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Abstract: The control of a satellite can be designed with success by linear control theory if the satellite has slow
angular motions. However, for fast maneuvers, the linearized models are not able to represent the effects of the
nonlinear terms. One candidate technique for the design of the satellite's control under fast maneuvers is the State-
Dependent Riccati Equation (SDRE). SDRE provides an effective algorithm for synthesizing nonlinear feedback
control by allowing nonlinearities. Nonetheless, much criticism has been leveled against the SDRE because it does
not provide assurance of global asymptotic stability. Additionally, there are situations in which global asymptotic
stability cannot be achieved (e.g., systems with multiple equilibrium points). Therefore, especially in aerospace,
estimating the region of attraction (ROA) is fundamental. The Brazilian National Institute for Space Research
(INPE, in Portuguese) was demanded by the Brazilian government to build remote-sensing satellites, such as the
Amazonia-1 mission. In such missions, the satellite must be stabilized in three axes so that the optical payload can
point to the desired target. In this paper, we share an approach to evaluate the ROAs of Amazonia-1 controlled by
LQR (the linear counterpart of SDRE) and SDRE. The initial results showed SDRE has a larger ROA than LQR.
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1 Introduction
The design of a satellite attitude and orbit control
subsystem (AOCS) that involves plant uncertainties,
large-angle maneuvers, and fast attitude control fol-
lowing a stringent pointing, requires nonlinear control
techniques in order to satisfy performance and robust-
ness requirements. An example is a typical mission
of the Brazilian National Institute for Space Research
(INPE), in which the AOCS must stabilize a satellite
in three axes so that the optical payload can point to
the desired target with few arcsecs of pointing accu-
racy.

One candidate technique for a nonlinear AOCS
control law is the State-Dependent Riccati Equation
(SDRE). SDRE is based on the arrangement of the
system model in a form known as state-dependent co-
efficient (SDC) matrices. Accordingly, a suboptimal
control law is carried out by a real-time solution of
an algebraic Riccati equation (ARE) using the SDC
matrices by means of a numerical algorithm.

SDRE was originally proposed by [1] and then ex-
plored in detail by [2]. A good survey of the SDRE

technique can be found in [3] and its systematic appli-
cation to deal with a nonlinear plant in [4]. The SDRE
technique was applied by [5, 6, 7, 8, 9] for controlling
a nonlinear system similar to the six-degree of free-
dom satellite model considered in this paper.

The application of the SDRE technique, and, con-
sequently, the ARE problem that arises, have already
been studied in the available literature, e.g., [10] in-
vestigated the approaches for the ARE solving as well
as the resource requirements for such online solving.
Recently, [6] proposed the usage of differential alge-
bra to reduce the resource requirements for the real-
time implementation of SDRE controllers. In fact, the
intensive resource requirements for the online ARE
solving is the major drawback of SDRE. Nonetheless,
the SDRE has three major advantages: (a) simplic-
ity, (b) numerical tractability, and (c) flexibility for
the designer, being comparable to the flexibility in the
LQR [6].

The origin of an SDRE controlled system is a lo-
cally asymptotically stable equilibrium point [2]. Fur-
thermore, the knowledge of its region of attraction is
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fundamental due to the local stability evenmore in the
presence of nonlinearities.

Indeed, much criticism has been leveled against
the SDRE technique since it does not provide assur-
ance of global asymptotic stability. However, empir-
ical experience shows that in many cases the region
of attraction (ROA) may be as large as the domain of
interest [3]. Moreover, there are situations in which
global asymptotic stability cannot be achieved (for
example, systems with multiple equilibrium points).
Therefore, especially in aerospace, estimating the re-
gion of attraction is fundamental [3].

Obtaining a good estimate of such a ROA, espe-
cially of a higher-order system, is a challenging task
in itself. In fact, [11] states that analytical ROA for
nonlinear systemswith dimensions greater than two is
usually unavailable. Such a task becomes even more
difficult since the closed-loop matrix of SDRE is usu-
ally not available in the closed form [12].

The well-known Lyapunov approaches to estimate
the region of attraction cannot be used for SDRE
since the closed-loop system equations are usually
not known explicitly. [12, 13] proposed procedures
to reduce the effort of ROA’s computation focusing
on the maximum and the minimum values of feed-
back gains over a chosen region of the statespace. The
other alternative is to make time-domain simulations
of the closed-loop system, which is cumbersome and
costly [12, 13].

In this paper, we share an approach to evaluate
the ROA of Amazonia-1 controlled by LQR (linear-
quadratic regulator, the linear counterpart of SDRE)
and SDRE. The initial results showed SDRE has a
larger ROA than LQR in the presence of nonlineari-
ties. Recall LQR guarantees global stability for linear
systems (afterward, the linearization process), never-
theless, such a property is lost when nonlinearities are
accounted for.

In Section 2, the problem description is presented.
In Section 3, the satellite physical modeling is re-
viewed. In Section 4, we explore the state-space
model, the controllers, and the approach for the
ROAs. In Section 5, we share simulation results. Fi-
nally, the conclusions are shared in Section 6.

2 Problem Description
The SDRE technique entails factorization (that is,
parametrization) of the nonlinear dynamics into the
state vector and the product of a matrix-valued func-
tion that depends on the state itself. In doing so,
SDRE brings the nonlinear system to a (nonunique)
linear structure having SDCmatrices given by Eq. (1).

⃗̇x = A(x⃗)x⃗+B(x⃗)u⃗

y⃗ = Cx⃗ (1)

where x⃗ ∈ Rn is the state vector and u⃗ ∈ Rm is the
control vector. Notice that the SDC form has the same
structure as a linear system, but with the system ma-
trices, A and B, being functions of the state vector.
The nonuniqueness of the SDC matrices creates ex-
tra degrees of freedom, which can be used to enhance
controller performance, however, it poses challenges
since not all SDC matrices fulfill the SDRE require-
ments, e.g., the pair (A,B) must be pointwise stabiliz-
able.

The system model in Eq. (1) is subject of the cost
functional described in Eq. (2).

J(x⃗0, u⃗) =
1

2

∫ ∞

0
(x⃗TQ(x⃗)x⃗+ u⃗TR(x⃗)u⃗)dt (2)

where Q(x⃗) ∈ Rn×n and R(x⃗) ∈ Rm×m are the
state-dependent weighting matrices. In order to en-
sure local stability, Q(x⃗) is required to be positive
semi-definite for all x⃗ andR(x⃗) is required to be pos-
itive for all x⃗ [10].

The SDRE controller linearizes the plant about the
current operating point and creates constant states-
pace matrices so that the LQR can be used. This pro-
cess is repeated in all samplings steps, resulting in a
pointwise linear model from a non-linear model, so
that an ARE is solved and a control law is computed
also in each step. Therefore, according to LQR the-
ory and Eq. (1) and (2), the state-feedback control law
in each sampling step is u⃗ = −K(x⃗)x⃗ and the state-
dependent gainK(x⃗) is obtained by Eq. (3) [4].

K(x⃗) = R−1(x⃗)BT (x⃗)P (x⃗) (3)

where P (x⃗) is the unique, symmetric, positive-
definite solution of the algebraic state-dependent Ric-
cati equation (SDRE) given by Eq. (4) [4].

P (x⃗)A(x⃗) +AT (x⃗)P (x⃗)

−P (x⃗)B(x⃗)R−1(x⃗)BT (x⃗)P (x⃗)

+Q(x⃗) = 0

(4)

Considering that Eq. (4) is solved in each sampling
step, it is reduced to an ARE. Finally, the conditions
for the application of the SDRE technique in a given
system model are [4]:

1. A(x⃗) ∈ C1(Rw)

2. B(x⃗), C(x⃗), Q(x⃗), R(x⃗) ∈ C0(Rw)

3. Q(x⃗) is positive semi-definite and R(x⃗) is posi-
tive definite

4. A(x⃗)x =⇒ A(0)0 = 0, i.e., the origin is an
equilibrium point
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5. pair(A,B) is pointwise stabilizable (a sufficient
test for stabilizability is to check the rank of con-
trollability matrix)

6. pair(A,Q
1

2 ) is pointwise detectable (a sufficient
test for detectability is to check the rank of ob-
servability matrix)

2.1 Region of Attraction
One is frequently interested in the region of attraction
(ROA; also called domain of attraction or basin of at-
traction), i.e., the region of the statespace in which
the initial conditions of the trajectories lie in order to
attain stable behavior [14].

Equilibrium points, if exist, must lie in the regions
of attraction, indeed, a state xe ∈ Rn is an equilib-
rium point of a nonlinear dynamical system ẋ = f(x)
if x0 = xe =⇒ x(t) = xe, ∀ t > 0 so f(xe) = 0.
A nonlinear system can have an infinite number of
equilibrium points, and, each one can be stable or
unstable. Additionally, to investigate the stability of
a particular equilibrium point x0 it is convenient to
transform the equilibrium point to the origin x∗ = 0
through the transformation x∗ = x− x0 [14].

Such equilibrium points, if exist, lie in the regions
of attraction, which are defined by their attractors.
An attractor is a subset A ∈ Rn of the statespace
characterized by the following three conditions: (i)
a ∈ A =⇒ f(a, t) ∈ A, ∀ t > 0; (ii) there exists
a vicinity of A (region of attraction) which consists
of all trajectories that enter A for t → ∞; and, (iii)
there is no proper (non-empty) subset of A having
the first two properties. The attractors can be clas-
sified in: (I) Fixed point - the final state that a dy-
namic system evolves towards corresponds to an at-
tracting fixed point, i.e., stable equilibrium point; (II)
Limit cycle - a periodic orbit; (III) Quasiperiodic - it
exhibits irregular periodicity; (IV) Strange attractor -
when such sets cannot be easily described.

Regarding the fixed point attractor, it can be de-
fined by the following equation [15].

A = {x0 ∈ Rn : lim
t→+∞

x(t, x0) = 0} (5)

It is important for practical reasons to have infor-
mation about the size and/or the shape of A. Indeed,
the stability properties could be of scarce utility if the
region of attraction is very small, or if the equilib-
rium point is very close to its boundary. There is a
wide literature about theoretical methods for the de-
termination ofA, and about numerical methods for its
approximate estimation [12, 15, 13].

3 Satellite Physical Modeling
Focusing on a typical mission developed by INPE, the
AOCS must stabilize a satellite in three axes so that

the optical payload can point to the desired target. The
next subsections explore the kinematics and the rota-
tional dynamics of the satellite attitude available in
the simulator.

3.1 Kinematics
Given the ECI reference frame (Fi) and the frame
defined in the satellite with origin in its centre of
mass (the body-fixed frame, Fb), then a rotation R ∈
SO(3) (SO(3) is the set of all attitudes of a rigid
body described by 3 × 3 orthogonal matrices whose
determinant is one) represented by a unit quaternion
Q = [q1 q2 q3 | q4]T can define the attitude of the
satellite.

Defining the angular velocity ω⃗ = [ω1 ω2 ω3]
T of

Fb with respect to Fi measured in the Fb, the kinemat-
ics can be described by Eq. (6) [16].

Q̇ =
1

2
Ω(ω⃗)Q

Ω(ω⃗) ≜

 0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


(6)

where the unit quaternion Q satisfies the following
identity:

q21 + q22 + q23 + q24 = 1 (7)

Eq. (6) allows the prediction of the satellite’s atti-
tude if it is available the initial attitude and the history
of the change in the angular velocity (Q̇ = F (ω, t)).
Another possible derivation of the Eq. (6) is using
the vector g (Gibbs vector or Rodrigues parameter)
as Q = [gT |q4].

Q̇ = −1

2

[
ω×

ωT

] [q1
q2
q3

]
+

1

2
q4

[
13×3

0

]
ω⃗ (8)

where ω× is the cross-product skew-symetric matrix
of ω⃗ and 1 is the identity matrix. Note the Gibbs vec-
tor is geometrically singular since it is not defined
for 180◦ of rotation [17], nonetheless, the Eq. (8) is
global.

3.2 Rotational Dynamics
The satellite has a set of 3 reaction wheels, each one
aligned with its principal axes of inertia, moreover,
such type of actuator, momentum exchange actuators,
does not change the angular momentum of the satel-
lite. Consequently, it is mandatory to model their in-
fluence in the satellite, in particular, the angular mo-
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mentum of the satellite is defined by Eq. (9).

h⃗ = (III −
3∑

n=1

In,sana
T
n )ω⃗ +

3∑
n=1

hw,na⃗n (9)

where III is the inertia tensor, In,s is the inertia mo-
ment of the n reaction wheel in its symmetry axis a⃗n,
hw,n is the angular momentum of the n reaction wheel
about its centre of mass (hw,n = In,sa

T
nω + In,sωn)

and ωn is the angular velocity of the n reaction wheel.
One can define Ib = III −

∑3
n=1 In,sana

T
n . Using

Ib, the motion of the satellite is described by Eq. (10).

Ibω̇
b = gcm − ω×(Ibω +

3∑
n=1

hw,nan)−
3∑

n=1

gnan

(10)

where gcm is the net external torque and gn are the
torques generated by the reactions wheels ( ˙hw,n =
gn).

4 Controller Design and ROA
Two dynamics states must be controlled: (1) the atti-
tude (modeled as unit quaternions Q by Equation (6)
or Equation (8)) and (2) its stability (Q̇, in other
words, the angular velocity ω of the satellite by Equa-
tion (10)). The following subsections explore the
state-space modeling and the synthesis of controllers.

4.1 Linear Control based on LQR
Equation (6) and Equation (7) can be used to linearize
the system around a stationary point (ω = 0 and Q =
[0 0 0 −1]T , assuming there is no net external torque,
gcm = 0), which leads to Equation (11).[

x1
x2

]
=

[
Q
ω

]

[
ẋ1
ẋ2

]
=

0 −1
2I3x3

0 0
0 0

[
x1
x2

]
+

[
0

−I−1
b

]
[u1]

[y] = I

[
x1
x2

]
(11)

Equation (11) defines the constant matrixes A,
B and C for a linear state-space representation of
Amazonia-1 (see Table 1) around the stationary point.
However, the constant matrices A and B are not
stabilizable since the controllability matrix of the
pair(A,B) has no full rank. Indeed, [18] showed that
this linearized model with all quaternion components
was not stabilizable, meaning that LQR is not appli-
cable.

Equation (7) defines a direct method to find q4,
therefore, one option is to model the state of the sys-
tem without such component of the quaternion [18],
which leads to the following equation:

[
x3
x2

]
=

q1q2q3
ω


[
ẋ3
ẋ2

]
=

[
0 −1

2I3x3
0 0

] [
x3
x2

]
+

[
0

−I−1
b

]
[u1]

[y] = I

[
x3
x2

]
(12)

Equation (12) defines the constant matrixes A, B
and C for an alternative linear state-space representa-
tion of Amazonia-1 (see Table 1) around the station-
ary point. In such the statespace, constant matrices A
and B are stabilizable.

4.2 Nonlinear Control based on SDRE
Assuming that there are no net external torques
(gcm = 0), the statespace model can be defined us-
ing Eq. (6) (Ω) and (10), however, the SDC matrices
do not fulfill the SDRE requirements, in particular,
the pair (A,B) is not pointwise stabilizable.

An option for the definition of the SDC matrices
is to use Eq. (8), which leads to Eq. (13). [

ẋ1
ẋ2

]
=−1

2

[
ω×

ωT

]
0

[
1
2q4I3×3

0

]
0 0 −I−1

b ω×Ib + I−1
b (

∑3
n=1 hw,nan)

×


[
x0
x2

]
+

[
0

−I−1
b

]
[u1]

[y] = I

[
x0
x2

]
(13)

Eq. (13) has been shown to satisfy SDRE condi-
tions described in Section 2.

Equation (13) has been shown to satisfy SDRE
conditions in the majority of statespace with excep-
tion of the region on which the angular velocity is
close to 0 (the pair(A,B) loses rank in such region).
In practical problems, regarding such a region, one
approach is to switch to another SDC parametriza-
tion [11] or to resort to LQR. Note such the known
limitation of this particular parametrization of SDRE
imposes laxity.
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Table 1: Satellite characteristics, initial conditions and references.

Name Value
Satellite Characteristics

inertia tensor (kg.m2), III

[
310.0 1.11 1.01
1.11 360.0 −0.35
1.01 −0.35 530.7

]
Actuators Characteristics - Reaction Wheels
inertia tensor of 3 reaction wheels (kg.m2),

∑3
n=1 In,sana

T
n diag(0.01911, 0.01911, 0.01911)

maximum torque (N.m) 0.075
maximum angular velocity (RPM ) 6000

Initial conditions
attitude (degrees, XYZ) [0 0 180]

T

angular velocity (radians/second, XYZ) [0 0 0.024]
T

References for the controller
solar vector in the body (XYZ) [1 0 0]

T

angular velocity (radians/second, XYZ) [0 0 0]
T

4.3 Region of Attraction
Firstly, the control laws, independent of the applied
technique being linear or nonlinear, are modeled
and too many time-domains simulations are avail-
able for their analysis. Furthermore, in the presence
of nonlinearities even the techniques that guarantee
global asymptotically stability can lose such property.
Therefore, the main task is to assess the presence of a
fixed point attractor as well as its size and shape.

Nonetheless, it is somewhat difficult to depict the
ROA for statespace systems with dimensions higher
than three. Facing such difficulty, [11] chose to list
the domain of interest and to plot a small subset of
simulations. Such an approach offers restricted sup-
port for the comparison of different ROAs.

Inspired by the works of Henri Poincaré, in par-
ticular, Poincaré maps [19] which defines a lower-
dimensional subspace for qualitative analysis. The
present paper applied two euclidean norms, namely
L2-norm of Euler angles and L2-norm of angular ve-
locities, to define a two-dimensional space for quali-
tative and quantitative analysis. In such a way that the
area of the ROA (dimensionless quantity) can be ana-
lytically computed and compared; and, the plot of the
ROA can allow straightforward qualitative analysis.

Besides, the definition of the fixed point attractor
presented in Equation (5) is restricted by the defini-
tion of an explicit final time tf and a numerical error
ϵ, according to the following equation:

A = {x0 ∈ Rn : lim
t→tf

||x(t, x0)||2 < ϵ} (14)

Equipped with (A) the two-dimensional space
for qualitative analysis of the original up to seven-
dimensional statespace, and (B) Equation (14), simple

polygons (they do not intersect themselves and have
no holes) of ROAs are defined in the two-dimensional
space for the initial conditions x0. The area of such
polygons is the main measure for the quantitative
comparison of different control laws.

Taking into account the limitations of the control
laws previously stated in Subsection 4.2, the defini-
tion of the fixed point attractor presented in Equa-
tion (14) is once restricted by the selection of sole an-
gular velocities (x2 in Equation (11), Equation (12),
and Equation (13)), ω-stability in [16], according to
the following equation:

A = {x0 ∈ Rn : lim
t→tf

||x2(t, x0)||2 < ϵ} (15)

Focusing on the area of ROAs A, one defines a
Monte Carlo perturbation model for a given initial
conditions, performs the time-domain simulation un-
til the predefined tf , and, finally, computes the mea-
sure.

5 Simulation Results
The results were computed using the satellite (mod-
eled as a nonlinear system) and the control laws
(LQR, and SDRE) with nonlinearities in the reaction
wheels, i.e., maximum torque and maximum angu-
lar velocity. Furthermore, such the results were ob-
tained running a full Monte Carlo perturbation model
described as follows.

Regarding initial attitudes defined by 3-2-1 Eu-
ler angles (Z-Y-X, nonclassical Euler angles), it is
well-known that representing Y beyond ±90 degrees
(that means ±180 degrees) would give two Euler an-
gles solution for every rotation, so Y is limited to
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±90 degrees. X and Z are limited to ±180 degrees.
Therefore, independent distributions are applied for
each Euler angle respecting the limits previously dis-
cussed in order to define the initial attitudes (3-2-1, Z-
Y-X, nonclassical Euler angles, which are converted
in quaternions) in a given Monte Carlo perturbation
model.

Regarding initial angular velocities, they are de-
fined by independent distributions based on the max-
imum angular velocity of the satellite that is con-
trollable by the reaction wheels. Using Section 3.2
and Table 1, the maximum angular momentum of
the set of reactions wheels was computed ( ⃗hwmax

=

I⃗w. ⃗ωwmax
) and then the corresponding maximum an-

gular velocity of the satellite was found solving a ma-
trix equation ( ⃗hwmax

= I⃗ . ⃗ωmax). The result in radians
per second was ⃗ωmax = {0.0385, 0.0332, 0.0225},
the norm (L2) was 0.0556, and the infinity norm was
0.0385, which is the value used as parameter in Ta-
ble 2.

In summary, the approach for the evaluation of the
region of attraction can be summarized as:

• Compute initial conditions for the Monte Carlo
perturbation model

Using independent distributions, compute
the 3-2-1 Euler angles (Z-Y-X, nonclassical Eu-
ler angles) in the range (±180, ±90, ±180)

Using independent distributions, compute
the angular velocities based on the maximum an-
gular velocity of satellite that is controllable by
the reaction wheels

• Perform the time-domain simulation until the
predefined tf

• Compute ROAs

The results are based on the satellite Amazonia-
1, which is characterized by Table 1, furthermore, the
simulations were conducted with the full Monte Carlo
perturbation model tuned with the parameters shared
in Table 2.

The initial conditions uniformly distributed com-
puted using such parameters by the Monte Carlo per-
turbation model are depicted using a two-dimensional
space, in which the norm of Euler angles is along the
X-axis and the norm of angular velocities is along the
Y-axis for each initial condition. This space has its
bounds constrained by the norm of Euler Angles rang-
ing from 0 to 270 degrees and the norm of angular ve-
locities ranging from 0 to 0.066 radians per second,
following the parameters presented in Table 2. How-
ever, as there is no mechanism to desaturate the re-
actions wheels, the limit expected for the norm of the
angular velocities of the initial conditions inside any

ROA is the previously shared 0.0556 radians per sec-
ond (in the presence of the nonlinearities). The same
two-dimensional space is used to depict ROAs.

Figure 1 shows the initial conditions uniformly
distributed by such a Monte Carlo perturbation model
execution (400 simulations, two different control laws
for each initial condition).

Taking into account the applied nonlinearities in
the reaction wheels (maximum torque, and maximum
angular velocity), for any step of a given maneuver
the actual control torque generated by the reaction
wheels could be smaller than the computed control.
Indeed, with such nonlinearities, the actual control
was smaller than the computed control in the simu-
lations as shown in Figure 2. Note points are close to
the X-axis in the sense that actual control was much
smaller than the bisectrix (where actual equals com-
puted control).

The result of such a “lack of control” is depicted
in Figure 3 that shows the ROA of LQR (in blue, leg-
end ProportionalLinearQuatuernionPartialLQRCon-
troller), and SDRE (in red, legend ProportionalNon-
LinearQuaternionSDREController_GIBBS).

The number of samples that converged by Equa-
tion (15) is less than the initial conditions, therefore,
the global asymptotic stability property is not present
in LQR or SDRE. Nonetheless, the ROA of the SDRE
is larger since more initial conditions converged for
tf . Moreover, both control laws are able to control
the whole range of Euler angles, consequently, the
angular velocities are the critical aspects to be con-
strained in the initial conditions. Such the fact corrob-
orates ω-stability [16] as the major concern in accor-
dance with Equation (15). Furthermore, it confirms
the common sense the controlling of angular veloc-
ities is constrained by nonlinearities in the actuators
leading to saturation.

6 Conclusion
As the results are based on analysis through simula-
tions, they are neither valid for general cases nor for
scenarios out of the range of the Monte Carlo pertur-
bation models due to the underlining nonlinear dy-
namics.

Although the results provide empirical evidence
that SDRE has a larger ROA than LQR in the case of
Amazonia-1, themajor contribution of the paper is the
approach for the evaluation of the ROAs since such
the approach provides a tractable numerical algorithm
to compare control techniques. Moreover, confidence
turns to be a matter of computational power.
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Figure 1: Initial conditions.
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Figure 2: Actual versus computed control with nonlinearities in the reaction wheels.
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Figure 3: ROA with nonlinearities in the reactions wheels.
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