and represents over 59% of Brazil’s land mass [3]. Therefore,
the increase in the deforestation rates could lead to irreversible alterations in this tropical
region, such as the greenhouse effect, soil erosion, and climate change [1,4–7].

Remote sensing (RS) has been crucial in environmental research [8], especially in
monitoring forest ecosystems. With the extensive advance of these technologies and the
increase in the availability of satellite images in short revisit times, it is possible to monitor
forest loss processes efficiently and timely [6]. Several global and national deforestation
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monitoring systems based on optical satellite data are currently operational [9]. For instance,
Forest Alerts dataset of Global Land Analysis & Discovery (GLAD [10]) employs Landsat
data and monitors areas of Peru, Brazil, Central Africa, and a portion of South Asia. In
Brazil, the DETER-B system [11], developed and executed by the Brazilian National Institute
for Space Research (INPE), monitors deforestation continuously using WFS images of the
CBERS-4 satellite. Nevertheless, due to the cloud cover, the monitoring of a larger portion
of the biome is severely hampered, notably during the rainy season.

In this context, Synthetic Aperture Radar (SAR) sensors are an attractive alternative
data source alternative to optical images. Active sensors can provide cloud-free observa-
tions and the capacity to operate almost regardless of weather and atmospheric conditions
state [12]. Moreover, most SAR satellites currently operate with short revisit times, which
would allow an effective Early Warning System (EWS) for deforestation processes [9]. In
fact, EWS has played a fundamental role in reinforcing governmental policies that have led
to a significant decrease in deforestation rates in Brazil [13–15].

Numerous research projects have been proposed to explore the potential of Sentinel-1
data for deforestation mapping and land cover monitoring in tropical regions [16–18]. Some
of them based on Bayesian classification [19–21] or multiple thresholding [22] of time series.
Others rely on conventional machine learning approaches such as Random Forest, Sup-
port Vector Machine, k-Nearest-Neighbors, and Quadratic Discriminant Analysis [23–26].
However, manual feature extraction and pre-processing stages are required for these meth-
ods. Furthermore, time series methods produce classification results using a large quantity
and quality of classified images [27], which generally implies computationally complex
processes. In addition, they have a variety of calibration criteria that make it difficult to
monitor deforestation events effectively and quickly, and they rely largely on seasonality in
the time series [8].

However, the use of SAR data for deforestation detection is hampered by two main
factors: speckle noise and the susceptibility of the backscatter signal to variations in canopy
and soil moisture. The speckle noise reduces radiometric resolution and negatively impacts
interpretation and classification [8]. While the research on methods for attenuating speckle
noise is already well established (e.g., [28–31]), solutions for SAR signal instability due to
vegetation/soil moisture are still subject of research.

A recent publication [20] evaluated different SAR data stabilization and filtering algo-
rithms for detecting deforestation in the Amazon rainforest. The article reports significant
accuracy gains when the SAR data are first applied to such pre-processing operations
before being applied to a classification method based on multiple time series thresholds.
Furthermore, in [19], time-series data from different radar sensors, including Sentinel-1,
RADARSAT-2, and Advanced Land Observing Satellite-2 Phased Arrayed L-band Synthetic
Aperture Radar-2 (ALOS-2 PALSAR-2) were evaluated for monitoring tropical selective
logging. Nevertheless, the SAR data requires a prior pre-processing stage before being
classified by traditional methods such as maximum likelihood and random forest models.

Deep Learning (DL) has become prevalent in the last few years, including RS [32–34],
due to its unprecedented success in many application fields. This success stems from DL’s
ability to learn discriminative representations directly from raw data [35], often giving up
the pre-processing steps and handcrafted representations typically required in traditional
Machine Learning methods. Regarding deforestation detection, novel DL-based approaches
have been recently proposed for deforestation detection, most of them relying on optical
imagery [36–38]. In addition, some works using SAR and DL architectures have also been
proposed. For instance, Silva et al. [39] employed SAR data with a Multi-Layer Perceptron
(MLP) to detect forest disturbances in near-real-time. In this methodology, a set of statistical
parameters of backscatter coefficients are computed and used as input to the network.
Similarly, Neitzel et al. [40] evaluate several pretrained DL architectures to detect selective
logging using different scores of contextual and textural information from X-Band SAR
data and compose an RGB composition. Wahab et al. [41] also used a Convolutional Neural
Network (CNN) to map deforestation using Sentinel-1 data. In this study, the Principal
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Component Analysis (PCA) is applied to the Gray-Level Co-occurrence Matrix (GLCM)
features of VH and VV polarizations, and the result is used as the input for the CNN.

In this scenario, one can question whether the pre-processing usually adopted in
Machine Learning-based deforestation detection methods would also improve a solution
based on fully convolutional networks and, if so, how much. The present study addresses
this issue and aims to assess the potential accuracy gains brought about by stabilization
and filtering techniques, such as those proposed in [20], for detecting deforestation in an
FCN-based scheme.

A further aspect addressed by this study was motivated by the empirical observation
that deforestation is more frequent in sites close to previously deforested areas. Thus, this
study’s second objective is to test whether the proximity of deforested spots increases the
deforestation probability in the forested regions. Specifically, we propose to provide the
network, in addition to the pair of images being compared, with a matrix containing the
distance from each pixel to the nearest deforested point. Finally, this paper reports the
results of our experiments to test this hypothesis.

The main contributions of this work are:

• An analysis of the effect caused by applying pre-processing techniques such as stabi-
lization and filtering to the original Sentinel-1 data.

• A proposal of providing the convolutional network with the distance map to the
nearest past-deforestation spot.

• An evaluation and comparison of two automatic methods applied to deforestation
detection in two sites of the Brazilian Legal Amazon. The first one is a traditional
method based on time series; the second one is based on Deep Learning techniques.

The remainder of this paper is structured as follows: Section 2 briefly introduces the
pre-processing strategies applied to the input SAR data, the study areas, the deforestation
detection methods, and the experimental protocol. Next, the experimental results are ex-
plained and analyzed in Section 3. Finally, the conclusions and final remarks are presented
in Section 4.

2. Materials and Methods

This section presents the sites represented in the datasets, the evaluated methods,
the pre-processing and the experimental setup employed in this study. We used a con-
ventional method based on time series and a DL method with an FCN architecture for
comparison purposes.

2.1. Datasets

This study relied on SAR data from two sites within the Brazilian Legal Amazon
(see Figure 1), with geographical coordinates presented in Table 1. The first one is located
in the Pará state and extends over 115× 186 Km2. The second one is located in Mato
Grosso state and has an area of 104× 138 Km2. Both sites have a mixed land cover, mainly
composed of dense evergreen forest and pastures in Pará, and dense forest, soy fields and
pastures in Mato Grosso.

Table 1. Geographical coordinates of the Para and the Mato Grosso sites.

Point Para Mato Grosso

1 Lat: 3◦14′25′′S, Lon: 52◦27′09′′W Lat: 11◦49′21′′S, Lon: 57◦47′34′′W
2 Lat: 3◦14′29′′S, Lon: 50◦46′24′′W Lat: 11◦49′23′′S, Lon: 56◦31′17′′W
3 Lat: 4◦17′06′′S, Lon: 50◦46′24′′W Lat: 12◦46′03′′ S, Lon: 56◦31′11′′W
4 Lat: 4◦17′00′′S, Lon: 52◦27′15′′W Lat: 12◦46′01′′S, Lon: 57◦47′44′′W

According to statistics from PRODES project [42], Pará recorded the highest defor-
estation rate in 2020, followed by Mato Grosso, representing nearly 45% and 16% of the
total forest loss over BLA. Table 2 presents the number of pixels and its percentage corre-
sponding to the classes: deforestation, no deforestation, and past-deforestation for both
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sites. It is worth noticing that both datasets are highly unbalanced, containing fewer pixels
of the class deforestation, especially in Mato Grosso, where only 0.6% of the total area was
deforested.

Table 2. Class distribution of deforestation, no deforestation, and past-deforestation in terms of
number of pixels and percentage for Pará and Mato Grosso sites.

Class Para Mato Grosso
# of Pixels Percentage (%) # of Pixels Percentage (%)

Deforestation 572,765 1.06 222,799 0.62
No deforestation 34,903,847 64.89 23,115,578 63.82

Past-deforestation 18,312,197 34.04 12,881,067 35.56

40.0°S 40.0°S

20.0°S 20.0°S

0.0° 0.0°

80.0°W

80.0°W

60.0°W

60.0°W

40.0°W

40.0°W

South America

Brazil

PA

MT

Figure 1. Geographical location of the study areas within the Pará (PA) and Mato Grosso (MT)
Brazilian states.

The input datasets consist of Sentinel-1 GRD C-Band SAR images obtained and pre-
processed using the Google Earth Engine (GEE) platform [43]. The standard initial prepro-
cessing consisted of five steps, namely: (1) Apply orbit file, (2) GRD border noise removal,
(3) Thermal noise removal, (4) Radiometric calibration, and (5) Terrain correction using
SRTM terrain data. The Pará and Mato Grosso images comprised 5766 × 9320 pixels and
5230 × 6924 pixels, respectively.

Table 3 informs the relative orbit, slice number, and the image acquisition dates of Para
and Mato Grosso sites, which correspond to the deforestation that occurred between the
end of July 2019 (Re f .T0) and the end of July 2020 (Re f .T1), according to the 2020 PRODES
report. The reference of the deforestation map is available on the INPE website, at the
PRODES database [44].
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Table 3. Relative orbit, slice number, and acquisition dates of the Sentinel-1 images.

Site Relative Orbit Slice Number
Adquisition Date

2019 2020

Pará 68 5 9 August 2019 3 August 2020
Mato Grosso 39 10 26 July 2019 13 August 2020

2.2. Distance Map to the Closest Deforestation

The present study proposes the distance to the nearest past-deforestation as an addi-
tional feature to the bi-temporal image pair. Consider a binary past-deforestation mask,
indicating at each pixel position whether or not deforestation had already occurred up to
the acquisition date of earliest between the pair of images being analyzed. This feature
map is computed by the Euclidean distance transform given in (Equation (1)) below:

yi = |xi − pi| (1)

where yi is the feature value assigned to the pixel i, xi denotes its spatial coordinate vector,
and pi of its nearest pixel within the past-deforestation mask. The distance matrix is
normalized using the min-max procedure and concatenated to the image pair along the
polarization dimension. Figures 2 and 3 illustrate the past-deforestation map obtained from
the PRODES database and the distance map generated for Pará and Mato Grosso sites,
respectively. Points 1–4 correspond to the geographical location points defined in Table 1.
Blue and red colors represent the nearest and more distant pixels from the forest to the
nearest past-deforestation based on the PRODES datasets.

F or e s t Pa s t -d e for e s t a t ion

Point 1 Point 2

Point 3 Point 4

(a)

0  - N e a r

0 .2

0 .4

0 .6

0 .8

1  - Dis t a n t

Point 1 Point 2

Point 3 Point 4

(b)

Figure 2. Past-deforestation and distance maps for the Pará site. Blue and red represent the nearest
and more distant pixels from the forest to the nearest past deforestation. (a) Past-deforestation in the
Pará site. (b) Distance map to the nearest past-deforestation for the Pará site.



Remote Sens. 2022, 14, 3290 6 of 19
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1 - Dis t a n t
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Figure 3. Past-deforestation and distance maps for the Mato Grosso site. Blue and red represent the
nearest and more distant pixels from the forest to the nearest past-deforestation. (a) Past-deforestation
of the Mato Grosso site. (b) Distance map to the nearest past-deforestation for the Mato Grosso site.

2.3. Preprocessing

The radar images can be pre-processed using speckle filters and different stabiliza-
tion techniques to avoid false positives due to the speckle phenomena and the seasonal
variability of the radar time series, as detailed in the following.

2.3.1. Stabilization

We adopted in this study the methodology originally proposed in [45] and also ap-
plied in [20]. The original images are pre-processed to remove the harmonic seasonality
component. This treatment can help reduce variations in radar signals related to varia-
tions in the canopy moisture throughout the year. This study considered three years VH
and VV time series for every pixel and fitted a time-dependent harmonic function to the
backscattering values. In our case, the time series was composed of 88 images. For every
pixel of every image, the corresponding value of the sinusoidal function is subtracted from
the original pixel value to compute the stabilized pixel value. According to [20], although
computationally challenging, harmonic stabilization can be rewarding if used in areas
influenced by heavy precipitations.

2.3.2. SAR Image Despeckling

Speckle reduction is a standard procedure for SAR data processing. It aims to raise the
signal-to-noise ratio and ease the interpretation of radar images. In this work, we employed



Remote Sens. 2022, 14, 3290 7 of 19

a traditional standard despeckling system, which uses two filters, applied sequentially: a
temporal filter (Quegan and Yu) and a spatial filter (Refined Lee 7 × 7 filter).

We first apply the temporal filter [46] to a given SAR image based on a sequence of
past coregistered images. To obtain the filtered outcome, we compute next the following
expression:

Jk =
σ̂k
M

M

∑
i=1

Ii
σ̂i

(2)

where Jk is the filtered image, M the total number of collected images, Ii is the i-th image
and σ̂k = (1/N)∑N

i=1 I(k)i is the spatial average over a NxN window centered around the

current (x, y) position in the image k. I(k)i refers to the pixels in this window.
After applying the temporal filter and following [46], we used a refined version [47]

of Lee filter [48] due to its ability to preserve and enhance the edgy features of the input
images. The original Lee filter is based on the statistical modeling of speckle and uses local
statistics to reduce noise by applying the following expressions:

J = 〈I〉+ k(I − 〈I〉) (3)

where

k =
Var(I)

〈I〉2σ2
v + Var(I)

(4)

σv =
√

Var(I)/〈I〉 (5)

J and I are the filtered and the original images, respectively, 〈I〉, and Var(I) are the mean
and variance of the original image over a 7 × 7 window, and σv is the standard deviation
of the speckle, which can be approximated to

√
Var(I)/〈I〉.

The refined version of the Lee filter looks for edges on the 7 × 7 filtering window. It
then reshapes it depending on the edge orientation, thus reducing the number of pixels
involved in the filtering process and reducing the noise variance.

The combination of the described temporal and spatial filters can effectively reduce
noise and increase detection accuracy, but this comes at the expense of a heavy computa-
tional burden, mainly due to the high number of images taken into account during the
temporal filter step.

Thus, to evaluate the performance and need for the temporal filtering, two different
filtering treatments were defined and assessed: F1, which only applies the spatial filter and
F2, which uses the complete filtering chain (temporal + spatial despeckling).

Figure 4 shows how SAR preprocessing affects both the input images and the results
of the deforestation detection.

2.4. Pixel Labeling

This section describes the two automatic methods evaluated in this work for deforesta-
tion detection. The first is a conventional method based on time series, while the second
relies on a deep learning approach.
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Figure 4. Detail raw and filtered Sentinel-1 images over a 4× 4 km2 area of the Pará site. Notice how
speckle filtering reduces the probability of having false deforestation warnings without significantly
removing accurate detections.

2.4.1. Time Series Method

The time-series approach used in this paper is analogous to the Adaptive Linear
Thresholding (ALT) method introduced in [20], whose central premise is that generally,
deforestation will cause a brief but intense decay of the C-band SAR backscattering signal.
The method performs pixel-wise dynamic thresholding of the input time series. Firstly, all
the available data is divided into a ‘learning collection’ and a ‘detection collection’. Next,
the median value of the radar backscattering intensity is computed upon the ‘learning
collection’ for each location. Then, the most recent images, grouped on the ’detection
collection’, are thresholded against this median value, decreased by a given amount. This
given amount, called the ‘threshold level’, varies as a function of the distance to the nearest
past-deforestation, going from −2 dB for the areas closer to past-deforestation, to −3.97 dB,
for areas which are more than 5 km apart from previous deforestation.

The thresholding operation will create binary images out of the detection collection,
which will be equal to 1 in the corresponding pixel value lower than the threshold level or 0
if it is more significant. When added, these binary images will form a raster image, called a
‘detection raster’. This raster will have several attributes, such as the number of detections
(i.e., the number of pixels under the threshold), the date of the image that provoked the first
detection, and the minimum intensity value below the threshold recorded on the detection
collection. Finally, the warning raster is vectorized to create deforestation alert polygons
suitable to be sent to enforcement teams in the field. A near real-time deforestation detection
system based on this methodology has been made operational by the INPE, under the
name DETER-R. A complete description of the system methods and results can be found
in [49].

2.4.2. U-Net with Early Fusion

The U-Net architecture employed in this work was adapted from [50]. It follows
an encoder–decoder approach, as shown in Figure 5. The encoder comprises a series of
convolutions, followed by the rectified linear unit (ReLU) as the activation function and
max-pooling operation for down-sampling. The decoder consists of a succession of bilinear
up-sampling operations, followed by convolution blocks to map the feature representation
back into the spatial resolution of input data. The skip connections bring to the decoder
features of corresponding encoder layers. It aims to recover the fine spatial details lost
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during the encoder down-sampling steps. Finally, the decoder outputs a tensor containing
the posterior class probabilities for each pixel location.

Bottleneck

Encoder

Without distance map

With distance map

Decoder

Input (I   : I   )T0 T1

Input (I   : I   : DM)T0       T1

Output

Skip connection

Figure 5. U-Net architecture with convolutional Encoder and Decoder stages. When the distance
map is not included, the input is the concatenation of the images IT0 and IT1 . When the distance map
is included, the input is the concatenation of the images IT0 , IT1 and the distance map (DM).

We adopted the “early fusion” strategy to detect deforestation, which refers to how the
input data is combined before classification. Essentially, the input images acquired at dates
T0 and T1 are stacked along their spectral dimension, resulting in a tensor I ∈ RH×W×C,
where H and W refers to the spatial dimensions and C to the number bands of the images.
Moreover, each polarization band (VV and VH) was normalized to zero mean and unit
variance before applying the U-Net method. The distance map, if used, is combined with
the input data by concatenating it to the tensor defined by the stacked image pair.

2.5. Experimental Setup

The experimental analysis reported in the next section compares the Deep Learning
approach, represented by the U-Net configured in the early-fusion scheme, and the time
series approach proposed in [20]. For both pixel labeling approaches, we tested six input
configurations: the raw input data (R), the spatially filtered data (F1), the full spatially and
temporally filtered data (F2), the stabilized data (S), the stabilized and spatially filtered
(SF1), and the stabilized and fully spatially and temporally filtered (SF2). For the time series
method, we considered a two-year learning collection. The detection collection was formed
with all the available images between Re f .T0 (July 2019) and Re f .T1 (July 2020).

As for the U-Net architecture, we divided the two datasets into tiles: 60 tiles of
961 × 932 pixels for Pará and 30 tiles comprising 1046 × 1154 pixels for Mato Grosso.
For both datasets, we split the tiles 60%, 20%, and 20% for training, validation, and testing,
respectively. The network was trained on image patches of 128× 128 pixels cropped from
the input image, with a stride equal to 32 pixels and an overlap of 70%. We carried the
inference tile-wise. Table 4 shows details of the network architecture implemented for
our experiments.
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Table 4. U-Net Architecture. Symbols: C (Convolution), MP (Max-pooling), US (Bilinear Up-
sampling). The parametrization is (Kernel Height × Kernel Height, Number of filters).

Encoder Bottleneck Decoder Output

MP(C(3 × 3, 32))
MP(C(3 × 3, 64))

MP(C(3 × 3, 128))

2× C(3 × 3, 128)
US(C(3 × 3, 128))
US(C(3 × 3, 64))
US(C(3 × 3, 32))

Softmax(C(1 × 1,
# Classes))

We followed a cross-validation strategy for the training process, so we randomly split
both datasets into 6-folds. In this procedure, we ensured that all tiles were part of the test
set only once. Then, the final prediction was a mosaic of the test tiles, which composed the
whole image. In addition, we follow this parameter setup: batch size equal to 32, Adam
optimizer with learning rate equal to 1× 10−3, and β equal to 0.9, and, to avoid over-fitting,
an early stopping strategy was employed with a patient equal to 10.

Considering that the dataset is highly unbalanced, we set the weighted cross entropy as
a loss function with a vector of weights equals to [0.1, 0.9] for class no-deforestation and de-
forestation, respectively. Following the PRODES methodology, the class past-deforestation
was not considered during training, validation, and testing. To ensure that all the patches
contained samples from both classes, we took for training only patches having at least 2%
of pixels of deforestation . In addition, a data augmentation procedure for training and
validation was applied; these operations included rotation (90◦) and flipping (horizontal,
vertical) transformations.

Following the PRODES methodology, we ignored pixels within a two-pixel wide buffer
at the inner and outer edges of all polygons identified as deforestation in the reference
data. These pixels were ignored for training, validation, and testing. Consequently, we
set the weight of these pixels to zero in the FCN loss function. In addition, we ignored
deforestation polygons smaller than 156 pixels (6.25 ha) for accuracy measurement.

3. Results and Discussion

In this section, we report and analyze the results obtained for the two study sites
applying the time series method and the U-Net architecture (described in Section 2). The
results are summarized in terms of Mean Average Precision (mAP). In addition, we illustrate
the deforested probability maps produced in each experiment.

3.1. Results of Experiments on the Pará Dataset

Figure 6 shows the Precision vs. Recall curves obtained in the experiments on the
time series method. The dotted curve represents the results obtained from raw input
data, the poorest performance among all input variants. The colourful unbroken lines
depict the results from input data after stabilization and filtering. The curves indicate
that the combination of stabilization and complete filtering SF2 achieved the best result
(62.7%), followed by SF1 with a score of 55.5%. With the application of filters, the results
improved about 5% compared to the raw (R) and stabilized (S) data, which presented
the poorest mAP scores, 47.7% and 51.4%, respectively. Therefore, the stabilization and
filtering procedures brought a significant performance gain for the time series method.
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Figure 6. Precision vs. Recall curves for time series method in the Pará site.

Figure 7 presents the Precision vs. Recall curves generated by the U-Net without
using the distance maps to the nearest prior deforestation. The mAP values increased
significantly for all experiments compared to the time series method. However, contrary
to the results recorded for the time series, the best U-Net results were achieved using
the stabilized (S) and raw (R) data with 76.3% and 76.1%, respectively. Thus, instead
of improving, both forms of filtering detracted from U-Net performance. One possible
explanation is that the filtering eliminated useful information for U-Net to differentiate
between forested and deforested areas. The stabilization operation, on the contrary, was
beneficial. It is worth remembering that the stabilization process aims to eliminate the
noise resulting from variations in the canopy moisture. This operation requires accessing a
sequence of past images of the same region. In our experiments, the U-Net had no access to
this temporal data. Therefore, it could hardly infer such information from its input.
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Figure 7. Precision vs. Recall curves for the U-Net architecture in the Pará site.

Next, Figure 8 draws Precision vs. Recall curves when we added the distance map
to the closest past-deforestation as an extra input feature. Comparing these curves with
the ones of Figure 7, one concludes that the inclusion of the distance map consistently
improved the U-Net mAP values between 2.7% and 7.6%, depending on the input data.
These results support the hypothesis that deforestation becomes more likely the closer one
gets to already deforested areas.
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Figure 8. Precision vs. Recall curves for the U-Net architecture with the distance map in the Pará site.

Table 5 summarizes the mAP scores obtained for all experiments on the site located in
the Pará state. Values in bold correspond to the best-recorded mAP of each pixel labeling
strategy. The superiority of the approach based on the U-Net over the method proposed
in [20] becomes evident. Likewise, the table shows that adding the distance map has
consistently improved the mAP values.

Table 5. Mean Average Precision (mAP) scores obtained from the evaluated methods in the Pará site.

Image Pair Time Series U-Net U-Net & Distance
Map

R
F1
F2
S

SF1
SF2

47.7
51.4
53.0
48.2
55.5
62.7

76.1
71.3
58.0
76.3
70.4
60.0

78.8
78.9
62.1
81.8
74.8
66.0

Finally, Figure 9 illustrates the probability maps in a snip of the Pará site. This region
starts at the point (x0: 4400, x1: 2300) and has an extension of 8.4 km2. In these maps, red
and blue represent the highest and the lowest deforestation probability, respectively. Black
denotes past-deforested regions, excluded from training and evaluation. Each column
exhibits the output from the time series method, U-Net, and U-Net with the distance map
to the nearest past-deforestation. Each row refers to the six data variants (R, F1, F2, S, SF1,
SF2). The first image on the top is the ground-truth provided by PRODES with the true
labels (Green, deforestation; Red, past-deforestation; Blue, no deforestation). According
to this figure, the best results delivered by the time-series method (column on the left)
were obtained with the SF2 treatment (Figure 9p). In this case, the deforested regions
were well-defined compared to the other maps, even though a kind of salt-and-pepper
noise is observable in the resulting probability map. On the other hand, the probability
maps generated from R and S (Figure 9a,j) data contain a lot of wrongly assigned high
deforestation probabilities, which were partially eliminated by the filters. The U-Net
architecture (middle columns) delivered a much better output than the time-series method,
specially for S and R input data variants (Figure 9b,k). In all cases, the salt-and-pepper
noise decreased substantially, and higher probability values were produced, denoting
more assignment confidence. The distance to the nearest past-deforestation map (right
column) improved the results in all scenarios; the deforested polygons had sharper contours,
comparatively less intermediate probability values, and, consequently, more confident
outcomes.
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Forest
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Past-deforestation

Forest
Deforestation
Past-deforestation

Time seriesImage Pair
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Figure 9. Snip of deforestation probability maps in the Pará site (starting at the point (x0: 4400, x1:
2300) and with an extension of 8.4 km2). Each line represents the raw and the five pre-processing
techniques applied to the image pair. The methods evaluated are listed in each column. Blue and red
pixels symbolize the lowest and the highest probability of the deforestation class, respectively, and
black regions represent past-deforestation.
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3.2. Results of Experiments on the Mato Grosso Dataset

Figure 10 presents the Precision vs. Recall curves drawn from the results produced
by the time series method. The best results were obtained from filtered input data in both
variants (F2 and F1), with values around 50.6%. Notice that the performance was inferior
to what was recorded in the experiments on the Pará dataset. The reason may be that the
Mato Grosso dataset is comparatively more unbalanced, making training more challenging.

It is worth mentioning that the Mato Grosso site lies in the transition of the Amazonia
dense forests biome and the Cerrado savannas. Global warming and regional deforestation
has provoked a degradation of the forests in this transitional zone (ecotone) [51]. This
degradation induces a heavy seasonal component on the forest phenology that will provoke
errors in the time-series deforestation detection ATL method, which expects a nearly-
constant backscattering signal over dense forests. This degradation will also misguide
the harmonic stabilization, as it is designed to control near-sinusoidal seasonality, such as
the one provoked by precipitation variation. Seasonality of degraded forests or savannas
are modeled using more complex models, as mentioned in [52], such as dual logistic
curves [53].
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Figure 10. Precision vs. Recall curves for time series method in the Mato Grosso site.

Figure 11 shows the Precision vs. Recall curves obtained by the U-Net, without
considering the distance map. The best results correspond to the stabilized data (S), raw
(R) and (F2), in all these cases, values around 57%. Like in the experiments on the Pará site,
the U-Net learned a model capable of renouncing data preprocessing with no significant
accuracy loss. Besides this, although less markedly than for the Pará site, U-Net performed
better than the time series method for all input variants and also for the Mato Grosso site.

Figure 12 shows the U-Net results generated after including the distance map. Similar
to the experiment on the Pará site with the same input, the Precision vs. Recall curves reveal
that the distance map brought mAP improvements around 3% to 4% in all these cases.
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Figure 11. Precision vs. Recall curves for the U-Net architecture in the Mato Grosso site.
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Figure 12. Precision vs. Recall curves for the U-Net architecture with the distance map in the Mato
Grosso site.

Table 6 summarizes the mAP scores obtained in all experiments carried out on Mato
Grosso dataset.

Table 6. Mean Average Precision (mAP) scores obtained from the evaluated methods in the Mato
Grosso site.

Image Pair Time Series U-Net U-Net & Distance
Map

R
F1
F2
S

SF1
SF2

45.5
50.4
50.6
41.3
46.7
47.0

57.4
55.2
57.2
57.7
49.4
52.0

59.2
58.3
60.1
60.1
51.2
55.5

Figure 13 presents the probability maps in a snip of the Mato Grosso site. This region
starts at the point (x0: 3000, x1: 500) and has an extension of 30 km2. As in Figure 9, columns
refer to pixel labeling methods, specifically, the time series, the U-Net, and the U-Net with
the distance map of past-deforestation. Each row corresponds to an input data variant
(R, F1, F2, S, SF1, SF2). Notice that the time series method (left column) assigned a high
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probability to a large portion of pixels belonging to the no-deforestation class. The U-Net
(middle column) produced the best probability maps when working on R and F2 and S
(Figure 13b,h,k) the input data variants. Although a high probability has been assigned
to most deforested regions, some were still nearly barely recognized. Furthermore, the
inclusion of the distance map improved all results (right column) by assigning higher
probabilities to deforestation spots. These results confirm the conclusion drawn from the
experiments on the Pará site that the distance map helps improve deforestation detection
accuracy.

Forest
Deforestation
Past-deforestation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Time seriesImage Pair U-Net U-Net with DM

R

F1

F2

S

SF1

SF2

0 0.2 0.4 0.6 0.8 1

Low prob. High prob. 

Reference
(x0 , x1)

Figure 13. Snip of deforestation probability maps in the Mato Grosso site. Starting at the point
(x0: 3000, x1: 500) and with an extension of 30 km2. Each line represents the raw and the five
pre-processing techniques applied to the image pair. The methods evaluated are listed in each
column. Blue and red pixels symbolize the lowest and the highest probability of the deforestation
class, respectively, and black regions represent past-deforestation.
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4. Conclusions

This paper reported the results of a study that evaluated the benefits of pre-processing
techniques for detecting deforestation from a pair of bi-temporal SAR images employing
a fully convolutional network. As pre-processing techniques, we tested a stabilization
operation aiming to suppress the effect of seasonal variation in trees’ canopy moisture from
the compared SAR images. We also applied a combination of a temporal and a spatial
filter to the SAR images, aiming to reduce the speckle noise. A U-Net in the early-fusion
configuration was used for the pixel-wise classification. As a baseline, we adopted a
recent non-deep learning approach that exploits information contained in a sequence of
co-registered multitemporal SAR images. Driven by the empirical observation that points
closer to previously deforested areas are more prone to deforestation in the near future, the
work also proposed and evaluated the benefits of adding to the U-Net input the information
regarding the distance of each pixel to its nearest deforested site.

The U-Net outperformed the time-series method in all experiments, with gains above
10%. Furthermore, the results confirmed that speckle filtering is almost mandatory for
the time-series approach. However, the U-Net managed to handle the speckle noise and
possibly even take advantage of information that said filtering approaches might suppress.
As for the pre-processing techniques, the stabilization procedure helped improve the
U-Net accuracy. This can be explained by the fact that the stabilization operation uses the
information contained in a multitemporal series of co-registered images. Thus, stabilization
brings additional information to the network, which is most likely not present in the pair
of images applied to the U-Net input. Unlike stabilization, filtering operations brought no
accuracy gain and, in many cases, it was even deleterious.

The main challenge for the U-Net was the high data imbalance characteristic of
deforestation detection applications. Indeed, the percentage of class deforestation ranged
in our datasets between 1% and 0.6%. Despite using a weighted loss, we did not manage to
mitigate the problem entirely. Indeed, U-Net performed worse in experiments on the most
unbalanced dataset. However, it was consistently superior to the time series approach,
even in this case.

This work also proposed providing the network with information regarding the
distance of each pixel to its nearest prior deforested site, besides the pair of temporal
SAR images. Such additional information consistently improved the U-Net mean Average
Precision by 4%.

The experiments revealed that the stabilization process was able to bring significant
gains in one of the sites that made up our dataset. Stabilization seeks to capture seasonal
variations in tree canopy moisture. Such observation suggests using recurrent networks as
an alternative to the stabilization method tested in this study. Finally, it is worth mentioning
that the choice of U-Net was mainly due to its wide use in semantic segmentation tasks.
Better results are potentially achievable with more elaborate, fully convolutional network
architectures. Such questions can be the subject of future works.
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