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Abstract

The analysis of the photospheric velocity field is essential for understanding plasma turbulence in the solar surface,
which may be responsible for driving processes such as magnetic reconnection, flares, wave propagation, particle
acceleration, and coronal heating. Currently, the only available methods to estimate velocities at the solar
photosphere transverse to an observer’s line of sight infer flows from differences in image structure in successive
observations. Due to data noise, algorithms such as local correlation tracking may lead to a vector field with wide
gaps where no velocity vectors are provided. In this paper, a novel method for image inpainting of highly corrupted
data is proposed and applied to the restoration of horizontal velocity fields in the solar photosphere. The restored
velocity field preserves all the vector field components present in the original field. The method shows robustness
when applied to both simulated and observational data.

Unified Astronomy Thesaurus concepts: Solar photosphere (1518); Astrophysical fluid dynamics (101); Space
plasmas (1544); Magnetohydrodynamics (1964); Computational methods (1965)

1. Introduction

Nonlinear phenomena taking place in the solar photosphere
can strongly impact the plasma in the solar chromosphere and
corona. Consider, for example, the problem of coronal heating,
wherein the temperature of the solar atmosphere is observed to
increase drastically, from a few thousand degrees kelvin to over
1 million degrees kelvin, across a thin (∼100 km) transition
region (Vernazza et al. 1981). It has been attributed to the
excitation and propagation of Alfvén waves that transport
energy from the photosphere to the upper solar atmosphere, and
these magnetohydrodynamic (MHD) waves can be excited by
swirling motions in the photospheric and chromospheric
plasmas (Wedemeyer-Böhm et al. 2012; Liu et al. 2019).
Alternatively, coronal heating may be due to the occurrence of
nanoflares in the solar atmosphere (Parker 1988; Testa et al.
2014; Bahauddin et al. 2021). Plasma turbulence in the
photosphere and corona can also be responsible for magnetic
reconnection events that may lead to strong solar flares and
coronal mass ejections, with significant effects on space
weather through the solar wind (Moore et al. 2018; Kusano
et al. 2020). Therefore, a proper understanding, and possibly
the capability to predict such phenomena through data-driven
numerical simulations, depends on knowledge of the plasma
motions in the photosphere. With that goal, different methods
have been proposed to reconstruct the photospheric velocity
field from available image sequences. Usually, a time series of
observations of line-of-sight magnetogram, continuum inten-
sity, or Dopplergram is employed to detect the motion of

magnetic structures through some local correlation tracking
(LCT) method (November & Simon 1988; Berger et al. 1998;
Welsch et al. 2004), of which one of the most widely used is
the Fourier (FLCT) method (Welsch et al. 2004; Fisher &
Welsch 2008; Yeates et al. 2012; Chian et al. 2014; Liu et al.
2019; Birch et al. 2019). Such methods search for strong
correlations between intensity features in image sequences to
obtain velocity vectors.
Despite their success in reconstructing photospheric velocity

fields from available magnetograms, the LCT methods
frequently suffer from data noise (Welsch et al. 2012) or
insufficient image structure (Schuck 2006). In general, noisy
fluctuations in regions of weak magnetic field lead to spurious
correlations; thus, reconstructed velocity vectors are typically
discarded where the line-of-sight magnetic field (BLOS) is
below a certain threshold. This may result in wide gaps in the
reconstructed velocity fields that prevent their use as inputs in
numerical simulations, for example. This problem is not limited
to the LCT method; essentially all optical flow estimation
methods assume that temporal variations in intensity from one
image to the next arise from velocities transporting matter. If,
however, part of intensity fluctuations are spurious—due, for
instance, to measurement noise—then the resulting flow
estimates will also contain spurious components. While such
unphysical flows might be loosely referred to as “noisy,” they
are probably more accurately described as “noise-contami-
nated” flow fields. Note that, in principle, measured magnetic
fluctuations within a quiet-Sun pixel can be due to physical
evolution and not noise, but they can nonetheless introduce
spurious flow components. For example, subresolution fields in
quiet-Sun areas, which have significant field strength (on the
order of hG; e.g., Rubio & Suárez 2019) but small filling factor,
can produce measurable polarization within a sensitive enough
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instrument’s pixel, and changes in this polarization can occur
owing to their evolution within a pixel. This evolution is,
however, inconsistent with the assumption inherent to optical
flow methods, i.e., that changes in flux density arise owing to
flux transport from neighboring pixels. Thus, although such
subresolution magnetic evolution is physical and not due to
measurement errors (such as CCD noise), its effect on flow
estimation methods in quiet-Sun areas can be the same: an
optical flow method will introduce spurious flow components
to match the measured change. Although of different origin, we
will also refer to the effect of unresolved, rapidly fluctuating
fields as “noise.” In addition, LCT assumes that there is no
horizontal magnetic field or that there is no vertical velocity
(see, e.g., Démoulin & Berger 2003), i.e., LCT assumes an
oversimplified equation for the evolution of the vertical flux.
Thus, methods such as the LCT cannot reconstruct flows with
complete accuracy. The inferred flows are estimates and are,
likely, noise contaminated.

Due to the aforementioned problems, a “gap-filling” or
inpainting (the technique of modifying an image in an
undetectable form; Bertalmio et al. 2000) method is required
before the derived velocity fields can be used to infer the
motion of passive scalars in the photosphere or be incorporated
into coronal MHD simulations, e.g., to derive an electric field
consistent with observations at the photospheric boundary. In
the particular case of applying local correlation tracking (or
other flow estimation methods) to magnetograms, estimated
flows will be significantly noise contaminated in pixels where
the measured change in flux density (between initial and final
frames) is not much larger than the measurement uncertainty in
flux density. In regions where the change in flux density is
comparable to or smaller than measurement uncertainty,
estimated flows will be worse—not just contaminated but
“noise dominated.” These conditions are typically met in
regions outside active-region fields, where significant fields are
present, but they are not spatially coherent. Consequently, we
have focused on inpainting flows in such regions. Reconstruc-
tion of flows where spatially coherent magnetic fields are not
present has potential applications for data-driven models of the
solar atmosphere (e.g., Hoeksema et al. 2020). The subject of
appropriate choices of boundary conditions for dynamical
models in weak-field regions is an area of ongoing research
(Mackay & Yeates 2021). Consequently, methods to inpaint
flows in regions lacking strong, coherent magnetic fields are of
interest.

Inpainting of flows could be valuable in other contexts too.
In fact, inpainting could be useful in any situation where
information about flows over an entire region is sought, but
flow tracers in remote-sensing observations (or sensing
instruments in laboratory experiments) are sparse or nonexis-
tent in some subregions. For instance, cloud motions have been
used to infer velocities for weather forecasting (e.g., Horváth &
Davies 2001), but some areas are cloud-free, and inpainting
could be useful in such areas. Correlation tracking has also
been applied to SOT prominence observation in the corona by
Freed et al. (2016) and to AIA post-flare arcades by Freed &
McKenzie (2018), and in both cases there were areas with weak
image intensities and therefore missing flow fields. For a recent
review of inpainting techniques, see Elharrouss et al. (2020).

In this letter, we show how a simple inpainting technique for
highly corrupted images can be used to fill the gaps in noise-
dominated velocity vector fields. Section 2 describes the

proposed modified Monte Carlo (MMC) method for image
inpainting. Section 3 applies the MMC method to 3D
numerical simulations of the solar atmosphere. Section 4
applies the MMC method to a velocity field derived from
observational data of solar active region AR 10930. A
discussion on the limitations of the methodology and
conclusions are given in Section 5.

2. Gap-filling Method

Image inpainting is a technique for restoration of an image
with missing or corrupted points or regions. For relatively
small damage, many inpainting algorithms, based on different
approaches to the reconstruction, provide reasonable results
(for a survey, see, e.g., Tauber et al. 2007; Zarif et al. 2015;
Jam et al. 2021). It is more difficult to restore images
containing large corrupted domains. There is no universal
method that would provide good results for images and forms
of corrupted areas of different types; in each particular case, an
appropriate method needs to be found and its values of
parameters should be carefully chosen.
In what follows, we deal with solar image data (shown

below) containing both small and large corrupted regions,
including extra-large corrupted areas with few noncorrupted
pixels that are located far from each other. Therefore, we are
forced to combine different approaches. Via many numerical
experiments, we found that optimal results are obtained by a
combination of two recovery methods, both based on a
stochastic principle. The horizontal velocity fields with missing
data are treated as two images, one for each component, where
the corrupted pixels coincide with the missing data. These
images are reconstructed by a variant of the Monte Carlo
method described below, with nonmissing velocity values kept
intact.

2.1. The Standard Monte Carlo Method

From each corrupted point (pixel) of the image we start n
random walks simulating trajectories of a Wiener (white-noise)
process. Each trajectory is represented by a piecewise linear
function constructed by the standard method: direction of the
trajectory and its length are chosen randomly at each step of the
random walk. This direction is parameterized by a random
variable uniformly distributed in [0, 2π) (polar angle); length is
defined by the normal Gaussian distribution 0,( )s , value of
the variance, σ2, is a parameter of the method, in computations
we used σ= 0.5 pixels. Once values for direction and length
are randomly chosen, the trajectory advances in that direction
by that distance and this procedure repeats. Each random walk
continues until one of two conditions is met: either the
trajectory meets a noncorrupted point (such a trajectory is
termed successful), or the number of steps exceeds a certain
threshold N (an unsuccessful trajectory). If the number of
successful random walks started from a given corrupted point is
large enough (at least 2n/3 in our computations), then the
corresponding corrupted point is assigned the intensity equal to
the arithmetic mean of the intensities of all noncorrupted pixels
met by the successful trajectories. By the Feynman−Kac
formula, the reconstructed intensities computed by the standard
Monte Carlo (SMC) method converge to a harmonic function:
the solution of the Dirichlet problem for the Laplace equation
in a certain domain (Gu et al. 2004). (Hence, this method can
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also be considered as a diffusion reconstruction method; see
Jam et al. 2021.)

2.2. The Modified Monte Carlo (MMC) Method

If in the vicinity of a corrupted pixel there are no or few
noncorrupted pixels, neither the Monte Carlo method described
above nor most other methods give good results of reconstruc-
tion. For example, when using the inpainting algorithm based
on hypoelliptic diffusion (Boscain et al. 2014), large corrupted
regions are not fully restored. Using the Averaging and
Hypoelliptic Evolution (AHE) method for highly corrupted
images (Boscain et al. 2018b, 2018a), the reconstruction is
better but still unacceptable. The main reason is the “mosaic
effect” consisting in that large corrupted domains are
reconstructed as regions of almost constant color (see Figure
5 (step 1) in Boscain et al. 2018b and discussion therein). For
large and very large corrupted regions this cannot be removed
by the anisotropic diffusion at the next step of the AHE
algorithm. In the present paper we use the method described in
what follows, which we call the MMC method, which is a
modification of the method presented in the previous
subsection.

The only modification is aimed at decreasing computational
burden of the problem. It concerns the reconstruction of the
pixels where the SMC does not provide enough information,
i.e., the corresponding random walks are unsuccessful; there-
fore, more random walks and longer trajectories are required to
be computed, making the SMC very demanding from the
computational point of view.

As for the SMC, in what follows we describe the algorithm
for one corrupted pixel, Pkm= (xk, ym), assuming that the same
procedure is repeated for all corrupted pixels independently.
The pixel Pkm is surrounded by corrupted and noncorrupted
pixels. Consider a neighborhood of Pkm: a square centered in
Pkm defined as

U x y x y k i r m j r, , : , ,r k m i j( ) {( ) ∣ ∣ ∣ ∣ }= - - 

containing (1+ 2r)2 pixels, including Pkm itself. If for the
current pixel Pkm there exists a neighborhood Ur(xk, ym) of a
relatively small size (we used r� 5), containing more than half
noncorrupted pixels, we use the SMC method described in the
previous section. Otherwise, many random walks are unsuc-
cessful, making the SMC method expensive from the
computational point of view; therefore, in order to reduce the
execution time of our codes, we use the procedure described
below.

First, we consider the nine-point neighborhood U9 (xk, ym),
containing q� 5 corrupted pixels (if q< 5, the intensity of Pkm

is reconstructed by the SMC). Second, we increase the size of
the neighborhood U9(xk, ym) until the number of noncorrupted
pixels becomes at least R= qM, whereM is a parameter (we set
M= 5 in computations). Let GR(xk, ym) be the set of
noncorrupted pixels from the neighborhood UR(xk, ym). Third,
we randomly split (without replacement) the set of the
noncorrupted pixels GR(xk, ym) into q parts, G1,K,Gq, each
containing at least M pixels, and for each part we calculate the
average intensity F(Gi), i= 1,K,q; here F(M) stands for
average intensity (arithmetic mean) for all pixels in a set of
noncorrupted pixels M. Finally, we randomly assign without
replacement each corrupted pixel from the neighborhood
U9(xk, ym) to one of the values F(G1),K,F(Gq).

As mentioned before, the noncorrupted pixels are not
affected by both methods (SMC and MMC); in other words,
in such points the given vector field remains intact.

3. Analysis of Simulated Data

First, we illustrate our method with data obtained from a
numerical simulation of the solar atmosphere. We employ
publicly available data from the 3D radiation magnetohydro-
dynamic code Bifrost, for simulating solar and stellar atmo-
spheres. Bifrost uses a staggered grid and a fifth/sixth-order
compact explicit finite-difference scheme with diffusive terms
to ensure numerical stability. For detailed information on the
code, see Gudiksen et al. (2011). We chose a simulation where
the vertical domain extends from 2.4Mm below the visible
surface to 14.4 Mm above the surface, including the upper part
of the convection zone, the photosphere, the chromosphere, the
transition region, and the corona. The numerical grid has
504× 504× 496 points and represents a region of 24× 24×
17 Mm3 with 48 km for horizontal resolution, while the vertical
resolution varies from 19 km in the photosphere and chromo-
sphere to 100 km at the top boundary. The data are in SI units,
specifically, velocity is in m s−1 and magnetic field is in T. The
average unsigned magnetic field strength in the photosphere is
5 mT (50 G), with two dominant opposite-polarity regions
8Mm apart constituting an enhanced network. The full
simulation data are available from the Hinode Science Data
Centre Europe,8 under the name en24048_hion. More details
about this simulation are found in Carlsson et al. (2016).
Figure 1 shows the vertical components of the magnetic (top
plane) and velocity (bottom plane) fields at t= 3850 s and
z= 0, where the visible solar surface is defined. It can be seen
that the magnetic field is concentrated in the intergranular lanes
and two large, opposite-polarity regions are present. The
magnetic and velocity field units have been converted to G and
km s−1, respectively.

Figure 1. Bifrost simulated data of solar photosphere at z = 0 and t = 3850 s:
vertical magnetic field Bz in G (top) and vertical velocity field uz in km s−1

(bottom).

8 http://www.sdc.uio.no/search/simulations
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Since we plan to compare simulated data with satellite data,
we are only interested in the horizontal components of the
velocity field on the photosphere. Thus, we select a 2D slice in
the box shown in the lower corner of the planes in Figure 1 to
illustrate the method. The corresponding streamlines, colored
by the divergence of the horizontal velocity field, are shown in
the top panel of Figure 2. The divergence was computed using
second-order, centered finite differences. The inset displays an
enlargement of a box near the lower left corner, with velocity
vectors surrounding a vortex structure. In order to test our
inpainting method, we first produce a corrupted velocity field
from this set by randomly removing vectors from it. For each
vector position, a random variable is generated from a Gaussian
distribution with zero mean and variance equal to 50; if the
random variable so generated has absolute value larger than 10,
the vector in that location is removed. The resulting vector field
has ≈84% of the original vectors removed and is shown in the
middle panel of Figure 2. Once again, the inset shows an
enlargement of the small box at the bottom, where the
frequency of gaps in the corrupted image can be appreciated.
The bottom panel shows the streamlines and divergence of the
restored (gap-filled) velocity field obtained by the MMC
algorithm, which is visually very similar to the original one. A
closer look at the small box, shown in the inset, attests to the
power of the method to rebuild a vector field from a set of a few
scattered vectors. The Pearson correlation coefficient
(Fisher 1958) between the matrix of x-components of the
original velocity field and the matrix of x-components of the
gap-filled velocity field is 0.98, the same value obtained for the
correlation involving the matrices of y-components. The
correlation coefficient between original and gap-filled diver-
gence fields is 0.88. As a comparison, we performed the
inpainting of the same data using the discrete cosine transform
with penalized least-squares (DCT-PLS) method, a popular
smoothing technique introduced by Garcia (2010). The method
is capable of handling large areas of missing values and has
been extensively used in the literature (see, e.g., Wang et al.
2022). The automatic choice of the amount of smoothing is
performed by minimizing the generalized cross-validation
score, and a Matlab code is provided in Garcia (2010). The
results are summarized in Figure 3, where panel (a) shows the
lower left part of the domain with the original Bifrost velocity
field; panel (b) shows the velocity field with gaps, as in the
middle panel of Figure 2; panel (c) shows the velocity field
inpainted by the MMC method; and panel (d) shows the
velocity field inpainted by the DCT-PLS method. Note that the
DCT-PLS procedure removes many of the small details and
sharp gradients present in the original field, as expected for a
smoothing method. The correlation coefficient between the
DCT-PLS and the original field is 0.94, a little smaller than the
one obtained with the MMC method (0.98). Our goal is not to
conduct an extensive comparison with this smoothing proce-
dure, and we do not claim that our method is better for all
applications. We want to stress that for the inpainting of a 2D
field extracted from a 3D system a smoothing procedure may
lose some of the fine details and sharp gradients observed in the
original field, which is something that the MMC recovered
quite well.9 In a future work, we also intend to explore the Figure 2. Simulated solar atmosphere at 150 km above the solar surface:

original Bifrost data (top panel), original velocity field data with random gaps
(middle panel), and reconstructed velocity field, gap-filled by the MMC
method (bottom panel). In the top and bottom panels, the line integral
convolution of horizontal velocity field vectors is colored by ∇ · v. In the
middle panel and in the enlarged views the velocity field is represented by
arrows.

9 Note that the solution of the SMC method is “smooth” in the sense of
elliptic regularity. However, this is different from the “smoothing” of the DCT-
PLS method, which means that small scales are filtered out because they are
assumed to represent noise in the data.
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robustness of the method as a function of the noise level, but
for now we conclude that the MMC gap-filling method
proposed in this letter is accurate for this task and proceed to
employ it with real observational data.

4. Analysis of Satellite Data

The photospheric horizontal velocity field is estimated from
solar line-of-sight magnetograms using the FLCT method
(Welsch et al. 2004). To obtain the magnetograms, we used
Stokes V/I from Hinode/Narrowband Filter Imager (NFI)
observations in Fe I 6302Å of solar active region AR 10930 on
2006 December 12. The noise level was estimated at ≈17 G by
fitting the core of histogrammed field strengths (Hagenaar et al.
1999). Considering the reduction of noise due to the averaging
in the tracking procedure, a tracking threshold of 15 G was
chosen, meaning that no velocities are assigned to magneto-
gram pixels below this threshold. The windowing parameter, σ,
used by FLCT was set to 4 pixels. The cadence of the

magnetogram images is ≈121 s, and the sampling time
between velocity field frames is Δt= 8 minutes. This is small
enough to minimize decorrelation between frames, while
allowing for boxcar averaging of five magnetograms to
produce each velocity frame, which reduces noise significantly.
Calculations with Δt= 4 minutes result in qualitatively similar
results. For a thorough description of how the FLCT method
was fine-tuned for this problem, see Welsch et al. (2012). For
other works on the same velocity field, see Yeates et al. (2012)
and Chian et al. (2014).
Figure 4 shows the Hinode line-of-sight magnetogram of AR

10930 (top panel) for 17:20:44.525 UT on 12 December 2006
and the corresponding x-component of the velocity field
obtained by the FLCT method (bottom panel). The line-of-
sight magnetic field is in G, and the velocity field is in km s−1.
(The apparent weak field in the negative sunspot’s core is an
artifact of our weak-field, linear calibration, which is inaccurate
in strong-field regions. Absolute calibration of field strengths in
sunspots is irrelevant for our purposes because the regions

Figure 3. Comparison between the MMC method and a smoothing routine: (a) original Bifrost velocity field data; (b) original velocity field data with random gaps;
(c) reconstructed velocity field, gap-filled by the MMC method; (d) reconstructed velocity field, gap-filled by the smoothing method.
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investigated in this study do not include umbral fields.) The
white values in the vx map represent gaps in the FLCT field. It
can be seen that a considerable portion of the domain is void of
velocity vectors. The two boxes marked as A and B indicate the
regions where the velocity field gaps will be filled by the MMC
method. Welsch (2015) compared the NFI “line-wing”
magnetic flux densities and Spectro-Polarimeter (SP) (full
Stokes inversion, fill-fraction corrected) field strengths and
found an approximately linear scaling between the two for
pixel-averaged flux densities up to about 1.5 kG, appropriate
for the nonumbral fields in areas A and B. Consequently,
although the NFI flux densities were not calibrated, NFI image
gradients are expected, statistically, to be proportional to
magnetic variations.

Regarding the use of LCT methods to reconstruct photo-
spheric velocity fields from magnetograms, as noted by
Démoulin & Berger (2003), either horizontal or radial flows
(or a combination of these) can cause magnetic footpoints to
move, so the apparent footpoint velocities do not correspond
one-to-one to plasma velocities. Consequently, LCT flows
estimated from magnetograms will not necessarily correspond
to plasma flows. If the solar observations are not near the disk

center, the motion of plasma recorded in images is actually a
projection of 3D motions. We remark that AR 10930 in
Figure 4 was very near disk center. In its Solar Region
Summaries for 2006 December 12 and 13, NOAA lists AR
10930 at coordinates S05W07 and S06W21, so at the time of
the data analyzed in the paper, circa 17:20 UT, the region’s
center was likely near S06W18. Since projection effects scale
as the cosine of viewing angle, we expect that this should
introduce errors of at most 10%. One of the tracked regions
analyzed, area A in Figure 4, contains mostly plage fields,
which are predominantly vertical. Along with the Hinode/NFI
data, one Hinode/SP vector field map is available for 12
December, albeit after 20:00UT on 2006 December 12—about
3 hr after the image shown in Figure 4. Area A is nearly the
same area as that analyzed by Welsch (2015), who reported
mean and median inclinations of less than 30° from the radial
direction (inward) from the SP data. For this region, the effect
of radial flows is expected to be small compared to transverse
flows, since the radial direction is nearly along the field.
Consequently, in area A, we expect good correspondence
between LCT-inferred motions and horizontal plasma velo-
cities. On the other hand, area B’s left edge lies at the western
(rightward) edge of some penumbral fields, which are mostly
horizontal, and also contains mixed-polarity regions. Analysis
of the corresponding area in the SP map 3 hr later shows that
this area’s fields also tend to be vertical, with a median tilt of
23° in pixels with |Bz|> 15. Some substantially inclined fields
are present, though, so LCT flows will not correspond to
plasma velocities in some areas.
Figure 5 illustrates the application of the MMC method in

subregions A and B indicated in the bottom panel of Figure 4. The
left panels correspond to region A and the right panels to region
B. The top panels of Figure 5 show the horizontal components of
the original FLCT velocity field. Note that some FLCT vectors are
much larger than average and that essentially all occur at the edges
of tracked regions. These apparently large flows are unphysical
and occur in weak-field regions, where there is little genuine
magnetic structure but much noise. These inaccurate flows are
precisely why a field-strength threshold is used to determine
which pixels should be tracked—i.e., they are the reason gaps in
the FLCT flow maps exist. Thus, before applying the MMC
method, we first eliminate all vectors for which the modulus of
one of the components is larger than 0.28 km s−1. This threshold
corresponds to four times the variance of the distribution of
velocity field components. After the cleansing of spurious vectors,
the MMC method is applied and the resulting field is seen in the
middle panels of Figure 5. It is remarkable that even for such a
sparse matrix of velocity vectors the method is still able to
generate a field with fine structures that seem to be coherent with
what should be expected for that region. The accuracy of the
reconstruction cannot be assessed for the observational data, since
the real field is not available for comparison in those gaps.
Because we have not yet undertaken the needed tandem tests of
LCT flow estimation from simulated magnetic field data plus
inpainting, we do not perform any quantitative analysis of the
inpainted velocities here, and we make only qualitative comments.
We defer quantitative analysis of inpainted flows to future studies,
which will involve further tests. Thus, the validity of inpainted
flows inferred from magnetogram-derived flows has not been
demonstrated in the current work. Our results obtained with the
numerical simulations, however, encourage further exploration of
the method in future studies. Because of systematic errors in the

Figure 4. Original Hinode observations of AR 10930. Top: BLOS in G; bottom:
vx component of the velocity field in km s−1, obtained from FLCT. White areas
in the vx map represent gaps in the FLCT field due to below-threshold weak
magnetic field values.
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Figure 5. Reconstruction of Hinode velocity fields in AR 10930. Top: horizontal velocity field obtained from the FLCT method in boxes A (left) and B (right) of
Figure 4; middle: MMC gap-filled velocity field; bottom: the divergence of v from the reconstructed MMC field.
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LCT estimates, it is reasonable to expect that the inpainted flows
here are less accurate than those in our validation study using
simulated data. The bottom panels in Figure 5 depict the
divergence field computed from the restored velocity field.

5. Conclusions

We have demonstrated that the MMC method introduced in
this letter is a powerful tool for reconstructing highly corrupted
photospheric velocity fields. It can fill wide, contiguous areas
of missing data while keeping the original vectors intact. Our
method is much simpler than alternative image completion
techniques based on artificial intelligence/deep learning. Such
methods have been successfully applied to the restoration of
images of global positioning system (GPS) measurements of
the ionosphere (Chen et al. 2019; Pan et al. 2020), as well as
solar images corrupted by flares (Yu et al. 2021). Deep-learning
techniques usually rely on training of a set of artificial neural
networks using reference data before the networks can be used
to fill the gaps in real observations. The training images must
be provided by other observations or by numerical simulations,
a step that is unnecessary in our method. Applications of the
MMC method are in no way restricted to solar physics, as it
may be readily applied to image restoration in general.

Regarding our analysis of simulated data, we note that our
validation study was performed directly on the simulations’
velocity fields, instead of on velocity fields estimated by LCT
(or similar methods). Because velocities estimated by optical
flow methods will, in general, contain inaccuracies, we expect
that the accuracy of inpainted velocities will be degraded from
the values we report here. Accordingly, therefore, the tests
performed here give “best-case” results. Consequently, a
“tandem” test of the combination of flow estimation plus
inpainting results would be necessary to assess the overall
accuracy. Since the primary focus of this paper is the inpainting
method, and not any particular flow estimation method with
which it might be paired, we defer any tandem flow estimation
plus inpainting tests to future studies. The inpainting approach
is separate from use of LCT and could be coupled with other
methods of determining velocity fields, such as ball tracking
(Potts et al. 2003). Users who wish to apply the inpainting
method in different contexts (e.g., different spatial resolution,
or different data types) should be aware that the accuracy of
reconstructions can differ substantially from the accuracy of
our reconstructions for the particular simulated data ana-
lyzed here.

In this paper, we have (1) introduced the idea of inpainting
photospheric velocity fields, (2) described one approach, (3)
tested this method with simulations, and (4) shown example
results obtained from application to observations. While much
further testing of this technique is warranted, it shows promise
as a useful method to fill gaps in reconstructed photospheric
velocity fields.
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