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Seneca
Roman philosopher
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ABSTRACT

This work proposes the application of machine learning techniques to the attitude
control of satellites. More specifically, Deep Reinforcement Learning (DRL) is used to
generate an optimal control policy. The policy is parameterized as a neural network,
which allows for its application in higher dimension state spaces. Since the torque
command used to modify the attitude of the satellite is a continuous signal, it is
necessary to use algorithms suited for continuous action spaces. Accordingly, three
DRL algorithms were evaluated, namely the Deep Deterministic Policy Gradient
(DDPG), the Twin Delayed DDPG (TD3), and the Soft Actor-Critic (SAC). For
this method to work in the attitude control setting, it was necessary to modify the
default neural network model used within the referred algorithms. Particularly, the
bias units of the neural networks representing the control policies have been removed.
In regards to the training procedure, the three algorithms were successful in finding
the parameters of Neural Networks (NN) capable of solving the attitude control
problem. However, there were differences in performance. For instance, the SAC
converged considerably faster than the other two, and its learning curve showed more
consistent learning. Furthermore, the final average reward value was equivalent for
SAC and TD3. DDPG, on the other hand, showed a more oscillatory behavior during
training, with the acquired reward varying considerably across the training episodes.
While comparing the actual performance of the NN trained with each algorithm in an
attitude control task, the neural network trained with the TD3 algorithm presented
the best response, which closely matched that of a Proportional-Derivative controller
in a nominal scenario. Thereafter, a more critical scenario involving actuator failure
was also evaluated, where we compared the performance of the intelligent controller
trained with the TD3 algorithm with that of a baseline PD controller. Overall, in
three out of four failure scenarios, the intelligent controller was able to respond
better than the baseline PD in this challenging scenario.

Keywords: Attitude Control. Satellite. Artificial Intelligence. Deep Reinforcement
Learning. Optimal Control.
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CONTROLE DE ATITUDE INTELIGENTE DE SATÉLITES VIA
APRENDIZAGEM POR REFORÇO PROFUNDO

RESUMO

Este trabalho propõe a aplicação de técnicas de aprendizagem de máquina para o
controle de atitude de satélites. Mais precisamente, aprendizagem por reforço pro-
fundo é utilizada para a obtenção de uma política ótima de controle. A política de
controle é parametrizada por uma rede neural, o que possibilita a sua aplicação em
espaços de estados de ordem elevada. Uma vez que o torque de controle é um si-
nal contínuo, se faz necessário o uso de algoritmos apropriados para espaços de ação
contínuos. Dessa forma, três algoritmos são avaliados, sendo eles Deep Deterministic
Policy Gradient (DDPG), Twin Delayed DDPG (TD3) e Soft Actor-Critic (SAC).
Para que esse método funcione em problemas de controle de atitude, é necessário
modificar o modelo da rede neural padrão usado nesses algoritmos. Particularmente,
as unidades de viés das redes neurais utilizadas para representar políticas de con-
trole foram removidas. Em relação ao procedimento de treinamento, o algoritmo
SAC convergiu consideravelmente mais rápido do que os outros dois, e a sua curva
de aprendizagem teve um comportamento mais estável. Além disso, o valor final
da recompensa acumulada foi equivalente para os algoritmos SAC e TD3. O algo-
ritmo DDPG, em contrapartida, apresentou um comportamento instável durante
o treinamento. Quando comparamos o desempenho da rede neural treinada com
cada algoritmo em uma tarefa de controle de atitude, a rede neural treinada pelo
algoritmo TD3 apresentou a melhor resposta, a qual se aproximou da resposta do
controlador PD de referência em um cenário nominal. Em seguida, um cenário mais
crítico envolvendo falha em atuador foi avaliado, onde comparamos o desempenho
do controlador inteligente treinado com o algoritmo TD3 com o desempenho de um
controldor PD de referência. De forma geral, em três dos quatro cenários de falha
analisados, o controlador inteligente respondeu melhor do que o PD de referência.

Palavras-chave: Controle de Atitude. Satélite. Inteligência Artificial. Aprendizagem
por Reforço Profundo. Controle Ótimo.
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1 INTRODUCTION

Satellite applications are nowadays ubiquitous. Considering all the scientific dis-
coveries and improvements implemented over decades, satellites are now a mature
and well-understood technology (PELTON et al., 2017). This implies they are able to
provide very reliable information. However, with the continuation of human space
exploration, new challenges will arise and new methods and tools will have to be
created to overcome them (PIPPO, 2018). In this context, the role of applied research
to come up with innovative solutions is crucial.

A satellite is designed according to its mission objectives. Therefore, there is a great
variety of designs regarding payload, cost, and desired accuracy (see Figure 1.1).
For a satellite to be able to fulfill its mission, it usually requires a control system,
as it is often desirable to point the satellite in a certain direction. As a matter
of fact, a satellite is formed by many subsystems. The subsystem responsible for
controlling the orientation and position of a satellite in space is the AOCS (Attitude
and Orbit Control System). This control system must provide the required torque
for stabilization and control of the satellite (WERTZ, 2012).

Figure 1.1 - Illustration of the Amazonia-1 Satellite in Earth’s orbit. The Amazonia-1 is
a low Earth orbit (LEO) satellite developed at INPE that was successfully
launched in February of 2021.

SOURCE: Ministério da Ciência, Tecnologia e Inovações (2021).

Due to the complexity of the subsystems involved and the high cost of its compo-
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nents, the control algorithms of a satellite are usually designed using non-optimal
schemes, which have been flight-proven and are easier to implement in microcon-
trollers. For this reason, a popular approach is to use a simple proportional-derivative
law. However, there are many situations in which an intelligent controller could ben-
efit a satellite mission. Especially in situations where it may occur changes in the
spacecraft parameters. Such scenarios are very difficult to model and predict, which
makes the control design task very challenging. Usually, adaptive control schemes
are required (XIE et al., 2016). However, traditional methods of nonlinear adaptive
control design are hand-crafted to solve a particular task and require significant en-
gineering effort. Alternatively, as shown in Ma et al. (2018), reinforcement learning
can be applied in these scenarios, enabling a control strategy to be learned rather
than being specifically designed.

Another common occurrence in space missions is actuator failure. For example, a
malfunction of a reaction wheel. This is usually not an easy problem to diagnose
and it may take a considerable amount of time until operators on the ground realize
it. This could have a serious impact on the mission since it could make the satellite
deviate from its target while tracking an object in space or on the surface of the
Earth. On the other hand, an intelligent controller would be able to adapt to the
new situation and compensate for it. It should be noted that during the training
process of reinforcement learning, the neural network (the agent) could be exposed
to failure situations such as this, and thus would be able to learn a resilient control
policy.

In view of the recent success and impact that machine learning is having in a variety
of areas, we propose the study of the application of these methods to satellite tech-
nology. More specifically, since the focus of this work is on the control system, the
subarea of machine learning named reinforcement learning offers the most promis-
ing set of tools. This dissertation intends to build a simulation environment and
implement an attitude controller for a satellite, using concepts of neural networks
and reinforcement learning.

Reinforcement learning is a branch of artificial intelligence that relies on the dynamic
interaction of an agent with an environment, rather than learning from a static
dataset (SUTTON; BARTO, 1998). The theory was initially developed in the 80s,
but only recently could be successfully applied to solve difficult control problems
(LILLICRAP et al., 2015).
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1.1 Goals and motivation

In light of the above arguments, the main goal of this study is to control the attitude
of a satellite with a neural network, which will be trained with state of the art
deep reinforcement learning algorithms. The resulting intelligent controller should
at least match the performance of a traditional PD control law and ideally overcome
it in specific situations. Since the intelligent controller would be able to adapt to
changes in the environment, for example, a failure of a reaction wheel. While a
conventional PD controller has a poor ability to deal with such complex scenarios,
the intelligent controller, on the other hand, would have the ability to adapt in-
flight to the new parameters since it has been trained in a stochastic simulation
environment, which makes it resilient to uncertainties and increase its fault tolerance
capacity. Optionally, it should also be possible to deploy the trained model together
with the learning algorithm so it could train further in the actual physical hardware,
if necessary.

1.2 Contribution

• Three state of the art DRL algorithms are evaluated in the task of con-
trolling the attitude of a satellite.

• We demonstrate the bias in the neural network model is detrimental in the
attitude control context.

• The proposed intelligent controller was successful in both 2D and 3D atti-
tude control tasks.

• A critical scenario involving actuator failure is evaluated.

1.3 Organization

In addition to this introduction, this dissertation is divided into six more chapters,
which are briefly described below.

Chapters 2 gives a historical overview of relevant works in the literature and
presents a discussion of the state-of-the-art works in the field of DRL.

Chapters 3 starts with a proper definition of the attitude control problem. The
preliminary concepts and notation concerning the attitude kinematics and dynamics
of satellites are also presented in this chapter.
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Chapters 4 provides an overview of the field of deep reinforcement learning. It
begins by reviewing fundamentals concepts, then it explains modern solution tech-
niques, arriving at the end at the one adopt in this work.

Chapter 5 describes the employed deep reinforcement learning algorithms and
presents the methodology used for the development of the simulation environment
used for training the model.

Chapter 6 analyses and discuss the results of the performed numerical simulations.

Chapter 7 summarizes the importance of the achieved results and suggests activ-
ities to be performed in future works.
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2 RELATED WORK

2.1 Overview

This chapter walks through relevant works in the Deep Reinforcement Learning
research field. First, important historical developments are reviewed and later the
state-of-the-art works are described.

2.2 Historical developments

Artificial intelligence (AI) is an active area of research. Over the last decades, there
have been many innovations with the use of machine learning techniques, which may
be considered as a subfield of AI, to solve a great number of real-world problems
(ROYAL SOCIETY, 2017).

The key ideas of deep learning, such as backpropagation, were already well under-
stood back in the 1990s (WERBOS, 1990). But at that time, the applications were
very limited. Only with the advent of the internet providing an immense amount of
data and also the availability of high-performance hardware, it was finally possible
to achieve breakthroughs in the field.

At INPE, there were some early uses of artificial intelligence for satellite control
(CARRARA, V. et al., 1998), although the work showed some good results, the diffi-
culties for training the neural networks models imposed by the hardware limitation
available at the time forbidden its adoption. However, since then, the area of ma-
chine learning and artificial intelligence have experienced an exponential growth and
there are now many more tools available to design and implement such intelligent
controllers. These facts justify the need for reviving this area of research at the
Institute, and this preliminary work is an attempt to move in this direction.

Considering all the subfields of machine learning, the one that has more resemblance
to control theory is the so-called reinforcement learning. The theory of reinforcement
learning is intrinsically related to the classical approach of optimal control developed
by Richard Bellman, named Dynamic Programming (BELLMAN, 1952). However,
reinforcement learning solves the limitations of this technique such as the curse of
dimensionality and does not require a precise mathematical model of the process,
since the RL agent learns to behave by interaction with what could simply be a
black-box model, as will be further explained in Chapter 4.

For many years, applications of reinforcement learning were restricted to problems
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with small-size state spaces and discrete action spaces. As a consequence, higher
dimensional and complex problems could not be tackled by reinforcement learning.

The continuous state limitation was solved by MNIH, V. et al. (2015), with the use
of a neural network to approximate the state-action value function Q(s, a), instead
of a lookup table. The developed algorithm is best known as Deep Q Network or
DQN for short. However, the naive approach of simply substituting the table with
a neural network does not work. Hence, the authors developed two innovations: the
use of a replay memory buffer and a target network.

2.3 State of the art

Building upon the innovations of DQN, the work by Lillicrap et al. (2015) presented
an algorithm called Deep Deterministic Policy Gradient (DDPG) to tackle contin-
uous action spaces. This algorithm combines the ideas of DQN with previous work
on Deterministic Policy Gradients (SILVER et al., 2014). The result is an algorithm
that can solve many hard control problems. This finding was essential for the popu-
larization of the technique, since most systems of interest have a continuous output,
as the attitude control of a satellite for which the control signal is a torque.

More recently, two other algorithms were developed to tackle particular limitations
in DDPG, namely Twin-Delayed DDPG (TD3) (FUJIMOTO et al., 2018) and Soft
Actor-Critic (SAC) (HAARNOJA et al., 2018). As such, the application of these three
algorithms DDPG, TD3, and SAC, will be studied in this work. Interestingly, TD3
and SAC were developed concurrently.

TD3 tackles the issues of approximation errors and overestimation bias present in
the estimation of the Q-values. It modifies the DDPG algorithm by including ideas
from previous work on Double Q-learning (HASSELT, 2010) and other particular
changes to tackle variance in the estimation.

SAC differs from the previously described algorithms in that it uses a stochastic
actor, instead of a deterministic one (HAARNOJA et al., 2018). The main point of the
Soft Actor-Critic algorithm is that it tries to reduce the need for hyperparameter
tuning, as well as improve the stability of training. It is shown in the original paper
that DDPG can not extend well for very complex environments, but SAC can.

A more complete description of these algorithms will be given in Chapter 5, including
their corresponding implementation in pseudocode and a comparison of their main
properties and differences.
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Other popular techniques are Trust Region Policy Optimization (TRPO) (SCHUL-

MAN et al., 2015) and Proximal Policy Optimization (PPO) (SCHULMAN et al., 2017),
which do not require learning an action-value function since it is a pure policy gradi-
ent method. Nonetheless, it is usually less sample efficient. The basic idea is that it
only slowly and methodically updates the policy parameters rather than performing
large steps and risking becoming unstable.

Moving on to the applications of these algorithms. In robotics, RL is having a far-
reaching impact, with an abundance of successful application cases. In Hwangbo et
al. (2019), a legged robot is controlled entirely with a reinforcement learning trained
policy, and in ANDRYCHOWICZ, M. et al. (2020) an agent was able to learn hand
manipulation, which is a very daunting task, from the ground up. In both of these
works, the policy was trained in simulation and later deployed to hardware, showing
a similar performance, despite the known difficulties related to the simulation-to-
reality-gap (KOBER et al., 2013).

Applications of reinforcement learning for spacecraft, however, are still limited. Al-
though some very recent publications have shown excellent results. For example,
in Hovell and Ulrich (2020), the authors have chosen to use a hybrid approach for
a mission of rendezvous and docking, where a neural network model trained with
reinforcement learning issues the higher level commands in the guidance module
and a conventional PD law is used as the lower level attitude controller. The work
contains simulation and real experiments. The results are very promising and the
authors claim that this approach would facilitate the certification procedure if it
were to be used in a real mission and also stimulate the adoption of such novel
control law by the scientific community.

The work by Elkins et al. (2020) used the TD3 algorithm to train a neural network to
perform a large angle slew rate maneuver on a spacecraft and subsequently maintain
the desired orientation. The presented results were reasonably good, however, it lacks
a comparison with other approaches.

Also, it is important to consider the great amount of development that has been
occurring in nanosatellite technology (CARRARA et al., 2017), as it arises as a viable
and cheap alternative to test novel controller concepts. The safety requirement for
these small platforms is much less strict than the ones for big commercial satellites.
In this sense, if a proof of concept mission is to be put together in the future to
validate such an intelligent controller, it would certainly make use of such platforms.
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Encouraged by the promising results that deep reinforcement learning is presenting
in various applications, this dissertation studies its use for the attitude control of
a satellite. The proposed intelligent controller is expected to facilitate the design
procedure and to increase the capabilities of the system.
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3 SATELLITE ATTITUDE CONTROL

3.1 Overview

In this chapter, the attitude control problem is formally stated, the attitude kine-
matics and dynamics of satellites are presented and the related nomenclature is
reviewed.

3.2 The attitude control problem

The attitude of a satellite is defined in the scope of this work as the orientation of
a coordinate frame fixed on the satellite body with respect to an inertial reference
frame. For the study of attitude kinematics and dynamics, the translation of the
rigid body is not considered. The problem of attitude control is based on the idea of
aligning reference frames. A satellite needs an attitude control system for orienting
its solar panels, antennas, heating sinks, cameras for remote sensing, and any other
component that requires pointing precision (WERTZ, 2012).

For the correct calculation of the control commands, the satellite requires knowl-
edge of its current state (attitude and angular velocities). It is the responsibility
of the Attitude Determination Subsystem (ADS) to extract state information from
sensor measurements such as rate gyros, star sensors, magnetometers, solar sensors,
and others. These sensor measurements are fused within the attitude determination
system, generally with the use of a Kalman Filter (LEFFERTS et al., 1982). However,
since the focus of this work is primarily on the Attitude Control Subsystem (ACS),
the attitude determination process is not addressed, thus the attitude sensors are
not modeled and the states are regarded as known. This assumption is justified since
many space missions have been satisfied by designing the attitude determination and
control systems separately (MARKLEY; CRASSIDIS, 2014). This separation principle
stands to applications of control theory in general (GEORGIOU; LINDQUIST, 2013).

Once in possession of the estimated state information, the attitude control subsystem
calculates the corresponding control signals to send to the actuators. The actuators
used in satellite missions can be of a great sort, but the most common for small
satellites are magnetic torque coils and reaction wheels. An inherent problem of
having reaction wheels as actuators is the eventual saturation of the wheels. A
typical workaround solution is to use the magnetic torque coils to generate a counter
moment in the satellite body, and then gradually desaturate the wheels (TRÉGOUËT

et al., 2014). In practice, these systems work together and form the Attitude and
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Determination Control System (ADCS).

Figure 3.1 - Block diagram of a spacecraft attitude control system.
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Another relevant aspect to be considered in the control design process are the dis-
turbances. In Space, a satellite is subjected to many sources of disturbances. The
most relevant in an attitude control setting are the gravity gradient torque, the solar
radiation pressure, and, for Low Earth Orbit (LEO) satellites, also the atmospheric
drag effects are strong (ZAGÓRSKI, 2012). Figure 3.1 shows a block diagram of an
ADCS, where the torques caused by these environmental disturbances are also taken
into account.

In the scope of this dissertation, we are primarily interested in the general problem
of three-axis attitude stabilization and control.

3.2.1 Reference frames

Formally, we define a reference inertial cartesian coordinate system (CCS) SI =
{̂i1, î2, î3} with the î3 axis aligned with the Earth rotation axis. Also, we define a
body-fixed CCS SB = {b̂1, b̂2, b̂3}, attached to the satellite body as illustrated in
Figure 3.2. For attitude control, we consider the origin of both reference frames SI

and SB to be at the center of mass of the satellite.
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Figure 3.2 - Inertial and body-fixed reference frames.

SOURCE: Adapted from Chagas and Lopes (2014).

3.2.2 Attitude representations

The relationship between coordinate systems can be expressed by any one of the
attitude parametrizations, such as Direction Cosine Matrices (DCM), quaternions,
Modified Rodrigues Parameters (MRP), among several others (SHUSTER et al., 1993).
These representations relate a vector in the inertial frame to the observed vector in
the satellite body frame. We have chosen to use quaternions for the development
of this work since it is suitable for implementation on a digital computer because
it does not present singularities such as gimbal-lock. Only three parameters are
required to univocally express an attitude. Thus, since a quaternion contain four
parameters, it must have an ambiguity. In practice, many times we propagate the
equations of motion using quaternions but convert the final result to Euler angles
for easy visualization.
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3.2.2.1 Direction Cosine Matrix

The Direction Cosine Matrix (DCM) is a fundamental attitude representation. All
the other attitude parametrizations have a direct formula to convert back to a DCM
(SCHAUB, 2010). A transformation from the body frame SB to the inertial frame
SI , using the DCM notation is represented as

Db
i =


b̂1 .̂i1 b̂1 .̂i2 b̂1 .̂i3

b̂2 .̂i1 b̂2 .̂i2 b̂2 .̂i3

b̂3 .̂i1 b̂3 .̂i2 b̂3 .̂i3

 . (3.1)

A DCM does not have any singularity, but has six restrictions, since it has nine
parameters, and only three are needed to fully represent a rotation. It has a clear
physical meaning, where its elements are formed by the inner product of two unitary
vectors (HUGHES, 2012).

3.2.2.2 Quaternions

Quaternions are a popular redundant attitude coordinate set which is singularity
free in its attitude representation. The quaternion q = [q1 q2 q3 q4]T is defined as

q1 = e1sin(ϕ/2),

q2 = e2sin(ϕ/2),

q3 = e3sin(ϕ/2),

q4 = cos(ϕ/2),

where e = [e1, e2, e3]T and ϕ are the Euler vector and angle, respectively.

A short notation for the quaternion is given by

q = (ε η)T , (3.2)

where ε is the vector part and η = q4 is the scalar part of the quaternion (HUGHES,
2012). The quaternion has unit length and it must obey the relationship

εT ε + η2 = ε2
1 + ε2

2 + ε2
3 + η2 = 1. (3.3)
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The rotation matrix (DCM) that relates the inertial frame to the body frame can
be expressed as a function of the quaternion as

Db
i = (η2 − εT ε)I3 + 2εεT − 2ηε×, (3.4)

where I3 is a 3×3 identity matrix and ε× =


0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

 is a skew-symmetric

matrix.

3.2.2.3 Euler angles

Euler angles are a minimum set of three attitude parameters. Hence, contain singu-
larities in the attitude determination (SCHAUB, 2010). They describe a rotation of
the body frame SB with respect to the inertial frame SI through three successive
rotations around the coordinate axis.

There are a total of twelve possible combinations, which differ in regard to the
sequence of rotations. Six of them are symmetric, meaning that one of the axes is
repeated (but not in sequence), and six are asymmetric, where all the rotation axis
are distinct. The asymmetric 3-2-1 (yaw-pitch-roll) rotation sequence is commonly
used to describe spacecraft attitude.

3.3 Attitude kinematics

Let ω⃗bi,b denote the angular velocity of SB with respect to SI , as measured in the
body frame SB. The attitude kinematics describes the motion of SB with respect
to SI as a function of ω⃗bi,b.

The attitude kinematics in DCM parametrization is given by

Ḋ
b

i = −


0 −ωbi,b,z ωbi,b,y

ωbi,b,z 0 −ωbi,b,x

−ωbi,b,y ωbi,b,x 0

Db
i , (3.5)

where ω⃗bi,b = [ωbi,b,x ωbi,b,y ωbi,b,z]T is the angular velocity vector of the body-fixed
frame SB with respect to the Inertial frame SI , represented in the SB frame.

While the differential kinematic equation in the quaternion parametrization is given
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by

q̇bi = 1
2


0 −ωbi,b,z ωbi,b,y ωbi,b,x

ωbi,b,z 0 −ωbi,b,x ωbi,b,y

−ωbi,b,y ωbi,b,x 0 ωbi,b,z

−ωbi,b,x −ωbi,b,y −ωbi,b,z 0

 qbi, (3.6)

q̇bi = 1
2Ωqbi. (3.7)

3.4 Attitude dynamics

For simplification, the satellite is modeled as a rigid body. Thus, the attitude dy-
namics are given by the Euler’s differential equation

˙⃗ωbi,b = J−1
s [−ω⃗bi,b × (J sω⃗bi,b + J rwω⃗rw)− τ⃗rw], (3.8)

where Js is the total satellite inertia matrix (without the inertia of the wheels),
J rw is the reaction wheels inertia matrix, ω⃗bi,b is the satellite angular velocity vector
represented in the body-frame, ω⃗rw is the reaction wheels angular velocity vector
and τ⃗rw is the effective torque provided by the reaction wheels. Both ω⃗rw and τ⃗rw

are also represented in the body frame.

Similar to when a force is applied to an object, the object accelerates. When a
torque is applied to a free-floating object, it starts to spin faster and faster. That is,
it experiences angular acceleration.
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Figure 3.3 - Spacecraft equations of motion.

SOURCE: The Author.

Figure 3.3 illustrates well how the attitude kinematics and dynamics relate to each
other.

3.4.1 The inertia matrix

The inertia matrix, defined as follows

J s =


Jxx −Jxy −Jxz

−Jyx Jyy −Jyz

−Jzx −Jzy Jzz

 , (3.9)

contains all the dynamic information of a rigid body (SIDI, 1997). A compact object
with all the mass concentrated near the center of mass spins much easier than
an object that has a lot of mass located far from the center of mass. Since J s is
symmetric, we have Jxy = Jyx, Jxz = Jzx and Jyz = Jzy.

3.4.2 Conservation of angular momentum

Similar to the linear momentum (p⃗ = mv⃗) in translational motion, there is a related
concept in rotational motion, called angular momentum. All spinning bodies have
angular momentum, which is a function of their shape, mass distribution, and rate
of spin.

The angular momentum of a body rotating about a fixed axis is defined as the
product of the moment of inertia (I) and the angular velocity (ω⃗) as follows
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H⃗ = Iω⃗. (3.10)

The rate of change of angular momentum equals the torque, as given by

dH⃗

dt
= τ⃗ . (3.11)

If the net external torque acting on the rotating body is zero, ∑ τ⃗external = 0 or
equivalently, dH⃗

dt
= 0, it means the angular momentum does not change, it is con-

served.

Attitude control systems for spacecraft leverage the principle of conservation of
angular momentum to orient the spacecraft to the desired direction.

3.4.3 Actuators: momentum-control devices

Some of the most common actuators for spacecraft attitude control belong to the
so-called family of momentum management devices. They actively vary the angular
momentum of small, rotating masses within a spacecraft to change its attitude. They
can be divided into two main types, namely reaction wheels and control moment
gyros (CMGs) (WERTZ, 2012).

Both have considerable advantages over other methods mainly because they do not
use any propellant. They only require electric motors which can be powered by
batteries and which can be easily charged using the energy provided by the solar
panels.

A reaction wheel is a device consisting of a spinning wheel attached to an electric
motor, whose speed can be controlled by an onboard computer. By speeding up or
slowing down, they transfer angular momentum to the satellite, rotating it around
its center of mass.

Each wheel produces torque only along its axis of rotation. Therefore, for three-
axis attitude control, reaction wheels must be mounted along with at least three
directions, with extra wheels providing redundancy to the attitude control system.

Reaction wheels allow very precise changes in a spacecraft’s attitude. For this rea-
son, they are often the preferred way to control the attitude of spacecraft carrying
cameras or telescopes. They can also help in absorbing disturbance torques due to
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the gyroscopic effect.

From Equation 3.10 we know the angular momentum is given by the product of an
object’s moment of inertia, I, and its angular velocity, ω⃗. Note that a large mass,
with high inertia, spinning at a relatively slow speed can have the same angular
momentum as a small mass spinning at a much higher rate.

The total angular momentum of a spacecraft system is defined as the sum of the
spacecraft’s momentum plus the momentum of each reaction wheel as follows

H⃗total = H⃗s + H⃗rw. (3.12)

Figure 3.4 shows an illustration of a satellite being controlled by a reaction wheel,
using the principle of conservation of angular momentum. To rotate the spacecraft
in one direction, the wheel is spun up in the opposite direction, such that the total
angular momentum of the system stays constant.

Additional information about the mathematical model and configuration of the re-
action wheels used in this work can be found in Appendix A.
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Figure 3.4 - Momentum exchange between reaction wheel and satellite body.
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SOURCE: The Author.

In the case of CMGs, the flywheels always spin at a constant rate, and the change
in angular momentum is caused by the application of a torque that changes the
direction of the flywheel. They are most suited for applications that require agility
and a high output torque in the case of larger crafts. For instance, they are the main
attitude control device within the International Space Station (ISS).

One important limitation of all momentum control devices is the practical limit on
how fast a given flywheel can spin. In operation, all of these systems must gradually
spin faster and faster to rotate the spacecraft and absorb disturbance torques. Even-
tually, a wheel will be spinning as fast as it can, without damaging bearings or other
mechanisms. At this point, the wheel is saturated, meaning it has reached its design
limit for rotational speed. When this happens, the wheels must de-spun through a
process known as “momentum dumping”. Momentum dumping is a technique for de-
creasing the angular momentum of a wheel by applying a controlled external torque
to the spacecraft. The wheel can absorb this torque in a way that allows it to reduce
its rate of spin. Naturally, the spacecraft needs some independent means of applying
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an external torque, these can be either in the form of magnetorquers or thrusters.

3.5 Quaternion feedback control

The control law mainly used for the attitude control of satellites consist of a negative
feedback controller with output proportional to the pointing and angular rate errors.
In the case of a quaternion parametrization, this control law is given by

τ⃗c = −Kpq⃗bi1:3 −Kdω⃗bi,b. (3.13)

where q⃗bi1:3 is the vectorial part of the unit quaternion and −τ⃗c is the commanded
torque to the reaction wheels. Note that due to friction, saturation, and other non-
linearities, this is different from the effective torque τ⃗rw applied by the reaction
wheels to the satellite. Also, note that due to the working principle of the reaction
wheel, which generates a reaction torque, we have to send −τ⃗c to the reaction wheels.
Kp and Kd are diagonal matrices with the controller gains as the leading diagonal
elements and the remaining non-diagonal elements equal to zero, and ω⃗bi,b is the
angular velocity of the satellite.

As described in Markley and Crassidis (2014), regulation control is defined as bring-
ing the attitude to some fixed location and the angular velocity vector to zero.
Without loss of generality, one can always make a coordinate transformation so that
the reference is the unit quaternion q = [0 0 0 1]T .
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4 DEEP REINFORCEMENT LEARNING BACKGROUND

4.1 Overview

Before diving into the details of the implementation of the deep reinforcement learn-
ing (DRL) solution for satellite attitude control in Chapter 5, it is worth walking
through the theoretical background. This chapter is therefore dedicated to reviewing
the basic terms and fundamental concepts related to DRL.

4.2 Artificial intelligence, machine learning, and deep learning

Artificial intelligence (AI) is a broad field of study that encompasses methods
and techniques that try to mimic in some ways the natural intelligence displayed
by humans and animals. The field of AI worries with higher-level goals includ-
ing reasoning, knowledge representation, planning, natural language processing and
perception. The AI field has intersections with more traditional disciplines such
as computer science, information engineering, mathematics, psychology, linguistics,
philosophy, and many others (RUSSELL; NORVIG, 2002).

Machine learning (ML) is the study of computer algorithms that improve auto-
matically through experience. It is seen as a subset of artificial intelligence. Machine
learning algorithms build a model based on sample data, known as "training data",
in order to make predictions or decisions without being explicitly programmed to
do so. In classical programming, humans input rules (a program) and data to be
processed according to these rules, and obtain the answers as output. With machine
learning, humans input data as well as the expected answers from the data and get
as output the rules. These rules can then be applied to new data to produce original
answers (CHOLLET, 2017).

Machine learning algorithms generally fall into three categories, described below.

• Supervised learning→ Essentially, a strategy that involves an external entity
(a teacher) that knows the correct answers to the problem. The model makes
its predictions, then the teacher provides the answers. The model at first takes
random guesses, and it is iteratively corrected until it learns to match the input
features to the appropriate label.

• Unsupervised learning→ It tries to find hidden patterns in the data without
previous knowledge. It is generally used to find correlations in large datasets.
It usually finds applications in data analytics, such as dimensionality reduction
and clustering.
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• Reinforcement learning → It can be viewed as a generic framework for rep-
resenting and solving control tasks. It involves the dynamic interaction of an
agent with an environment. The agent tries to learn the best way to behave,
while receiving feedback from the environment. It is much different from the
previous approaches in many ways. For instance, the input data is not i.i.d
(independent and identically distributed), since the experiences that the re-
inforcement learning agent sees depend on its previous choices (actions). For
instance, if the agent makes the correct decisions, it will explore a good por-
tion of the state space. However, if it chooses the wrong path, it may collect
only poor data, not representative of the task being solved. This can make the
learning considerably more challenging (SUTTON; BARTO, 1998).

Deep learning is a subfield of machine learning, it is a mathematical framework
for learning representations from data. The “deep” in the name is related to the
successive layers of the model used to approximate functions, which consists of neural
networks. Some well-known applications of deep learning are image classification and
regression (GOODFELLOW et al., 2016).

Figure 4.1 shows an illustration of the hierarchical scope of each research area de-
scribed above. We can see that Deep Learning is a subset of Machine Learning,
which itself is a subset of the broader Artificial Intelligence field of study.

Figure 4.1 - Diagram showing the hierarchy among areas.

SOURCE: Chollet (2017).

21



4.3 Deep learning concepts

4.3.1 Neural networks

A neural network is a computing structure that is capable of learning functions of the
form f : Rm → Rn, where m is the input dimension and n is the output dimension.
They are made up of simple processing units called artificial neurons. Figure 4.2
shows the model of a single neuron, also known as the perceptron. It embodies the
most important elements that make up a neural network such as input features (x1,
x2), weights (w1, w2), biases (b), and an activation function (σ). A linear combination
is performed by multiplying the input signals by the corresponding weights and
adding a bias term. The activation function is then applied to limit and transform
the output (HAYKIN, 1998).

Figure 4.2 - The model of a single neuron.
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The mathematical operations performed inside a neuron are described by

ŷ = σ

(
n∑

i=1
wixi + b

)
, (4.1)

where σ represents an activation function, ω are the weights, x are the input features,
b is the bias term, and ŷ is the model prediction output.

Although conceptually interesting, this simple model is limited to solving only linear
separable problems. To approximate more complex, possibly nonlinear functions, it
is necessary to arrange many of these basic elements in a network structure. These
networks can be connected in many different ways, forming different architectures.
One of the simpler, yet powerful, architecture is the so-called multilayer perceptron
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(MLP), also known as a fully-connected neural network. In fact, this is the model
adopted for the neural networks used in this work. Figure 4.3 shows a representation
of a MLP with its input, hidden, and output layers.

Figure 4.3 - A multilayer perceptron network with 2 hidden layers.
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SOURCE: The Author.

Considering this model, where al
n represents the nth neuron in layer l, the following

notation, in matrix form, can be used to compute the output of each layer.

From the input features to layer 1:

a⃗ (1) = σ[W (0)x⃗ + b⃗
(0)

]. (4.2)

From the output of layer 1 to layer 2:

a⃗ (2) = σ[W (1)a⃗ (1) + b⃗
(1)

]. (4.3)
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From layer 2 to the output layer:

a⃗ (3) = σ[W (2)a⃗ (2) + b⃗
(2)

], (4.4)

where σ represents an arbitrary activation function, W (i) is a matrix of weights, a⃗(i)

and b⃗
(2)

are column vectors, representing the layers output and bias term, respec-
tively.

The model prediction output in the multi-layer case is simply a composition of
functions, namely matrix multiplications and activation functions as follows

ŷ = a⃗ (3) ◦ a⃗ (2) ◦ a⃗ (1). (4.5)

The process of the inputs entering the input layer of a neural network, being pro-
cessed and returning the output, is called feedforward. The result of the feedforward
procedure is the neural network prediction ŷ.

If the model has 2 or more hidden layers, then it may be called a deep neural
network. This property of stacking layers one after the other makes them capable
of approximating highly complex nonlinear functions. Actually, many of the models
used in production in real life, from self-driving cars to game-playing systems, have
many hidden layers.

4.3.1.1 Activation functions

In the previous section, we saw how a neural network computes its prediction/out-
put. Given an input vector x⃗, a dot-product with the weight matrix is computed
and ultimately an activation function is applied to the result.

The activation function is a fundamental part of a neuron since it is responsible
for adding non-linearity to the model. There are many different types of activation
functions, but some of the more popular are the sigmoid, the hyperbolic tangent
(tanh), and the rectified linear unit (ReLU) (GOODFELLOW et al., 2016).
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Sigmoid

The sigmoid used to be the most common activation function in the early days of
deep learning. It works by squeezing the input values down into the range of 0 and
1.

It is defined as follows
f(x) = σ(x) = 1

1 + e−x
· (4.6)

Figure 4.4 - Sigmoid activation function.

SOURCE: The Author.

Nowadays it is known that the sigmoid has some drawbacks related to vanishing
gradients when the input is too high or too low since the sigmoid saturates. In such
cases, its gradient becomes zero which breaks the backpropagation step. Another
unfavorable characteristic is the fact that it is not zero-centered. Thus, the sigmoid
is avoided in many applications, specially at inner layers. However, it is still very
used at the output layers in classification problems.

Hyperbolic tangent

Another common activation function used in deep learning is the tanh. It has consid-
erable advantages over the sigmoid, and thus it has replaced it in many applications.
The tanh maps a real-value input to the range of -1 to 1 as follows
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f(x) = σ(x) = ex − e−x

ex + e−x
· (4.7)

Figure 4.5 - Hyperbolic tangent (tanh) activation function.

SOURCE: The Author.

ReLU

The Rectified Linear Unit (ReLU) has become the default activation function for
hidden layers. It simply zeros out any negative value and leaves the positive input
values unmodified as given by

f(x) = 0, if x < 0

f(x) = x, if x ≥ 0
. (4.8)

26



Figure 4.6 - Rectifier Linear Unit activation function.

SOURCE: The Author.

The choice of which activation function to use in the output layers depends on the
intended application. As will be shown later in Chapter 6, it is important for the
neural network used to choose control actions to map a zero input to a zero output.
As is the case for the tanh and ReLU. The Sigmoid, however, does not obey this
relationship and therefore it is usually not suitable for control applications. Still, it
was included here for historical reasons since it was the first activation function used
with neural networks.

4.3.1.2 Universal approximation theorem

A neural network can be considered a universal function approximator since, given
the right combination of nodes and connections, the network can mimic any input-
output relationship. Actually, there is a theorem, the Universal Approximation The-
orem, that states that any continuous and bounded function on compact subsets
X ⊆ Rn can be approximated by an artificial neural network with only one layer as
long as the activation function σ : R→ R is non-constant, continuous and bounded
(HORNIK et al., 1989).

This theorem indicates how powerful is the representative capacity of neural net-
works (GOODFELLOW et al., 2016).
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4.3.2 The loss function

A loss (also called cost) function is a way to measure whether the model is making
the correct predictions. It can be defined as the distance between the model current
output and its expected output (target). The loss function defines the feedback signal
used for learning. It is the quantity the training algorithm attempts to minimize
during training (GOODFELLOW et al., 2016).

In the context of deep learning, the loss can be of many forms depending on the
nature of the problem one is trying to solve. If it is a regression problem, for instance,
a simple and effective one is the well-known mean square error (MSE) given by

L(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi). (4.9)

In practice, it is the gradient of this function that is used to modify the neural
network parameters in order to find a minimum (optimum point).

4.3.3 Stochastic gradient descent

Gradient descent is a first-order iterative optimization algorithm for finding a mini-
mum of a differentiable function. The idea is to take a step in the opposite direction
of the gradient of the function at the current evaluation point because this is the
direction of steepest descent. If this procedure is done repeatedly, at each point
checking the gradient and then taking the appropriate step, it will eventually ap-
proach some local minimum of the function.

Figure 4.7 illustrates this process for a one-dimensional loss function. The idea is to
apply the update rule

θj = θj − α
∂f(θ)
∂θj

, (4.10)

where α is the learning rate, θj are the model tunable parameters and f is the cost
function, multiple times to find the point in parameter space where the loss function
has the minimum value.

Gradient Descent can be prohibitively slow for large datasets; that is why a variant
of this algorithm known as Stochastic Gradient Descent (SGD) is usually preferred
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to make the model learn faster. SGD exploits the fact that the gradient is an ex-
pectation, hence it may be approximately estimated using a small set of samples.
In practice, a minibatch is drawn uniformly from a larger training set. It is possible
to fit a training set with billions of examples using updates computed on only a
hundred examples (GOODFELLOW et al., 2016).

Figure 4.7 - Cost function minimization.
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SOURCE: The Author.

Figure 4.8 extends this idea to the multivariable case, where the cost function is
pictured as a 3D surface. Sometimes it is helpful to imagine the gradient step as a
ball going down a hill.
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Figure 4.8 - Multivariate cost function minimization.

SOURCE: Chollet (2017).

The size of the individual components of the gradient vector tells how changing a
specific weight or bias will cause the fastest change to the value of the cost function.
Basically, it tells which changes to which parameters, matter the most.

4.3.3.1 Modern optimizer methods

Improving on the idea of SGD, modern optimizer methods have been developed. For
instance, the Adam (KINGMA; BA, 2014) and the RMSProp (HINTON et al., 2012)
algorithms. Both use, among other features, the idea of momentum (POLYAK, 1964),
this strategy avoids the optimization to get stuck in a local minimum and is able
to find the true global minimum instead. They also tend to converge faster to the
minimum value.

The type of optimizer is even more crucial for the convergence of the model in the
context of reinforcement learning than it is for supervised learning. Since in RL the
quality of the data the agent collects depends on the actions it took, hence if the
optimizer is more stable and converges faster to a better policy, the agent will collect
better data overall.

4.3.4 Backpropagation and learning

In the context of deep learning and neural networks, learning means finding a set of
values for the weights of all layers in a network. Considering that a neural network
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might have thousands of parameters, finding the correct value for all of them seems
like a daunting task, especially given that modifying the value of one parameter
will affect the behavior of all the others. That is where backpropagation comes
into play. Backpropagation is the core algorithm behind how neural networks learn
(RUMELHART et al., 1986).

Backpropagation is used to propagate the feedback signal (error) to all layers of the
model, since in a deep learning model there are multiple layers, the values have to
be propagated from one layer to the other.

The backpropagation algorithm basically consists of two steps:

The forward pass → where the inputs are passed through the network and the
output predictions are obtained.

The backward pass → where the weights are updated in the opposite direction
of the loss function gradient.

Figure 4.9 illustrate this process, where the green arrows indicate the forward pass
and the red arrows the backward pass.

Figure 4.9 - Backpropagation diagram for a single neuron.

SOURCE: Fei-Fei et al. (2017).

To perform backpropagation, it is necessary to have the partial derivatives of the
weights with respect to the loss, ∂L

∂θj
. Nowadays, automatic differentiation schemes

are performed inside deep learning frameworks (BAYDIN, A. G. et al., 2018). Modern
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APIs, such as Tensorflow (ABADI, M. et al, 2015) or Pytorch (PASZKE, A. et al., 2017)
use automatic differentiation to compute these partial derivatives efficiently. Auto-
matic differentiation uses the basic idea that differentiable functions are composed
of underlying primitive operations whose derivatives we know, and the chain rule
allows these simpler expressions to be composed together to form more complex
ones. It computes derivatives with the same accuracy as symbolic differentiation.
However, rather than producing a mathematical expression for a derivative, the sole
intent of autodiff methods is to obtain its numerical value.

4.4 Reinforcement learning

The theory of Reinforcement Learning (RL) is based on the idea of an agent inter-
acting with an environment. The agent (controller) takes an action (control signal)
and, as a result, the environment (satellite simulation) moves to a new state and
returns a reward signal. This scalar reward signal is a measure of how good it is to
have taken that action in that particular state (SUTTON; BARTO, 1998). This inter-
action is depicted in Figure 4.10. In our application, the agent is the controller, the
environment contains the satellite dynamics and reward function, and the action is
the torque command. The agent will receive a higher reward if the satellite moves
towards the desired direction for example.

Reinforcement learning is formulated mathematically as an optimization problem
with the objective of finding a policy that maps states to actions that are optimal
according to a given objective function (BARTO, A. G., 1995). The fact that reinforce-
ment learning does not require a teacher or a set of input-output pairs to learn from,
makes it particularly attractive to be used with dynamic systems, where the agent
needs to interact, perform actions, which result in a change of state in order to obtain
the output. In fact, the theory of RL is vast and is constantly evolving. The book
by Sutton and Barto (1998) gives a very good introduction to the fundamentals.
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Figure 4.10 - The agent-environment interaction.

SOURCE: Sutton and Barto (1998).

4.4.1 Markov decision processes

A Markov decision process (MDP) is a framework to model sequential decision-
making processes, where the present state contains all the necessary information
to predict the future behavior, i.e, it follows the Markov property. In an MDP
model, the agent learns how to map situations (states) to actions with the goal of
maximizing the total amount of reward it receives during an episode. An episode is a
duration from the initial of the interactions to a terminal state. In a chess game, for
example, an episode is equivalent to a match. For the satellite attitude simulation
environment, an episode length is dictated by the simulation time, i.e, the number
of seconds the dynamics is propagated. The agent is not told what actions to take,
as in supervised learning, instead, it must find out which actions bring the most
reward through experience (SUTTON; BARTO, 1998).

The process of selecting an action from a given state, transitioning to a new state,
and receiving a reward happens sequentially over and over again. The dynamics of
an MDP is described by the corresponding transition probabilities, P(st+1|st, at),
which are the probability of transition to the next state st+1 and receiving reward
rt as a consequence of taking action a in state s. Figure 4.11 depicts the structure
of an MDP.
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Figure 4.11 - Illustration of a Markov Decision Process.
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These transition probabilities express the chance that the environment will move to
a new state after the agent has taken a particular action. Essentially, they represent
the dynamics of the environment. In the context of dynamic programming, it is
assumed that these probabilities are known. In reinforcement learning, on the other
hand, these probabilities are estimated by interacting with the environment, through
sample-based approximations. The idea is that many agent-environment interactions
are performed, i.e, many episodes are simulated, and we keep a record of how many
times each state was visited after performing a particular action. Thus, the model
dynamics can be approximated (GAGNIUC, 2017).

This strategy of estimating the dynamics of the environment through interactions
is known as model-based reinforcement learning. However, as we will see, the agent
does not need to explicitly know the dynamics of the environment to learn how to
behave in it, that is the idea behind model-free reinforcement learning. Actually, the
algorithms used in this work belong to this second category.

4.4.2 The concept of cumulative reward

As we mentioned in the previous section, it is the agent’s goal to maximize the
cumulative reward, or return, it receives over time. In an episodic reinforcement
learning setup, with a finite number of timesteps, T, the cumulative reward collected
during an episode is given by

Gt = r0 + r1 + r2 + ... + rT =
T∑

t=0
rt, (4.11)
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where T is the length of the episode.

However, there are environments for which such termination condition is not defined,
which would be equivalent to have T (terminal state) =∞. Hence, a more convenient
form is given by

Gt = r0 + γr1 + γ2r2 + ... + γkrT =
T∑

k=0
γkrt+k, (4.12)

where the return is weighted over the timesteps, γ is the discount factor, 0 ≤ γ ≤ 1,
t is the current timestep, and k is an iterable variable indicating the number of
rewards until the terminal state.

This discount is made to lower the contribution of future rewards. With this formu-
lation, the agent gives more importance to actions that will result in an immediate
improvement. This is an intuitive idea since we are generally less certain about situ-
ations that will occur far in the future. In the end, this discounting also contributes
to reducing variance in the estimation. (SUTTON; BARTO, 1998).

4.4.3 Policies

A Policy is a function that maps a given state to probabilities of selecting each
possible action from that state. The symbol π is used to denote a policy (SUTTON;

BARTO, 1998).

Formally, we say that an agent follows a policy. For example, if an agent follows a
policy π, then π(a|s) is the probability that the chosen action is At = a at state
St = s. This means that, at time t, under policy π, the probability of taking action
a in state s is π(a|s).

4.4.4 Value functions

Value functions are functions of states, or of state-action pairs, that estimate how
good it is for an agent to be in a given state, or how good it is for an agent to
perform a given action in a given state. While each reward signal rt is a metric of
immediate reward, the concept of value also takes into account the possible rewards
encountered in future states. It is a metric of how good a state or state-action pair is,
given in terms of the expected return (see Equation 4.12) (SUTTON; BARTO, 1998).
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4.4.4.1 State-value function

The state-value function for policy π, denoted as Vπ, tells how good any given state
is, concerning an agent following policy π (SUTTON; BARTO, 1998).

Formally, the value of a state s under policy π is the expected return from starting
from state s at time t and following policy π thereafter, as given by

Vπ(s) = Eπ

 T∑
k=0

γkrt+k

∣∣∣∣s
. (4.13)

4.4.4.2 Action-value function

The action-value function for policy π, denoted as Qπ, is a measure of how good it
is for an agent to take any given action from a given state while following policy π

(SUTTON; BARTO, 1998).

Formally, the value of an action a in state s under policy π is the expected return
from starting from state s at time t, taking action a, and following policy π thereafter,
defined as follows

Qπ(s, a) = Eπ

 T∑
k=0

γkrt+k

∣∣∣∣s, a

. (4.14)

The action-value function Qπ is commonly referred to as the Q-function, and the
output from this function for any given state-action pair is called a Q-value. The
letter Q is used to represent the quality of taking a given action in a given state.

4.4.5 The Bellman equation

The action-value function can be described by Equation 4.14 as seen in the previous
section. One method to find its values for the complete state space is with the use
of the famous Bellman optimality equation, defined as follows

Q(s, a) = Q(s, a) + α
[
r(s, a) + γ max

a′
Q′(s′, a′)−Q(s, a)

]
, (4.15)

where γ has the function to discount future rewards so the agent does not rely
too much on the future. The difference between the new estimate (r(s, a) +
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γmaxQ′(s′, a′)), known as the target, and the previous estimate Q(s, a), gives the
Temporal Difference (TD) error, this is then multiplied by the learning rate α which
controls how much the agent should adjust its estimate in the direction of the target
(SUTTON; BARTO, 1998).

4.4.6 Connection between dynamic programming and reinforcement
learning

Dynamic programming (DP) is a method for solving finite MDPs (BELLMAN, 1952).
Since it tackles the same problem of reinforcement learning, much of the nomencla-
ture of DP was transferred to RL. For instance, the notions of a policy that maps
states to actions, the agent, the reward signal (return), and so on. However, while
dynamic programming requires a precise model of the process, which is expressed in
the form of transition probabilities, the reinforcement learning framework does not
require a model of the process. The agent learns how to behave through trial and
error instead. (SUTTON; BARTO, 1998).

4.5 Reinforcement learning algorithms

Figure 4.12 - Block diagram representation of a generic deep reinforcement learning algo-
rithm.
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SOURCE: The Author.

The several reinforcement learning algorithms available in the literature follow the
steps shown in Figure 4.12 in some way. However, there are many different families
of solutions that can be more or less adequate for certain problems.
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4.5.1 Value function based methods

Value function methods estimate the value for each environment state and state-
action pairs as given by Equation 4.13 and Equation (4.14). They solve the Bellman
equation (see Equation 4.15) iteratively through interactions with the environment
(SUTTON; BARTO, 1998).

Once the optimal value functions V ∗ or Q∗(s, a) have been estimated, the optimal
policy can be indirectly obtained by

π∗ = arg max
a

Q(s, a), (4.16)

taking the action with the highest value in a given state. The classical RL algorithms
SARSA (SUTTON, 1996) and Q-learning (WATKINS; DAYAN, 1992) belong to this
category.

However, a limitation of these methods is that they do not work for continuous
action spaces. The idea of taking the maximum value over actions in a grid manner
and indirectly finding the best optimum path falls short for continuous action spaces.
This happens since there is no feasible way to calculate the maximum value over an
infinite or even a very large action space (SUTTON; BARTO, 1998). This is problematic
since often in control problems the action space is continuous, such as applying a
torque to a satellite. An alternative solution is to discretize the actions (control
signal), but this would certainly result in poor performance.

4.5.2 Policy gradient methods

Once the action-value function is learned, the strategy of using the greedy policy
only works for discrete action spaces. For continuous actions spaces, it becomes
unattainable or at least extremely costly to find the optimal way to behave in this
manner. Instead of defining the policy indirectly via the value function, policy-based
algorithms optimize the policy function directly. (SUTTON; BARTO, 1998).

The policy can be obtained with sample-based estimation from a batch of data
collected in previous interactions with the environment. A function approximator,
such as a neural network, characterized by a set of parameters θ, is generally used
to represent it.

This policy can then be optimized through gradient-based methods, such as Stochas-
tic Gradient Ascent. The objective function may have the form
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L = Êt

 log πθ(at|st)
 T∑

k=0
γkrt+k

 = Êt

 log πθ(at|st)Gt

. (4.17)

The model parameters θ are then updated according

θ = θ + α ∇θÊt

[
log πθ(at|st)Gt

]
, (4.18)

θ = θ + α ∇θÊt

[
log πθ(at|st)Q(at, st)

]
, (4.19)

for each batch of episodes.

An important remark is that the policy is assumed to be stochastic rather than
deterministic. So actually π(a|s) is a distribution over actions given states, or in
other words, it returns the probability of selecting an action from a given state of
the environment. There are many benefits to using a stochastic policy. For instance,
it usually yields a more robust performance. Since by having this distribution over
policies, or behaviors, if something changes in the world, we can rely on other things
in the distribution to predict a good behavior. It also gives more robust learning. For
large-scale problems, it is not possible to obtain exact close form solutions, it is actu-
ally necessary to approximate the optimal behavior by performing many interactions
with the environment. It is an iterative process where learning happens, interleaving
of data collection in the world with improving a policy or a value function, collecting
more data, improving the policy and value function, and so forth.

A downside of this class of algorithms is that they have trouble converging in uncer-
tain environments when there is high variance in the reward signal, which results in
a noisy gradient. Also, the naive approach of just following the direction of steepest
ascent can converge on the local rather than the global maximum.

Regular policy gradient algorithms, as described above, are susceptible to high vari-
ance when the objective function considers only the cumulative reward. An approach
to reduce the variance of policy gradient methods, without introducing bias to the
model, is to use an alternative objective function with a baseline b as follows

L = Êt

[
log πθ(at|st)

[
Gt − b

]]
. (4.20)
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Subtracting a baseline is allowed since it is an operation that is unbiased in expec-
tation.

A typical value for the baseline is the average return, as given by

b = 1
N

N∑
i=1

ri. (4.21)

The intuition behind this baseline subtraction is that we want the amount of reward
collected during an episode rollout to be above average. If this is the case the error is
going to be a positive number and therefore will increase the probability of selecting
those actions in the future. Conversely, if the error is negative, it means the obtained
value is below average, and so the action that led to those rewards must be avoided
in the future.

Although this solution works considerably well, the simple sample mean is not the
best choice for the baseline. In the next section, we will show how to improve on it.

4.5.3 Actor-critic methods

Considering the shortcomings of the previously discussed methods, namely value-
based and policy gradients. Where the problem with the value-based approach was
the impossibility to deal with continuous action spaces. In the case of policy gradient
methods, it was the high variance in the objective function, which resulted in slow
learning.

Fortunately, there is a solution for both of these issues. The best approach consists
of the merging of the two techniques into a class of algorithms called actor-critic.
In an actor critic setting, the actor is a neural network that tries to predict the
best action given the current state, just like in policy gradient methods. While the
critic is a second network that tries to estimate the value of the state and the
corresponding action chosen by the actor, just like in value-based methods. This
works for continuous action spaces because the critic only needs to look at a single
action, the one that the actor took, and not try to find the best action by evaluating
all of them.

In regards to how this fits together in an algorithm, we can look first at the baseline
term in Equation 4.20. In an actor-critic algorithm, a policy gradient method works
in association with a value estimator V̂t(s). The baseline is then set to b = V̂t(s),
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which brings up the concept of advantage, defined as

Aπ = Qπ(st, at)− V̂t(s). (4.22)

The actor is the policy that infers the best action to take, while the critic is the
component that bootstraps the evaluation of the current policy. This structure is
commonly modeled as two artificial neural networks, one for acting and the other for
estimating V̂t(s). Figure 4.13 shows an illustration of how the actor-critic methods
relate to the previously described methods.

The better the estimate of V̂t(s), the lower the variance, and the overall learning is
more stable than using “vanilla” policy gradient methods.

The policy now ascends the reward slope in the direction the critic recommends
rather than using the rewards directly. Actor-Critic methods can handle both con-
tinuous states and action spaces and speed up learning when the expected reward
has high variance.

Figure 4.13 - Actor-critic methods combine the ideas of both previously described meth-
ods, namely value-based and policy-based methods. In this class of methods,
the policy function is used to determine the direction of maximum ascent
(the gradient) in the policy’s parameter space.

Value-based Actor
critic

Policy-gradient

SOURCE: The Author.
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Figure 4.14 - Actor and critic neural networks. Both the actor and the critic try to learn
the optimal behavior. The actor learns the right actions using feedback from
the critic to know what a good action is and what is bad. And the critic
learns the value from the received rewards so then it can properly criticize
the actions that the actor takes. Each neural network plays a very specific
role.

SOURCE: The Author.

4.5.4 The concept of entropy applied to RL

Entropy is a measure of uncertainty over a random variable X. According to the
definition borrowed from the field of information theory (SHANNON, 1948), it is a
very precise measure of the number of bits required to encode X, on average.

Mathematically, we have

H(X) =
∑

i

p(xi)log2

 1
p(xi)

 = −
∑

i

p(xi)log2p(xi). (4.23)

Considering a distribution over values that a random variable can take on. Values
that are very likely, require a small number of bits to encode them, and values that
are less likely require more bits to encode them.

Less certain values require more bits because, of course, we need to distinctly encode
them. We cannot use the same encoding for different values. It turns out that the
optimal solution to distinctly encode the values of a random variable is to set
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N◦ofbits = log2

 1
p(xi)

, for each value xi. (4.24)

Considering the above-described concept of entropy, as the measure of how much
variance or uncertainty there is in the outcome of a sample from a distribution, we
shall now apply it in the context of MDPs. The new objective function with the
entropy term added to it is given by

J(π) =
T∑

t=0
E(st,at)∼ρπ

[
Gt + βH(π)

]
, (4.25)

where β is a temperature parameter and H(π) is the entropy for a given policy π.

One of the state of the art algorithms that we evaluate in this work, the Soft-Actor
critic, uses Equation 4.25 as its objective function.

4.6 Modern deep reinforcement learning

The combination of deep learning with reinforcement learning resulted in the field
called Deep Reinforcement Learning, where the policy and the value functions are
approximated by a deep neural network, instead of a table. The seminal paper
MNIH, V. et al. (2015) showed the power of combining these two techniques. When
using function approximators, such as neural networks, convergence is no longer
guaranteed. But making some considerations stable learning can be achieved.
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5 METHODOLOGY

5.1 Overview

In this chapter, we describe the chosen deep reinforcement learning algorithms. We
also discuss the implementation details of the developed simulation environment.

5.2 Deep reinforcement learning algorithms

In this section, we seek to contextualize and highlight the main features of the chosen
DRL algorithms, namely DDPG, TD3, and SAC, while pointing out their location
in the broader picture of reinforcement learning. Figure 5.2 summarizes the main
DRL algorithms dividing them according to the techniques they are based upon.

Figure 5.1 - Taxonomy of DRL algorithms.

SOURCE: The Author.

An efficient DRL algorithm looks at the reward signal it receives from the environ-
ment and is capable of understanding how to change the model parameters so that
the learning process converges in a reasonable amount of time.

Even though we present and describe the general characteristics of three specific deep
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reinforcement learning algorithms in this chapter, the main focus of this research is
not on improving the underlying algorithms, but to understand and explore their
use on the concrete problem of satellite attitude control. Actually, this approach is
supposed to be algorithm-agnostic as every couple of years researchers propose new
algorithms and improvements. In future, an alternative algorithm could be plugged
into the developed simulation.

The reader will find a slight inconsistency of notation within the Algorithms 1, 2 and
3. But this is the case because they were reproduced here exactly as in the original
papers.

5.2.1 DDPG

The Deep Deterministic Policy Gradient (DDPG) algorithm adapts the ideas un-
derlying the success of Deep Q-Learning (MNIH, V. et al., 2015) to the continuous
action domain (LILLICRAP et al., 2015). It is an actor-critic, off-policy, model-free
algorithm.

It has a historical significance for being the first to present a practical solution
to working directly with continuous action spaces while using neural networks to
represent the policy function. Formerly, the output of the trained model had to be
quantized for use within the RL framework. In fact, this quantization process washes
out valuable information about the system dynamics, which meant the application
domain used to be very restricted. Fortunately, DDPG overcomes this limitation,
enabling more challenging and relevant real control tasks be solved with Deep Re-
inforcement Learning.

The authors of the DDPG paper have first realized that a naive application of
actor-critic methods with deep neural networks is unstable. They have also devised
a solution that leverages the ideas introduced in the DQN paper (MNIH, V. et al.,
2015). These ideas are:

i. the use of a replay buffer;

ii. a target Q network is used to improve stability;

iii. batch normalization of the input.

Optimization in the context of deep learning generally assumes that the data we feed
the neural network are independent from one another and identically distributed
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(i.i.d). In supervised learning this is true, but this assumption does not hold in
the case of reinforcement learning, since the data used for training is collected by
the software agent through interactions with the environment. This means the data
is sequentially correlated. Therefore, it is extremely important that the training is
done by sampling from a replay memory buffer as originally suggested in MNIH, V.
et al. (2015) to break possible correlations in the data. Performing this procedure
and having a large enough memory, it is virtually guaranteed to get a batch of
uncorrelated transitions.

The other innovation, meaning the use of a target network, it is important to im-
prove convergence and stability. With a single neural network to approximate the
Q-function, the same network would be used to choose actions and to calculate the
reference value for optimization. Consider that we are trying to minimize the er-
ror between a setpoint and the current estimated value. Now imagine if the same
network is used to calculate both the setpoint and the current value. By updating
the parameters so that the current predicted value gets closer to the setpoint, we
end up also changing the setpoint, so it would be equivalent to chasing a moving
target. With the proposed solution, the agent only performs stochastic gradient de-
scent on the online network and then periorically makes a copy of the weights to a
target network, which is updated less frequently. This ensures that the target moves
slowly over time which facilitates convergence to the optimal Q-value. Having tar-
get networks for both the actor and critic certainly slows down training, but greatly
improves stability, which is a reasonable trade-off to make.

Finally, batch normalization is performed to facilitate training since it helps to
control the variance of the gradient estimator. The inputs are usually normalized to
have a mean of zero and variance of one.

Combining the ideas described above resulted in a robust algorithm which can even
learn the control policy directly from raw pixels. The DDPG algorithm, as presented
in the original article, is reproduced below in Algorithm 1.

Parenthetically, the two other algorithms that were evaluated in this study, TD3
and SAC, are improvements made upon the original DDPG.

5.2.2 TD3

The Twin Delayed Deep Deterministic Policy Gradient, or TD3 for short, is also an
actor-critic, off-policy, model-free algorithm. It has been developed with the goal of
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Algorithm 1 DDPG
1: Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ

2: Initialize target network Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ

3: for episode = 1, M do
4: Initialize a random process N for action exploration
5: Receive initial observation state s1
6: for t = 1,T do
7: Select action at = µ(st|θµ) +Nt according to the current policy and exploration noise
8: Execute action at and observe reward rt and observe new state st+1
9: Store transition (st, at, rt, st+1) in R

10: Sample a random minibatch of N transitions (si, ai, ri, si+1) in R
11: Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′)|θQ′)

12: Update critic by minimizing the loss: L = 1
N

∑
i(yi −Q(si, ai|θQ))2

13: Update the actor policy using the sampled policy gradient:

∇θµJ ≈ 1
N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

14: Update the target networks:

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

15: end for
16: end for

tackling two specific problems that harms the DDPG solution, namely overestima-
tion bias and function approximation error.

These two problems are related since function approximation errors produce noisy
estimates which in turn tend to contribute to overestimation bias, thus resulting in
suboptimal policies.

The prediction error is inherent to the function approximation procedure, and these
errors accumulate over time. The solution proposed by the authors to tackle this
problem is to reduce the variance of the approximation errors by introducing a second
neural network to estimate the Q-values. The solution builds on the previous work
on Double Q learning (HASSELT, 2010), by taking the minimum value generated
by a pair of critics. These critic neural networks are trained independently. This
solution reduce bias, but do not completely eliminate variance, meaning noise in the
estimates. They deal with this secondary problem by clipping the target network
action after adding some noise, since this has the effect of making it harder for the
policy to exploit Q-function errors by smoothing out the Q values along changes in
action.
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Additionally, the authors show that target networks are crucial to reducing variance
and propose delaying their updates in order to increase training stability.

To summarize, the main differences from the previous algorithm is the use of two
critic networks instead of just one (hence “twin”), in practice it uses the smaller
of the two Q-values to form the targets in the Bellman equation TD error. The
other change is the delay in the policy (and target networks) updates, since they
are updated less frequently than the critic networks. The paper recommends one
policy update for every two Q-function updates. The final change is the clipping of
the target actions.

Together, these tricks result in substantially improved performance over the “vanilla”
DDPG.

The TD3 algorithm, as presented in the original article, is reproduced below in
Algorithm 2.

Algorithm 2 TD3
1: Initialize critic networks Qθ1 , θ, and actor network πϕ with random parameters θ1, θ2, ϕ
2: Initialize target networks θ′

1 ← θ1, θ′
2 ← θ2, ϕ′ ← ϕ

3: Initialize replay buffer B
4: for t = 1 to T do
5: Select action with exploration noise a ∼ πϕ(s) + ϵ,
6: ϵ ∼ N (0, σ) and observe reward r and new state s′

7: Store transition tuple (s, a, r, s′) in B
8: Sample mini-batch of N transitions (s, a, r, s′) from B
9: ã← πϕ′(s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)

10: y ← r + γmini=1,2Qθ′
i
(s′, ã)

11: Update critics θi ← argminθi
N−1∑(y −Qθi(s, a))2

12: if t mod d then
13: Update ϕ by the deterministic policy gradient:
14: ∇ϕJ(ϕ) = N−1∑∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)
15: Update target networks:
16: θ′

i ← τθi + (1− τ)θ′
i

17: ϕ′ ← τϕ+ (1− τ)ϕ′

18: end if
19: end for

5.2.3 SAC

The Soft Actor Critic (SAC) algorithm is based upon both actor-critic methods and
the maximum entropy principle. In fact, it can be considered the maximum entropy
version of DDPG.
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In standard RL, we want to find a policy π that yields the maximum cumulative
reward ∑T

t=0 E(st,at)∼ρπ [r(st, at)] over an episode of length T for all trajectories in the
environment.

Maximum entropy reinforcement learning expands the maximization problem by
adding an entropy bonus to the maximized trajectory, encouraging exploration (see
Section 4.5.4). It ensures the agent explores all promising states while prioritizing
the more promising ones.

Some well-known issues with DDPG are the fact that the training can frequently
become unstable in higher-dimensional environments. It also presented a difficulty
with run-to-run variation, meaning that a training process that worked one time
may fail in a second attempt even if the environment remain unchanged. Finally,
there was also the problem of sensitivity to hyperparameters, which requires the
user to tweak some parameters to make it work.

SAC aims at solving the brittleness problem of DDPG when applied to high-
dimensional continuous environments while maintaining the sample efficiency of off-
policy algorithms. SAC has excellent convergence properties compared to some of its
predecessors, needing fewer sample to reach good policies and finding policies with
a higher reward. Exploration is automatically taken care of because probabilities
inject some randomness.

The SAC algorithm, as presented in the original article, is reproduced below in
Algorithm 3.

Algorithm 3 SAC
1: Initialize parameter vectors ψ, ψ̄, θ, ϕ
2: for each iteration do
3: for each environment step do
4: at ∼ πϕ(at|st)
5: st+1 ∼ p(st+1|st, at)
6: D ← D ∪ (st, at, r(st, at), st+1)
7: end for
8: for each gradient step do
9: ψ ← ψ − λV ∇̂ψJV (ψ)

10: θi ← θi − λQ∇̂θi
JQ(θi) for i ∈ {1, 2}

11: ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
12: ψ̄ ← τψ + (1− τ)ψ
13: end for
14: end for
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5.3 Implementation details

The implementation of the DRL algorithms used in this work is from the Stable-
Baselines3 (RAFFIN et al., 2019), which is an open source library for reinforcement
learning algorithms implemented in the PyTorch framework.

In order to train the neural networks, a simulation was set up in Python, using the
OpenAI’s Gym environment standard.

Also the mass parameters of a real satellite, the Amazonia-1, were used in the
simulation. The Amazonia-1 is a low Earth orbit (LEO) satellite developed at INPE
that was successfully launched in February of 2021. The simulation environment
contains the satellite kinematic and dynamic models which are integrated using the
fourth-order Runge-Kutta method. An important detail is that the quaternion must
be normalized after each integration step to guarantee its unit length.

There are many benefits for using a simulated environment for training. First, there
is no other option in case of satellites, since it is very expansive to simulate the true
operation conditions on Earth. Another point is that the trial and error approach in
RL is usually very sample-inefficient, which means millions of iterations are necessary
to converge to an optimal solution. A model of the environment may run faster than
real time, and it is also possible to spin up lots of simulations to run in parallel.
Both of these approaches can speed up the learning process. Also, we have a lot
more control over simulating conditions than when training in the real world.
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Figure 5.2 - Simulation setup.

SOURCE: The Author.

5.3.1 Random initialization

Another important detail related to training is the satellite initial conditions at each
simulation episode. At the beginning of an episode, initial orientation and angular
velocity are sampled from uniform distributions.

5.3.1.1 Quaternion sampling from SO(3)

The initial error quaternion is selected from the Lie 3D rotation group SO(3). To
generate a random orientation, a random unit vector in spherical coordinates is
sampled from a uniform distribution (LAVALLE, 2006). This random unit vector
(axis of rotation) ê and rotation angle ϕ is then converted to the quaternion q

through Equation 5.1, Equation 5.2, and finally Equation 5.3.

To have a unit quaternion d at an angle θ from the identity e = [1, 0, 0, 0], we require
that

⟨e, d⟩ = 1.d0 = d0 =
√

1 + cosθ

2 . (5.1)
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This gives no further constraints on d1, d2, and d3, leaving only the unit constraint,
which means you should take (d1, d2, d3) to be uniformly distributed on a sphere of
radius

√
1−cosθ

2 (so that they add up to 1 when combined with the fixed d0).

Generating a random vector on the unit sphere can be done by noting that any one
direction is uniformly distributed (conventionally taken to be z), and then taking the
other two in a random planar direction, appropriately normalized. In other words,
take two random numbers u1, and u2 in the unit interval [0, 1] and generate

z = 2u1 − 1, x =
√

1− z2cos(2πu2), y =
√

1− z2sin(2πu2). (5.2)

Multiply these by
√

1−cosθ
2 to get the d components.

Finally, take the generated d, and apply it to the starting quaternion qx to get a
new unit quaternion at a displacement θ:

qx = dq1. (5.3)
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Listing 5.1 - Quaternion sampling from SO3.
1 from pyquaternion import Quaternion
2

3 q0_ident = 1
4 q1_ident = 0
5 q2_ident = 0
6 q3_ident = 0
7

8 q_ident = Quaternion (q0_ident ,q1_ident ,q2_ident , q3_ident )
9 q_ident = q_ident . normalised

10

11 theta = self.np. random . uniform (low=-np.pi , high=np.pi)
12 u1 = self.np. random . uniform (low =0, high =1)
13 u2 = self.np. random . uniform (low =0, high =1)
14

15 z = 2 * u1 - 1
16 y = np.sqrt (1 - z ** 2) * np.sin (2 * np.pi * u2)
17 x = np.sqrt (1 - z ** 2) * np.cos (2 * np.pi * u2)
18

19 d0 = np.sqrt ((1+ np.cos(theta))/2)
20 d1 = np.sqrt ((1-np.cos(theta))/2) * x
21 d2 = np.sqrt ((1-np.cos(theta))/2) * y
22 d3 = np.sqrt ((1-np.cos(theta))/2) * z
23

24 q = Quaternion (d0 ,d1 ,d2 ,d3)
25 q = q. normalised

This step is crucial for obtaining a safe and robust control policy. Otherwise, the
resulting neural network becomes highly dependent on a particular initial condition,
and if this changes slightly, the neural network could easily become unstable. How-
ever, the strategy of training for different initial conditions seems to be enough to
generate a neural network that can safely operate in a variety of scenarios.
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6 RESULTS AND DISCUSSION

6.1 Overview

In this chapter, we present and discuss the results from the application of deep
reinforcement learning to solve the satellite attitude control problem. The perfor-
mance of the attitude control system was assessed in terms of the pointing error
between the satellite body-fixed and inertial coordinate frames. The response of a
classical PD control law based on quaternion feedback, as described in Section 3.5,
is compared with the performance of the neural network controller. The result of
the training for three different DRL algorithms, namely DDPG, TD3 and SAC, as
described in Chapter 5, is analyzed. A critical scenario of actuator failure is also
evaluated. Overall, the intelligent controller was able to respond well in this critical
scenario.

6.2 Reward engineering

In this section, we discuss the reward function used to incentivize the desired behav-
ior. A properly engineered reward function is crucial for the success of reinforcement
learning. Unfortunately, there is no recipe for designing one, since it is problem-
specific. Actually, it is through the reward function that the designer can inject
domain-specific knowledge into the RL agent.

This design step must be done with caution, because a poorly shaped reward function
might cause the optimization to converge to a solution that is not ideal, even if that
solution produces the most rewards.

Considering the satellite pointing problem, we know that when the body-fixed and
inertial frames are aligned, the rotation quaternion becomes qbi = [0 0 0 1]T . For
that reason, we include the vectorial elements of the unit quaternion in the reward
function. Also, in order to maintain the correct orientation, the angular velocity ω⃗bi,b

needs to go to zero, thus we add it to the reward function as well, the final shape of
the reward function then becomes

J = k1||q⃗bi1:3||2 + k2||ω⃗bi,b||2, (6.1)

where k1 and k2 are scalar gains. Interestingly, these two variables, the vector part
of the quaternion and the angular velocity, are the same information the classical
PD uses in its feedback control law.
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The final values of the gains used in the reward function were k1 = 1 and k2 = 0.01.

6.3 The effect of the bias in the neural network model

The role of the bias in a neural network model is analogous to the intercept in a
regression model as it allows the model to approximate affine functions. In practice,
it improves the neural network ability to generalize.

However, in the context of attitude control, the bias is detrimental. There is actually
a straightforward explanation for this. With the bias, a zero observation vector may
produce a nonzero torque. The logic is that with the bias the neural network does
not have a stable point at zero. It means that

f(x) = 0, if x⃗ ̸= 0

f(x) ̸= 0, if x⃗ = 0
, (6.2)

where x⃗ is the observation vector and f(x) is the neural network output, which in
this case is a torque command. As a consequence, the neural network may send a
torque (output) of zero if the pointing error (input) is, for instance, 10 degrees or
so. Without the bias, this would be impossible.

6.3.1 Training performance analysis

After realizing the bias was a source for steady-state error, the first idea that occurred
to us was to completely remove it from all neural network models used within the
deep reinforcement learning algorithm. In the case of actor-critic algorithms, there
are neural networks for the “actor” and the “critic” as explained previously in Section
4.5.3, besides the respective target networks used to improve training stability (see
Chapter 5).

Before long, we noted that after the bias have been removed from both actor and
critic networks, the training became increasingly unstable. As a matter of fact, the
neural network could not succeed in learning a reasonable policy to control the
satellite. If you compare the learning curves in Figure 6.1, this becomes evident.
Clearly, the bias has a stabilizing effect in the training of the neural network.

For this reason, the solution encountered was a trade-off: We have removed the bias
from the “actor” network since it is the one that effectively generates the torque to
be applied to the satellite. But we have maintained the bias in the “critic” network.
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With this configuration, stable training could finally be achieved while still satisfying
the requirement of completely removing the steady-state error from the satellite
response.

Figure 6.1 - Learning curves for the models with and without bias. It is clear that the bias
units help in the convergence of the model.

SOURCE: The Author.

Figure 6.1 also shows the learning curve for the final setup that has worked (green
curve), with the bias units completely removed from the actor neural network but
kept in the critic network to accomplish stable training.

Another important detail related to training is the satellite initial conditions at each
simulation episode, as described in Section 5.3.1. At the beginning of an episode,
the satellite’s initial orientation and angular velocity are sampled from uniform
distributions. This step is crucial for obtaining a safe and robust control policy.
Otherwise, the resulting neural network becomes highly dependent on a particular
initial condition, and if this changes slightly, the neural network could easily become
unstable. However, the strategy of training for different initial conditions seems to be
enough to generate a neural network that can safely operate in a variety of scenarios.

6.4 Single-axis attitude control

As a proof of concept problem, we designed a simple single-axis attitude controller.
Working with a simplified environment is important for assessing the feasibility of
the approach and for developing insight into the problem.
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For this simplified case, the Euler’s rotational differential equation of motion reduce
down to

Jzω̇ = u, (6.3)

where Jz is the satellite inertia about the z-axis, ω̇ is the satellite angular acceleration
also about the z-axis, and u is the applied torque. For this particular simulation, it
was considered a rotation about the satellite z-axis, but we could have considered
the x-axis or the y-axis, the same way.

An illustration of the geometry of the problem is shown in Figure 6.2, where θ

represents the pointing error.

Figure 6.2 - A rigid satellite single-axis pointing geometry.

Desired pointing direction
𝜃

SOURCE: The Author.

Because of the single-axis simplification, the state vector becomes only two-
dimensional, thus it can be visualized as a 2D colormap. Figures 6.3, 6.4, and 6.5
summarize the relevant information for analysis in two subplots. Panel a) shows a
phase plane with the angular velocity ω and the q3 element of the unit quaternion,
as the y and x-axis, respectively. The plot is also colorized as a function of the ap-
plied torque in the range of [-0.075, 0.075] Nm. The stability of the controller can be
inferred from this plot. In general, the signal of the applied torque, whether positive
(yellow) or negative (dark blue) must be opposite of that of the orientation error
(q3 element). The exceptions are only the areas where the q3 element is close to zero
but the angular velocity is high. In such cases, the controller should give priority
to reducing the angular velocity. Panel b) shows the pointing error as a function of

57



time.

In Figure 6.3 we see this visualization for the PD controller which is our baseline
of what a good response should look like. It is worth mentioning that the gains of
this baseline PD controller were tuned for the inertia of the Amazonia-1 satellite
considering real mission requirements and are available in Appendix B, Table B.1.

For the neural network model, the visualizations in Figures 6.4 and 6.5 were gen-
erated. The corresponding values used for plotting were obtained by performing a
simple forward pass to the neural network using a set of discrete points in the state
space. The neural networks were trained with the TD3 deep reinforcement learning
algorithm. The model hyperparemeters are available in Appendix C

Figure 6.3 - Case 1: Baseline PD controller response.

SOURCE: The Author.
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Figure 6.4 - Case 2: Response for the model with the bias units in both actor and critic
neural networks.

SOURCE: The Author.

Figure 6.4 shows the response for the neural network model with bias in both ac-
tor and critic networks. It clearly indicates that the neural network has a stable
response, as by looking at the top-right corner of the plot a) we see the neural
network outputs a negative torque (dark color) when the orientation error is pos-
itive, thus moving the satellite towards the correct direction to reduce the error.
However, the plot b) reveals a problem. Although the neural network managed to
successfully stabilize the satellite, and even considerably reduce the pointing error,
it failed to completely eliminate it. The magnified steady-state region exhibits an
error of around 0.9 degrees. Such a large error is prohibited for LEO satellites since
this category of satellites is usually employed for remote sensing, which means they
might have to take accurate pictures of the Earth’s surface as part of their mission.
As a matter of fact, the requirement for the Amazonia-1 satellite is a pointing error
no larger than 0.05 degrees.
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Figure 6.5 - Case 3: Response for the model without bias units in the actor neural network.

SOURCE: The Author.

Figure 6.5 presents the response for the case where the bias has been removed only
from the “actor” neural network, which is the best trade-off solution proposed in this
work, since it allows for a stable training procedure while still being able to eliminate
the pointing error. As a matter of fact, comparing Figures 6.3 and 6.5 we realize
that the intelligent controller presents a response even faster than the baseline PD
controller. Table 6.1 confirms this, where we see that the rise time for the intelligent
controller was of just 134s compared to 193s for the baseline PD controller.

Table 6.1 - Performance comparison.

Case 1 Case 2 Case 3
Rise time 193s 229s 134s
Steady-state error 0.0 ◦ 0.8756 ◦ 0.0 ◦

6.5 Full three-axis attitude control

In this section, we tackle the full three-dimensional attitude control problem. It
is a considerably more difficult scenario than the rotation about a single-axis (2D
case) presented in the last section. Many aspects make 3D attitude motion more
challenging. One of the main reasons is that there is some degree of coupling among
the axis, which happens when the products of inertia (Ixy, Ixz, Iyx, Iyz, Izx, Izy) in the
inertia matrix (see Section 3.4.1) are nonzero (SIDI, 1997). This coupling causes a
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torque applied in one axis affect the others. There is also a kinematic aspect to the
problem, in that many different combinations of rotations about different axis may
result in the same final orientation, and the rotations are in general non-commutative
(HUGHES, 2012).

As an attempt to reduce this coupling and thus make the axis independent, satellite
engineers try to make these products of inertia as close to zero as possible, so that
the inertia matrix become diagonal (see Appendix B for the Amazonia-1 satellite
inertia matrix). This approximately diagonal inertia matrix, in conjunction with the
fact that the angular velocity of satellites in operating conditions is very small, make
the satellite dynamics, given by Equation 3.8, almost linear.

That being the case, a common approach for the three-axis attitude control solution
is to use an independent controller for each axis, as it was shortly explained in
Section 6.4. Most satellites use independent proportional-derivative (PD) to control
each axis. It is worth mentioning that the gains of this PD controllers used here
as a reference for comparison were tuned for the inertia of the Amazonia-1 satellite
considering real mission requirements, so their response can be view as an optimal
baseline. The block diagram and respective gain values of this baseline PD controller
are presented in Appendix B.

Another important characteristic of the problem are the nonlinearities of the actu-
ator. The torque command is limited, and there is friction in the reaction wheels.
If the torque was unbounded and if there was no friction, there would certainly
be possible to have a controller much better than the PD. But these nonlinearities
establish an upper bound in performance.

In Figure 6.6 we have the response of this combination of PD controllers for each
individual axis which is our baseline of what a good response should look like.

For this evaluation the satellite started with a pointing error 180 degrees and an
initial angular velocity of 0.57 deg/s. There are four panels in the plot. a) shows the
pointing error measured in degrees, at b) is the satellite angular velocity. at c) we
have the four reaction wheels angular velocity, measured in rpm, and finally at d)
in the lower left panel shows the vector components of the unit quaternion. As the
reader can see, the baseline controller was able to eliminate the pointing error in a
relatively short time, around 600 s, and the other variables remained well behaved,
without any excessive overshoot or saturation of the wheels.
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Figure 6.6 - Baseline PD response.

SOURCE: The Author.

Nonetheless, as an alternative approach, we have pursued the implementation of an
intelligent controller that does not assume this independence between the axis, as it
is trained to control the full three-axis dynamics. This approach is supposed to have
advantages in certain scenarios, since this independence assumption cannot always
be guaranteed during the entire mission of a satellite.

On the basis thereof, we have trained the model with three distinct DRL algorithms,
namely DDPG, TD3 and SAC, see Chapter 5 for further details on the algorithms
and the developed simulation environment. Figure 6.7 shows their respective learning
curves. We see that the SAC (yellow curve) converges much faster then the other
two, and it also appears to be more stable. This is in line with what was argued
by the authors in the corresponding paper (HAARNOJA et al., 2018). Furthermore,
notice that the final average reward value is equivalent for SAC and TD3 (red curve).
DDPG, on the other hand, showed a more unstable behavior. Surprisingly, it had
a good start, in fact, at the beginning it showed a convergence rate even faster
than the one of TD3, which is supposed to be better since it has enhancements
over the original DDPG implementation. However, the DDPG performance dropped
considerably later on and could not recover during the specified training period.
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Figure 6.7 - Learning curve for DDPG, TD3 and SAC.

SOURCE: The Author.

The following neural network models have been trained for 3×106 timesteps, where
each episode lasts for 4000 timesteps, or seconds since the simulation sample time
is 1 s. The machine used to train the model was a Dell Inspiron with 16 GB of
RAM, an Intel Core i7-10510U four-core CPU clocked at 2.30 GHz , and no GPU
support. A complete training takes about 20 hours on average in this machine. It is
worth mentioning that due to the time required by the integration of the dynamics
in the simulation, a GPU would possibly not make much difference in reducing this
training time. Conversely, a faster processor would play a major role. In Appendix
C the reader will find the neural network architecture and hyperparameters used for
training.

Figures 6.8, 6.9 and 6.10 show the individual performance of each algorithm. All
figures contain plots representing the pointing error, the satellite angular velocity, the
reaction wheels velocity and the vector components of the quaternion, as previously
described for Figure 6.6.

In Figure 6.8 we see the response for the DDPG algorithm. First, it is evident
that the response is stable. Also, it is interesting to note the time it takes to bring
the angular velocity to zero, as well as the time required to eliminate the pointing
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error, which in this case was around 600 s for both. As expected, there is no steady-
state pointing error since the bias have been removed from the policy network, as
described in Section 6.3. Looking more closely to the pointing error plot, we see
some wiggle in the response, this is not ideal and indicates that the model is less
stable. These abrupt changes in attitude cause the reaction wheels to reach higher
speeds to compensate for them. This is very undesirable since the wheels have a
maximum velocity that could potentially be reached, and in this particular case,
would result is loss of control in the corresponding axis because no external torque
source is being simulated.

Figure 6.8 - Neural network response, trained with the DDPG algorithm.

SOURCE: The Author.

Figure 6.9 shows the same information for the neural network model trained with the
TD3 algorithm. The result is considerably better than the previous one. The pointing
error plot, in particular, is fairly smooth. The settling time is also adequate, and the
reaction wheels velocities remained in a manageable range.
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Figure 6.9 - Neural network response, trained with the TD3 algorithm.

SOURCE: The Author.

Figure 6.10 displays the performance for the neural network model trained with the
SAC algorithm. It was also able to successfully control the satellite, and looking at
the pointing error plot, we see its response is initially the fastest when compared to
the two previous ones, but then it slows down and end up achieving a settling time
compatible with the others.
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Figure 6.10 - Neural network response, trained with the SAC algorithm.

SOURCE: The Author.

Figure 6.11 compares the responses of the previous discussed DRL algorithms with
the baseline PD controller in the task of pointing the satellite to the chosen direction.
A highlight is that the TD3 (green curve) was able to mimic the response of the
baseline PD controller (red curve). Their performance are basically equivalent, since
a simple adjustment of the PD gains would make both curves perfectly overlap.
DDPG (blue curve) and SAC (orange curve) present a more oscillatory behavior. An
important remark to make is that there are run to run variations in DRL algorithms
training, so the above training curves might change in another training attempt,
but the overall behavior observed here are inline with the theory presented in the
original papers where the corresponding algorithms were first introduced.
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Figure 6.11 - Performance comparison.

SOURCE: The Author.

6.6 Actuator failure

Reaction wheels are used for the attitude control and stability of satellites. As de-
scribed in Section 3.4.3, their working principle is based on momentum exchange.
Reaction wheels are especially useful when a spacecraft has to be rotated in very
small amounts. In order to rotate the spacecraft in a particular direction, the wheel
must be spun in the opposite direction. For rotating the vehicle back, the wheel has
to be slowed down. By rotating a wheel, it is only possible to rotate the satellite
around its center of mass. The changes in the speed of the wheels are electroni-
cally controlled. There are many advantages for using reaction wheels such as high
pointing accuracy, its power efficiency and the fact that they do not use fuel. The
disadvantages are mostly related to the fact that they are a mechanism with moving
parts, which requires lubrification and it may be a source of microvibrations.

A recurrent fact about reaction wheels is that they have a high fail record. Some
famous cases are the Kepler Space Telescope (THE WASHINGTON POST, 2013). In
July 2012, one of Kepler’s four reaction wheels failed. It still had three, which was
the minimum needed to remain stable enough to continue its observations. However,
in May 2013, NASA announced that Kepler had a failure with another of its wheels.
With only two wheels operating, it could no longer maintain its position accurately
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enough to track star brightness. Other notable missions involving reaction wheel
failures were the Dawn (NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA), 2017) and Jaxa’s Hayabusa (UO et al., 2006), just to name a few.

Many factors may contribute to the occurrence of a failure in a reaction wheel. The
main cause of failure is excessive friction which prevent the wheel from rotating at
high speeds. This excessive friction is a result of damage in its mechanical parts,
mostly due to the efforts the wheels are exposed to during launch. Its bearings can be
damaged by the high g-forces and vibrations. Reaction wheels manufacturers have
to account for the shock, acoustics, and random and sinusoidal vibrations of the
rocket. To keep the systems safe, the wheels are usually not spinning during launch.
Another source of problem is electronics fault caused by radiation, since the space
can be a harsh environment in terms of radiation sources. More recently, researchers
published a study that attributed mechanical failures in reaction wheels bearings to
energetic solar events (BIALKE; HANSELL, 2017).

A satellite usually carry four reaction wheels, since a minimum of three reaction
wheels are necessary to keep the spacecraft pointed at a target in three-dimensional
space, and there is an extra one for backup. In Appendix A the interest reader will
find a more detailed description of the model for the reaction wheels used in the
simulation developed for this work.

In this section, we simulate a critical scenario of actuator failure and analyse the
performance of the intelligent controller in this challenging scenario. The actuators of
choice are naturally reaction wheels. The performance of the baseline PD controller
is also presented for comparison.

6.6.1 Failure in reaction wheel 1

The following Figures 6.12, 6.13, 6.14 and 6.15 show the results for a failure in
reaction wheel number one.

In Figure 6.12 we have an indication that the training has been successful, since
the learning curve shows an upper trend in the amount of reward collect over time.
Recalling that we have selected the TD3 algorithm because it was the one that has
shown a response closer to our baseline PD controller.
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Figure 6.12 - Learning curve for the TD3 algorithm for a failure in reaction wheel number
one (aligned with the x-axis).

SOURCE: The Author.

Comparing Figures 6.13 and 6.14 what immediately stands out are the differences in
the plots b) and d) for angular velocity and quaternion elements, respectively. While
the intelligent controller has moved in all three axes, the baseline PD only exhibited
changes in speed and attitude around the x-axis (blue curve) which is precisely the
axis that reaction wheel number one is aligned with. This makes sense since the
baseline controller acts in each axis independently.
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Figure 6.13 - Neural network response for a failure in reaction wheel number one (aligned
with the x-axis), trained with TD3 algorithm.

SOURCE: The Author.

Figure 6.14 - PD response for a failure in reaction wheel number one (aligned with the
x-axis).

SOURCE: The Author.
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Figure 6.15 - Performance comparison for a failure in reaction wheel number one (aligned
with the x-axis).

SOURCE: The Author.

Figure 6.15 allows us to compare more closely the response between the two ap-
proaches regarding the pointing accuracy. It indicates that in the beginning the
baseline PD controller had a faster reaction, but also a larger overshoot, and in the
end, both have settled around the same time. This difference in performance is a
direct consequence of the fact that the intelligent controller act in all three-axis to
compensate for the disturbance, while the baseline PD only acts on the axis that is
aligned with the faulty reaction wheel.

6.6.2 Failure in reaction wheel 2

The following Figures 6.16, 6.17, 6.18 and 6.19 show the results for a failure in
reaction wheel number two.

In Figure 6.16 we have the learning curve plot. It indicates an overall upper trend.
Although it exhibits some low-frequency oscillations, since during training we always
save the best model, we can be assured that the drop in the learning curve did not
affect the final model.
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Figure 6.16 - Learning curve for the TD3 algorithm for a failure in reaction wheel number
two (aligned with the y-axis).

SOURCE: The Author.

Once more in Figures 6.17 and 6.18, we see that the baseline PD controller response
only moves around the y-axis (green curve) which corresponds to the one the reaction
wheel two is aligned with. The intelligent controller, on the other hand, moves around
all axes.
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Figure 6.17 - Neural network response for a failure in reaction wheel number two (aligned
with the y-axis), trained with TD3 algorithm.

SOURCE: The Author.

Figure 6.18 - PD response for a failure in reaction wheel number two (aligned with the
y-axis).

SOURCE: The Author.
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Figure 6.19 - Performance comparison for a failure in reaction wheel number two (aligned
with the y-axis).

SOURCE: The Author.

In Figure 6.19 we have a closer look at the differences in the pointing error curves
between the baseline and the proposed intelligent controller. It indicates the intelli-
gent controller had a smaller overshoot of just below 2.5 degrees while the baseline
PD reached almost 4 degrees of overshoot. Considering a satellite used for Earth
observation, both of these errors would be unacceptable since the image would be
lost. However, the intelligent controller seems to better reject disturbances than the
PD. This feature could be exploited in the future. Perhaps, if we feed the neural
network with information about the reaction wheel model, it would yield a controller
that completely rejects the failure, not affecting the satellite attitude.

6.6.3 Failure in reaction wheel 3

The following Figures 6.20, 6.21, 6.22 and 6.23 show the results for a failure in
reaction wheel number three.

Analyzing Figures 6.21 and 6.22 we see the baseline PD only moves around the
z-axis and the intelligent controller moves in all axes, as expected.
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Figure 6.20 - Learning curve for the TD3 algorithm for a failure in reaction wheel number
three (aligned with the z-axis).

SOURCE: The Author.
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Figure 6.21 - Neural network response for a failure in reaction wheel number three (aligned
with the z-axis), trained with TD3 algorithm.

SOURCE: The Author.

Figure 6.22 - PD response for a failure in reaction wheel number three (aligned with the
z-axis).

SOURCE: The Author.
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Figure 6.23 - Performance comparison for a failure in reaction wheel number three (aligned
with the z-axis).

SOURCE: The Author.

Nevertheless, in this particular scenario, the performance of the intelligent controller
was in general worst than that of the baseline PD controller. We see that the blue
curve corresponding to the TD3 algorithm has a lot of oscillation while the PD
(green curve) is more well-behaved.

Another important point to make is that we have not changed the hyperparameters
in order to try getting a better response in this case, since we have preferred to
maintain the same reward function and hyperparameters used in the previous models
to have certain compatibility in the results.

6.6.4 Failure in reaction wheel 4

The following Figures 6.24, 6.25, 6.26 and 6.27 show the results for a failure in
reaction wheel number four.

It is important to mention that reaction wheel number four, different from the other
ones, is not aligned with any of the satellite body-fixed axes. Thus a failure of this
wheel is going to cause a perturbation torque around all the other axes. Figure 6.24
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shows the learning curve for this scenario.

Figure 6.24 - Learning curve for the TD3 algorithm for a failure in reaction wheel number
four (not aligned with any of the satellite body-fixed axis).

SOURCE: The Author.

Figure 6.25 displays the response plots for the neural network controller trained with
the TD3 algorithm. The first thing to note is that the amplitudes are very small in
this case. This is again due to the fact that the fourth reaction wheel is not aligned
with any of the satellite body-fixed axes, so its effect when in failure causes less
impact to the overall attitude.

Looking at Figure 6.26 we observe that the baseline PD response is one order of mag-
nitude higher than the response for the intelligent controller. Figure 6.27 indicates
that the intelligent controller had a superior ability to reject the disturbance.
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Figure 6.25 - Neural network response for a failure in reaction wheel number four (not
aligned with any of the satellite body-fixed axis), trained with TD3 algo-
rithm.

SOURCE: The Author.
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Figure 6.26 - PD response for a failure in reaction wheel number four (not aligned with
any of the satellite body-fixed axis).

SOURCE: The Author.

Figure 6.27 - Performance comparison for a failure in reaction wheel number four (not
aligned with any of the satellite body-fixed axis).

SOURCE: The Author.
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In summary, the intelligent controller managed to learn to control the satellite con-
sidering a critical scenario of actuator failure. Distinctly, it even displayed a better
performance than the baseline PD controller in the cases of failures in reactions
wheels 1, 2, and 4. In the case of reaction wheel 3, the baseline PD performed
better.

It is important to highlight that the same reward function and hyperparameters were
used for training the models in all scenarios (see Appendix C), hence it is actually
impressive that the neural network controller managed to achieve such a good result
in the majority of cases, without the need for particular adjustments to the training
procedure.

Another important point to make is that the classical proportional-derivative con-
troller (baseline) has been tuned considering the Amazonia-1 inertia and the mission
requirements, using optimization techniques. Even though the particular tuning pro-
cedure cannot be described here due to confidentially issues, we are confident to say
it could not be improved much further. Whereas for the intelligent controller, we
have not exploited its full potential yet, since there are many modifications to the
learning procedure such as an alternative reward function, different hyperparame-
ters, and neural network structures that could be tested.

This is a compelling feature of the proposed approach. In that there are in effect
no bounds in how much its performance could be improved and adapted to other
critical scenarios. Furthermore, with the intelligent controller, we modify high-level
objectives instead of directly modifying the controller gains. The gains are adjusted
automatically by the learning algorithm.

With the above results, it is safe to conclude that the intelligent controller, based
on a neural network trained with a state of the art DRL algorithm is able to match
the performance of an baseline PD controller. In reality, it has been shown that is
possible to overcome the baseline PD controller in certain critical scenarios. That is,
the original goal of showing the feasibility of this approach has been accomplished.

Nevertheless, by no means this study has exhausted the topic. In effect, a limited
amount of time has been allocated for training. As the main focus of this work
was on understanding the theory, building the simulation environment, selecting
and adapting the available algorithms to suit our specific application. Hence, it
did not allow much room for a more thorough study of the contribution of each
hyperparameter in the model.
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7 CONCLUSION AND FUTURE WORK

As the results presented in the previous chapter indicate, there are benefits to fur-
ther exploring the application of deep reinforcement learning to satellite attitude
control. Not only it has been shown that a neural network trained with a DRL algo-
rithm can be applied with success as an alternative approach to control the attitude
of a satellite. More notably, the resulting neural network showed the capacity to
outperform the baseline PD controller in specific scenarios. However, we note that
there are a few points that shall be further adjusted to improve the performance of
the intelligent controller. Especially in regards to the reward function design and the
neural network architecture. A systematic hyperparameter tuning procedure might
also be beneficial to improve the overall performance of the algorithms.

For future works, an interesting problem to solve is the scenario with varying inertia.
Some critical situations sometimes occur in satellite operations, for instance, when
the process of deploying the solar panels does not function properly and the panels
cannot be extended to their nominal position, which causes the mass distribution of
the satellite to change. In this situation, when using traditional control methods, the
designed controller gains would not work and it would be necessary to perform a new
tuning procedure. Whereas the intelligent controller would be able to adapt to this
new scenario. Another very interesting outcome would be to obtain a single master
controller capable of controlling a wide range of satellites. This would facilitate the
control design phase, which usually requires a considerable amount of engineering
effort. A possible solution is with the use of Recurrent Neural Networks (RNN) since
they have the capacity to retain memory and are able to estimate a hidden state.
For instance, by feeding the applied torque, together with the acceleration of the
satellite, the RNN would be able to estimate the satellite inertia at each timestep
and thus compensate for it in case of changes.

The simulation used for training can also be improved, without making it too com-
putationally expensive, by adding a source of external torque such as magnetorquers
and thrusters, and sensor models as an attempt to reduce the simulation-to-reality
gap.

In addition, it is also important to validate the developed intelligent controller in a
high-fidelity simulation environment. The natural next step would be to validate the
models we have obtained in the INPE’s Amazonia-1 simulator, which is a simulator
that has been validated with flight data.
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Finally, it would also be interesting to deploy the new intelligent controller in a
real physical hardware. A simple cubesat mockup would be the ideal platform for
testing.
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APPENDIX A - REACTION WHEEL MODEL AND SIMULATION

Reaction wheels are actuators largely employed in attitude control subsystems to
provide attitude pointing and stability to artificial satellites. They are classified ac-
cording to its capacity of storing angular momentum; from small ones employed in
micro-satellites to large ones appropriated for orbital large communications satel-
lites.

It is basically composed of brushless DC motors whose rotor is attached to a high
inertia flywheel. The torque apllied to the wheel is sensed by the satellite in the
opposite direction.

The friction model generally used to describe reaction wheels takes into account
the coulomb friction, the viscous friction and the static friction, according to the
Stribeck formulation (see Figure A.2). For simplification, we only considered the
coulomb and viscous friction in our model according to

τ⃗drag = bωs + csgn(ωs) (A.1)

where τ⃗drag is the drag torque, b is the viscous friction coefficient, ωs is the satel-
lite inertia, c is the coulomb friction constant. The friction parameters and model
coefficients were taken from the Amazonia-1 satellite and are presented in Table
A.1.

Table A.1 - Reaction wheel parameters.

Parameter Value
c coulomb drag 0.005
b viscous drag 0.025/(200π)

Maximum torque 0.0075 Nm
Maximum velocity 4000 rpm

Inertia 0.01911 kg.m2

Configuration Nasa Standard 3 + 1

This excess friction on the reaction wheel may cause a steady-state error in a pointing
task. Thus, to compensate for it, we typically add an inner proportional-integrative
controller in the satellite attitude control loop, as shown in Figure A.3 below.

91



Figure A.1 - Block diagram showing the reaction wheels friction compensator.

SOURCE: The Author.

Figure A.2 - Friction models.

SOURCE: Carrara and Kuga (2013).

Spacecrafts usually have a fourth wheel, mounted at an angle to the main axes, this
allows it to partly compensate for the loss of one of the other wheels. Figure A.3
shows this configuration.
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Figure A.3 - NASA Standard 3 + 1 configuration for redundant reaction wheels.

SOURCE: Markley and Crassidis (2014).
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APPENDIX B - SATELLITE MODEL PARAMETERS AND BASE-
LINE PD CONTROLLER

The Amazonia-1 is a remote sensing satellite whose mission consists to acquire
imagens to observe and monitor the deforestation in the Amazon region. It was
designed, integrated, tested and it is currently operated by INPE.

Its inertia matrix was used in this work and it is given below:

J s =


310 1.11 1.01
1.11 360 −0.35
1.01 −0.35 530.7

 kg.m2 (B.1)

B.1 Baseline PD controller

In a traditional satellite attitude control system, there is one baseline PD controller
for each of the satellite axis, as represented in Figure B.1 below. The respective
gain values for the Amazonia-1 original attitude controller are given in Table B.1.

Figure B.1 - Baseline PD controllers.

SOURCE: The Author.
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Table B.1 - Baseline PD controller gains.

Gains Value
Kpx 0.6253
Kdx 25.95
Kpy 0.6748
Kdy 28.03
Kpz 1.019
Kdz 42.21
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APPENDIX C - NETWORK ARCHITECTURE AND HYPERPA-
RAMETERS

C.1 Single-axis attitude control problem

Table C.1 - Neural networks model parameters for the single-axis problem.

Actor Networks Critic Networks
# of Neurons σ # of Neurons σ

Hidden Layer 1 64 ReLU 400 ReLU
Hidden Layer 2 64 ReLU 300 ReLU
Output Layer 1 Tanh 1 Tanh

Table C.2 - Hyperparameters for the single-axis problem.

Hyperparameter Value
Optimizer Adam
Feature extraction Multi-layer perceptron
Batch size 128
Replay buffer size 105

Action noise N(0, σ = 0.1)

C.2 Full three-axis attitude control problem

Table C.3 - Neural networks model parameters for the three-axis problem.

Actor Networks Critic Networks
# of Neurons σ # of Neurons σ

Hidden Layer 1 256 ReLU 400 ReLU
Hidden Layer 2 256 ReLU 300 ReLU
Output Layer 3 Tanh 1 Tanh

Table C.4 - Hyperparameters for the three-axis problem.

Hyperparameter Value
Optimizer Adam
Feature extraction Multi-layer perceptron
Batch size 128
Replay buffer size 105

Action noise N(0, σ = 0.1)
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