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Abstract: Satellite remote sensing data have been used for water quality mapping, but accurate water
reflectance retrieval is dependent on multiple procedures, such as atmospheric and adjacency correc-
tions. For the latter, physical-based methods are used to minimize the adjacency effects caused by
neighboring land targets close to water pixels, and implementation requires atmospheric and environ-
mental parameters, such as aerosol optical depth and horizontal range (i.e., distance in meters) of the
adjacency effect (HAdj). Generally, the HAdj is empirically defined by users and can lead to substantial
errors in water reflectance when incorrectly used. In this research, a physical-based approach with
three empirical methods to determine the HAdj (fixed, SIMilarity Environment Correction—SIMEC,
and Adaptative Window by Proportion—AWP-Inland Water) were used to correct and characterize
the adjacency effects in Sentinel-2 images over Brazilian inland waters. An interactive inversion
method of the deep blue waveband estimated the aerosol loading for the atmospheric correction
procedure. The results of atmospheric and adjacency corrections were validated against in-situ
reflectance data. The inverted aerosol loading achieved a good agreement with in-situ measurements,
especially at visible wavelengths (Mean Absolute Percentage Error—MAPE for eutrophic (~56%),
bright (~80%), and dark (~288%) waters). The adjacency correction performance was near similar
between the SIMEC and AWP-Inland Water methods in eutrophic and bright waters (MAPE differ-
ence < 3%). However, only the AWP-Inland Water method provided a smaller error (MAPE ~53%)
for dark waters compared to the fixed (~108%) and SIMEC (~289%) methods, which shows how
critical HAdj parametrization is for low water reflectance values. Simulations of different atmospheric
and adjacency effects were performed, and they highlighted the importance of adjacency correction
under aerosol loading higher 0.1, which is a typical aerosol loading in a dry climate season, and over
extremely dark, low-reflectance waters. This paper contributes to further understanding adjacency
effects in medium spatial resolution imagery of inland waters using a physical-based approach
including the uncertainties in HAdj determination.

Keywords: adjacency effects; surface reflectance; atmospheric correction; aerosol; 6SV; radiative transfer

1. Introduction

Inland waters are essential ecosystems for life on Earth [1]. They are sources of
drinking water, socio-economic services (e.g., power generation, fisheries, recreation, and
irrigation), and ecosystem services (e.g., biodiversity maintenance) [2]. By 2050, scientific
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projections indicate that most of the world’s population (*52%) will be living in water-
stressed areas [3], predicting that water demand will surpass its availability in the following
decades. Thus, monitoring these environments is crucial to ensure water availability for
its multiple uses. Biophysical monitoring of inland waters at large space–time scales is
only feasible with satellite remote sensing data sources. The advance of new satellite
sensors with better radiometric quality and higher spectral, spatial, and temporal reso-
lutions, such as Landsat-8 OLI and Sentinel-2 MSI [4–7], has sparked the water remote
sensing community’s interest in using these systems for the mapping of inland waters’
Optically Active Components—OACs [8–11]. However, atmospheric and adjacency effect
corrections [12] are still a challenge in achieving accurate water reflectance estimates for
high- and medium-resolution satellite imagery.

The adjacency effect is caused by reflected photons from surrounding land targets
that are scattered by atmosphere components into the sensor’s field of view [13–15]. This
complex phenomenon reduces the contrast between the high-reflectivity (land) and the
low-reflectivity (water) surfaces. As a result, scattered photons from the land targets close
to the water bodies can distort water spectral reflectance, mainly affecting small water
bodies [12]. The magnitude of these effects depends on several factors, such as atmosphere
composition (e.g., aerosol particle properties), land-cover type, viewing and illumination
geometry, sensor characteristics (e.g., spatial resolution), and the shape and size of water
bodies [16–18]. When neglected, the adjacency effect can introduce significant errors in
retrieving the water-leaving signal [19], limiting the use of satellite imagery for estimating
OACs.

Adjacency correction in satellite imagery uses physical approaches that allow the
application of radiative transfer theory and Atmospheric Point Spread Function—APSF to
quantify and remove the adjacency effects [15,20,21]. In this context, APSF describes the
contribution of reflected photons from the neighboring targets into the interest target [22,23].
Tanré et al. [15] and Vermote et al. [21] have suggested a robust formulation for APSF
recovery based on Monte Carlo simulations, where the APSF results from the contribution
of molecular (or Rayleigh) and aerosol scattering. The inherent challenge in applying this
method is estimating the range of the adjacency effect (HAdj), which refers to the maximum
extent of the adjacency effects around the interest target, because it depends on often
unknown factors [24]. Alternatively, the HAdj has been chosen arbitrarily [25,26] or defined
iteratively by comparing the corrected image reflectance with the spectral responses of
targets [18,27,28]. An improper choice of HAdj can lead to over- or under-correction of
water reflectance due to the mischaracterization of environmental conditions around the
water target.

Few studies have assessed the accuracy of the correction of adjacency effects on water
reflectance [12,29,30]. The methodology complexity and limited open-source software for
adjacency effect correction can partially explain this lacune. In this way, the assessment of
water reflectance products has been generally performed in terms of (i) intercomparison
between different atmospheric correction methods assuming a uniform surface (i.e., with-
out adjacent correction) [31,32], (ii) validation of adjacency effects for large lakes (surface
area greater than 370 km2) or coastal waters [29,33], or (iii) theoretical water reflectance
simulations for a variety of atmospheric conditions and coastal water types [16,17,34]. Over
inland waters, adjacency effects are under-discussed, and a recent study showed the impor-
tance of correcting adjacency problems when estimating OACs in these environments [19].
For this reason, a physical-based method to fix adjacency effects with a practical empirical
assumption for HAdj estimation remains necessary research for inland waters.

This study explores the adjacency effects over Brazilian inland waters in medium
spatial resolution Sentinel-2 (A and B) MSI images. The paper’s focus is to assess the
satellite imagery reflectance uncertainties caused by adjacency effects using a physical-
based approach [15,21] on small lakes surrounded by dense forest cover and on a large
water urban reservoir considering variable aerosol loadings. Our assessment of satellite-
derived water reflectance contributes to understanding (i) the effect of optical water types on
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adjacency correction, (ii) the performance of a physical method in complex environments
(e.g., atmospheric scattering conditions and shape and size of water bodies), (iii) the
proper definition of the size of the HAdj, (iv) the impact of external factors on modeling
the adjacency effect for inland waters, and (v) the conditions under which this effect is
negligible. Here, we analyze two different methods to retrieve the HAdj: (i) considering
the size of the HAdj constant along the water body (hereafter called fixed), and (ii) varying
the HAdj pixel-by-pixel (hereafter called adaptive). The adaptive methods tested were
SIMilarity Environment Correction—SIMEC [33] and Adaptative Window by Proportion
applied to Inland Water—AWP-Inland Water. AWP-Inland Water is a proto-algorithm
developed in this study based on the proportion of non-water targets within the window.
The atmospheric and adjacency correction validation used field data acquired in a time
interval close to the satellite overpasses. Moreover, this study further investigates the
magnitude of the adjacency effect using the Second Simulation of a Satellite Signal in the
Solar Spectrum (6SV) to simulate its impact under different water optical types, aerosol
properties (e.g., aerosol loading and model), and land-cover types.

2. Materials and Methods
2.1. Study Area

Five small lakes (Mamirauá—MAM, Pirarara—PIR, Concordia—CON, Branco—BRA,
and Mutum—MUT) and one large reservoir (Billings—BIL) were selected for the analysis
(Figure 1). These water bodies represent different sceneries regarding land cover, shape and
size, and optically active water components in Brazil’s north and southeast regions. Billings
reservoir (127 km2) is one of the largest water systems in the metropolitan region of São
Paulo State, serving multiple purposes including public water supply, energy generation,
fisheries, and recreation [35,36]. Frequent algae blooms and potentially toxic cyanobacteria
dominate Billings’ optical properties and impair its water quality [35,37–39]. The reservoir
is divided into eight narrow arms that contribute to a broader and elongated central
body [36]. In general, the arms’ average width is approximately 500 m, but sometimes it
is smaller than 100 m. These narrow arms and the proximity to urban targets make the
Billings reservoir a suitable study site to investigate the adjacency effect.

The other selected water bodies encompass Amazon floodplain lakes with surface
areas smaller than 3 km2. Two of them, Mamirauá and Pirarara, are located inside the Mami-
rauá Sustainable Development Reserve—MSDR close to the confluence of the Solimões and
Japurá rivers. The remaining three lakes, Concordia, Branco, and Mutum, belong to the
Juruá River floodplain. These lakes are located in well-preserved areas under low human
influence and are surrounded by a dense flooded forest cover. The water flow exchange
with the fluvial systems [40] and the land coverage around the lakes [41] strongly influence
the bio-optical compositions of these ecosystems. For example, Pirarara lake has brighter
waters because it is connected to the Japurá River and receives a high inflow from its
temporarily sediment-laden waters. Four of these lakes have dark waters with reflectance
values smaller than 4%. In these cases, they are perennial lakes and suffer influence from
the surrounding forest, which during the rising and flooding season, washes into the lakes
large amounts of dissolved organic matter accumulated year-round [41,42].

The water bodies chosen in this study are potential environments for bio-optical
modeling applied to the water quality monitoring of urban reservoirs and sustainable
management of small lakes using remote sensing data [10,37,43]. For that reason, the inves-
tigation of factors that influence the accurate recovery of OACs, including the adjacency
effect, becomes essential in these regions.
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Figure 1. Overview of the study area: (a,b) Amazon floodplain lakes and (c) urban reservoir. The
sampling points are illustrated by green dots. The green–pale orange gradient represents the land
cover (e.g., vegetation and other land covers), and the blue and gray colors refer to water and
clouds, respectively.

2.2. Dataset
2.2.1. MSI/Sentinel-2 Data

Multi-Spectral Instrument—MSI sensors onboard Sentinel-2 (A and B) satellites were
used to assess adjacency effect correction in this study. The MSI Earth observation data
are acquired with fine spatial resolution (10, 20, and 60 m depending on the band) and
radiometric resolution (12-bit) in 13 spectral bands localized in the visible near-infrared
and short-wave-infrared regions. The Sentinel-2 mission consists of two satellites that
carry identical sensors that allow a revisit time of five days at the equator [44]. Although
this instrument did not aim at remote sensing aquatic environments, it has accurately
performed inland water applications [8,10,45]. Additionally, it increases the possibility
for monitoring small water bodies (area smaller than 0.002 km2; see [46]). In addition to
water quality monitoring applications, the MSI configuration also helps to investigate the
adjacency effect, since: (i) on surfaces with high-contrast among land covers (e.g., water
and earth interface), the contamination of the spectral information may be more disrupting
in images of medium- and high-spatial resolution; (ii) there is a trend of the adjacency effect
to be greater in small and narrow water bodies; and (iii) the increase in time-frequency
of image acquisition enables a more significant number of field samplings concurrent to
satellite overpass, increasing the number of samples for calibration and validation of the
satellite sensor’s measurements.

Images were acquired over the water body regions on 27 August 2017 (MAM and
PIR), 20 August 2019 (CON, BRA, and MUT), and 9 August 2021 (BIL). The scenes were
downloaded from the Copernicus Open Access Hub website (https://scihub.copernicus.

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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eu/) as L1C products that were corrected for radiometric and geometric distortions with
pixel values referring to Top of Atmosphere—TOA reflectance [47]. The selected images
had less than 10% cloud cover and cloud-free conditions over all the field sampling sites
(Section 2.2.2). After that, the atmosphere and adjacency effect corrections were applied to
the TOA reflectance data. Details are discussed in Sections 2.4. and 2.5.

2.2.2. Field Data

This study used in-situ radiometric data collected to validate MSI surface reflectance
imagery after atmospheric and adjacency corrections. Field campaigns in the water bodies
occurred during 25–28 August 2017 (MAM and PIR), 19–20 August 2019 (CON, BRA, and
MUT), and 8–9 August 2021 (BIL). The time difference between the in-situ reflectance mea-
surements and satellite images can reduce the data correlation due to water composition
variability [48,49]. Therefore, we used a time window of ±48 h for the match-up analysis.
Over inland waters, commonly size time windows of 2 h—7 days are applied to validate
the atmospheric and adjacency corrections [12,29,31,50]. In addition, we also highlight that
the water bodies selected did not present fast changes during the field campaigns because
both systems, the reservoir and small lakes, were under conditions that minimized abrupt
variations in the optical components of the water in a short period. For instance, Billings
reservoir has a hydraulic residence time (392 days) and a maximum depth (18 m) [51] that
both decrease the water column turbulence and bottom sediment resuspension. Likewise,
the small Amazon floodplain lakes, although their water level and circulation are influ-
enced by the flood pulse, these processes occur gradually throughout the hydrological
year [40,52,53] with a minimal influence in short time windows during the rising season in
meandering rivers, such as Juruá [54].

A total of 46 in-situ samples from BIL (N = 28) and other lakes (N = 18) were collected.
A suitable distance from the water body edge was adopted for all sample sites to avoid
or reduce the effect of pixel mixture at the land–water interface, bottom reflectance, and
adjacency contamination from the surrounding targets (e.g., forest). The sampling sites
were placed on the lakes’ central regions, and at BIL, they were split into two categories:
sites placed at distances smaller than 100 m (N = 14) and larger than 100 m (N = 14). Due to
BIL’s large area, collecting in-situ samples close to the reservoir’s edge was fundamental
to validating the adjacency effect because this problem is much larger near land targets
around water bodies [17]. In general, the depth of these sites (>3 m) in comparison with the
in-situ Secchi depth (<1 m) measured indicates that shallow water effects did not influence
the data collected near the water body’ boundary; that is, this study assumes that these
regions are optically deep. We had difficulties sampling throughout BIL due to its extension
and the need for feasible illumination conditions during the measurements. Thus, the
samples were collected mainly along the Rio Pequeno arm and at the beginning of the
Capivari arm (see Figure 1).

At each sample site, the remote sensing reflectance (Rrs) was estimated using the radio-
metric quantities obtained by three intercalibrated spectroradiometers (TriOS-RAMSES). All
sensors operated simultaneously and measured the total water-leaving radiance
(Lt(λ, θv, φv)), the downwelling sky radiance (Lsky(λ, θ ′v, φ′v

)
), and the total irradiance

incident on the water surface (Es(λ)) within 350–950 nm wavelengths (at ~3.3 nm incre-
ments). The measurements were performed between 10:00 a.m. and 1:00 p.m., and the
sensors were positioned at selected angles to minimize sun glint effects following the
recommendations of [55]: with the Sun as a reference, the zenith (θv) and azimuth (φv)
angles of the Lt term were (45◦, 90◦ − 135◦) and (θ ′v, φ′v

)
= (θv + 90◦, φv = φ′v

)
for the

Lsky term. With these data, each radiometric record was resampled at 1 nm, and the spectral
Rrs was calculated utilizing the following equation:

Rrs(λ) =
Lt(λ, θv,φv)− Rhosky

(
θ′v,φ′v, θ0, W

)
Lsky(λ, θ ′v,φ′v

)
Es(λ)

(
sr−1

)
(1)

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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where Rhosky is a coefficient that corrects the skylight reflection effects and depends on
the wind speed (W), view geometry (θ′v, φ′v), and Sun zenith angle (θ0); it can be obtained
in [56]. Afterward, the water reflectance (ρw) was obtained by multiplying Rrs by the
value of π. The ρw was used in the simulation of the Sentinel-2 MSI bands (visible to
near-infrared) using their Spectral Response Function—SRF to generate multispectral data
comparable to the corrected image reflectance values in this study:

ρ∗w(Bi) =

∫ b
a ρw(λ) × SRF(λ) dλ∫ b

a SRF(λ)
(Unitless) (2)

where ρ∗w is the MSI reflectance simulated from in-situ data, Bi is the MSI spectral band,
[a, b] is the range of the spectral band, and λ is the wavelength.

2.3. The Selection of Water Types

Water composition affects the shape and magnitude of the spectra (Figure 2). In
general, the signals of eutrophic and bright waters are up to ~2 times greater than that
of dark waters at visible wavelengths (~400–700 nm), and this difference decreases along
the spectrum. When observed by the orbital sensors, water bodies with different optical
types present distinct behaviors regarding atmospheric and adjacency noise [5,17,42]. Thus,
the grouping of water bodies according to their spectral features helps to understand the
adjacency effect on inland waters. In this way, we classified the water bodies into artificial
eutrophic urban reservoirs (BIL) and natural lakes surrounded by forest, classifying them
afterward into bright- (PIR) and dark- (MAM, CON, BRA, and MUT) water lakes, following
the criteria defined in [12]. They are named eutrophic, bright, and dark waters throughout
this study. It is essential to highlight that the water bodies inserted in these clusters were
under different conditions (e.g., atmospheric scattering, land cover, illumination geometry,
etc.) that affect the adjacency effect magnitude. These different contexts limited a direct
comparison among the water types. Thus, for a proper analysis, the three groups were
observed individually.
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Figure 2. Spectral values of water reflectance measured in-situ for selected water bodies. The water
bodies were grouped into three types: (a) eutrophic, (b) bright, and (c) dark waters. Solid lines and
shaded areas indicate the average and standard deviation of water reflectance, respectively. The
markers and error bars indicate the reflectance values simulated for the MSI sensor bands.
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2.4. Atmospheric Correction Procedure

Atmospheric Correction—AC is essential for using remote sensing images to monitor
aquatic environments [12,31,50]. In the water, the goal of AC is to remove from TOA
reflectance the atmospheric scattering and absorption effects caused by the aerosol and
molecules and the gases, respectively. A 6SV model was applied for the AC of the MSI im-
ages. It is a radiative transfer code that simulates the TOA reflectance through atmosphere
conditions and has been widely adopted in water applications [8,23,25,57]. According
to the 6SV model under the assumption of surfaces with Lambertian characteristics and
adjacency effect, the target (water) reflectance at the sensor level (ρ̂w) is derived as follows:

ρ̂w
(
Bi, i0, j0

)
= B−C·ρenv

(
Bi, i0, j0

)
(3)

where ρenv is the average reflectance of the environment (this factor is described in
Section 2.5), Bi is the MSI spectral band, and (i0, j0) are the Cartesian coordinates of the pixel.
Factors B and C include the atmospheric content, and they are obtained by simplifying the
radiative transfer equation:

A =

(
ρTOA

TgOG · TgO3

− ρatm

)
· 1

T↓
(µs)
· TgH2O

(4)

B =
A

t↑dir (µv)
(5)

C =
(t ↑dif(µv)+A · Satm

)
t↑dir (µv)

(6)

where ρTOA is the reflectance at the TOA, ρatm is the atmosphere intrinsic reflectance,
T↓
(µs)

is the total atmosphere transmission (downward), and t↑dir(µv

)
and t↑dif(µv) are the

transmissions direct and diffuse of the atmosphere (upward), respectively. µs and µv
are the geometric conditions (cosine of the zenith angle) of illumination and viewing,
respectively; Tg is the gaseous transmission by water vapor (TgH2O), ozone (TgO3

), and
other gases (TgOG ), which include dioxide (CO2) and monoxide (CO) of carbon, oxygen
(O2), nitrogen dioxide (NO2), and methane (CH4); and Satm designates the atmosphere
spherical albedo. The initial approximation to retrieve ρ̂w was performed using the as-
sumption of uniform surfaces (ρ̂∗∗w ), i.e., considering surfaces without the adjacency effect(
ρenv

(
Bi, i0, j0

)
= ρ̂w

(
Bi, i0, j0

))
. The (ρ̂∗∗w ) can be written as:

ρ̂∗∗w
(
Bi, i0, j0

)
=

B
1 + C

(7)

The 6SV model requires predefined knowledge of atmospheric conditions for the
regions where the water bodies are localized. The necessary inputs include the geometry of
illumination and viewing, the amount of water vapor and ozone in a vertical path through
the atmosphere, the water body altitude, and the aerosol characteristics, which comprise the
aerosol model and Aerosol Optical Depth at 550 nm—AOD550 [21,23]. These parameters
were acquired using the average value recovered within the defined buffer around BIL
(10 km) and the other water bodies (5 km), except for the geometric conditions obtained
from the information contained in the MSI image metadata. Total columnar ozone and water
vapor were extracted from the Level-3 MODIS daily global product MOD08 (MOD08_D3)
and MODIS atmospheric products derived from the Multi-Angle Implementation of an
Atmospheric Correction—MAIAC algorithm (MCD19A2 Collection 6), respectively. The
amounts of ozone and water vapor were calculated as the average value within a time
window of ±24 h of the MSI sensor overpass to reduce uncertainties related to the MODIS
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sensor. The altitude was obtained using an SRTM (30 m) digital elevation model for each
water body.

Among all the information needed to run the 6SV model, the aerosol contribution
is the most challenging, since its properties (e.g., extinction and scattering coefficients,
asymmetry factor, and phase function) are largely unknown. In this study, a continental
aerosol model was used, and the AOD550 parameter was estimated through an interactive
inversion method with a radiative transfer equation using the field data as a reference
(Appendix A). We evaluated the AC performance for the water bodies using the AOD550
obtained from both the inversion method and the satellite aerosol product (MCD19A2
Collection 6). The AOD at 550 nm obtained with the MODIS sensor followed the same
criteria defined for the other parameters used to model the atmospheric quantities. A
summary of the input data used in each water body for AC is shown in Appendix B
(Table A1).

2.5. Adjacency Effect Correction Procedure

The adjacency effect is a critical factor for inland waters and an essential step in
processing remote sensing images applied in mapping OACs. This paper analyzed the
adjacency effect in the selected water bodies according to the physical method suggested
in [15,21]. The method is based on the APSF, which describes the dispersal of photons as
they leave the surfaces and are propagated through the atmospheric layer. In this method,
the adjacency contribution to the target pixel is calculated as the weighted average of the
reflectance values of its surrounding pixels. The weight factor, referred to as APSF or
environment function, denotes the probability that the atmosphere components scatter
the reflected photons from the pixels within an array towards the sensor. In principle,
the weight value decreases with increasing distance from the target pixel. The adjacency
contribution is defined as:

ρenv
(
Bi, i0, j0

)
=

(
N

∑
i=1

N

∑
j=1

F
(

Bi,
−
r (i, j)

))−1

·
N

∑
i=1

N

∑
j=1

ρ̂∗∗w (Bi, i, j)·F
(

Bi,
−
r (i, j)

)
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where:

F
(

Bi,
−
r
)
=
↑R

dif ·FR(
−
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dif·FA(
−
r )

↑ tR+A
dif

(9)

where
−
r (i, j) is the position of an array of pixels centered on the target pixel (i0, j0),(

i0, j0
)
·ρ̂∗∗w is the surface reflectance calculated considering a uniform surface (Equation (8)),

Bi is the MSI spectral band, N is the number of pixels within of an array (we considered a
contribution window of m ×m pixels as the range of the adjacency effect), F is the weight

or APSF, and FR(
−
r ) and FA(

−
r ) refer to the environment function for molecular (or Rayleigh)

and aerosol scattering, respectively. ↑ tR
dif and ↑ tA

dif are the diffuse transmittances (up-
ward) for molecular and aerosol scattering, respectively, and ↑ tR+A

dif is the total diffuse

transmittance from target to sensor (↑ tR+A
dif =↑ tR

dif + ↑ tA
dif

)
. F is obtained through the

atmosphere scattering characteristics (content of molecules and aerosol particles) and can
be expressed as a sum of the contribution of these spreads weighted by their respective
transmittances (Equation (9)) [15,21]. To recover the atmospheric scattering information, we

applied the functions FR(
−
r ) and FA(

−
r ) specified in [23]. These functions were calculated

assuming an average atmosphere condition using a continental aerosol model [21,23]. The
generic expression of these functions is given by:

Fx(
−
r ) = a·e−α·

−
r + b·e−β·

−
r (10)
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For FR(
−
r ), the coefficients correspond to a = 0.930, α = 0.08, b = 0.070, and β = 1.10.

For FA(
−
r ), they are a = 0.448, α = 0.270, b = 0.552, and β = 2.83.

−
r denotes the distance

from the surrounding pixel to the target pixel (in km).
An essential question when applying this method is how to define the size of the

HAdj, which indicates the maximum distance that a target pixel can be affected by its
surrounding pixels. Ideally, the window size of the adjacency effect is mainly determined
by the aerosol vertical distribution, aerosol optical depth, satellite spatial resolution, ge-
ometry of observation, and type of surrounding target [14,24,58]. However, information
about the actual aerosol vertical distribution is often unknown, and as the extent of in-
fluence of the surrounding pixels depends on many factors, it is not easy to calculate the
size of the HAdj exactly. Alternative methods include empirical approaches to determine
the HAdj using fixed and adaptative windows [18,25,28]. Three methods to estimate the
size of the HAdj for the selected water bodies were analyzed: (i) fixed window. It was
defined using atmospheric correction and validated with the data collected in-situ. For
each water body, we applied different fixed window sizes ranging from 100 × 100 m to
1500 × 1500 m and observed which presented the better AC result, assuming a no-uniform
surface (Equation (3)). (ii) Adaptative window using SIMEC proposed to multispectral
sensors by [33]. And (iii) the AWP-Inland Water adaptative window method. Methods (ii)
and (iii) are described in the next section. All these approaches were used to retrieve the
component ρenv to solve for the adjacency effect in Equation (3).

2.5.1. SIMEC

SIMEC describes the recovery of the HAdj from the NIR similarity spectrum. The
method was developed for hyperspectral airborne data, being applied in aquatic environ-
ments only to multispectral sensors, such as the MSI data [18,29,33]. Its central assumption
is that the water spectrum shape in the near-infrared region is known and invariant. The
SIMEC method suggests a simple ratio in two near-infrared MSI bands with central wave-
lengths at 705 nm and 783 nm [29]. For each water pixel, the result is then iteratively
compared to the water spectrum invariant shape range at 780 nm, as defined in [59]. The
window size is determined when the ratio value satisfies the water invariant spectrum
condition. This method has some restrictions on the near-infrared region’s water signal that
limit its extensive use. Highly turbid waters, macrophyte growth, intense algae blooms, or
optically shallow waters have a near-infrared signal which differs from the water invariant
spectrum. Under these conditions, the SIMEC method cannot be applied [18,33]. This study
assumed that the water body regions used in the validation were free from these effects.

2.5.2. AWP-Inland Water

The Adaptative Window by Proportion applied to Inland Water, or AWP-Inland Water,
is an empirical algorithm based on the occurrence of non-water targets within the window.
It is expected that adjacency effect magnitude increases with increasing non-water targets
around the target pixel [17,24] and that the window size needs to adapt to local conditions
across the water body. This occurs because higher APSF weights are associated with non-
water targets. For example, if larger window sizes are used for water pixels close to land,
unrealistic adjacency effect magnitude may occur due to overestimating the adjacency
contribution. On the other hand, smaller window sizes attributed to water pixels located
far from the land can underestimate the adjacency effect. AWP-Inland Water minimizes
these uncertainties by controlling the relationship between the distance of the water pixel
from the land and the weight distribution of the APSF through the proportion of the targets
within the HAdj.

The AWP-Inland Water algorithm has three stages: (i) definition and calculation of the
proportion of non-water targets within the window, (ii) building of the W(0,1) factor, and
(iii) calculation of the adjacency effect contribution. Targets’ proportions within the window
were chosen empirically by defining different proportion ranges, which were then applied
to estimate the adjacency effect in the water bodies (0–10%, 10–20%, 20–30%, 30–40%, and
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40–50%). The best range was selected for each water body by comparing the adjacency
corrected water reflectance with the in-situ reflectance data. These proportion values
were calculated using the Modified Normalized Difference Water Index—MNDWI [60],
employing a simple threshold less than or equal to 0.20 to mask the non-water targets.
In the method, different window sizes were attributed for each pixel inside the water
body. The spectral index was calculated to indicate the window size value (m ×m pixels)
referring to the desired proportion of non-water targets. From this value, the W(0,1) factor
was generated. The binary factor W(0,1) is a matrix with elements 0 and 1, having the same
size of the APSF weight matrix. Both the size of the W(0,1) factor matrix and the size of the
weight matrix were fixed at 5 km, i.e., the maximum HAdj was defined by default at this
value. For the W(0,1) factor, the element equal to 1 occupied the matrix center up to the
window size value referent to the proportion of non-water targets (m − 1 pixels) defined in
stage (i). The goal was to control the APSF weight matrix growth through element-wise
multiplication. The AWP-Inland Water method computed the contribution of the adjacency
effect as follows:
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Note that we added another weight U to the equation. It results from the iteration
between the APSF weight array (F) and the W(0,1) factor array, and it depends on the
proportion of non-water targets (t).

2.6. Statistical Analysis

The performance of the atmospheric correction and the adjacency effect correction
in the remote sensing images was assessed using coefficient of determination—R2, Mean
Absolute Percentage Error—MAPE, Root Mean Square Error—RMSE, and average ratio
analyses. The computed data were compared with ground measurements.

3. Results
3.1. Inversion Model (AOD∗∗550) versus MODIS Aerosol in the Atmospheric Correction

Figure 3 introduces the results of the atmospheric correction performance. The optimal
AOD∗∗550 value presented less uncertainty in the atmospheric correction when compared
with the aerosol loadings extracted from the MODIS product. In the eutrophic waters, the
difference between the performances of the AOD550 values was ~17% (MAPE). In contrast,
that difference was ~25% and over 100% in the bright and dark waters, respectively
(Figure 3a). The better performance of aerosol loading using the inversion model resulted
from the matching of in-situ water signals with the observed TOA signals. Hence, in this
optimal condition, the error sources related to the sensor calibration, atmosphere optical
complexity, or assumptions adopted for the recovery of aerosol loading, as in the MODIS
case [61], were smaller. In general, the AOD550 values based on MODIS (average ratio ~3)
further underestimated the water reflectance throughout the wavelengths when compared
to AOD∗∗550 (average ratio ~2) because their aerosol loadings were smaller than the AOD550
values extracted from the inversion model. AOD∗∗550 was up to two times greater than the
aerosol optical depth at 550 nm based on MODIS (Appendix B, Table A1). Both aerosol
products caused a significant distortion in the water reflectance at the near-infrared bands
for all water types. Water absorption often affects the larger wavelengths, which implies
lower reflectance values in this region of the spectrum. That pattern makes the near-infrared
bands more sensitive to factors that mask the actual optical behavior of the water, such as
the adjacency effect.
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Figure 3. Atmospheric correction performance according to the source of the aerosol loading from
the inversion model versus MODIS aerosol optical depth at 550 nm for (a) all MSI spectral bands and
(b) the average ratio per MSI band. Atmospheric correction was performed for the different water
optical types: (a1) eutrophic (N = 28), (b1) bright (N = 5), and (c1) dark (N = 13) waters.

In the case of bright and dark waters, the AOD∗∗550 produced a more adequate response
to AC at shorter wavelengths than the MODIS aerosol loading (Figure 3b). In these
environments, the water reflectance was estimated to be two times higher at 740 nm,
783 nm, and 842 nm for both aerosol scattering conditions. Unlike in the eutrophic waters,
the MODIS aerosol loading produced slightly better results than those of AOD∗∗550 in the
range from 443 nm to 705 nm. Little overcorrection of the water reflectance values (average
ratio less than 1) occurred in these wavelengths. Differently from the other water bodies,
the BIL reservoir (water body inserted in eutrophic water type) presented a low aerosol
loading (AOD∗∗550 ~0.16 and AODMD

550 ~0.10; see Appendix B, Table A1). It illustrated that
the estimated aerosol loadings could not correct the water reflectance satisfactorily. This
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is partly explained by the clean atmosphere condition around the reservoir (small aerosol
loading). Overall, the aerosol loadings extracted from MODIS worked better for the AC
of inland waters under low AOD550 values (smaller than 0.2) than those with high values
(larger than 0.3). This was attributed to the challenges of multiple scattering modeling
during aerosol retrieval.

3.2. Range of the Adjacency Effect

The methods applied to retrieve the HAdj generated different results (Figure 4). The
adaptive methods, SIMEC and AWP-Inland Water, showed substantial differences located
mainly close to the land cover. In general, the differences of HAdj around the land–water
boundary (or waterline) (distance smaller than 100 m) were up to three times higher than
that of the regions far from the waterline (distance larger than 100 m). This difference
was even more outstanding in the BRA, MUT, and CON lakes. The SIMEC approach, for
instance, resulted in an HAdj several times greater than those estimated by the AWP (average
window ~400 m × 400 m) and fixed window (~350 m × 350 m) methods, including infinite
HAdj values (larger than 2000 m × 2000 m). SIMEC did not show any relationship with the
distance to the waterline. In contrast, the range of the adjacency effect obtained from the
AWP algorithm increased with increasing distance value. This relationship (HAdj versus
distance to the waterline) was highlighted in the larger (e.g., BIL) and wider (e.g., PIR, BRA,
and MUT) water bodies.

Each water body showed an adequate HAdj or proportion of non-water targets within
the window for the fixed window and AWP methods, respectively. Despite their empirical
nature, the results indicated that the aerosol loading (required for AC) provided information
about the proportion of non-water targets needed for the AWP algorithm. Note that, for
water bodies under heavy aerosol loadings (larger than 0.3), the desirable proportion of
targets was 40–50%, while for lower aerosol loadings (smaller than 0.3), the proportion
of non-water targets within the window was 20–30%. Overall, the range of the adjacency
effect was higher for lower aerosol loadings. However, PIR presented high HAdj values,
despite its high aerosol loading (AOD550 ~0.34). In addition to the aerosol scattering effect,
the water type also seemed to influence the size of the HAdj. Comparing the PIR and
MAM lakes, which were under similar atmospheric characteristics and aerosol scattering
effects (Appendix B, Table A1), different HAdj sizes were obtained, with the dark-water lake
demanding a smaller HAdj than the bright-water lake. This is explained by the decreased
contrast between the water and the targets around the water body. As bright waters
have higher reflectance values, more homogeneous surfaces and, consequently, lower
adjacency contributions are expected. Conversely, the atmosphere scattering surpassed the
reflectance of the adjacent target under high aerosol loadings, generating more significant
adjacency effects. In these cases, larger HAdj were needed to compute the existing adjacency
effect values.

The MSI-derived water reflectance associated with the HAdj estimation is displayed
in Figures 5 and 6 for four MSI near-infrared bands (705, 740, 783, and 842 nm) and three
optical water types. It is evident that the HAdj difference effect produced from the three
methods increased with increasing wavelength because the larger wavelengths had a sharp
reflectance contrast between the water and various land targets (e.g., soil and forest). The
AWP algorithm underestimated, significantly, the reflectance values of dark waters. At
the same time, the SIMEC and the fixed window approaches in this water type caused an
expressive overcorrection of the water reflectance beyond 740 nm.

In the case of dark waters, both the SIMEC and fixed window approaches showed
a frequent negative retrieval of water reflectance (or invalid value) at the near-infrared
wavelengths (average frequency ~56% and ~25%, respectively). At 842 nm, SIMEC pro-
duced up to twenty times more invalid values than AWP-Inland Water. Similarly, the
fixed window method produced about ten times more negative results when compared to
AWP. In another way, the eutrophic and bright waters presented a satisfactory agreement
between the methods, especially between SIMEC and AWP. In these optical scenarios, the
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number of invalid results was small (~5%, on average). Again, negative values were high
at 842 nm compared to other bands. For that band, the SIMEC and fixed window methods
generated more significant inconsistencies in estimating water reflectance for eutrophic
(~13%) and bright (~17%) waters, respectively.
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Figure 4. Differences in sizes of HAdj obtained from the fixed and adaptive window approaches
for the three selected water types. The analysis was performed with N = 250 pixels per water body.
The pixels were randomly selected on the water bodies considering their linear distance from the
waterline. The dashed green line refers to HAdj based on the fixed window method, while the gray
and blue markers refer to use of the SIMEC and AWP-Inland Water methods, respectively.
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Figure 5. Water reflectance estimated from the MSI considering the range of the adjacency effect
generated from SIMEC versus AWP-Inland Water. Analysis was performed for N = 250 pixels per
water type. The shaded area (light gray) indicates the invalid value zone (negative values) of water
reflectance resulting from AC, including the adjacency effect (Equation (3)).

3.3. Adjacency Effect Correction

In general, accurate observations of the satellite-derived water reflectance were ob-
tained after adjacency effect correction for all water types (Figure 7). AWP-Inland Water, as
well as SIMEC, demonstrated a good agreement between MSI and in-situ measurements of
water reflectance for the eutrophic and bright waters (MAPE smaller than ~28%) (Figure 7a).
In these environments, the difference between the performance of these two methods was
minimal (~3%). In contrast, only AWP reached a more accurate water reflectance estimate
in dark water environments (MAPE ~53%). The number of invalid results (i.e., negative
water reflectance values) in the dark waters was remarkably high using SIMEC. In fact, the
overcorrection for adjacency effects in the near-infrared wavelengths can leads to negative
values due to the low water reflectance. The bright waters showed smaller uncertainties
from adjacency effect correction when using the fixed window approach (MAPE ~16.55%).
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However, as indicated in Section 3.2, this method often produced invalid results for these
water types. This fact suggests that the small number of samples used to validate the
adjacency effect correction may have limited a representative statistic in bright waters.
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Figure 6. Water reflectance estimated from MSI considering the range of the adjacency effect generated
from the fixed window versus AWP-Inland Water methods.

In eutrophic and dark waters, the fixed window approach applied to correct the
adjacency effects caused underestimation of the reflectance values at 783 nm and 842 nm
(average ratio more than ~1.3 and ~1.6, respectively) (Figure 7b). In the case of bright
waters, its performance was superior to that of the other methods at 842 nm considering
only the dataset available for validation. AWP slightly underestimated the water reflectance
at 842 nm when compared to SIMEC in bright and eutrophic waters. The dark waters were
more sensitive to the differences in the HAdj size applied to correct the adjacency effects.
SIMEC in all near-infrared wavelengths (from 705 nm to 842 nm) had a poor performance
for correcting the target effects around these small lakes. On the other hand, recognizing
the challenges of estimating the satellite-derived water reflectance of water bodies with
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very low reflectance under atmospheric complexity, AWP-Inland Water showed acceptable
results, despite the poor results at 783 nm.
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Figure 7. Performance assessment of adjacency effect correction: (a) all MSI spectral bands and
(b) average ratio per MSI band. Adjacency effect correction was performed for the different water
types: (a1) eutrophic, (b1) bright, and (c1) dark waters. We used three methods for determining HAdj.
Invalid results are not shown in (a). However, the nonpositive counts are highlighted in the legend.

Figure 8 shows an overall (i.e., average water spectrum plus its standard deviation)
water spectrum shape comparison between MSI and in-situ measurements after adjacency
effect correction performed using the fixed window, SIMEC, and AWP-Inland Water ap-
proaches to estimate the size of the HAdj according to the water types. At first glance, the
adjacency effect correction significantly improved the water spectrum shape across all
four near-infrared bands of MSI. The adjacency effect mainly was reduced in this spectral
domain and was practically nonexistent in the visible wavelengths. At the water surface,
the near-infrared wavelengths usually are more impacted by targets neighboring the water
body, as previously discussed. However, errors in estimating the range of the adjacency
effect can also produce overcorrection in the visible spectral domain. The inaccurate perfor-
mance of SIMEC in dark waters changed the water spectrum shape at 560 nm and 665 nm.
Evidently, the AWP method showed a good agreement with the field spectra of the different
water optical compositions. The physical method employed to correct the adjacency effect,
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associated with a good computation of HAdj, allowed the correct estimation of the water
reflectance under high aerosol loadings (in the case of small Amazon lakes) and lower
aerosol loadings (in the case of BIL). If the adjacency effect is not corrected, the water
reflectance can heavily impact the retrieval of OACs, especially for bio-optical algorithms
that use larger wavelengths to infer about the water composition.
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spectrum according to HAdj methods and water types.

3.4. Adjacency Effect Influence on Water Bodies

The adjacency effect is highly dependent on the atmosphere scattering processes.
Notably, its magnitude increased with increasing AOD550 parameters. For imagery acquired
under lower aerosol loadings, as in the case of eutrophic waters, the adjacency effect
contribution at the top-of-atmosphere was smaller than ~30% throughout the wavelengths
(Figure 9). In comparison, in the bright and dark waters observed under high aerosol
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loadings, this contribution was ~20% at visible wavelengths, reaching up to ~80% in the
near-infrared domain. The spectral differences of the adjacency effect depended on the
target type surrounding the water body and the optical characteristics of the water itself.
For example, at 560 nm, all water bodies presented a peak in adjacency contribution related
to the vegetation cover around the water bodies. However, this phenomenon occurred
in BIL due to vegetation around it, as well as algae present in the water column. Note
that BIL’s TOA contribution was approximately ~60% in this band. In the 740 nm–842 nm
range, the adjacency contribution was up to ten times higher than that of the dark waters,
justifying why this water type was drastically affected by the adjacency effects in our
observations. On the other hand, this difference dropped substantially for other water
types (~1.2 times and ~2.3 times more than the eutrophic and bright waters, respectively).
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Figure 9. Contribution to the TOA of the reflectance values of water bodies, atmosphere, and
adjacency effects in (a) eutrophic, (b) bright, and (c) dark waters. The TOA signal was modeled
with 6SV using input data from Appendix B (Table A1). For the water contribution, we used in-situ
measurements. Adjacency effect was estimated assuming the HAdj described in Figure 4 (AWP-Inland
Water algorithm).

By exploring each water body, the absolute adjacency effect reflectance (ρadj) estimated
in BIL (maximum ρadj ~3%) was often smaller when compared to the PIR and MAM lakes
(~6%) or Juruá River floodplain lakes (~12%) when using the MSI band at 842 nm as a
reference (Figure 10a). Overall, the ρadj was more significant for locations close to the
edges and narrow areas, and it was smaller at the center of the water bodies. However, in
BIL, the maximum ρadj values occurred in areas with intense algal bloom. These events
of algal bloom produced a significant increase of water reflectance at 842 nm, generating
large contrast between the regions with and without algal blooms (Figure 10b). Along the
A → A′ transects, an inverse combination between the amount of ρadj and the difference
of corrected and uncorrected reflectance in eutrophic and bright waters was shown. This
also occurred due to heterogeneous surfaces generated from the variability in water com-
position. On the contrary, in the case of dark water lakes, these two factors were directly
related, i.e., the reflectance differences increased with the increase of ρadj.

The correction of the adjacency effect varied spatially in response to these reflectance
changes in the HAdj. The transects showed that the smaller the water reflectance values, the
more affected the water signal by the adjacency correction due to higher contrast with the
neighborhood signal. For example, for waters with algal bloom or sediment dominance,
the shorter spectral reflectance difference from the water and land targets can reduce the
effect of surrounding targets on the water body. The water bodies experienced a reflectance
decrease of up to−170% after the correction of the adjacency effect at 842 nm. The adjacency
effect correction was larger in the small Amazon lakes (average value around −80%). For
BIL, these results were even smaller (average value approximately −35%). In this system,
the Pedra Branca, Rio Grande, and Rio Pequeno arms were more impacted compared to
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the other BIL’s sections because they are very narrow and are less affected by algal bloom.
Interestingly, the adjacency correction induced a slight increase in the water reflectance over
the areas with intensive algal bloom (water reflectance difference less than ~6%), which is
partially explained by higher target pixel reflectance values than the adjacent pixels.
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Figure 10. (a) Spatial distribution of the ρadj (in %) and MSI-derived water reflectance difference (in %)
before and after adjacency correction at 842 nm. (b) The transect of ρadj (%), reflectance difference (%),
and water reflectance in the A → A′ setting along the water body. In (a), the ρadj was obtained by
multiplying the average reflectance of the environment and the ratio between the diffuse atmosphere
transmission by the total (upward) (ρadj(B i) = ρenv × t↑dif/T↑ ) (see Equation (4) in [62]). Bi refers to
the MSI band at 842 nm. Here, the HAdj was defined using the fixed window approach (Figure 4).
The reflectance difference was negative when the corrected water reflectance value was smaller than
the uncorrected water reflectance value.

3.5. Sensitivity of Adjacency Effect at the TOA

Here, the sensitivity of the adjacency effect to the proportion of non-water targets
within the HAdj, land-cover type around the water body, water optical type, aerosol loading,
and aerosol model is investigated. For that, we simulated the adjacency effect contribution
at the TOA, assuming fixed atmosphere characteristics to run the 6SV model (Appendix B,
Table A2). The sensitivity assessment to the aerosol model was based on the standard mod-
els embedded in 6SV (e.g., continental and biomass burning smoke). All runs considered
only a water pixel distant 0 m from the waterline. The results in terms of the proportion of
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non-water targets within the window showed an increase in the adjacency effect magnitude
in response to the proportion of non-water targets (Figure 11). For example, at 842 nm, the
difference between the adjacency effects of the 40–50% (~33%) and 0–10% (~2%) proportion
was ~31%, under a clear atmosphere (AOD550 = 0.1). Already in a condition with heavy
aerosol loadings (AOD550 = 0.5), this difference was even greater at ~53%. The water was
more affected by the adjacency effect under high aerosol loadings. Note that, for higher
AOD550 values, the adjacency effect was several times higher than the water signal at the
TOA (up to ~5 times larger for the proportion of 40–50% at 740–842 nm wavelengths). The
difference between the adjacency effect and water contribution was tiny (up to ~1.1 times
larger) under lower aerosol loadings. The cover type around the water body showed greater
differences in the adjacency contributions at 560–705 nm wavelengths due to changes in the
spectral response between the bare soil and vegetation targets. Specifically, when varying
the land-cover type for bare soil and vegetation, the water body was less impacted by the
adjacency effect changes generated from these surrounding targets at larger wavelengths.
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Figure 11. Values of adjacency effect contribution at the TOA (ρadj/ρTOA in %) along visible and
near-infrared wavelengths considering different proportions of non-water targets within the window,
aerosol loadings, and land cover. In the simulations, in-situ measurements of dark water reflectance
(see Figure 2) were used as reference. To compose the atmospheric characteristics, we assumed the
continental aerosol model available from 6SV. Finally, the adjacency effect was estimated by the
AWP-Inland Water approach.
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The aerosol models caused different adjacency effect contributions at the TOA
(Figure 12). In general, the biomass burning smoke aerosol model produced a smaller adja-
cency effect when compared to the continental model. The average difference between the
adjacency effects generated by the two models was about 10% in the 705–842 nm spectral
range. This is explained by the increased radiation absorption from the type of aerosol
particle inserted in the biomass burning smoke model. The adjacency effects showed a
slight sensitivity to water type at the shorter wavelengths. In this case, the adjacency con-
tribution increased with the increasing water reflectance. The difference in the adjacency
effects produced from the variation of dark and bright waters was ~3%.

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 31 
 

 

The aerosol models caused different adjacency effect contributions at the TOA (Fig-

ure 12). In general, the biomass burning smoke aerosol model produced a smaller adja-

cency effect when compared to the continental model. The average difference between the 

adjacency effects generated by the two models was about 10% in the 705–842 nm spectral 

range. This is explained by the increased radiation absorption from the type of aerosol 

particle inserted in the biomass burning smoke model. The adjacency effects showed a 

slight sensitivity to water type at the shorter wavelengths. In this case, the adjacency con-

tribution increased with the increasing water reflectance. The difference in the adjacency 

effects produced from the variation of dark and bright waters was ~3%. 

 

Figure 12. Values of adjacency effect contribution at the TOA (ρadj ρTOA
⁄  in %) along visible and 

near-infrared wavelengths considering two aerosol models (continental and biomass burning 

smoke) and two water types. Here, we used the proportion of non-water targets of 40–50% to define 

the size of the HAdj when modeling the adjacency effect. The simulation adopted a hazy atmos-

phere (AOD550 = 0.5) and vegetation as the surrounding target. 

4. Discussion 

4.1. Aerosol and Atmospheric Correction 

The recovery of aerosol loading over inland waters has a crucial role in accurately 

correcting the atmospheric scattering effect on satellite images, and errors in its properties 

affect the water reflectance measurement. The aerosol loadings extracted from MODIS did 

not perform well for high aerosol loadings (more than 0.3) compared to the AOD550
**  

based on the inversion model (see Figure 3). Some limitations of the MODIS aerosol prod-

uct are related to sensor characteristics, surface assumptions, and the aerosol model 

[61,63,64]. In general, the errors observed for a clear atmosphere occur due to the assump-

tions adopted for the surface, and for a hazy atmosphere, the errors respond to the aerosol 

model assumptions [61]. Thus, even though the forest areas surrounding the Amazon 

floodplain lakes are well-correlated with the MODIS aerosol product (R ~0.88) [65], the 

Figure 12. Values of adjacency effect contribution at the TOA (ρadj/ρTOA in %) along visible and
near-infrared wavelengths considering two aerosol models (continental and biomass burning smoke)
and two water types. Here, we used the proportion of non-water targets of 40–50% to define the
size of the HAdj when modeling the adjacency effect. The simulation adopted a hazy atmosphere
(AOD550 = 0.5) and vegetation as the surrounding target.

4. Discussion
4.1. Aerosol and Atmospheric Correction

The recovery of aerosol loading over inland waters has a crucial role in accurately
correcting the atmospheric scattering effect on satellite images, and errors in its properties
affect the water reflectance measurement. The aerosol loadings extracted from MODIS did
not perform well for high aerosol loadings (more than 0.3) compared to the AOD∗∗550 based
on the inversion model (see Figure 3). Some limitations of the MODIS aerosol product are
related to sensor characteristics, surface assumptions, and the aerosol model [61,63,64]. In
general, the errors observed for a clear atmosphere occur due to the assumptions adopted
for the surface, and for a hazy atmosphere, the errors respond to the aerosol model as-
sumptions [61]. Thus, even though the forest areas surrounding the Amazon floodplain
lakes are well-correlated with the MODIS aerosol product (R ~0.88) [65], the atmospheric
aerosol complexity surpasses the surface influence due to the high aerosol loadings [66].
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Furthermore, the type of aerosol model implemented is another uncertainty source in at-
mospheric correction over inland waters. Therefore, model selection is crucial to represent
the aerosol characteristics in the water body region, and when this is incorrect, errors are
introduced in satellite-derived water reflectance under high aerosol loadings [28]. All these
inconsistencies associated with AOD550 recovery did not stand out in the inversion model,
potentially because it estimated the aerosol values in response to the best observation of
water reflectance (i.e., field data). Though the initial results are promising, the aerosol load-
ing inversion method requires in-situ water reflectance, and when the method assumptions
are not completely fulfilled (e.g., TOA signal free from glint or adjacency contamination), it
does not work.

The Amazon region has several aerosol sources, such as biogenic from the rainforest
(e.g., fungal spores and volatile organic compounds), black carbon particles from biomass
burning, and urban aerosol [67–69]. Those sources have distinct characteristics in wet
and dry seasons [67,70], altering aerosol properties [71]. Consequently, the variability of
aerosol effects (composition + aerosol load) in this region may not be fully represented
by the default aerosol models available for use [72], limiting the application of standard
procedures for aerosol recovery. For example, Flores Júnior et al. [73] showed a fair amount
of error in OLCI blue spectral bands (more than 100% at 400 nm–490 nm) during AC
with the MODIS aerosol product, impacting the use of image-derived reflectance for the
retrieval of inherent optical properties. In addition to problems related to the aerosol
loading recovery for inland waters, the different water reflectance values displayed over
the larger wavelengths can introduce further uncertainty into OACs estimation [19,74].
These wavelengths are strongly affected by gas absorption (e.g., water vapor and oxygen at
700 nm–800 nm) [62] and by the photons of energy reflected from surfaces around the water
body (so-called adjacency effect) [17,33]. The adjacency effect depends on the atmosphere
scattering conditions and, therefore, is well-correlated with the aerosol optical depth [24].
Adjacency effect correction is typically needed in small water bodies and high aerosol
loadings [12], limiting, when neglected, the use of remote sensing data at near-infrared
wavelengths for water quality application [10]. Although significant efforts have been
made to improve the performance of the atmospheric correction algorithms in aquatic
ecosystems over time [75], our results indicated that there are still unresolved challenges
for inland waters. In complex atmospheric aerosol conditions, careful estimation of aerosol
optical depth in these environments using the inversion model is particularly pertinent to
achieve the required accuracy of water reflectance for water quality mapping.

4.2. Estimation of the HAdj over Inland Waters

Three strategies to recover the size of the HAdj were assessed in this study. The estima-
tion of HAdj is essential for a more accurate correction of adjacency effects on inland waters.
However, the complex dependence of the range size on multiple factors (e.g., atmosphere
scattering, viewing and illumination geometry, spectral characteristics of the surrounding
target, and characteristics of satellite sensors) seems to limit a feasible estimative of HAdj
for correcting adjacency effects. There is no precise formula available to define the size of
the HAdj. Previous studies have shown that the adjacency effect influences in the order
of tens of kilometers from the coastline over coastal waters [17,34]. In contrast, values in
good agreement with the aerosol scale height in the atmosphere (between 0.5 and 1.0 km)
have generally been used for land and water applications [25,27,28]. This study computed
an HAdj between 0.1 and 2 km, considering all the methods employed to recover the
range of the adjacency effect. The three strategies investigated showed a vast difference
concerning the estimation of HAdj. For example, the average difference between SIMEC
and AWP-Inland Water in dark-water lakes was ~0.8 km. In contrast, this difference was
smaller for the fixed window and AWP methods (average difference ~0.06 km). These
results strongly affected the MSI-derived water reflectance, especially at the near-infrared
wavelengths. As previously discussed, these wavelengths refer to the spectral domain
with the more significant adjacency contribution on inland waters. They are commonly
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related to an increase in land reflectance and a decrease in water reflectance. The resulting
estimates of HAdj demonstrated a linear relationship with the aerosol optical depth at
550 nm, where the size of the HAdj decreased with increasing aerosol loading observed
on water bodies. A similar pattern was reported in [27]. The adjacency effect receives a
greater contribution from distant targets under relatively small aerosol loading (less than
0.2). On the other hand, if the aerosol loading is high (more than 0.3), the adjacency effect is
more affected by the water and its neighbors due to decreasing atmosphere transmittance
and the increase in forward scattering (related to aerosol particles) [24]. Differently, for
higher aerosol loading (AOD550 of 0.3 to 0.5; see Figure 5 in [76]) combined with a more
elevated surface reflectance, the surface reflectance exercises an effect on the size of the
HAdj, modifying the relationship between the HAdj and aerosol loading, as we observed in
the case of bright water.

Generally, our approach (AWP-Inland Water) had the best performance in determining
the water reflectance, particularly in dark water environments (see Figure 7). Over inland
waters, especially small lakes and reservoirs, the water body geometry (e.g., shape and size
of water body) is often variable. Thus, a dynamic and challenging relationship between
the water pixels and their surrounding targets is established. This configuration did not
benefit the use of the fixed window method for inland waters, since it tended to over- and
under-correct the reflectance of water pixels near and far from the waterline, respectively.
The improved correlation between MSI and in-situ measurements of water reflectance
shown by AWP-Inland Water indicated that the iterative changes in the window sizes
explain the best performance of the method. The AWP-Inland Water method fulfills the
essential relationship between window size and distance from the land (see Figure 4)
by considering what is inside the window (water or non-water targets) to compose the
adjacency effect magnitude. However, the proportion of non-water targets within the
window can be variable for each water body in response to the adjacency effect. The
relationship between the proportion of targets versus aerosol loading determined in this
study can guide its definition in future AWP applications. In comparison to the fixed
window and AWP methods, SIMEC demonstrated a good performance in the eutrophic
and bright waters but a deficient performance in the dark waters. SIMEC often generated
infinite HAdj values (larger than 2 km × 2 km) and, consequently, invalid results (see
Figure 5). The dark waters were the most affected by the production of invalid results. As
previously discussed in Section 2.5.1., in conditions where the NIR similarity spectrum
assumptions are not satisfied, the SIMEC approach may not work [18,33]. Considering that
the similarity spectrum was designed for turbid and coastal waters [59], this may prevent
its use for inland waters, particularly in dark waters.

4.3. Influence of Adjacency Effect on Water Reflectance Data

The relationship between the magnitude of the adjacency effect versus aerosol scatter-
ing is well-discussed [24]. In our case, it is evident that high aerosol loadings favored the
occurrence of the adjacency effect. In the eutrophic waters observed under lower aerosol
loadings, the water reflectance surpassed the adjacency effect at the top-of-atmosphere
for the whole spectral range (see Figure 9). On the other hand, in the small lakes, the
adjacency effect was more remarkable. In agreement with these results, a previous study
indicated the sensitivity of the small Amazon floodplain lakes to the adjacency effects [12].
These environments maximize adjacency effects due to atmospheric aerosol complexity
(Section 4.1), lake size and shape, canopy stand, the vigor of the surrounding forest, and
water optical type. Note that the proportional contribution of the effect was more sig-
nificant for the dark-water lakes than for the bright-water lake. This is explained by the
lower reflectance of dark waters due to water absorption and colored dissolved organic
matter. The impact of scattered radiation from surrounding targets was significantly larger
closer to waterline. However, in conditions of algal blooms or high sediment loadings,
the water body pixels close to these events were impacted by adjacency correction due to
the contrast between spectral signatures caused by the different concentrations of water
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optical components (see Figure 10b). The algal blooms and high sediment loadings could
significantly increase water reflectance in the near-infrared domain, making the water
reflectance similar to that of land targets. This explains why the pixels with higher water
reflectance values were less affected by adjacency correction, as depicted in Figure 10b.
When the water reflectance is much higher (e.g., in the case of an intense algal bloom in
the near-infrared region) than that of its neighboring pixels, the adjacency effect leads to a
decrease in the water reflectance value. Note that the adjacency effect is a flux of photons
produced by atmospheric scattering directed from bright to dark targets [77]. Then, on
no-uniform surfaces, this effect causes a decrease in photons on high-reflectivity surfaces
(e.g., bloom areas) as a function of the low-reflectivity surfaces (e.g., areas around the
blooms). In this way, adjacency effect correction compensates for the photons lost by the
bright targets, i.e., it removes the incremented photons on dark surfaces and returns them
to bright surfaces. Hence, small increases may occur in water reflectance when corrected for
adjacency effects, giving positive differences between the corrected and uncorrected MSI-
image reflectance, as reported here. This behavior is frequently observed in the adjacency
correction of surfaces with a high contrast in coverage [27,28,30].

4.4. Sensitivity and Challenges of Adjacency Effect

The adjacency effect magnitude has been little investigated in applications with inland
waters. Based on this study, the main factors influencing the increase or decrease of adja-
cency effects over inland waters were the aerosol loading, aerosol model, land-cover type,
and HAdj. Indeed, heavy aerosol loadings and higher atmospheric scattering conditions (as
in the continental aerosol model) maximized the adjacency effect, since it originates from
the atmospheric scattering [24]. Thus, the results indicated that it may not be necessary
to implement adjacency effect correction for cases of very low AOD550 (smaller than 0.1)
(see Figure 11). Furthermore, the land-cover type around water bodies also influences the
adjacency contributions. As the reflectance of the surrounding targets increases, so did the
adjacency effect [17,24]. The effect related to bare soil cover was more significant in the
visible domain compared to vegetation cover. However, these two covers produced a mini-
mal difference in the adjacency contributions at larger wavelengths due to their reflectance
similarity. Regarding water type (Figure 12), the adjacency effect was less sensitive to the
variation of water optical composition (~3% at the visible domain). A previous study has
shown that this difference depends on the type of land cover around water bodies [17]. The
changes in the adjacency contribution at the TOA caused by water type are more significant
when the land targets had low reflectance due to the importance given to water reflectance
in modeling the adjacency effect. In addition, other factors that may influence the adjacency
effect have been reported in the literature, such as viewing and illumination geometry,
satellite spatial resolution, and glint contributions [34,58,78].

The physical approach [15,21] performed well in correcting the adjacency effects
over inland waters. However, the strong sensitivity of the method to the size of HAdj,
as remarked in our study, may limit an accurate quantification of the adjacency effect in
real applications. Additionally, the APSF weights defined from the molecular and aerosol
scattering effects (see Equation (9)) also seem to influence the adjacency contribution.
Sei [22] showed that the increase of APSF weight produced much larger ranges of adjacency
effect because the targets around the water pixel received greater importance compared
to lower APSF weights. Comparing the weight approach with a methodology based on
three-dimensional radiative transfer simulations applied over coastal waters, Bulgarelli and
Zibordi [17] reported an increase of adjacency effects close to land (~70%) from the use of
APSF weights to compose the effect magnitude. Even though adjacency effect determination
requires highly complex approaches and the physical method has its limitations, our
positive experience with this method and the AWP method in estimating HAdj opened a
feasible way to correct adjacency effects over inland waters.
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5. Conclusions

This paper assessed the feasibility of a physical approach based on APSF to correct the
adjacency effect in medium spatial resolution satellite imagery on small lakes surrounded by
dense forest cover and a large urban water reservoir considering variable aerosol loadings.
This study showed that an iterative inversion model minimized the limitations related
to MODIS-derived aerosol loadings and surpassed other sources of uncertainty (e.g., the
aerosol model). This careful estimation of aerosol loading is proper in regions of complex
atmospheric aerosol conditions (e.g., hazy atmospheric conditions), where the uncertainty
of MODIS aerosol estimates is higher, or when there are no aerosol ground-based stations
(e.g., AEORONET) around the interest area, as in the case of our study areas.

Adjacency effects impact the reflectance of inland water, and the application of phys-
ical methods can remove them from satellite imagery with various degrees of success.
In general, none of the empirical approaches used to determine the HAdj presented an
outstanding performance for all the selected water types. The three approaches indicated a
better recovery of water reflectance in eutrophic and bright waters. Regarding dark waters,
only AWP-Inland Water (MAPE ~53%) exhibited improvements, partly because: (i) this
water type was outside of the range suggested by SIMEC (~289%) and (ii) the water body
geometry changes (e.g., shape and size of water bodies) decreased the performance of the
fixed window approach (~108%). In addition, the combination of low water reflectance
(e.g., dark waters) and higher adjacency contribution made it challenging to estimate water
reflectance accurately. As shown in Figure 9, the adjacency contribution at the TOA ex-
ceeded the dark water contribution in such a way that the sensitivity of these waters to the
adjacency effect was high. Thus, defining a proper HAdj is crucial for the best adjacency
correction from the physical approach and is very challenging due to the factors that can
impact it (e.g., land-cover type around the water body and the distance of water pixels
from land cover). Even though the AWP-Inland Water method exhibited acceptable results,
there are limitations for operational applications, such as defining the optimal proportion
of non-water targets, which may vary according to the magnitude of adjacency effect and
the increase in running time due to its pixel-by-pixel iteration.

Over inland waters, the adjacency problem was maximized for small water bodies,
higher aerosol loadings (more than 0.1), and dark waters (water reflectance smaller than
4%). On the contrary, our results showed that under lower aerosol loadings (smaller than
0.1) the adjacency effects were very small. The adjacency effect contribution at the TOA
(see Figure 11), taking into account a critical scenario (i.e., pixels close to land, dark waters,
and a high proportion of non-water targets within the window) was very close to water
contribution. In this sense, under clear atmospheric conditions associated with larger water
bodies is possible neglecting the adjacency effect in medium spatial resolution MSI imagery.
Finally, this paper encourages the application and validation of physical methods for the
correction of adjacency effects on inland waters, as well as the development and validation
of approaches to more adequately determine HAdj size.
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Appendix A

Accurate estimation of the AOD550 is important to model and remove the atmospheric
scattering and adjacency contribution from the images. The potential use of the AOD550
recovered from the image-based approach in atmospheric correction has been demonstrated
in several studies [7,57,79]. Briefly, this approach explores the difference between the
surface reflectance (no aerosol) and the TOA reflectance (aerosol) of a target contained in
the image and with known spectral responses at specific wavelengths to estimate the remote
sensing aerosol [79]. Applications using the vegetation as reference targets for obtaining
the AOD550 have indicated poor performances in the atmospheric correction of aquatic
environments, generally overestimating the water reflectance [11,12]. To accommodate
these inconsistences, we used MSI reflectance simulated from in-situ data as reference.
The idea was to obtain an optimal AOD550 value that allowed the matching of the water
signal observed in-situ with that at the top-of-atmosphere based on the inversion of a
radiative transfer equation. Three assumptions were needed to apply the method: (i) the
in-situ water reflectance in the deep-blue waveband (at 443 nm) is known; (ii) the difference
between the water reflectance and the TOA is due to the atmosphere content, i.e., the TOA
signal is free from other factors, such as sun and sky glint, bottom, and adjacency effect;
and (iii) for overwater, the retrieved AOD550 value is assumed spatially invariant.

In this paper, an optimal AOD550 value was estimated using an iterative process based
on a bisection method. Commonly, this method is applied to solve root-finding problems of
mathematical equations. A bisection method uses an initial interval, where the equation’s
root is contained, that is iteratively divided into subintervals equally spaced in such a way
that there is a better approximation for the value of interest [80]. The iterative process used
for the AOD550 retrieval can be written as:

f
(

AOD(k)
550, Bi

)
=
∣∣∣ρ̂∗∗w (AOD(k)

550, Bi

)
− ρ∗w(Bi)

∣∣∣ (A1)

where the function f expresses the difference between the corrected reflectance of atmo-
spheric effect (ρ̂∗∗w ) (Equation (7)) and in-situ observed reflectance ρ∗w (Equation (2)) for a
given AOD(k)

550 value and spectral band Bi. k refers to the iteration number. In the zero-order

approximation (k = 0), the AOD(0)
550 value was calculated using the midpoint of the range

[AOD(min)
550 , AOD(max)

550 ]. This range included the optimal AOD550 value, and its limits were
defined at 0 and 2:

AOD(k)
550 =

AOD(min)
550

(k)+AOD(max)
550

(k)

2
(A2)

In the first iteration, the interval initial was divided into two halves, such as
[AOD(min)

550 , AOD(0)
550 ] and [AOD(0)

550, AOD(max)
550 ]. To know which half of the interval in which

the optimal AOD550 value is contained, a simple observation of function sign f at the midpoint
is performed. If f

(
AOD(min)

550

)
· f
(

AOD(0)
550

)
< 0, the optimal AOD550 value is contained in

the range of [AOD(min)
550 , AOD(0)

550 ]. On the contrary, if f
(

AOD(0)
550

)
· f
(

AOD(max)
550

)
< 0, it is

inserted in the range of [AOD(0)
550, AOD(max)

550 ]. This process was repeated up to the k-order

approximation. The convergence condition of the iterative process is f
(

AOD(k)
550, Bi

)
≤ 0.0001.

These iterative steps contain only simple mathematical operations. Therefore, the estimative

https://scihub.copernicus.eu/
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of an optimal AOD550 value for atmospheric correction of the images is not very time-
consuming. The total time spent to recover the AOD550 parameters using a single field
sample and a spectral band was around 600 s. Some strategies can be adopted to reduce the
total computation time, such as parallel operations, reducing the size of the initial interval,
and increasing the tolerance value of the convergence condition.

All in-situ samples were used in the inversion model of AOD550, except for BIL, where
only the samples collected far from the reservoir border were applied. In each water body,
the optimal AOD550 value was recovered using the MSI deep blue waveband and the
average of the aerosol loading values observed for each in-situ sample. The estimative of
the optimal AOD550 value over water bodies was derived from the following equation:

AOD∗∗550(w, Bdb) =
1
N

N

∑
j=1

AODj
550(w, B db) (A3)

where AOD∗∗550 is the average value of the aerosol optical depth for a given water body
w, AODj

550 is the aerosol recovered for a single in-situ sample, Bdb is the MSI deep blue
waveband, and N is the total number of in-situ samples. Note that we did not have in-situ
measurements of aerosol optical depth data next to the water bodies. Therefore, it was not
possible to validate the optimal AOD550 value obtained by the inversion method directly.
Thus, its validation was performed indirectly through the AC.

Appendix B

Table A1. Overview of input data required for the AC for water bodies included in this study.

Input Data BIL CON BRA +
MUT MAM PIR

Solar Zenith Angle 48.22◦ 29.52◦ 29.52◦ 27.78◦ 27.78◦

Solar Azimuth Angle 33.37◦ 53.65◦ 53.65◦ 61.70◦ 61.70◦

View Zenith Angle 3.74◦ 2.83◦ 2.83◦ 9.44◦ 9.44◦

View Azimuth Angle 111.67◦ 194.68◦ 194.68◦ 101.95◦ 101.95◦

Ozone (cm-atm) 0.282 0.262 0.262 0.271 0.271
Water Vapor (g/cm3) 1.482 3.418 3.562 4.407 4.247

Altitude (km) 0.716 0.071 0.072 0.043 0.041
Aerosol Model Continental

AOD at 550 nm * 0.100 0.331 0.272 0.164 0.170
AOD at 550 nm ** 0.162 0.656 0.633 0.369 0.342

* AOD550 recovered with the MODIS products (MCD19A2 Collection 6). ** AOD550 recovered with the inversion
model using the deep blue waveband.

Table A2. Atmospheric parameters and geometric conditions (viewing and illumination) used in the
theoretical simulations.

Solar
Zenith
Angle

View
Zenith
Angle

Solar
Azimuth

Angle

View
Azimuth

Angle

Target
Altitude

Aerosol
Model

Atmospheric
Profile Band Range

33◦ 6◦ 53◦ 141◦ 0.189
(km) * Tropical

(default) 443–842 (nm)

* Continental or biomass burning smoke model.
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