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Abstract: This article presents a novel method for predicting the sugarcane harvesting date and
productivity using a three-band imaging radar. Taking advantage of working with a multi-band
radar, this system was employed to estimate the above-ground biomass (AGB), achieving a root-mean-
square error (RMSE) of 2 kg m−2 in sugarcane crops, which is an unprecedented result compared
with other works based on the Synthetic Aperture Radar (SAR) system. By correlating the field
measurements of the ripening index (RI) with the AGB measurements by radar, an indirect estimate
of the RI by the radar is obtained. It is observed that the AGB reaches its maximum approximately
280 days after planting and the maximum RI, which defines the harvesting date, approximately
360 days after planting for the species IACSP97-4039. Starting from an AGB map collected by the
radar, it is then possible to predict the harvesting date and the corresponding productivity with
competitive average errors of 8 days and 10.7%, respectively, with three months in advance, whereas
typical methods employed on a test site achieve an average error of 30 days with three months in
advance. To the best of our knowledge, it is the first time that a multi-band radar is employed for
productivity prediction in sugarcane crops.

Keywords: sugarcane biomass estimation; harvest prediction; drone-borne SAR; back-projection
processor

1. Introduction

Agriculture plays an essential role in economic development, so efficient management
and monitoring of crops are essential to achieving maximum productivity [1]. In particular,
sugarcane is an important crop worldwide, especially in Brazil due to its multiple uses
such as sugar, ethanol, biodegradable products, energy generation, and food for animal
production [2].

The sugarcane harvest in Brazil for the 2020/21 season is estimated at 665.1 million
tons [3], making this country the largest producer in the world for two consecutive years.
In Brazil, sugarcane production is one of the most important activities in the agricultural
sector, which in 2020 reached 4.44% of the total Gross Domestic Product (GDP) [4].
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The productivity estimation provides information from which sugarcane companies
can optimize harvesting schedules and agricultural planning for sugarcane crops. Sugar-
cane productivity depends on different factors; among those are the interactions between
climate variations and their phenological phases. For instance, water stress causes a re-
duction in carbon dioxide assimilation rates, leaf area size, and growth rate, leading to
a decrease in the final stalk height of sugarcane [5], so periodic monitoring is crucial for
proper crop management. Besides, the Ripening Index (RI), which is based on the me-
tabolization of soluble solids and is strongly correlated with the optimal harvesting date
in sugarcane crops [6], intense fieldwork based on destructive analysis is also necessary
for a correct determination. Biometric parameters and productivity monitoring through
traditional techniques based on sampling and destructive analysis involves extensive field-
work, which is costly and time-consuming, so remote sensing plays an important role
as an emerging alternative. One of the disadvantages of having an adequate description
of biometric parameters through techniques based on sampling and destructive analysis
is related to the number of necessary samples that must be obtained, which is generally
high [7]. Thus, the main advantage of remote sensing methods is the possibility of fast data
acquisition from large areas with high spatial resolution.

The first applications of remote sensing were based on optical images. However, in
recent years, the application of Synthetic Aperture Radar (SAR) systems in remote sensing
have gained importance, providing useful and complementary information to optical
sensors [8]. SAR systems have been commonly transported onboard satellites and airplanes,
and, in the last decades, large fixed-wing unmanned aerial vehicles (UAV) have also been
used for SAR imaging [9,10]. Recently, lightweight multirotor drones (<25 kg) have become
very popular, and their ability to carry imaging payloads raised the possibility of using them
to transport small SAR systems [11–13]. Compared to those carried by satellite or aircraft,
drone-borne SAR systems are an economically feasible solution that offers high spatial
resolution and a short revisit time, making them useful in novel operations for low altitudes,
like city surveillance, local crop monitoring, and buried object detection, among others. A
considerable amount of works aiming at the development of drone-borne SAR systems
have been proposed, although, in most cases, these are still in the initial testing phases.
Dill et al. describe the development of a lightweight multimode ultra-high frequency,
ultra-wideband (UHF-UWB) radar module for drone-based operations [14]. The first
experiments were carried out under well-controlled conditions using a linear motion axis,
demonstrating that the proposed system is a promising alternative for detecting landmines.
Deguchi et al. developed a radar system mountable on a multi-copter type drone operating
in the Ku band [15]. Data collected with the drone-borne SAR system flying at 30 m height
were processed with a frequency-domain azimuth compression algorithm, resulting in SAR
images where three corner reflectors were clearly identified. Additionally, Frey and Werner
presented processing results computed from repeat-pass SAR data acquired onboard a
UAV [16]. They employed a time-domain back-projection algorithm to process the data
acquired from an L band SAR system, confirming the feasibility of UAV-borne repeat-pass
SAR interferometry and SAR tomography in the L band. Lort et al. [17] presented a fully
polarimetric SAR system at X band integrated into a UAV multi-copter platform. This
system was used to produce interferograms, in which an autofocus step was necessary due
to the flight instabilities. Schartel et al. [18] developed a functional multi-copter-based SAR
system in the L band to detect metallic tripwires, achieving promising results for a scenario
with light vegetation.

For sugarcane crops, the monitoring of biometric parameters has been previously
researched using SAR or optical systems data. Concerning SAR systems, C and L band
SAR data for monitoring sugarcane AGB show that the C band backscattering presents a
saturation at 35-ton ha−1 and could be useful for a short period [19,20]. In contrast, L band
backscattering does not show any evidence of saturation in sugarcane monitoring. Addi-
tionally, Lin et al. [21] proposed a method to estimate the sugarcane leaf area index (LAI)
using ENVISAT polarimetric data. In other studies, sugarcane height was estimated using
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C band backscattering information at different polarizations and angles of incidence [22],
with good results up to 150 cm in height. Other works are focused on estimating the AGB
in different crops such as corn, canola, soybean, and wheat [23–25]. Some attempts to
estimate AGB for different crop types using different frequency bands found a saturation
point dependent on the employed band. The C band has a saturation point typically at
5–7 kg m−2 [26], while the L band presents saturation between 10–15 kg m−2 [27], and
other authors suggest a saturation point around 10–30 kg m−2 for the P band [28].

As for optical systems, techniques were developed to map and identify sugarcane
crops [29]. In recent years, methods for AGB estimation based on drone-borne systems have
been proposed, although most of them work with AGB values of less than 3 kg m−2 and in
small coverage areas. Maimaitijiang et al. explored the potential of spectral information
derived from RGB images of unmanned aerial systems (UAS) for AGB estimation in
soybean crops [30]. Another method for estimating AGB in winter wheat was developed
by Yue et al. [31], in which the mapping was performed by both a hyperspectral sensor
and an RGB digital camera mounted on a UAV. Sinde-González et al. [32] determined
the AGB of three types of forages under differentiated fertilizer treatments using an RGB
camera mounted on a UAV. Swayze et al. [33] investigated the influence of flight parameters
on the Phantom 4 Pro UAS using different heights, camera angles, and flight patterns to
monitor height and trunk diameter applied to forest protection systems using an RGB
sensor. Poley et al. synthesized 46 studies from the peer-reviewed literature oriented to
AGB estimation using UAS-mounted optical sensors, concluding that AGB estimation with
RGB data offers excellent results with higher accuracy than multispectral or hyperspectral
data [34]. Methods based on Light Detection and Ranging (LiDAR) systems have also been
proposed. Masjedi et al. [35] attempted to estimate the sorghum biomass using information
collected by a LiDAR system integrated into a UAV platform. Another work based on
a LiDAR system mounted on an aircraft for biomass estimation was presented by Du
et al. [36], analyzing common reed crops.

According to the reviewed literature, SAR systems have great potential for biometric
parameters estimation in different crops, achieving promising results. In this context, this
work develops a different approach for sugarcane AGB estimation and a novel method-
ology for productivity and harvesting date prediction based on multiband radar data.
For this purpose, a multiband drone-borne SAR system was employed for surveying an
experimental area at the School of Agricultural Engineering of the University of Campinas
(UNICAMP) and a test site located at Iracemápolis, Brazil, carrying out several square
survey flights along time. AGB estimation is based on the weighting of backscattering
information obtained from different bands of the drone-borne SAR system. This unprece-
dented multiband approach–combining L, P, and C bands–permits us to overcome the
typical saturation problem presented in most previous works and to collect the complete
data of crops over time. Additionally, the novel methodology for harvesting date and
productivity prediction in sugarcane crops is developed using the data from the test site.
This methodology is based on the judicious use of an AGB curve obtained exclusively from
the experimental area.

The remainder of this paper is divided as follows: Section 2 presents the proposed
model to estimate AGB, the proposed methodology for harvesting date and productivity
prediction, a brief description of the experimental and test sites, the methodology used to
collect the reference data, the data acquisition plan for the drone-borne SAR system, and
the procedures for data processing. Section 3 shows the experimental results, consisting
of the validation of the AGB estimation method and the harvesting date and productivity
prediction methodology results. Finally, a discussion of the results is presented in Section 4,
and the conclusions in Section 5.

2. Materials and Methods

This work presents a harvesting date and productivity prediction methodology for
sugarcane crops based on survey campaigns carried out by the drone-borne SAR system.
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For this procedure, one of the most important aspects is to calculate a representative AGB
curve that describes the AGB behavior over time, which, in this case, is estimated from radar
data. Regarding the AGB estimation, this is determined by weighting the backscattering
information of three frequency bands–L, P, and C–of a drone-borne SAR system to take
advantage of the effectiveness of each one in different ranges of AGB values.

2.1. SAR System

The methodology presented here uses backscattering results from a drone-borne SAR
system described in [37,38], operating in three bands—P, L, and C—and using four channels:
two interferometric C band antennas (VV polarization), one P band antenna, and one L
band antenna, the last two in HH polarization. Table 1 presents the main radar acquisition
parameters for the three operational bands.

Table 1. Main radar acquisition parameters for the L, P, and C bands.

Radar Parameters L Band P Band C Band

Carrier wavelength 22.8 cm 70.5 cm 5.6 cm
Bandwidth 150 MHz 50 MHz 200 MHz
Polarization HH HH VV

Antenna gain 9.4 dB 8.2 dB 12.1 dB
Antenna aperture in azimuth 58.5◦ 55.9◦ 32.5◦

Antenna aperture in elevation 79.8◦ 69.3◦ 51.3◦

Drone average speed 2 m/s 2 m/s 2 m/s
Drone average height 120 m 120 m 120 m

Data collected during the survey flights were processed with a time-domain back-
projection algorithm to construct complex-valued SAR images, which represent a measure
of the scene reflectivity [39]. Such an algorithm offers advantages over frequency domain
algorithms, such as built-in georeferentiation and motion compensation, however, previous
knowledge of the time-varying position of the antenna and the three-dimensional position
of the mapped terrain or Digital Elevation Model (DEM) is required [38]. The SAR images
were radiometrically corrected considering the distance between the platform and the
illuminated target, the bidirectional antenna pattern [40], and the number of pulses used
to construct the synthetic aperture by the back-projection algorithm. For the SAR images’
absolute calibration, corner reflectors with known theoretical radar cross-section (RCS)
were used and located over the illuminated scene. The absolute calibration methodology
used in this work is the integral method [41], which uses pixels from the radiometrically
corrected SAR images corresponding to the corner reflector and the pixels from the areas
adjacent to the reflector.

2.2. Investigation Stage

This section presents the description of an experimental area, the main concepts
involved in obtaining the measured and estimated AGB data, and how this information
can be related to the productivity prediction are presented.

2.2.1. Experimental Area

The experimental area of 10 × 40 m2 is located at the School of Agricultural Engi-
neering at the University of Campinas (FEAGRI–UNICAMP), at 22◦49′12′′S, 47◦03′42′′W.
Figure 1 shows a sugarcane crop planted in this area. The sugarcane type is IACSP97-4039,
which has a nominal cycle of 12 months. Approximately 340 sugarcane plants were planted
on 7 July 2019, distributed in seven lines separated by 1.5 m and 0.75 m between plants.
Table 2 shows the days when the data collection campaign for biometric measurements and
SAR surveys were performed. The sugarcane crop was harvested on 1 July 2020, 360 days
after planting.
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Figure 1. General view of the experimental area with a sugarcane crop.

Table 2. Dates of surveys carried out in the experimental area.

Survey Dates Days after Planting

12 December 2019 165
25 January 2020 202

4 March 2020 241
10 April 2020 278
12 May 2020 310
1 June 2020 330

17 June 2020 346

2.2.2. Sugarcane AGB Measurement

The methodology described in [42] was applied to calculate the measured AGB of
sugarcane crops as reference data. Biometric parameters, illustrated in Figure 2, such as
height, diameter, and the number of stems, were collected for each sugarcane plant. Ns is
the total number of stems in an area of 1 m2.
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A stem with medium height is selected in this 1 m2 area as a representative from which
the height h (m) and the diameters at the base, middle, and top of the stem can be measured.
The final diameter D (m) is obtained by averaging those three measurements. A model
with a Spearman’s correlation of 0.95 [43] is then employed to calculate the measured AGB
by biometric parameters AGBm,

AGBm = π
D2

4
h× Ns × ρ× 0.977

dx
, (1)

where dx (m) is the space between crop lines; destructive analysis was performed in a few
stems to calculate the stem density ρ (kg m−3). The sugarcane harvesting was carried out
on 1 July 2020, when all the plants were weighed to calculate the harvested AGB. Measured
AGB obtained from Equation (1) was used as reference data to develop the proposed AGB
estimation method.

Sugarcane biometric measurements were collected from 19 December 2019 to 12 May
2020. The campaigns of 1 and 17 June 2020 were not considered for biometric measurements
due to a lodging problem in the experimental area.

2.2.3. Ripening Index Measurement

The ideal harvesting date for sugarcane crop can be defined as the day on which the
plantation reaches its maximum metabolization of soluble solids, measured on a ◦Brix scale.
A destructive analysis is necessary to determine the RI, which is defined as the ratio of the
metabolization of soluble solids measured at the top and at the node close to the ground
level. Sugarcane reaches its ideal cut-off point when 0.85 < RI < 1.00 [6].

The sugarcane RI in the experimental area was evaluated using a manual refractometer
in a few plants to establish the appropriate harvesting date based on the Brix ratio obtained
in the last node at the top and in the fourth node above the ground level [44]. Figure 3
presents the sugarcane RI and measured AGB from the experimental area, and an AGB
curve obtained from the interpolation of measured AGB values. From the values shown
in Figure 3, it is possible to infer that the sugarcane crop reaches the maximum AGB on
day 280. From this point on, the sugarcane plants begin to metabolize sugars, reaching and
stabilizing at the maximum RI on day 360, approximately 80 days after the maximum AGB,
when the optimal harvesting date is accomplished.
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Although the destructive procedure is highly accurate, it demands intensive fieldwork,
and a portable refractometer or a remote laboratory is needed to analyze the collected juice
at different stalk points. Moreover, due to the dimensions of the sugarcane farms, only
a limited number of samples can be taken since it is a destructive analysis. Additionally,
AGB can be estimated from radar data. Therefore, it is possible to indirectly predict
when the maximum value of RI will be achieved by the direct estimation of the AGB. The
advantage of using the estimated AGB from radar data is the increased sampling density
since estimations could be taken on a regular grid with 20 cm spacing, compared to the
under-sampling limitation of the RI measurement.

2.2.4. Sugarcane AGB Estimation

The methodology to estimate AGB from radar data can be represented as a block
diagram, as shown in Figure 4. This methodology is divided into two parts: first, the
information obtained from each frequency band– σL, σP, and σC –is analyzed individually
to create single-band AGB models (green blocks), and finally, these AGB models– BL(σL),
BP(σP) and BC(σC) –are weighted according to their efficiency in different ranges of AGB
values to generate a final model for the AGB estimation– AGBe(σL, σP, σC).
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Single-Band AGB Models

The first attempt for AGB estimation is based on the independent analysis of each
frequency band available on the drone-borne SAR system. Calibrated SAR images and
backscattering values from L, P, and C bands were obtained as explained in Section 2.1 and
the measured AGB was used as reference data, as described in Section 2.2.2.

Since the electromagnetic wave penetration in crops is different for each frequency
band, each one presents different saturation points [26–28]. Based on that, the three
frequency bands available on the drone-borne SAR system were independently analyzed to
estimate single-band AGB models to evaluate each band’s performance in different stages
of crop growth and take advantage of the characteristics of each one of them.

The experimental area was then surveyed to estimate the single-band AGB models.
Measured AGB and representative backscattering values for each frequency band—σL,
σP, and σC—were calculated over the experimental area. The information was analyzed
using a scatter plot of the backscattering for each band versus the measured AGB. Such an
analysis provides information on the backscattering behavior for each frequency band as a
function of the measured AGB, making it possible to estimate trends and saturation points.
Finally, using a curve-fitting procedure, the single-band AGB models—BL(σL), BP(σP) and
BC(σC)—are estimated.
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Band-Weighted AGB Model

The band-weighted AGB model presented in this section takes advantage of the drone-
borne SAR system effectiveness in different ranges of AGB, avoiding possible saturation
points. The single-band AGB models are weighted to produce the final estimated AGB
model, as described in Figure 4. The methodology adopted is the weighted-arithmetic
average, where the weighting is based on the error functions for each band [45].

Table 3 shows three ranges of AGB values used to evaluate each single-band model,
which is defined based on the saturation of each band according to the literature [26–28].
The root-mean-square error (RMSE) for each frequency band in the three ranges—eL1,2,3 ,
eP1,2,3 and eC1,2,3 —are calculated by comparing the measured and estimated AGB.

Table 3. Root-mean-square error (RMSE) evaluation of single-band AGB models in different ranges
of AGB.

Band Range 1:
[0 to 4 kg m−2]

Range 2:
[4 to 11 kg m−2]

Range 3:
[11 to 21 kg m−2]

L band : BL(σL) eL1 eL2 eL3

P band : BP(σP) eP1 eP2 eP3

C band : BC(σC) eC1 eC2 eC3

Then, a curve-fitting procedure using polynomial functions and the RMSE values from
each single-band AGB model is used to estimate the error functions—eL(BL), eP(BP) and
eC(BC). Finally, the band-weighted AGB model, AGBe(σL, σP, σC), is obtained by weighting
the AGB estimation of each band, considering the error functions [45], as shown in Figure 4:

AGBe(σL, σP, σC) =
BL(σL)wL(σL) + BP(σP)wP(σP) + BC(σC)wC(σC)

wL(σL) + wP(σP) + wC(σC)
, (2)

where wL(σL), wP(σP) and wC(σC) are weighting functions, defined as:

wL(σL) =
1

(eL(σL))
2 , (3)

wP(σP) =
1

(eP(σP))
2 , (4)

wC(σC) =
1

(eC(σC))
2 . (5)

2.3. Adjustment Stage

This section describes the necessary adjustments of the data obtained in the experi-
mental area so that they can be applied in a test site. This is necessary because the nominal
cycles of sugarcane plants in the experimental area and test site are different.

2.3.1. Test Site

The test site, shown in Figure 5, is located on a sugarcane farm in Iracemápolis, São
Paulo, Brazil. The monitored sugarcane crop is the RB975952 type, which has a nominal
cycle of 18 months, estimated productivity of 12.5 kg m−2 at the first harvest, and less
than 7 kg m−2 after the 4th harvest. The test site was divided into 7 areas with different
harvest seasons.

The survey flights and biometric measurements occurred on 9 April 2020 for areas
1 through 5 of the test site and 16 July 2020 for areas 1, 6, and 7. All SAR surveys were
performed with linear flight paths. Areas 2 and 4 were harvested on 15 July 2020, and areas
6 and 7 were harvested on 7 October 2020.
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2.3.2. AGB Curve Adjustment

From the estimated AGB in the experimental area, shown in Figure 3, it is possible to
obtain a proposed AGB curve. Because the sugarcane types planted in the experimental
area and the test site are different, it is necessary to scale this AGB curve.

The sugarcane type planted in the test site has a life cycle of 18 months, while the life
cycle in the experimental area is 12 months, so the AGB curve needs to be scaled in time. In
addition, unlike the experimental area, the test site presents crops from different harvest
seasons, which directly influences the final productivity. For this reason, historical data of
the harvested AGB also need to be taken into account to scale the AGB curve in amplitude.
Historical data about the sugarcane test site areas over the last 10 years provided by farm
supervisors is displayed in Table 4 and plotted in Figure 6.

Table 4. History of harvested AGB per harvest season.

Sugarcane Harvest Season Harvested AGB

1st harvest season 12.49 kg m−2

2nd harvest season 9.37 kg m−2

3rd harvest season 7.85 kg m−2

4th harvest season 6.97 kg m−2

5th harvest season 6.45 kg m−2

6th harvest season 6.41 kg m−2

7th harvest season 6.34 kg m−2

8th harvest season 6.04 kg m−2

9th harvest season 6.26 kg m−2
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Figure 6. Harvested AGB and a proposed fitting curve.

Since productivity decreased exponentially over the seasons, as can be seen in Figure 6,
an exponential function can be used to model the productivity of the test site. The curve
c(s), calculated using the MATLAB Curve Fitting Toolbox, is defined as:

c(s) = 7.776s−0.8545 + 4.784, (6)

where s is the harvest season. The data in Table 4 is used to scale the amplitude of the AGB
curve from the experimental area and adapt it to the areas of the test site.

2.4. Prediction Stage

This section describes the methods for the harvesting date and productivity prediction
in sugarcane crops of the test site. The procedure is illustrated in Figure 7, where the
adjusted AGB curve is obtained according to Section 2.3 and the estimated AGB map is
based on the method described in Section 2.2.4. This information is employed to obtain the
harvesting date and the AGB map prediction.
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Next, an estimated AGB map of an area of the test site and the corresponding adjusted
AGB curve, which varies according to the harvest season, are considered as examples to
describe the prediction methods.

2.4.1. Harvesting Date Prediction

The estimated AGB map is analyzed to obtain a histogram of days according to the
corresponding AGB curve. This procedure is carried out by taking the AGB value of
each pixel, calculating the corresponding day after planting using the AGB curve, and
storing the information in a histogram. This procedure, illustrated in Figure 8, is performed
pixel-by-pixel until a final histogram is obtained.
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Figure 8. Example of how a histogram is obtained from an estimated AGB map. Left: AGB map.
Center: AGB curve. Right: Histogram.

The day after planting of the analyzed area is calculated as the day corresponding to
the maximum histogram value. Finally, the remaining days for the predicted harvesting
date, when the RI is expected to be maximum, are calculated by subtracting 360 days (or
540 days for the test area) and the day after planting of the analyzed area.

2.4.2. Productivity Prediction

From the estimated AGB map and the corresponding AGB curve, a predicted AGB
map is obtained through a pixel-by-pixel procedure, as shown in Figure 8. In this procedure,
the pixel AGB value of the estimated AGB map is associated with their corresponding day
after planting according to the AGB curve. Then, a time interval is added to the obtained
day after planting to calculate the predicted pixel AGB value. The time interval considered
can be the days remaining for the predicted harvest or real harvesting date. The predicted
productivity corresponding to the analyzed area is obtained as the average value of the
predicted AGB map.

3. Results
3.1. Imaging SAR

The SAR data of each frequency band, presented in Table 2, were processed as de-
scribed in Section 2.1 to generate radiometrically corrected SAR images. DEM information
of the mapped area was freely obtained from Shuttle Radar Topography Mission (SRTM)
data [46]. Then, 40 control points located around the experimental area and measured with
a differential GNSS system were used to correct the DEM. This adjustment was carried
out to improve the DEM information provided by the SRTM, which was collected with a
sampling of only 30 m. Finally, the procedure described in Section 2.1 was employed for
the absolute calibration, using two 0.5 m edge corner reflectors and one corner reflector
with 0.6 m side length in each monitoring survey. Each processed SAR image depicts a
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300 × 300 m2 area, with 20 cm sampling in both directions. To reduce the SAR images
speckle, a moving average filter of 1.5 × 1.5 m2 was applied.

3.2. AGB Estimation

The three-band backscattering values were calculated over the experimental area using
the calibrated and radiometrically corrected SAR images acquired by the drone-borne SAR
system performing a square flight. The acquired dataset was divided into 75% for training
and 25% for validation. The training dataset was employed to calculate the single-band
AGB models and the weighted-band AGB model, and the validation dataset was employed
for adjustment.

3.2.1. Single-Band AGB Models

Figure 9 presents the backscattering results versus measured AGB using the training
dataset from 19 December 2019 to 12 May 2020.
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According to Figure 9, the C band response has a saturation close to 8 kg m−2. For
AGB values higher than 8 kg m−2, the C band backscattering error is higher than 2 dB and
does not allow an AGB estimation accuracy better than 3 kg m−2. The L band information
has similar behavior to the C band and its saturation threshold is about 12 kg m−2. P band,
on the other hand, does not appear to have a saturation point, presenting a linear trend
for higher AGB. To calculate the single-band models, piecewise-defined equations based
on exponential functions and second-degree polynomials were used due to the saturation
and changes in trend between the measured AGB and backscattering values. Applying a
curve-fitting method, the measured AGB for each frequency can be expressed as:

BL(σL) =

{
19.15e0.4413σL ,

∣∣ σL < −1.4dB
6.55σL + 19.50, | σL ≥ −1.4dB

, (7)

BP(σP) =

{
0.25(σP)

2+ 7.43σP + 55.01, | σP < −8.2dB
5.02σP + 52.15, | σP ≥ −8.2dB

, (8)
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BC(σC) =

{
0.49(σC)

2 + 3.678σC + 3.57,
∣∣∣ σC < 1.7dB

7.77σC − 1.98, | σC ≥ 1.7dB
, (9)

An RMSE of 1.94 kg m−2 was achieved for the L band model, 2.11 kg m−2 for the P
band model, and 3.46 kg m−2 for the C band model. Furthermore, the R2 for each model
was 0.89, 0.84, and 0.55 for BL(σL), BP(σP) and BC(σC), respectively. Additionally, the
coefficient of determination for each model for the validation dataset were 0.88, 0.82, and
0.45 for BL(σL), BP(σP) and BC(σC), respectively, presenting a proper fit.

3.2.2. Band-Weighted AGB Model

The RMSE criteria and the measured AGB were used to evaluate each single-band
AGB model, as described in Section 2.2.4. These results were obtained considering the
training dataset. The RMSE values for BL(σL), BP(σP), and BC(σC) were calculated over
different ranges of AGB and are displayed in Table 5, where it is possible to observe
that the models BC

(
σC

0
)
, BL

(
σL

0
)
, and BP

(
σP

0
)

have the lowest RMSE in the ranges 1, 2,
and 3, respectively.

Table 5. RMSE results when evaluating each single-band model in different ranges of AGB.

Band Range 1:
[0 to 4 kg m−2]

Range 2:
[4 to 11 kg m−2]

Range 3:
[11 to 21 kg m−2]

Overall:
[0 to 21 kg m−2]

L band : BL(σL) 1.57 kg m−2 2.11 kg m−2 2.86 kg m−2 1.94 kg m−2

P band : BP(σP) 1.64 kg m−2 2.47 kg m−2 2.21 kg m−2 2.11 kg m−2

C band : BC(σC) 1.48 kg m−2 3.63 kg m−2 4.59 kg m−2 3.46 kg m−2

Such results show that each single-band model presents better performance in different
AGB ranges, which will be exploited in the weighted multi-band model. Figure 10 shows
the RMSE values presented in Table 5.
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Figure 10. Error functions and RMSE values for the L, P, and C bands as a function of the
measured AGB.

Figure 10 also shows error functions that were estimated from each band RMSE results
presented in Table 5. When determining these error functions, it was required that eC(BC)
should be the function with the lowest error values in Range 1, eL(BL) in Range 2, and
eP(BP) in Range 3. Second-order curve-fitting equations were chosen to model the error
functions, and can be expressed as:

eL(BL) = −0.00081B2
L + 0.1089BL + 1.38, (10)
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eP(BP) = −0.01313B2
P + 0.2631BP + 1.26, (11)

eC(BC) = −0.01090B2
C + 0.4226BC + 0.5801. (12)

These error functions are used to weight the single-band AGB models to finally obtain
AGBe(σL, σP, σC), according to Equations (2)–(5). The weighted-band AGB model achieved
an RMSE of 1.75 kg m−2 and an R2 of 0.91 for the training dataset. For the validation dataset,
an RMSE of 2.05 kg m−2 and an R2 of 0.89 were achieved. Figure 11 shows estimated AGB
versus measured AGB for training and validation datasets.
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Figure 11. Estimated AGB vs. measured AGB of the experimental area. (a) Training dataset.
(b) Validation dataset.

Estimated AGB maps of the experimental area over time are generated from the L, P,
and C band SAR images and the weighted-band AGB model. The measured AGB of each
plant in the experimental area was interpolated to generate the respective measured AGB
maps. Figures 12 and 13 show the estimated and measured AGB maps from 19 December
2019 to 12 May 2020.
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Figure 13. Measured AGB maps from (a) 19 December 2019, (b) 25 January 2020, (c) 4 March 2020,
(d) 10 April 2020, and (e) 12 May 2020.

Figure 14 presents the average AGB based on the estimated and measured AGB maps
throughout the time, retrieved from the maps plotted in Figures 12 and 13.
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Figure 14. Measured AGB data and estimated AGB data by the band-weighted AGB model
along time.

Due to the similarity between the measured and estimated AGB, as observed in
Figure 14 and manifested in the obtained RMSE and R2 values, the estimated AGB could
be used to obtain an AGB curve characteristic of the experimental area.

3.2.3. Test Site

Survey flights were carried out over areas 1 through 5 in the test site on 9 April 2020,
and the estimated AGB maps were generated using the band-weighted AGB model. In
order to evaluate the results, biometric measurements were taken in 15 sections over areas
1 through 5 to provide the measured AGB. Figure 15 shows the estimated AGB maps for
the surveyed areas with the 15 sections indicated.
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Figure 16 shows a comparison between measured and estimated AGB for the 15 sections
indicated in Figure 15.
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Additional survey flights were carried out on 16 July 2020 over areas 1, 6, and 7,
and measured AGB was also obtained in 17 selected sections. The estimated AGB map
generated by the band-weighted AGB model, as well the 17 selected sections, are shown in
Figure 17.
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Figure 18. Comparison between measured and estimated AGB based on data collected on
16 July 2020.

3.3. AGB Curve Adjustment

Figure 19 shows the estimated AGB obtained in the experimental area (red) and the
corresponding 12-month sugarcane AGB curve (blue). Due to the difference between the
sugarcane type in the experimental area and test site, the red dots in Figure 19, correspond-
ing to the experimental area, were scaled over time considering the change from 12 months
to 18 months. Based on this scale, a proposed 18-month sugarcane AGB curve, acg(d), for
the test site (green) was obtained.
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In this time scaling, the amplitude of the AGB curve remained constant. The 18-month
sugarcane AGB curve acg(d) could be described as follows:

acg(d) =


0.00928d, d < 255
ac f (d), d ≥ 255 & d < 515

10.53, d ≥ 515,
(13)

where ac f (d) is a Fourier series with eight elements expressed as:

ac f (d) = 4.63+ 5.97 cos(wd + 2.88) + 1.96 cos(2wd− 0.51) + 0.06 cos(3wd + 2.37)
+0.74 cos(4wd + 2.11) + 0.65 cos(5wd− 1.28)
+0.49 cos(6wd + 1.60) + 0.32 cos(7wd− 1.80)

+0.23 cos(8wd + 1.08),

(14)

with w = 0.0064 constant and d the number of days after planting.
In order to obtain the final 18-month sugarcane model, an amplitude scaling procedure

was performed using Equation (6), which is based on Table 2. Function acg(d) is scaled to
consider the harvest season of the analyzed sugarcane crop. The final 18-month sugarcane
AGB curve depends on the days after planting and the harvest season:

ac(d, s) =
1

cN
acg(d)c(s), (15)

where cN = 10.53 is the normalization factor and s is the harvest season.

3.4. Prediction Methods

The estimated and harvested AGB in test site areas 2, 4, 6, and 7 were considered
to verify the productivity and harvesting date prediction methodology. The aim was to
predict the production values of each area at their harvesting dates using only the estimated
AGB maps and the 18-month sugarcane AGB curve for the corresponding harvest season
of the area.

3.4.1. Harvesting Date Prediction

To predict the harvesting date of each area, histograms were obtained using the ac(d, 1),
ac(d, 3), ac(d, 4), and ac(d, 9) functions and the estimated AGB maps of areas 2, 4, 6, and
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7 from 9 April and 16 July 2020, and applying the method described in Section 2.4.1. The
resulting histograms are presented in Figure 20.
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The estimated days after planting for areas 2, 4, 6, and 7 are, respectively, 433, 455,
465, and 454. The predicted date for optimal harvesting is calculated by subtracting those
values from 540 days. The results (107, 85, 75, and 86 days) correspond to the predicted
harvesting dates of 25 July 2020, for area 2, 3 July 2020, for area 4, 30 September 2020, for
area 6 and 11 October 2020, for area 7.

According to their experience and monitoring of the areas, the managers of the test
site chose the harvesting dates aiming at the highest productivity and sugarcane quality.
The chosen dates, which are considered as reference, were 15 July 2020 for areas 2 and 4,
and 7 October 2020 for areas 6 and 7. Finally, the average error between the predicted and
the chosen dates is 8 days.

3.4.2. Productivity Prediction

The harvest season of each area, ac(d, 1) and ac(d, 4) and the estimated AGB maps,
are used to generate the predicted AGB maps corresponding to the real harvesting date
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for areas 2 and 4, respectively. The time interval is 97 days (from 9 April to 15 July 2020).
Similarly, ac(d, 9) and ac(d, 3) are used to generate the predicted AGB maps of areas 6
and 7, respectively, using the corresponding time interval of 82 days (from 16 July 2020 to
7 October 2020). Figure 21 shows an example of how ac(d, 1) is applied on a pixel-by-pixel
process to produce the predicted AGB map from the estimated AGB map of area 2 on
9 April 2020.
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Table 6 shows the predicted AGB based on the predicted AGB maps for the test
site areas 2, 4, 6, and 7, and the harvested AGB. The average error obtained with the
methodology for productivity prediction is 10.7%.

Table 6. Harvested and predicted AGB on test site areas 2, 4, 6, and 7.

Area Harvested AGB (kg m−2) Predicted AGB (kg m−2) Harvest Season

Area 2 14.42 15.23 1st
Area 4 7.07 7.99 4th
Area 6 5.36 6.01 9th
Area 7 9.77 10.97 3rd

4. Discussion
4.1. Comparision of AGB Estimation Methods

Concerning the single-band AGB models, R2 results of 0.89, 0.84, and 0.55 were
obtained for the training dataset and 0.88, 0.82, and 0.45 for the validation dataset in
the L, P, and C bands, respectively. The similarity between the R2 values of the training
and validation datasets shows the robustness of the approach described in this research.
The effectiveness of the L band over the C band is consistent with what is described by
Laneve et al. [20], where different phenological stages of sugarcane crops were analyzed.
In addition, Molijn et al. [19] concluded that the C HH band presents a saturation of
3.5 kg m−2 when monitoring sugarcane crops with the RADARSAT-2, which is half the
value found in this research. Another saturation point at a sugarcane height of 150 cm
was found by Baghdadi et al. [22], although in this case, data from TerraSAR-X was used.
Furthermore, Molijn et al. [19] mentioned that, despite the limited number of available
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images, no saturation point was found for the L HH band up to 11 kg m−2 for sugarcane
crops, similar to results presented here. In other articles, Hosseini et al. [25] obtained an
R2 higher than what is obtained in this research (0.83 over 0.48) when estimating AGB
in corn crops with the C HH band, although the maximum value of calculated AGB was
1 kg m−2. All mentioned publications used single-band SAR systems, reaching different
saturation points depending on the employed band. The three-band radar presented here
covers the features of the X, L, and C bands from satellite-borne systems and adds the
unique characteristics given by the P band and the much higher spatial resolution.

The final band-weighted AGB model resulted in a lower RMSE and a higher R2 than
the single-band AGB models. This weighting technique was chosen because it allows the
model to emphasize the contribution of each frequency band according to its performance
in different ranges of AGB and to take advantage of its efficiency in different phenological
stages of the sugarcane. For future works, it is recommended to test different approaches
based on deep learning to take advantage of the three bands of the drone-borne SAR
system. The final band-weighted AGB model has an R2 of 0.89 for the validation dataset,
which is higher than the R2 obtained by Shi et al. [47], where a value of 0.63 was reached
for sugarcane productivity estimation with a drone-borne optical system. Other works
based on drone-borne optical systems were proposed for estimating AGB in different crops:
Wang et al. [48] achieved an R2 of 0.89 when estimating AGB in rice crops; Han et al. [49]
obtained R2 of 0.94 in corn crops; and Yue et al. [31], 0.93 in winter wheat crops. These
works obtained R2 values close to our band-weighted model, but they worked with AGB
values less than 3 kg m−2. Another key difference is that they carried out mapping surveys
at up to 60 m height, strongly limiting the coverage area. Additionally, some studies
based on LiDAR achieved good results [35,36], presenting limitations with short and dense
vegetation and overcoming them by the fusion of LiDAR and hyperspectral data [50].

The estimated and measured AGB were used to generate AGB maps of the experi-
mental area, as shown in Figures 12 and 13. A moving average filter of 1.5 m × 1.5 m
was applied over the SAR images to generate these maps. Higher AGB can be seen on
the right-side than on the left-side in Figures 12 and 13. Moreover, the decrease in AGB
on 12 May 2020 is also perceptible, making the maps in Figures 12d and 13d the ones
with the highest average values. Finally, according to Figure 14, the band-weighted AGB
model overestimates the AGB in the first two campaigns; however, the AGB calculated by
biometric measurements is higher in the last surveys days.

The test site was also surveyed with the drone-borne SAR system. Two survey cam-
paigns were carried out and resulted in an RMSE of 1.39 kg m−2 (Figure 16) and 1.71 kg m−2

(Figure 18) for AGB estimation. These RMSE results have values close to that obtained in
the experimental area, demonstrating the robustness of the proposed model against other
scenarios. Furthermore, the lowest RMSE value was obtained in the 9 April 2020 survey
than the 16 July 2020 survey, suggesting that the final model has higher precision for lower
ranges of AGB.

4.2. Comparision of Prediction Methods

The test site was also employed to test the harvesting date and productivity prediction
methodology. The average error achieved for the productivity prediction is 10.7%. Besides
that, the estimated day after planting corresponding to the maximum RI was employed
together with the 18-month sugarcane AGB curve for the harvesting date prediction,
achieving an average error of 8 days. In this scenario, no meteorological conditions and
other external factors were considered. More comparisons with a wide range of plantation
ages and harvest seasons are necessary to improve the Equations (15)–(18).

The average error obtained for the harvesting date prediction is greater than that
obtained by Stasolla et al. [51]; however, that work carried out an automatic detection
instead of predicting the harvesting date. Furthermore, Priya et al. [52] presented a method
for the productivity prediction in sugarcane crops with an error of 2.5% for a training
dataset and 8.85% for a validation dataset, lower than the error obtained in our proposal. It
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should be noted that, unlike what is proposed in this work, Priya et al. used information
on temperature, precipitation, and humidity in their methodology. With respect to other
crops, Iizumi et al. [53] proposed a methodology based on statistical data of temperature
and precipitation for productivity prediction in rice, corn, and wheat crops, obtaining
satisfactory results in only 36% of the cases studied.

5. Conclusions

This work presents a novel methodology for predicting sugarcane harvesting date
and productivity based on electromagnetic images acquired by a 3-band drone-borne
SAR system operating in the L, P, and C bands and performing square flight tracks. The
band-weighted AGB model based on a multiband approach allowed us to monitor the
sugarcane crops over time avoiding saturation problems and achieving unprecedented
results compared with other works based on the SAR system.

The harvesting date and productivity prediction methodology are based only on the
indirect RI estimation via AGB, without considering meteorological conditions or other
external factors. The methodology was tested in four regions within the test area, resulting
in an average error of 10.7% and 8 days for the productivity and the harvesting date
prediction, respectively. Although the results are promising, future works are expected to
consider external factors to improve the predictions.

Operating simultaneously in the L, P, and C bands, the drone-borne SAR system offers
a wide range of information. In the future, the use of fully polarized bands can be em-
ployed, in addition to a greater number of surveys, especially for prediction methodologies.
Additionally, different techniques based on machine learning can be evaluated to further
improve the estimates. We expect a reduction of the productivity prediction average error
to less than 2%, considering those improvements.

To the best of our knowledge, the drone-borne radar methodology for AGB estimation
and the related harvest date and productivity prediction methodology presented here are
novel and display high resolution and unparalleled accuracy for sugarcane crops. This
can be suitable for farms, where a long-term and precise prediction of harvest date and
productivity are necessary, taking advantage of the drone-borne radar capability to perform
a daily survey coverage of around 500 ha.
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