

PROJETO DE CONTROLADORES APLICADO A CONVERSORES ESTÁTICOS DE CUBESAT

RELATÓRIO FINAL DE PROJETO DE INICIAÇÃO CIENTÍFICA (PIBIC/INPE/CNPq)

Robert Uíliam Marin Viaro (UFSM, Bolsista PIBIC/CNPq) E-mail: robertviarometal1@hotmail.com

Everson Mattos (CRS/CRS, Orientador) E-mail: <u>everson.mattos@inpe.br</u> Dr. Vinicius Foletto Montagner (CRS/CRS, Coorientador) E-mail: vfmontagner@gmail.com

COLABORADORES

Dr. Gustavo Guilherme Koch (GEPOC/UFSM)

Outubro de 2021

SUMÁRIO

RES	SUMO	5
1.	INTRODUÇÃO	6
2.	OBJETIVO DO TRABALHO	8
3.	MATERIAIS E MÉTODOS	9
a.	Modelagem dos Conversores:	9
b.	Analise da Primeira Etapa de Operação do conversor buck	10
c.	Analise da Segunda Etapa de Operação do conversor buck	11
d.	Analise da Primeira Etapa de Operação do conversor boost	13
e.	Analise da Segunda Etapa de Operação do conversor boost	14
f.	Primeira Etapa de Operação do conversor buck-boost	15
g.	Segunda Etapa de Operação do conversor buck-boost	16
4.	RESULTADOS:	18
5.	Comprovação experimental do projeto	21
6.	CONCLUSÃO	
7.	APÊNDICE	27
8.	REFERÊNCIAS BIBLIOGRÁFICAS	

LISTA DE ILUSTRAÇÕES

- Figura 1 Algumas configurações de CubeSats
- Figura 2 Algumas categorias de satélites de acordo com sua massa.
- Figura 3 Diagrama dos principais subsistemas de um CubeSat e suas interações.
- Figura 4 Algumas categorias de satélites de acordo com sua massa.
- Figura 5 Conversores buck, boost e buck-boost estudados este relatório.
- Figura 6 Conversor buck e esquema de controle.
- Figura 7 Etapa 1, para o conversor buck.
- Figura 8 Etapa 2, para o conversor buck.
- Figura 9 Etapa 1, para o conversor boost.
- Figura 10 Etapa 2, para o conversor boost.
- Figura 11 Etapa 1, para o conversor buck-boost.
- Figura 12 Etapa 2, para o conversor buck-boost.
- Figura 13-Ambiente de desenvolvimento do App Designer do Matlab.
- Figura 14 Ambiente de desenvolvimento do App Designer do Matlab, com código.
- Figura 15 Interface do aplicativo em linguagem Matlab®.
- Figura 16 Aba de solução "Funções de Transferência".
- Figura 17 Exemplo para o conversor buck, figuras de solução de projeto.
- Figura 18– Janela automática que permite exportar os resultados para o PSIM[©].
- Figura 19-Aba que apresenta o projeto de controle analógico para o conversor selecionado.
- Figura 20- Exportação do arquivo de resultados de projeto e simulação em PSIM[©].
- Figura 21– Resposta do controlador implementado em função de transferência e analógico, simulação no software $\text{PSIM}^{\textcircled{O}}$
- Figura 22- Resposta dinâmica dos controladores em função de transferência e analógico no PSIM[®].
- Figura 23- Conversor e controle implementado.
- Figura 24-Variação de -50% de carga
- Figura 25- Variação de +50% de carga

LISTA DE SÍMBOLOS E ABREVIATURAS

- EPS Electrical Power Subsystem (Subsistema Elétrico de Potência).
- COTS Commercial off-the-Shell (Componentes Comerciais de Prateleira);
- PL-Payloads Subsystem (Cargas Úteis);

OBCs - On Board Computer Subsystem (Subsistema do Computador de Bordo);

- Cs Comunication Subsystem (Subsistema de Comunicação);
- AsC Atitude and Control Subsystem (Subsistema do Controle de Atitude);

TsC – Command and Telemetry Subsystem (Subsistema de Comando e Telemetria);

CsDH – Comand and Data Handling Subsystem (Subsistema de Comanda e Manipulação de dados);

EPS - Electrical Power Subsystem (Subsistema Elétrico de Potência);

PI-Ação de Controle Proporcional Integral;

PD-Ação de Controle Proporcional Derivativa;

PID – Ação de Controle Proporcional Integral e Derivativa.

RESUMO

Os conversores CC-CC conectados em painéis fotovoltaicos são de suma importância em aplicações aeroespaciais. Pois, são os responsáveis em última instância pelo sucesso da missão. A falha em conversores ou do controle desses conversores, dependendo do tipo de falha, pode tornar a missão impraticável. Os conversores estáticos são sistemas dinâmicos não lineares que apresentam variações paramétricas e não paramétricas, as quais devem ser suportadas pelo controlador. Com isso, estratégias de projeto de controladores robustos podem ser implementadas obtendo-se bom desempenho.

As técnicas de controle podem ser classificadas em 2 grandes grupos. O primeiro grupo é o de controle clássico e utiliza os seguintes controladores: Controle On/Off; Controle autooperado; Controle proporcional; Controle proporcional derivativo; Controle proporcional integral; Controle proporcional integral derivativo; Avanço de fase; Atraso de fase; Avanço e atraso de fase. O segundo grupo é composto pelo Controle moderno, o qual engloba os seguintes ramos: Controle multivariável; Controle adaptativo; Controle ótimo; Controle não linear; Controle preditivo; Controle robusto; Controle inteligente. Este trabalho tem seu foco em controle robusto, ótimo e no uso de técnicas metaeurísticas de projetos subótimos de controlares e observadores de estado.

1. INTRODUÇÃO

CubeSats são nanossatélites de grande interesse para uso em pesquisas espaciais em universidades e centros de pesquisa devido ao seu pequeno tamanho e custos mais baixos em comparação com os satélites convencionais. O termo CubeSat é um acrônimo formado pela palavra cube (cubo, em inglês) acrescida das três letras iniciais da palavra satélite. Esse termo é utilizado devido a sua forma geométrica de um cubo e cada unidade CubeSat (1 U) apresenta arestas de 10 cm obedecendo uma especificação de domínio público. A unidade Cubesat possui volume de 1 L e sua carga útil pode ter massa de até 1,33 kg. Combinações de unidades (1 U) são utilizadas para formar satélites maiores (2U, 3U, etc.) [1].

Pequenos satélites são cada vez mais usados em missões científicas e exploratórias, que incluem aquisição de dados para pesquisas em astrofísica, astrobiologia, física espacial, ciências lunares ou como plataforma para demonstração de tecnologia nas áreas de propulsão, comunicação e outras. Além disso, os CubeSats têm um papel muito importante no treinamento de recursos humanos para a área espacial com atenção especial aos alunos universitários. Missões espaciais desde sua concepção até a execução demandam altos custos e levam geralmente longos tempos de desenvolvimento que praticamente impede um aprendizado completo dentro do período típico de uma formação em nível superior.

O primeiro conceito de CubeSat surgiu em 1999 com Jordi Puig-Suari e Bob Twiggs da *California Polytech State University* (Cal Poly) e da Universidade de Stanford, respectivamente. A ideia inicial dos autores era fornecer aos alunos a oportunidade de participar de um projeto espacial completo, incluindo a construção, os testes e a operação de um artefato com características similares aos primeiros satélites lançados.

Outra característica importante dos CubeSats está associada a utilização de componentes comerciais comuns (ou COTS, do inglês comercial off-the-shell), ou seja, sem qualificação para uso no espaço. Isso resulta numa redução significativa em termos de custo e tempo de desenvolvimento. Em função de todo seu conjunto de características, sua utilização migrou rapidamente da universidade para outros setores, incluindo as indústrias aeroespaciais [2].

Assim, esses nanosatélites representam uma inovação interessante na área aeroespacial e, também, no modelo de negócios a eles associados, uma vez que maiores iniciativas estão no âmbito dos governos. Em 2017, o número de CubeSats lançados por ano superou o número de satélites convencionais.

As principais características dos CubeSats são:

- Satélites compostos por unidades padronizadas cúbicas de 1U (10x10x10 cm), formando composições de 2U, 3U, 6U etc.;
- Uso de sistemas de ejeção em órbita padronizados, denominados, por exemplo, P-POD (do inglês, *Poly Picossatellite Orbital Deployer*) ou SSPL (do inglês, *Space Shuttle Picosatellite Launcher*), capazes de liberar diversos satélites pela mesma interface. Existem sistemas comerciais destinados a satélites 1U, 2U, 3U e 6U;
- · Uso de componentes COTS nos subsistemas de bordo.

Na Figura 1, são mostradas algumas configurações usuais de CubeSats.

Fonte: adaptado de Radius Space.

Como mencionado anteriormente, Na Figura 2, é mostrada a classificação de alguns satélites conforme sua massa.

Fonte: adaptada de OTE/CGEE.

No Brasil, pode-se citar alguns CubeSats que foram marcantes no contexto como o NanoSatC-Br1 desenvolvido no INPE-CRS.

Por traz da aparente simplicidade de um CubeSat, para torna-lo viável é necessário o trabalho conjunto de uma equipe multidisciplinar de engenheiros e técnicos que se dedicarão ao projeto de cada um dos subsistemas do nanosatélite. A Figura 3 mostra os principais subsistemas do satélite.

Figura 3 – Diagrama dos principais subsistemas de um CubeSat e suas interações.

Fonte: autoria própria.

onde: PL (Payloads Subsystem); OBCs (On Board Computer Subsystem); Cs (Comunication Subsystem); AsC(Atitude and Control Subsystem); TsC (Command and Telemetry Subsystem); CsDH (Comand and Data Handling Subsystem) e EPS (Electrical Power Subsystem).

O subsistema elétrico de potência (EPS) é um dos subsistem mais importantes do nanosatélite, isso porque Nas missões espaciais cerca de 29% dos defeitos em EPS para satélites de órbita LEO (CubeSats) são no submódulo de regulação e controle de energia [1],[2]. É a maior ocorrência de falhas em satélites se forem desconsiderados os eventos de falhas externos imprevisíveis que ocorrem em painéis fotovoltáicos, como por exemplo micrometeoros. Esses dados corroboram com a importância do tema ESP e controle nas pesquisas de engenharia aeroespacial. A falha nesse subsistema acarreta o comprometimento total da missão do satélite. O EPS pode ser subdividido em: fonte primária é tipicamente um arranjo de painéis solares; fonte secundária é tipicamente baterias recarregáveis; Distribuição de energia é o conjunto de cabos e conectores; e Regulação e controle é o conversor(es) e o controle das tensões e correntes desse(s) conversor(es) conforme mostrado na Figura 4.

Figura 4 – Algumas categorias de satélites de acordo com sua massa. Fonte: autoria própria.

2. OBJETIVO DO TRABALHO

Desenvolver um App em matlab para auxiliar no projeto de controle dos subsistemas elétricos de potência de pequenos satélites.

Objetivos Específicos:

Implementar controntrole PI, PID, PD para conversores CC-CC de topologia padrão (*boost, buck, buck-boost*) utilizados em sistemas de energia aeroespaciais;

Implementar controladores analógicos para os conversores CC-CC de topologia padrão (*boost, buck, buck-boost*) utilizados em sistemas de energia aeroespaciais.

3. MATERIAIS E MÉTODOS

a. Modelagem dos Conversores:

Os conversores analisados neste relatório são dos mostrados na Figura 5, ou seja, os conversores *buck, boost* e *buck-boost*, por serem os mais simples e frequentemente utilizados em sistemas aeroespaciais de pequeno porte [1].

Figura 5 – Conversores *buck, boost* e *buck-boost* estudados este relatório. Fonte: autoria própria.

Usando modelos médios de pequenos sinais em espaço de estados conforme [3] pode-se encontrar uma representação do modelo matemático do conversor na forma de funções de transferência utilizando para isso a transformada de Laplace [3-9]. A seguir, para o conversor *buck*, são mostrados os principais passo para modelagem do conversor em espaço de estados.

Figura 6 – Conversor buck e esquema de controle.

Fonte: autoria própria.

As equações dinâmicas do indutor e do capacitor são dadas por:

$$\begin{cases} v_{L}(t) = L \frac{d_{I_{L}}(t)}{dt} \\ i_{C}(t) = C \frac{d_{v_{C}}(t)}{dt} \end{cases}$$
(1)

Considera-se com variáveis de estado a tensão no capacitor e a corrente no indutor, passível de ser utilizado no projeto de controladores. Para encontrar um modelo de pequenos sinais, é necessário analisar o circuito do conversor em cada etapa de operação. Uma etapa de operação é o nome dado a cada circuito formado pela variação do conversor, ou seja, a chave aberta forma uma etapa e a chave fechada outra etapa de operação. Analisando o circuito da Figura 5 para cada etapa de operação tem-se:

b. Analise da Primeira Etapa de Operação do conversor buck

Figura 7 – Etapa 1, para o conversor buck.

Fonte: autoria própria.

Utilizando as Leis de Kirchhoff tem-se o sistema de equações mostrado em (2)

$$\begin{cases} -v_{i}(t) + v_{o}(t) + v_{L}(t) = 0\\ i_{C}(t) = i_{L}(t) - i_{o}(t) \end{cases}$$
(2)

Isolando as variáveis de estado em cada uma das equações de (2) tem-se:

$$-v_{i}(t) + v_{L}(t) = 0$$

$$\boxed{L\frac{d_{I_{L}}(t)}{dt} = v_{i}(t)}$$

$$i_{C_{o}}(t) = -i_{R_{o}}(t)$$

$$\boxed{C_{o}\frac{d_{v_{o}}(t)}{dt} = -\frac{v_{o}}{R_{o}}}$$

Escrevendo as equações dinâmicas em forma matricial obtêm-se (3)

c. Analise da Segunda Etapa de Operação do conversor buck

Figura 8 – Etapa 2, para o conversor buck.

Fonte: autoria própria.

Utilizando as Leis de Kirchhoff tem-se o sistema de equações mostrado em (2)

$$\begin{cases} v_{L}(t) + v_{o}(t) = 0\\ i_{L}(t) = i_{C}(t) + i_{R_{o}}(t) \end{cases}$$
(4)

Isolando as variáveis de estado em cada uma das equações de (4) tem-se:

$$v_{L}(t) + v_{o}(t) = 0$$

$$\boxed{L\frac{d_{I_{L}}(t)}{dt} = -v_{o}(t)}$$

$$i_{c}(t) = i_{L}(t) - i_{R_{o}}(t)$$

$$\boxed{C\frac{d_{v_{c}}(t)}{dt} = i_{L}(t) - \frac{v_{o}(t)}{R_{o}}}$$

Escrevendo as equações dinâmicas em forma matricial obtêm-se (5) K = Ax + Bu

$$\begin{bmatrix} L & 0 \\ 0 & C \\ H & 2 \\ \kappa \end{bmatrix} \begin{bmatrix} i_L \\ v_{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & -\frac{1}{R} \\ 1 & 4 & 2 \\ A_2 \end{bmatrix} \begin{bmatrix} i_L \\ v_{\mathbf{x}} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} V_{\mathbf{x}} \end{bmatrix}$$
(5)

Como o sistema é não linear, para aplicar as técnicas clássicas de controle deve-se linearizar em torno de um ponto de operação. Após perturbar as variáveis de controle, a entrada e a saída obtemos o modelo dado em (6).

O modelo médio não linear é dado por:

$$\begin{cases} K \frac{d\overline{x}}{dt} = \left[DA_1 + (1-D)A_2 \right] \overline{x} + \left[DB_1 + (1-D)B_2 \right] \overline{u} \\ \overline{y} = \left[DC_1 + (1-D)C_2 \right] \overline{x} + \left[DE_1 + (1-D)E_2 \right] \overline{u} \end{cases}$$
(6)

Perturbando e linearizando em torno do ponto de operação, assumindo as perturbações são muito menor do que o valor das variáveis no ponto quiescente, tem-se:

$$\hat{K x} = \bigwedge_{DC} \sum_{DC} \widehat{A x} + \widehat{B y} U + A \hat{x} + B \hat{u} + \left[(A_1 - A_2) X + (B_1 - B_2) U \right] \hat{d}$$

$$\hat{x} = A_p \hat{x} + B_p \hat{u}$$

$$\hat{y} = \underbrace{CX + EU}_{DC} + C \hat{x} + E \hat{u} + \left[(C_1 - C_2) X + (E_1 - E_2) U \right] \hat{d}$$

$$\hat{y} = C_p \hat{x} + E_p \hat{u}$$

Onde

$$A_{p} = \begin{bmatrix} K^{-1}(DA_{1} + (1-D)A_{2}) \end{bmatrix}$$

$$B_{p} = \begin{bmatrix} K^{-1}[B] & K^{-1}[(A_{1} - A_{2})X + (B_{1} - B_{2})U] \end{bmatrix}$$

$$C_{p} = \begin{bmatrix} (DC_{1} + (1-D)C_{2}) \end{bmatrix}$$

$$E_{p} = \begin{bmatrix} [B] & \begin{bmatrix} (C_{1} - C_{2})X + (E_{1} - E_{2})U \end{bmatrix} \end{bmatrix}$$

Aplicando a transformada de Laplace tem-se:

$$\frac{\hat{y}}{\hat{u}}(s) = \left[C_{\rho}\left(sI - A_{\rho}\right)^{-1}B_{\rho} + E_{\rho}\right]$$

onde

$$A_{p} = \begin{bmatrix} K^{-1}(DA_{1} + (1-D)A_{2}) \end{bmatrix}$$

$$B_{p} = \begin{bmatrix} K^{-1}[B] & K^{-1}[(A_{1} - A_{2})X + (B_{1} - B_{2})U] \end{bmatrix}$$

$$C_{p} = \begin{bmatrix} (DC_{1} + (1-D)C_{2}) \end{bmatrix}$$

$$E_{p} = \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} (C_{1} - C_{2})X + (E_{1} - E_{2})U \end{bmatrix}$$

d. Analise da Primeira Etapa de Operação do conversor boost

Figura 9 – Etapa 1, para o conversor boost.

Fonte: autoria própria.

Utilizando Kichhoff pode-se escrever as seguintes equações para o circuito da Figura 9. O sistema de equação dado em (7) é para a primeira etapa de operação do conversor *boost*.

$$\begin{cases} -v_i(t) + v_L(t) = 0\\ i_C(t) = -i_o(t) \end{cases}$$
(7)

Resolvendo o sistema de equação de (7) e usando as equações (1), obtêm-se:

$$-v_{i}(t) + v_{L}(t) = 0$$
$$L\frac{d_{I_{L}}(t)}{dt} = v_{i}(t)$$

$$i_{c}(t) = -i_{o}(t)$$

$$C \frac{d_{v_{o}}(t)}{dt} = -\frac{v_{o}}{R_{o}}$$

Escrevendo de forma matricial resulta em (8)

$$K = Ax + Bu$$

$$\begin{bmatrix} L & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} i_{L} \\ v_{o} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & -\frac{1}{R_{o}} \end{bmatrix} \begin{bmatrix} i \\ v_{o} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ B_{1} \end{bmatrix} \begin{bmatrix} V_{i} \end{bmatrix}$$
(8)

e. Analise da Segunda Etapa de Operação do conversor boost

Figura 10 – Etapa 2, para o conversor boost.

Fonte: autoria própria.

Para essa etapa o sistema de equações resultantes da aplicação de Kichhoff é dado em (9). Proveniente da análise do circuito mostrado na Figura 10.

$$\begin{cases} -v_{i}(t) + v_{L}(t) + v_{o}(t) = 0\\ i_{L}(t) = i_{C}(t) + i_{o}(t) \end{cases}$$
(9)

Resolvendo o sistema de equação de (9) e usando as equações (1), obtêm-se:

$$-v_{i}(t) + v_{L}(t) + v_{o}(t) = 0$$

$$\boxed{L\frac{d_{I_{L}}(t)}{dt} = v_{i}(t) - v_{o}(t)}$$

$$i_{c}(t) = i_{L}(t) - i_{o}(t)$$

$$\boxed{C\frac{d_{v_{o}}(t)}{dt} = i_{L}(t) - \frac{v_{o}(t)}{R_{o}}}$$

Escrevendo de forma matricial resulta em (10)

$$\begin{split} \mathcal{K} &= \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u} \\ & \begin{bmatrix} L & \mathbf{0} \\ \mathbf{0} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{L} \\ \mathbf{v}_{o} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & -1 \\ 1 & -\frac{1}{R_{o}} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{L} \\ \mathbf{v}_{o} \\ \mathbf{x} \end{bmatrix} + \begin{bmatrix} 1 \\ \mathbf{0} \\ \mathbf{B}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{i} \\ \mathbf{u} \end{bmatrix} \\ & \mathbf{H} \end{split}$$
(10)

Aplicando a mesma metodologia utilizada para o conversor *buck* pode-se encontrar a função de transferência que relaciona a tensão de saída Vo com a razão cíclica, dada por

$$G_{(Vo,D)}(s) = \frac{V_i}{(D-1)^2} \frac{R_o(1-D)^2 - Ls}{CLR_o s^2 + Ls + R_o(1-D)^2}$$
(11)

f. Primeira Etapa de Operação do conversor buck-boost

Figura 11 - Etapa 1, para o conversor buck-boost.

Fonte: autoria própria.

Utilizando Kichhoff pode-se escrever as seguintes equações para o circuito da Figura 9. O sistema de equação dado em (12) é para a primeira etapa de operação do conversor *boost*.

$$\begin{cases} -v_i(t) + v_L(t) = 0\\ i_C(t) = -i_o(t) \end{cases}$$
(12)

Resolvendo o sistema de equação de (12) e usando as equações (1), obtêm-se:

$$-v_{i}(t) + v_{L}(t) = 0$$

$$\boxed{L\frac{d_{I_{L}}(t)}{dt} = v_{i}(t)}$$

$$i_{C}(t) = -i_{o}(t)$$

$$\boxed{C\frac{d_{v_{o}}(t)}{dt} = -\frac{v_{o}}{R_{o}}}$$

Escrevendo de forma matricial resulta em (13)

$$\mathcal{K} = Ax + Bu$$

$$\begin{bmatrix} L & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} i_{L} \\ v_{o} \\ \vdots \\ x \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & -\frac{1}{R_{o}} \end{bmatrix} \begin{bmatrix} i \\ v_{o} \\ \vdots \\ x \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ B_{1} \end{bmatrix} \begin{bmatrix} V_{i} \\ u \end{bmatrix}$$
(13)

g. Segunda Etapa de Operação do conversor buck-boost

Figura 12 – Etapa 2, para o conversor *buck-boost*. Fonte: autoria própria.

Para essa etapa o sistema de equações resultantes da aplicação de Kichhoff é dado em (9). Proveniente da análise do circuito mostrado na Figura 10.

$$\begin{cases} v_{L}(t) - v_{o}(t) = 0\\ i_{L}(t) + i_{c}(t) + i_{o}(t) = 0 \end{cases}$$
(14)

Resolvendo o sistema de equação de (9) e usando as equações (1), obtêm-se:

$$v_{L}(t) + v_{o}(t) = 0$$

$$\boxed{L\frac{d_{I_{L}}(t)}{dt} = -v_{o}(t)}$$

$$i_{c}(t) = i_{L}(t) - i_{o}(t)$$

$$\boxed{C\frac{d_{v_{o}}(t)}{dt} = -i_{L}(t) - \frac{v_{o}(t)}{R_{o}}}$$

Escrevendo de forma matricial resulta em (10) K = Ax + Bu INPE

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

$$\begin{bmatrix} L & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} i_L \\ v_o \\ \vdots \\ \vdots \\ K \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -\frac{1}{R_o} \end{bmatrix} \begin{bmatrix} i_L \\ v_o \\ \vdots \\ K \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ B_2 \end{bmatrix} \begin{bmatrix} V_i \\ u \\ u \end{bmatrix}$$
(15)

Aplicando a mesma metodologia utilizada para o conversor *buck-boost* pode-se encontrar a função de transferência que relaciona a tensão de saída Vo com a razão cíclica, dada por

$$G_{(Vo,D)}(s) = \frac{V_i}{(D-1)^2} \frac{(R_o + D^2 R_o - 2DR_o - DLs)}{(R_o D^2 - 2R_o D + CLR_o s^2 + Ls + R_o)}$$
(16)

O App Designer do Matlab[®] foi utilizado para projeto do aplicativo. O ambiente de desenvolvimento do aplicativo pode ser visto nas Figuras 8 e 9. A linguagem de programação utilizada no aplicativo é uma mescla da linguagem de programação usada em *scripts* do Matlab[®] e a linguagem de programação orientada a objeto C++.

Figura 13– Ambiente de desenvolvimento do App Designer do Matlab. Fonte: autoria própria.

Figura 14 - Ambiente de desenvolvimento do App Designer do Matlab, com código.

Fonte: autoria própria.

4. **RESULTADOS:**

Na Figura 9 mostra-se a interface de abertura do aplicativo em desenvolvimento. Esse aplicativo permite calcular de forma rápida e simples as funções de transferência, tanto contínuas como discretas para os conversores clássicos, não isolados, *buck, boost* e *buck-boost*, o quais são conversores muito utilizados em eletrônica de potência e em sistema aeroespaciais.

 $Figura \ 15-Interface \ do \ aplicativo \ em \ linguagem \ Matlab {\ensuremath{\mathbb R}}.$

Fonte: autoria própria.

Ao se pressionar o botão "compute" o aplicativo efetua o calculo do modelo do conversor selecionado e preenche a aba de "Funções do Transferência" mostrada na Figura 10.

Figura 16 – Aba de solução "Funções de Transferência".

Fonte: autoria própria.

Além disso, será plotado de forma automática a solução de projeto para o controlador selecionado de (PI, PD ou PID), conforme mostrado na Figura 11.

Figura 17 –Exemplo para o conversor *buck* , figuras de solução de projeto. Fonte: autoria própria.

E ainda abrirá uma janela para permitir que sejam exportados os resultados para uso no software de simulação de controle utilizado em eletrônica de potência chamado de PSIM[©] da Powersim Inc., a janela de exportação dos dados pode ser visualizada na Figura 11.

E rupo de Eletr	rônica de Poténci	A CONVERSORES CC-CC.	INPE
Parâm	etros do	Select File to Write	×
Fs	25000	$\leftarrow \rightarrow \checkmark \uparrow$ I « Documentos » PSIM v V \nearrow Pesquisar PS	IM
L	1e-3	Organizar ▼ Nova pasta	* ?
с	100e-	PSIM parametros.txt	ho: 175 bytes
Ro	3	Downloads Imagens	
Vi	10	Nome: parametros trt	
Vo	5	Tipo: (*.txt)	~
		Orultar pastas Salvar	Cancelar

Figura 18- Janela automática que permite exportar os resultados para o PSIM[©].

Fonte: autoria própria.

A última aba do aplicativo, ainda não concluída, mostra o projeto analógico do controlador para o conversor escolhido como se mostra na Figura 12. Nessa aba pode-se escolher os valores dos componentes para o projeto de controlares analógico (PI,PD ou PID).

Figura 19-Aba que apresenta o projeto de controle analógico para o conversor selecionado.

Fonte: autoria própria.

Após a realização do projeto verifica-se o seu desempenho, para isso utiliza-se o software PSIM[®] que é mais bem aceito na área de estudo de eletrônica de potência. A Figura 12 mostra uma simulação com o projeto realizado para o conversor *buck*, tanto para o sistema

simulado por função de transferência como para o projeto com amplificadores operacionais (projeto analógico).

5. Comprovação experimental do projeto

Dando continuidade ao trabalho de pesquisa iniciada iniciado em 2019, no qual foi desenvolvido um aplicativo em MATLAB® para projeto de controladores analógicos para conversores CC-CC. Nesta nova etapa da pesquisa, foi incluída a implementação prática do controle em um protótipo e a apresentação dos resultados de simulação e experimentais. O trabalho mostra o problema de regulação da tensão de saída de um conversor CC-CC, abrangendo: i) a modelagem do conversor em função de transferência, incluindo incerteza na carga e na tensão de entrada, ii) as especificações de projeto em termos de margem de fase e frequência de cruzamento, iii) o projeto dos ganhos do controlador utilizando a função pidtune do MATLAB®, iv) a implementação do controle com amplificadores operacionais, com a escolha dos resistores e capacitores associados a estes amplificadores, v) a apresentação dos resultados experimentais do sistema de controle em malha fechada aplicado a um conversor buck de potência nominal de .10 W e operando com frequência de comutação de 20 kHz. A escolha deste conversor deu-se por apresentar uma topologia simples e que pode servir de base para desenvolvimento de controladores para conversores mais complexos, embarcados em subsistemas elétricos de potência de pequenos satélites. O conversor buck foi modelado matematicamente, utilizando modelo médio em espaço de estados, para se obter uma função de transferência. A escolha da função de transferência da planta, conversor buck, usada para o projeto do controlador PID, levou em conta as variações paramétricas da tensão de entrada e da carga. Foi considerada adequada para o projeto do controlador a planta com maior variação de fase. Após a escolha da planta, foi executada a função pidtune do MATLAB[®]. Para sua execução, foram usados a margem de

fase do sistema compensado maior ou igual a 60° e a frequência de cruzamento por zero dB, do sistema compensado, uma década abaixo da frequência de comutação do conversor buck. Executou-se o aplicativo e foram obtidos os valores dos componentes adequados para a implementação de um PID analógico. O conversor buck foi implementado juntamente controlador PID, utilizando amplificadores operacionais, resistores e capacitores. Os circuitos foram testados, e os sinais de saída foram comparados com resultados de simulação, comprovando-se a viabilidade técnica do projeto pelo aplicativo proposto.

A Tabela 01, mostra os valores dos componentes utilizados para implementação prática do conversor buck.

Componente	Valor
Inductor (L)	216 uH
Capacitor (C)	47 uF
Tensão de saída (Vo)	6 V
Tensão de entrada (Vi)	30 V
Frequencia de chaveamento (fsw)	20 kHz

Tabela 01 - Definição dos componenes do conversor buck

Fonte: Autor

O modelo foi validado conforme mostra a Figura 21

Figura 21– Resposta do controlador implementado em função de transferência e analógico, simulação no software PSIM[©].

Fonte: autoria própria.

O projeto do controlador conforme descrito anteriormente resultou nos ganhos dados por

$$C_{pi}(s) = \frac{0.03162s + 7.779}{s} \tag{17}$$

Os valores do controlador analógico estão dados na Tabela 02.

Tabela 02 - Valores dos componentes do controlador analógico

Componente	Valor
C ₂	1 uH
$R_3 = R_4$	10 kΩ
R ₂	4,065 kΩ
R ₁	128,551 kΩ

Fonte: Autor

Comparando o resultado de simulação do controlador analógico como o controlador em função de transferência, para isso, foi realizada uma variação de +50% de carga está indicada na variação da tensão de saída, verifica-se que o controlador com implementação analógica responde com uma dinâmica muito próxima a do controlador por função de transferência, conforme mostrado na Figura 22.

Figura 22– Resposta dinâmica dos controladores em função de transferência e analógico no PSIM. Fonte: autoria própria.

O conversor foi implementado em placa padrão, incluindo o controlador analógico projetado. A Figura 23 mostra o protótipo e o controle analógico.

Figura 23– Conversor e controle implementado. Fonte: autoria própria.

Aplicando-se uma variação de carga de -50% é possível verificar que a resposta transitória

Figura 24– Variação de -50% de carga

Fonte: autoria própria.

Tanto da resposta prática quando da resposta de simulação são similares e próximas de 9ms. Novamente, realizando variação de carga no sentido contrário de +50% confirma-se a boa correspondência das respostas.

Figura 25–Variação de +50% de carga.

Fonte: autoria própria.

6. CONCLUSÃO

Ao longo desse projeto foram revisados os conceitos sobre CubeSats e seus subsistemas elétricos de potência (EPS), desenvolvido um software em linguagem Matlab com a função de avaliar o controle e a estabilidade de conversores CC-CC clássicos (*buck, boost e buck-boost*) que são utilizados comumente em subsistemas elétricos de potência (EPS). As principais dificuldades sanadas no decorrer dos trabalhos realizados foram sanadas com busca em artigo, livros e com o auxilio do orientador. Uma publicação em formato de resumo deve ser submetida a Jornada Acadêmica Integrada da UFSM, assim que as inscrições forem abertas, como parte dos requisitos de renovação de bolsa.

7. APÊNDICE

A seguir está o Código Parcial das principais rotinas:

Modelagem do conversor *buck* (já adequada para incluir as não idealidades dos componestes):

```
function [Gi,Gv,Gvi,Ap,Bp,Cp,Ep,Y,X] = buck(app)
                clc;
                format long G
                Vo=str2num(app.VoEditField.Value);
                Vi=str2num(app.ViEditField.Value);
                D=Vo/Vi;
                                       % Ponto de operação
                L=str2num(app.LEditField.Value);
                Co=str2num(app.CEditField.Value);
                 Vd=0;
                 Rd=0;
                 RL=0;
                 Rc=0;
                 Rs=0;
                Ro=str2num(app.RoEditField.Value);
                % Modelo médio em espaço de estados
                % Etapa 1
                 %diL/dt=
                        a11=(0 - 1*(RL + Rs + (Rc*Ro)/(Rc + Ro)) + 0*(Rc/(Rc
+ Ro) - 1))/L;
                        a12=(0 - 0*(RL + Rs + (Rc*Ro)/(Rc + Ro)) + 1*(Rc/(Rc
+ Ro) - 1))/L;
                  %dvC/dt=
                        a21=-(0- Ro*1)/(Co*(Rc + Ro));
                        a22=-(1 - Ro*0)/(Co*(Rc + Ro));
                  A1=[a11
                            a12
                     a21
                            a22];
                 %diL/dt=
                 b11=(1 - 0*(RL + Rs + (Rc*Ro)/(Rc + Ro)) + 0*(Rc/(Rc + Ro))
- 1))/L;
                 b12=-(0 - Ro*0)/(Co*(Rc + Ro));
                %dvC/dt=
                 b21=0;
                 b22=0;
                 B1=[b11
                             b12
                     b21
                             b22];
```



```
% saída
                 % y=iL
                 c11=1;
                 c12=0;
                  %y=Vo;
                 c21=Rc*Ro/(Rc+Ro);
                 c22=Ro/(Rc+Ro);
                 C1=[c11
                            c12
                     c21
                           c22];
                  % y=iL
                 e11=0;
                 e12=0;
                   %y=Vo;
                 e21=0;
                 e22=0;
                 E1=[e11
                            e12
                     e21
                            e22];
clear a11 a12 a21 a22 b11 b12 b21 b22 c11 c12 c21 c22 e11 e12 e21 e22;
                 % Etapa 2
                    %diL/dt=
                         a11=-(0 + 1*(RL + Rd + (Rc*Ro)/(Rc + Ro)) -
0*(Rc/(Rc + Ro) - 1))/L;
                         a12=-(0 + 0*(RL + Rd + (Rc*Ro)/(Rc + Ro)) -
1*(Rc/(Rc + Ro) - 1))/L;
                    %dvC/dt=
                         a21=-(0 - Ro*1)/(Co*(Rc + Ro));
                         a22=-(1 - Ro*0)/(Co*(Rc + Ro));
                 A2=[a11
                           a12
                     a21
                          a22];
                    %diL/dt=
                        b11=0;
                        b12=-1/L;
                    %dvC/dt=
                        b21=0;
                        b22=0;
                 B2=[b11 b12
                     b21 b22];
                 % y=iL
                    c11=1;
                    c12=0;
                    e11=0;
```



```
e12=0;
```

```
%y=Vo;
c21=(Ro*Rc)/(Rc + Ro);
c22=Ro/(Rc + Ro);
e21=0;
e22=0;
```

```
C2=[c11 c12
c21 c22];
E2=[e11 e12
e21 e22];
%Matrizes médias
A=D*A1+(1-D)*A2;
B=D*B1+(1-D)*B2;
C=D*C1+(1-D)*C2;
E=D*E1+(1-D)*E2;
```

```
%Ponto de operação em regime permanente
U = [Vi
Vd];
% X = simplify(-inv(A)*B*U);
% %Y = ((-C*inv(A)*B+E)*U);
% Y = simplify(C*X+E*U);
```

```
X = (-inv(A)*B*U);
%Y = ((-C*inv(A)*B+E)*U);
```

```
Y = (C^*X + E^*U);
```

```
%Definição do modelo padrão (pequenos sinais)
Ap=A;
% Bp=[B (A1-A2)*X+(B1-B2)*U];
Bp=(A1-A2)*X+(B1-B2)*U;
Cp=C;
% Ep=[E (C1-C2)*X+(E1-E2)*U];
Ep=(C1-C2)*X+(E1-E2)*U;
```

```
%% FT
[n,d]=ss2tf(Ap,Bp,Cp,Ep,1);
Gi=tf(n(1,:),d);
Gv=tf(n(2,:),d);
Gvi=minreal(Gv/Gi);
```

```
INPE
```

Sintonia automática do controlador PI

```
function [R1,Rf,Cf,Rp] = PI_Controler(app)
            app.PICheckBox.Value=0;
            s=tf('s');
            [~,Gv,~,~,~,~,~,~] = buck(app);
            [~,~,~,Wm]=margin(Gv)
                %% PI usando tecnicas de atraso de fase
                % requistos
                ep=0;
                mp=str2num(app.pmEditField.Value)-180;
                if (mp>0) || (mp<-180)
                    mydlg = warndlg('Derfina um valor estável de margem de
fase (ex.: 60 Graus)', 'ATENÇÂO');
                    waitfor(mydlg);
                end
                % busca margem de fase desejada
                w=logspace(-1,6,1e6);
                [Mag,Phase,Wrad]=bode(Gv,w);
                mag=squeeze(Mag);
                phase=squeeze(Phase);
                M=20*log10(mag);
                k=find(phase<=mp);</pre>
                Wm=Wrad(k(1));
                                          % Encontrou Wm
                Mg=M(k(1))
                Ph=phase(k(1))
                % garantir nova Wm
                Kc=10^(-Mg/20);
                % Melhoarar estabilidade
                z=Wm/100;
                % Projeto compeleto
                Gpi=Kc*(s+z)/s;
                    Vo=str2num(app.VoEditField.Value);
                    Vi=str2num(app.ViEditField.Value);
                    D=Vo/Vi;
                                           % Ponto de operação
                    L=str2num(app.LEditField.Value);
                    Co=str2num(app.CEditField.Value);
                    Ro=str2num(app.RoEditField.Value);
                     %varNames = {'R1', 'Rf', 'Rp', 'Cf'};
```



```
T2 =
table({'Vi1=';'L1=';'C1=';'R1=';'Fsw1=';'Vref1=';'Rf1=';'Rf1=';'Rp1=';'Cf1='
},[Vi;L;Co;Ro;Fsw;Vo;R1;Rf;Rp;Cf],'VariableNames',{ '%Arquivo','de dados
PI'});
        [f,p,ix] = uiputfile('*.txt');
        if (f==0)
            return
        end
        cd (p);
        outputfile=strcat(p,f);
        writetable(T2,outputfile,'Delimiter',' ');
        app.PICheckBox.Value=0;
```

end

8. REFERÊNCIAS BIBLIOGRÁFICAS

[1] Robinson, P. A., Spacecraft Environmental Anomalies Handbook, GL-TR-89-0222, Hanscom Air Force Base, MA: Air Force Geophysics Laboratory, 1989.

[2] Bedingfield, K. L., Leach, R. D. and Alexander, M. B., "Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment," NASA Reference Publication 1390.

[3] R. W. Erickson, Fundamentals of Power Electronics.Chapman & Hall, New York, USA, 1997.

[4] D. C. Martins & I. Barbi, Eletrônica de Potência: Introdução ao Estudo dos Conversores CC-CA.Ediçãodos Autores, 2aEdição, Florianópolis, SC, Brasil, 2008.

[5] M. L. Heldwein, EMC Filtering of Three-Phase PWM Converters.Published by SüdwestdeutscherVerlagfür Hochschulschriften & Co. KG, Germany, 2009.

[6] S. Chowdhury, S. P. Chowdhury and P. Crossley, Microgrids and Active Distribution Networks.Publishedby The Institution of Engineering and Technology, London, United Kingdom, 2009.

[7] M. H. Rashid, Power Electronics Handbook.Academic Press, San Diego, California, USA, 2001.

[8] D. C. Martins & I. Barbi, Eletrônica de Potência:Conversores CC-CC Básicos Não Isolados.Ediçãodos Autores, 3aEdição, Florianópolis, SC, Brasil,2008.

[9] A. S. Kislovski, R. Redl and N. O. Sokal, Dynamic Analysis of Switching-Mode DC/DC Converters.VanNostrand Reinhold, New York, USA, 1991.