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ABSTRACT

The NOAA next generation rapidly-updated, convection-allowing ensemble fore-
cast system, or Rapid Refresh Forecast System (RRFS), is under development and
aims to replace the current operational suite of convection-allowing models of the
NCEP in the next operational upgrade. In this study, the data assimilation frame-
work for the prototype RRFS is investigated through the simulation of a typical
spring squall line over central US and an Amazon coastal squall line case during
the 2020 Amazon dry season. The hybrid three dimensional ensemble–variational
data assimilation (3DEnVar) algorithm and various configurations in the Gridpoint
Statistical Interpolation (GSI), which is the current data assimilation component of
RRFS, are assessed for their impacts on RRFS analyses and forecasts of the two
squall line cases. A domain of 3 km horizontal grid-spacing is configured for each
case study and rapid update analysis cycles are performed. Conventional and un-
conventional observations from the Global Data Assimilation System (GDAS) are
assimilated and GDAS 80 member ensemble forecasts are used for the ensemble-
based background error covariance (BEC). Results from the case study over central
US show that a baseline RRFS run without data assimilation is able to represent
the observed convection, but with stronger cells and large location errors. With
data assimilation, these errors are reduced, especially in the 4 and 6 h forecasts
using 75 % of the ensemble BEC and with the supersaturation removal function ac-
tivated in GSI. Convection is greatly improved when using planetary boundary layer
pseudo-observations, especially at 4 h forecast, and the bias of the 2 h forecast of
temperature is reduced below 800 hPa. Lighter hourly accumulated precipitation is
predicted better when using 100 % ensemble BEC in the first 4 h forecast, but heav-
ier hourly accumulated precipitation is better predicted with 75 % ensemble BEC.
On the other hand, over northern South America, a methodology is firstly applied
for the case selection using ForTraCC, which showed to be appropriate for the iden-
tification of main convective systems associated with these squall lines. Results from
the numerical simulations show that RRFS is able to capture the main large scale
patterns with a correct positioning of the precipitating systems as analyzed using
the CMORPH precipitation estimates. When using data assimilation, the precipi-
tation coverage along the coast is improved and lower RMSE and bias values of the
3 h forecast of 2 m temperature and 2 m dew point temperature are shown during
the night hours. Increasing the localization radius in the ensemble-based BEC shows
analysis increments with more flow dependent characteristics, however the impact
on the forecasts of surface observations is neutral to negative. Overall, the results
provide insight into current capabilities of the RRFS data assimilation system and
identify configurations that should be considered as candidates for the first version
of RRFS. Although further testing and evaluation are warranted in addition to the
options tested here, data assimilation proves to be crucial to improve short term
forecasts of storms and precipitation in RRFS over both regions.

Keywords: Rapid Refresh Forecast System. Convective scale data assimilation. Con-
vection. Gridpoint Statistical Interpolation. Amazon coastal squall lines.
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AVALIAÇÃO DA ESTRUTURA DE ASSIMILAÇÃO DE DADOS
PARA O PROTÓTIPO DO SISTEMA DE PREVISÃO DE

ATUALIZAÇÃO RÁPIDA PARA REPRESENTAR CONVECÇÃO
SOBRE LATITUDES MÉDIAS E TROPICAIS

RESUMO

A próxima geração do Sistema de Previsão de Atualização Rápida (RRFS) por con-
junto e convecção permitida da NOAA, está em desenvolvimento e visa substituir o
conjunto operacional atual de modelos com convecção permitida do NCEP na próx-
ima atualização operacional. Neste estudo, a estrutura de assimilação de dados para
o protótipo RRFS é investigada através da simulação de uma linha de instabilidade
típica da primavera sobre o centro dos EUA e um caso de linha de instabilidade
costeira da Amazônia durante a estação seca de 2020 na Amazônia. O algoritmo de
assimilação de dados híbrido em três dimensões por conjunto-variacional e varias
configurações no GSI, que é a componente de assimilação de dados atual do RRFS,
são avaliados nas análises e previsões do RRFS nos dois casos de linhas de instabili-
dade. Um domínio com 3 km de espaciamento de grade horizontal é configurado para
caso de estudo e ciclos de análise com atualização rápida são realizados. Dados con-
vencionais e não convencionais do Sistema de Assimilação de Dados Global (GDAS)
são assimilados bem como as previsões do conjunto de 80 membros do GDAS são
usados para a BEC baseada no conjunto. Os resultados do estudo sobre o centro
dos EUA mostram que o experimento sem assimilação de dados usado como con-
trole é capaz de representar a convecção observada, mas com células mais fortes e
grandes erros de localização. Com a assimilação de dados, esses erros são reduzidos,
especialmente nas previsões de 4 e 6 h usando 75 % da matriz de covariância dos
erros do background advinda do conjunto (BEC) e com a função de remoção de
supersaturação ativada no GSI. A representação da convecção é melhorada ao usar
pseudo-observações da camada limite planetária, especialmente às 4 h de previsão,
e o viés da previsão de 2 h da temperatura a 2 m é reduzido abaixo de 800 hPa. A
previsão de precipitação acumulada em 1 h mais fraca apresenta melhor resultado ao
usar o 100 % da BEC nas primeiras 4 h de previsão, mas a previsão da precipitação
acumulada horária mais intensa apresenta melhor resultado com 75 % da BEC. Por
outro lado, no norte da América do Sul, inicialmente é aplicada uma metodologia
para a seleção de casos utilizando o ForTraCC, que se mostrou adequado para a
identificação dos principais sistemas convectivos associados a essas linhas de insta-
bilidade. Os resultados das simulações numéricas mostram que o RRFS é capaz de
capturar os principais padrões de grande escala com um correto posicionamento dos
sistemas de precipitação, conforme estimativas de precipitação CMORPH. Ao usar
a assimilação de dados, a cobertura de precipitação ao longo da costa é melhorada e
menores valores RMSE e viés na previsão de 3 h de temperatura e temperatura de
ponto de orvalho a 2 m são mostrados durante a noite e madrugada. O aumento do
raio de localização da BEC mostra incrementos de análise com características mais
dependentes do fluxo, no entanto, o impacto nas previsões de observações de superfí-
cie resultou ser de neutro para negativo. No geral, os resultados fornecem uma visão
sobre a presente habilidade do sistema de assimilação de dados no RRFS e identifica
configurações que devem ser consideradas como candidatas para a primeira versão
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do RRFS. Embora mais testes e avaliações sejam necessários, além das opções tes-
tadas aqui, a assimilação de dados prova ser crucial para melhorar as previsões de
curto prazo de tempestades e precipitação no RRFS em ambas as regiões.

Palavras-chave: Sistema de Previsão de Atualização Rápida. Assimilação de dados
em escala convectiva. Convecção. Sistema the Interpolação em Ponto de grade. Lin-
has de instabilidade costeiras da Amazônia.
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1 INTRODUCTION

The increase in computational resources over the last several decades has allowed
a considerable increase in horizontal resolution in numerical weather prediction
(NWP) (BAUER et al., 2015; YANO et al., 2018). Currently, many NWP centers have
developed and use high resolution models operationally for short range weather
forecast guidance (BANNISTER et al., 2019). These models have provided more re-
alistic forecasts of hazardous weather events where deep convection is explicitly
resolved (LEAN et al., 2008). Typically, in models with grid spacing less than 4 km,
the deep cumulus parameterization is turned off and convection is treated explicitly,
though not necessary completely resolved. Such configurations are therefore often
called convection-allowing models (SCHWARTZ; SOBASH, 2019).

More powerful computer resources have also allowed to leverage advanced devel-
opments in weather and climate models under a unified modeling approach. Im-
provements in the weather forecast skill and climate prediction biases have demon-
strated the importance of a unified system in operational numerical weather centers,
such as the Met Office, the Météo-France, and the European Centre for Medium-
Range Weather Forecasts (ECMWF), which are pioneers in adopting this modeling
strategy (HAZELEGER et al., 2010; NATIONAL RESEARCH COUNCIL, 2012). Accord-
ingly, the United States operational NWP enterprise has recognized these advan-
tages which is now captured under the Unified Forecast System effort (UFS1). UFS
is a unique community-based system that uses the same dynamical core for all
spatiotemporal scales with unified physics and data assimilation frameworks, post-
processing, verification tools, and software infrastructure (LINK et al., 2017). The
UFS application for convection-allowing forecasts is the Rapid Refresh Forecast
System (RRFS). RRFS is under development and aims to facilitate the unification
of the regional convection-allowing suite of models by subsuming the present suite
of multi-dynamic core modeling applications at the National Centers for Environ-
mental Prediction (NCEP) in the next operational upgrade (ALEXANDER; CARLEY,
2020).

The Finite Volume Cubed-Sphere (FV3) dynamical core developed at the Geophysi-
cal Fluid Dynamics Laboratory (GFDL) (LIN, 2004; HARRIS; LIN, 2013) was selected
for UFS applications, after a thorough evaluation process (JI; TOEPFER, 2016). In
the past several years, multiple studies have been conducted using the FV3 dynam-
ical core for convective scale NWP where it has demonstrated skill. For example,

1https://ufscommunity.org/
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based on the FV3 dynamical core, the System for High-resolution prediction on
Earth-to-Local Domains (SHiELD) was also developed at the GFDL, showing a
good representation of different phenomena on various time scales, such as hurri-
canes and the Madden Julian Oscillation (HARRIS et al., 2020b). The grid stretching
capability of a FV3-based global model was evaluated in Zhou et al. (2019). Small
scale structures of the convective activity in a squall line case were correctly re-
solved, although an overprediction of the precipitation and radar reflectivity values
was observed. The importance of the initials conditions was highlighted, which could
have led to better results. In the framework of the 2018 Spring Forecasting Experi-
ment of the National Oceanic and Atmospheric Administration (NOAA) Hazardous
Weather Testbed, Gallo et al. (2021) discussed the strengths as well as elements that
need improvement in FV3-based convection-allowing models when compared to the
High Resolution Rapid Refresh (HRRR) model. An overproduction of high reflec-
tivity values (45 dBZ) in the storms was one of the findings pointed out by the au-
thors. A limited area model capability based on the FV3 dynamical core (FV3LAM)
has also been developed, which reduces required computational resources associated
with having to run a global model to accommodate a nest. Month long tests at
convection-allowing resolution with FV3LAM show comparable performance relative
to a two-way nested domain at forecast lead less than 24 hours (BLACK et al., 2021).
Additionally, developments on the UFS hurricane application using the FV3LAM,
the Hurricane Analysis and Forecast System (HAFS), have shown improvements of
track and intensity forecasts compared to the Global Forecast System (GFS) (DONG

et al., 2020).

Since its origins, NWP has strongly relied on the accuracy of the “current” state of
the atmosphere given to the forecast model as initial conditions for the integration of
the primitive equations. Limited and imperfect observations are combined with past
estimates of the state of the atmosphere, taking into consideration the uncertainty
of both, to produce a more optimal analysis (KALNAY, 2003). Convection-allowing
forecasts are no different. At convective scales, forecasts strongly depend on the
quality of the initial conditions and the ability of the analysis algorithm to provide
accurate state estimates of fine-scale spatiotemporal structures that are of inherent
interest in convection-allowing NWP, such as ongoing convection, complex circula-
tions associated with subtle boundaries (e.g. dry lines), etc. To achieve such analyses
with reasonable fidelity, dense and accurate observations are needed in the data as-
similation window. However, implementing observation operators for the most dense
observation types is often complex, such as radar reflectivity, as they are often indi-
rectly related to state variables. In addition, nonlinear model processes along with
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nonGaussian error characteristics are commonplace at the convective-scale, both
of which encumber the accurate specification of error covariance matrices and, to
varying degrees, violate some of the underlying parametric assumptions that are
at the foundation of most state-of-the-art analysis algorithms (POTERJOY et al.,
2017; GUSTAFSSON et al., 2018). Nevertheless, many studies have shown the ben-
efits of using data assimilation in improving convection-allowing forecasts (DIXON

et al., 2009; BROUSSEAU et al., 2012; GAO et al., 2021). Dixon et al. (2009) used the
three-dimensional variational algorithm (3DVar) and nudging methods to assimilate
moisture and precipitation observations, showing a great performance of convective
precipitation forecasts in the first 7 hours. Shen et al. (2017) explored the benefits
of using a flow-dependent ensemble covariance from the hybrid ensemble transform
Kalman filter based ensemble 3DVar (3DEnVar) and found that hybrid analyses lead
to more skillful 12 h precipitation forecasts compared to pure 3DVar.

The NOAA next generation rapidly-updated, convection-allowing ensemble forecast
system, the RRFS, is presently being built upon the UFS Short Range Weather
Application (SRW) (ALEXANDER; CARLEY, 2020). The first version (v1.0.0) of the
SRW (UFS DEVELOPMENT TEAM, 2021) was released in March 2021 and it includes
the FV3LAM with pre-processing utilities, the Common Community Physics Pack-
age (CCPP), the Unified Post Processing System (UPP), and a workflow to run
the system. However, the publicly available SRW does not include a data assimila-
tion capability and thus initial conditions in recent studies (HARROLD et al., 2021;
KALINA et al., 2021) are purely from external models. The first and only high res-
olution convection-allowing data assimilation study using the FV3 dynamical core,
although not based on the SRW, is Tong et al. (2020) which studied the impact
of the assimilation of radar radial velocity and reflectivity using different data as-
similation algorithms with the Gridpoint Statistical Interpolation (GSI) (WU et al.,
2002; KLEIST et al., 2009). Since SRW will underpin the RRFS, it is imperative that
the data assimilation component behave as good or better than current operational
state-of-the-art, which is HRRR version 4. But in order to achieve comparable fore-
cast skill, each component of RRFS needs to be exhaustively tested. Recently, the
GSI system has been added as the analysis component of the SRW application to
improve initial conditions for the FV3LAM in development of the RRFS at NOAA’s
Global Systems Laboratory (GSL). This provides a suitable research framework with
the necessary components to answer the following question: will current prototype
RRFS be capable to better place squall lines over mid-latitudes when using its own
initial conditions?
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HRRR covers the contiguous United States (CONUS) with 3 km grid resolu-
tion (SMITH et al., 2008) and uses the Rapid Refresh (RAP2) (BENJAMIN et al., 2016;
HU et al., 2017) analyses and forecasts to initiate its hourly updated analyses. RAP
performs hourly updated cycles using the GSI hybrid 3DEnVar over the CONUS,
Alaska, and the Caribbean Sea with 13 km of horizontal resolution. RRFS is in-
tended to cover a similar domain as the operational RAP which also includes part
of the Atlantic Ocean and northern South America. This region is also covered by the
HAFS domain, and therefore, it is crucial to evaluate the RRFS ability to represent
convection on the tropical region. Known issues still present in large scale models are
highly related to the misrepresentation of tropical phenomena (GRIMM; DIAS, 1995).
For example, the inadequate representation of the diurnal variability of tropical deep
convection that leads to too early peaks of precipitation (BETTS; JAKOB, 2002; IT-
TERLY et al., 2018) and the double Intertropical Convergence Zone (ITCZ) problem,
which is not a feature of the mean tropical circulation as shown by Hubert et al.
(1969) but is observed in most of global climate models (HWANG; FRIERSON, 2013),
remotely affecting climate projections of the winter precipitation over southwest US
and the Mediterranean basin (DONG et al., 2021). Such deficiencies are closely re-
lated to the deep cumulus parameterization in global models and subgrid processes
that are not well captured by the model resolution. Underrepresented subgrid pro-
cesses are also a known deficiency in convection-allowing models, along with the
size, grid resolution, lateral boundary conditions, among others (KHAIROUTDINOV;

RANDALL, 2006). However, the improved realism of mesoscale convective systems
and local circulations (GERMANO; OYAMA, 2020), especially when using data as-
similation, makes them the state-of-the-art numerical models that can currently be
used to better understand the phenomena at convective scales.

Over northern South America is located the Amazon, which is the largest tropical
rainforest in the world with ∼40% of the global tropical forest area (ARAGÃO et

al., 2014). Its key role in the hydrological water cycle it is well known as it pro-
vides humidity which is transported to other regions (DURáN-QUESADA et al., 2012)
and water storage in the forest is a critical aspect. Clusters of convective clouds
organized in the form of bands originate along the coast of northern South Amer-
ica and propagate across the Amazon basin are known as Amazon coastal squall
lines (GARSTANG et al., 1994). These systems are responsible for a considerable por-
tion of the precipitation that falls in that region during the dry season (COHEN et

al., 1995). Amazon coastal squall lines have been studied in numerous researches,

2https://rapidrefresh.noaa.gov/
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mostly using the data collected during field campaigns, reanalyses, satellite-derived
data, and numerical modeling (GRECO et al., 1990; SILVA-DIAS; FERREIRA, 1992a;
ALCÂNTARA et al., 2011; BIAZETO; DIAS, 2012; OLIVEIRA; OYAMA, 2015). However,
the only study found in the literature using data assimilation over the Amazon
is Campos (2018), in which precipitable water vapor (IWV) measurements derived
from a Global Positioning System (GPS) network were assimilated using GSI cou-
pled to the Weather Research and Forecasting (WRF) model. The GPS network
used was the one installed during the field campaign in Belem, Para, as part of the
CHUVA project (MACHADO et al., 2014). The lack of dense and routinely available
data in near real-time over Amazon makes it difficult for operational NWP appli-
cations using data assimilation. This has a direct impact in the adequate represen-
tation of these systems and its associated precipitation in operational regional and
global forecasts. At convective scales, this is more challenging because of the need
of dense observations to ingest in rapid updated data assimilation cycles, such as in
HRRR and future operational RRFS. At this scale, an important data source are
radars(VENDRASCO et al., 2016). However, despite the existence of a radar network
covering parts of northern Brazil, sometimes is hard to find several radars working at
the same time mainly due to data transmission errors, maintenance, data storage,
among others. Therefore, in this framework the next question arises: will current
prototype RRFS coupled with data assimilation and a low data density represent
the initiation and development of convection over northern South America?

In this study, the data assimilation infrastructure of the prototype RRFS system
using GSI is described and assessed in terms of its ability to improve forecast con-
vection when compared to not using data assimilation. The simulation of frequent
weather systems over mid- and tropical latitudes, such as a case of a typical spring
squall line over central US and an Amazon coastal squall line case during the 2020
Amazon dry season, gives a deeper understanding about the RRFS data assimi-
lation capability to adequately represent the structure of the observed convection
over both of regions. Also, this study gives guidance on the convective scale data
assimilation over regions of the globe with low density of data, as in the Amazon
region. Operational convective scale data assimilation at the Brazilian Center for
Weather Forecasts and Climate Studies of the National Institute for Space Research
(CPTEC-INPE3) is still an incipient approach. However, in research mode, multiple
efforts are underway focusing on testing and evaluating different models, methods,
cycling strategies, and datasets. This study seeks to improve our knowledge on this

3https://www.cptec.inpe.br/
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subject and give indications to the development of the future operational convec-
tive scale data assimilation at CPTEC-INPE. It also shows the performance of an
FV3-based system, which is relevant to the CPTEC since it envisions unifying its
modeling suite and is in the first steps towards selecting a new dynamical core.

1.1 Hypothesis and objectives

The hypothesis of this research is that the RRFS is capable of capturing convec-
tion initiation and evolution over mid-latitudes and the tropical region, with good
guidance in areas with low data density. To confirm this hypothesis, this study inves-
tigates the data assimilation framework for the prototype RRFS to improve convec-
tion forecasts over central US and northern South America. This is explored through
the assessment of multiple configurations in GSI and physics suites using two cases
study. Forecasts are assessed using the Model Evaluation Tools (MET), which is the
unified verification package that will be used by UFS applications (BROWN et al.,
2021). To fulfill this main objective, the following specific objectives are necessary:

• Explore the initial data assimilation infrastructure of a prototype RRFS
system;

• Assess different physics suites on forecasts of convective storms;

• Evaluate various configurations and algorithms available in GSI;

• Investigate the impact of a cycling strategy on the cycled analyses in RRFS;

• Investigate the impact of using data assimilation on forecasts of convective
storms.

A theoretical background on the main study subjects is presented in the Chapter 2.
A description of RRFS and its components can be found in Chapter 3, with details of
the configurations tested. The case study overview over US with the corresponding
methods and results are presented in Chapter 4. Chapter 5 is dedicated to the case
study over northern South America, which is divided into two main section: the first
describes the methodology applied for the selection of the case to be studied and
the overview of the case selected and the second section presents the configuration
of the numerical experiments performed along with the results and discussions. The
conclusions, final remarks, and future work are presented in Chapter 6. The code
and data used for this study is detailed in the Appendix A.
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2 THEORETICAL BACKGROUND

The theoretical framework on which this research is built is presented in this chapter.
The objective is to organize the research carried out and respective results obtained
in some aspects (techniques, methods, and phenomenons) that this thesis explores
to develop the experiments and analyze the obtained results. It should be mentioned
that the literature currently available on some topics is very copious, and a selection
of more relevant material for the objective of this study was necessary. The author
recognizes that there are many other papers related to the theme of this thesis that
are not mentioned in this revision, which can be accessed in the reference section of
the referred papers. The intention of this chapter is not to exhaust the subject, but
to provide a mainline for readers to start in the theme of this research. The topics
covered in this chapter are directly associated with experiments carried out in this
study, which can be useful to organize the ideas and give support to the discussion
developed in the analysis of results. A background on data assimilation is presented
in Section 2.1 which emphasizes the different methods used in this study, such as
Variational, Ensemble, and Hybrid data assimilation methods. Section 2.2 gives
the basis for an overview of previous studies on convective scale data assimilation.
Section 2.3 summarizes the data assimilation activities at CPTEC with a focus on
ongoing studies. Emphasis is given to the studies carried out at the center, since
the present study, developed at the Graduate Program of INPE, forms part of these
efforts and contributes to the mission of the center. Finally, a brief overview of squall
lines and specifically on Amazon squall lines is presented in Section 2.4.

2.1 Data assimilation methods

NWP is an initial value problem. This was firstly stated by the Norwegian scien-
tist Vilhelm Bjerknes in 1904 when referring to the “problems of the meteorological
prediction”. According to Bjerknes, one of the “rational solutions” was that “the
condition of the atmosphere must be known at a specific time with sufficient accu-
racy” (BJERKNES, 1904). Years later, in 1914, the scientist Henri Poincaré postulated
that “if we knew exactly the laws of nature and the situation of the universe at the
initial moment, we could predict exactly the situation of that same universe at a
succeeding moment”, however, “we could still only know the initial situation approx-
imately. [...] It may happen that small differences in the initial conditions produce
very great ones in the final phenomena.” (POINCARÉ; MAITLAND, 1914). Decades
later it was proved by Edward Lorenz that even with perfect models and perfect
observations, the chaotic nature of the atmosphere would impose a finite limit of
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predictability in the weather forecast (LORENZ, 1963).

The first NWP attempt was made by Richardson in 1922 by numerically integrating
(by hand) the equations of motion to predict the surface pressure tendency over
Germany; the result found was 145 hPa in 6 hours. Richardson’s work served to
highlight the fact that the initial condition must be in balance to perform the nu-
merical prediction in an adequate way, as well as the need for a computer to perform
the calculations. His effort was recognized by Jules Charney, who along with other
colleagues, pioneered the use of modern computers in weather forecasting and wit-
nessed the beginning of the operational NWP in the 1950s (PALMER; HAGEDORN,
2006).

Initially, a subjective analysis was used to create the initial condition for the numer-
ical model. Observed values were subjectively interpolated to the model grid points
and the experience of a synoptic meteorologist was essential for the preparation
of the analysis (GILCHRIST; CRESSMAN, 1954). However, in order to create initial
conditions without human interference using a computing machine and with more
robust interpolation methods, the objective analysis emerged in which the avail-
able observations were interpolated on the model grid by means of an interpolation
polynomial. This method was firstly proposed by Panofsky (1949) and revisited
by Gilchrist and Cressman (1954) using a local quadratic fitting to the observations
by the method of least squares. However, because there were far fewer observations
than degrees of freedom in the forecast model, and the observations were spatially
incomplete, the objective analysis could not be satisfactorily solved by only using
observational values. It is worth to mention that, generally speaking, the number of
degrees of freedom of the model will be given by the amount of meteorological vari-
ables to be analyzed in all grid points (including the vertical) of the model. Gilchrist
and Cressman (1954) suggested the use of an earlier forecast for the analysis over
areas with poor coverage. A better estimate of the state of the atmosphere was then
made by combining the observations with some previous estimate (first guess or cli-
matology) and the use of computers for the automation and operationalization, as
proposed by Bergthörsson and Döös (1955). This approach was improved and made
operational in the US by Cressman (1959) with the method of successive corrections
to the initial guess. Despite the success and simplicity of the Cressman method and
its variants (BARNES, 1964), it did not account for the errors in the observations
which led to the need to represent mathematically the uncertainties.

Statistical information on the errors in the observations and the model can guide
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the weight given to each one during the analysis preparation. Methods of optimal
interpolation were therefore introduced for the objective analysis of meteorological
variables (GANDIN, 1965). The purpose of this procedure is to calculate an opti-
mal correction (weight matrix) for the background state that minimizes the analysis
error covariance by using observations and estimates of the uncertainty associated
with the background state and observations. The weight matrix is given by a ratio
between the errors of observation and prediction, but given in terms of their respec-
tive covariances. The correction can also be thought as an update in the sense that
current weather observations are used to update/correct a past weather forecast. In
the optimal interpolation method, the analysis equation can be derived using the
the least squares estimation. In the literature this method is also called statistical
interpolation, because it is not optimal in practice (DALEY, 1991; KALNAY, 2003).

Another approach to objective analysis is the variational assimilation technique. The
variational approach can also be derived using the least squares estimation and is
equivalent to optimal interpolation as shown in Lorenc (1986) and Kalnay (2003).
The main difference between these methods is given by how the weight matrix is
specified. This also applies for the Kalman filter. These methods are discussed in
the next subsections.

2.1.1 Variational data assimilation

In the variational approach, a cost function (J ) is minimized which represents the
weighted distance between an x field and the background, and the weighted distance
between that analysis and the observations. The minimum of this function is found
for the vector x = xa, which is called the optimal analysis and corresponds to the
state with the maximum probability, and therefore, the “best estimate” (KALNAY,
2003). For the 3DVar case J has the form:

J(x) = 1
2(x− xb)TB−1(x− xb) + 1

2(y− H(x))TR−1(y− H(x))

= Jb(x) + Jo(x)
(2.1)

Jb and Jo are the background and observations terms of the cost function, respec-
tively. The minimum of J for x = xa is found when the gradient of J is zero at xa

by making the assumptions that the observation operator is linear (H = H), x = xb,
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B, R, and all the inverse matrices are positive definite1, such that:

∇J(xa) = 0 = 2B−1(xa − xb)− 2HTR−1(y− H(xa))

0 = B−1(xa − xb)−HTR−1(y− H(xb))−HTR−1H(xa − xb)

xa − xb = (B−1 + HTR−1H)−1HTR−1(y− H(xa))

(2.2)

therefore, the analysis using the variational approach has the form:

xa = xb + (B−1 + HTR−1H)−1HTR−1(y− H(xb)) (2.3)

or, the incremental form:

δxa = (B−1 + HTR−1H)−1HTR−1δxb

δxa = xa − xb, δxb = y− H(xb)
(2.4)

where xa is the analysis model state vector, xb is the background model state vector,
y is the vector containing the observations, B and R are the covariance matrices
containing the background and observations errors, respectively. The combination
of these covariance matrices will determine the amount of correction to be applied
to the background fields. In theoretical terms these matrices are obtained by apply-
ing the Mathematical Expectation in the multiplication of the corresponding vector
error by its transpose (εεT ). The observation error covariance matrix includes con-
tributions from the instruments, representativeness errors and from the observation
operator H. H represents the observation operator, or forward model, that performs
the interpolation and transformation of the model variables into the space and time
of the observations through the product H(xb). The comparison between observa-
tions and their counterpart from the model, (y−H(xb)), is known as observational
increment or innovation vector, and when compared against the analysis is known
as analysis residuals. The H and H in Equation 2.3 differ in the fact that the later is
called the Tangent Linear Forward Model operator and results from the linearization
of the observation operator in the vicinity of the background state (see Equation 2.5)
as shown by Bouttier and Courtier (2002). The authors remark that this hypothesis
has limitations in the presence of discontinuities where higher-order variations of H
cannot be neglected. This is a particularly important point in convection-allowing
models. Clouds represent discontinuities in the atmospheric liquid water field. The
liquid water discontinuity leads to sharp temperature and wind gradients (vertical
and horizontal). These gradients are fundamental for computing the moisture, heat

1For any vector x, x−T Ax > 0 unless x = 0. The eigenvalues of the matrix are the variances
in the direction of the eigenvectors (BOUTTIER; COURTIER, 2002)
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and momentum exchanges between the clouds and the environment.

H(x)− H(xb) ≈ H(x− xb) (2.5)

In comparison with the optimal interpolation, the variational approach provides
greater flexibility in terms of, for example, the data selected for the analysis. The
background error covariance matrix does not need to be defined through local ap-
proximations. An approach that has been widely used to determine the background
error covariance matrix in variational systems is the National Meteorological Cen-
ter method (NMC) (PARRISH; DERBER, 1992). In this method, the differences be-
tween pairs of forecast valid at the same time but with different length (e.g., 24
and 48 hours) are considered to be representative of the background error. This
method is easy to implement and provides an estimate for the entire domain. An-
other advantage of the variational approach is the addition of constraints as a term
in J (Jc) which helps to control nonphysical solutions in the analysis. Furthermore,
more robust observation operators can be developed allowing for more nonlinear re-
lationships between observed and model variables as well as the direct assimilation
of quantities such as radiances instead of retrievals (KALNAY, 2003).

In practical situations, the cost function J is minimized using iterative methods such
as the conjugate gradient (DERBER; ROSATI, 1989). This is because the high com-
putational cost required for the inversion of the matrices in Equation 2.3. Iterative
methods can still be very computationally expensive and therefore some approaches,
such as the incremental technique and the use a preconditioner (a change of mini-
mization space) to decrease the number of iterations (LORENC, 1997), are followed
in order to reduce that cost, in addition to code optimization. Another approach
to reduce the computational cost, which increases with the model resolution, and
reduce the complexity of the data assimilation system, is to calculate the analysis
in a control variable space. Advantage is taken from relationship between variables,
such as the stream function and velocity potential and u and v components of the
wind. Thus, in many cases, the control variables are those used in the minimization.

As 3DVar, the 4DVar algorithm seeks to find the optimal analysis that minimizes J.
However, it includes the time dimension which allows the use of observations dis-
tributed within the assimilation window. Thus, differently than 3DVar which con-
siders that observations in the assimilation window are all valid at the same time,
4DVar takes into account the time that the measurement was taken. In order to
obtain the model states at a given time i (xi), this method depends on a model
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forecast operator that will be integrated from the initial time to i. In 4DVar, the
minimization of J by finding the analysis state when ∇J = 0, will require not only
the model integration from times 0 to n but also the integration of the adjoint model
operator (MT

i ) and transposes of the tangent linear model operators at each time
(HT

i ). Therefore, this method is more computationally expensive than 3DVar and
the implementation of the adjoint model is complex. Nevertheless, by using the fore-
cast model in the assimilation procedure, it is ensured the consistency between the
analysis and the model equations. Kalnay (2003) highlights the equivalence between
the 4DVar analysis at the final time step and the Kalman filter analysis.

It is important to point out that in addition to the assumptions mentioned before,
the variational approach (3D/4DVar), as well as optimal interpolation, assumes that
xa will be the best estimator of the true state (xt) when the background and observa-
tions are unbiased (i.e., xb−xt = y−H(xt) = 0) and their error covariance matrices
B and R are assumed to be known. From the Bayesian point of view this means
that the probability density functions are Gaussian (the expected value of the mean
of the innovation is zero). Additionally, it is assumed that their errors are uncorre-
lated, meaning that their covariance is equal to zero (i.e., (xb−xt)(y−H(xt))T = 0).
Nevertheless, the variational approach (e.g., pure 3DVar) was successfully used for
many years in operational data assimilation activities at the NCEP (PARRISH; DER-

BER, 1992) and the Met Office (LORENC et al., 2000). As data assimilation meth-
ods evolved, operational centers also transitioned to use more sophisticated meth-
ods (BAUER et al., 2015; GUSTAFSSON et al., 2018).

2.1.2 Kalman filter

The Kalman filter was introduced in Kalman (1960) to address issues in the area of
communication and control related to signals and noise for a linear dynamic system.
In Kalman and Bucy (1961), this study was extended to a continuous-time case.
With this method, the analysis obtained is equivalent to the optimal interpolation
and variational approaches, using the least square estimation. The time distribution
of the observations is taken into account and the forecast error covariance matrix is
found at every time step and over the entire interval over which data are provided.
The observations are assimilated sequentially and discarded once the information
was used for the analysis (GHIL; MALANOTTE-RIZZOLI, 1991). A forecast model M
is used for the propagation in time, such that xt+1 = M(xt) + η, 〈ηηT

t 〉 = Q,
where M is the linearized forecast operator and Q is the model error covariance
matrix (LORENC, 1986). The analysis equation derived using the Kalman filter is as
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follows:
xa(i) = xf (i) + K(i)(y(i)− H(i)xf (i)) (2.6)

where
xf (i+ 1) = Mi→i+1xa(i) (2.7)

Pf (i+ 1) = Mi→i+1PaMT
i→i+1 + Q(i) (2.8)

K(i) = Pf (i)HT (i)(H(i)Pf (i)HT (i) + R(i))−1 (2.9)

Pa(i) = (I−K(i)H(i))P(i) (2.10)

All variables follow the definitions as in 3DVar but at time i and using a forecast
model M. Some differences in the notations correspond to the background and anal-
ysis error covariances, denoted by Pf and Pa, respectively, as well as the background
state xb which is now a forecast denoted by xf . I is the identity matrix. K is the
so-called Kalman gain matrix and is equivalent to the weight matrix in the optimal
interpolation method. The Kalman filter assumes a linearized forecast model and
observation operator (i.e., M = M and H = H), meaning that the computations are
done in the vicinity of the model state and forecast model, respectively, similar to
the concept in Equation 2.5. For the case in which the forecast model and observa-
tion operator are nonlinear, an Extended version of the Kalman filter (EKF) was
developed. However, since in EKF the linear tangent and adjoints of the nonlinear
model are needed to compute the error covariances, this method is more complex
and requires a high computational cost (DALEY, 1991; BOUTTIER; COURTIER, 2002).

2.1.3 Ensemble data assimilation

Results from Lorenz’s twin experiments led scientists to realize that perfect forecasts
would never be achievable. Instead, it could be possible to quantify the uncertainties
by the means of an ensemble of forecasts (PALMER; HAGEDORN, 2006). The use of
ensemble methods has been key for the prediction of highly variable parameters
such as precipitation, where the spread of the ensemble have been used to quantify
the uncertainty of the rain location and intensity forecasts (SCHUMACHER; DAVIS,
2010).

In the context of data assimilation, one of the greatest advantages of ensemble
forecasts is the estimation of the statistics of the background errors, giving a flow
dependent estimate of the uncertainties. The flow dependent characteristic allows
to account for time varying and more spatial anisotropic contributions in the covari-
ances statistics typical of systems with discontinuities or sharp horizontal gradients.

13



This approach was firstly explored by Evensen (1994) with the Ensemble Kalman
Filter (EnKF) method for an oceanographic application. In EnKF, an ensemble of
perturbations is created which is added, for example, to the observations dataset
that is assimilated by each member of the initial state. Thereafter, each of the
initial states is used to integrate the model and create a subsequent ensemble fore-
cast that will be used as background or first guess for the next ensemble analysis.
The EnKF method and its variants, for example the Ensemble Square Root Fil-
ter (EnSRF) (WHITAKER; HAMILL, 2002), have been widely used by the research
community as well as operational activities. Ensemble-based systems require lower
computational cost than EKF and better results have been found when compared
to pure 3D or 4DVar (HAMILL; SNYDER, 2000; HAMILL et al., 2001).

Nevertheless, ensemble-based systems need a large number of ensemble forecasts
in order to estimate a full rank covariance matrix. Even with the latest increase in
computational resources, this is still computationally impractical for operational and
research activities. Hamill et al. (2001) compared the signal and noise estimates from
an ensemble with 400 members versus an ensemble with 25 members and showed
that the ensemble-based covariances are very noisy when using the smaller ensemble
size, which resulted in inaccurate analyses. In addition, the authors found out that
for a small size ensemble there is a distance-dependent noise in the magnitude of the
background error covariance estimates. This means that distant observations could
contribute for more noise than closer observations. That happens basically due to
bad specification of the errors resulting in a wrong weight given to the observation
or the background for the analysis, which grows with the cycles. This can make the
filter inefficient and is known as filter divergence. This issue can be addressed by
localizing the covariances. Houtekamer and Mitchell (2001) used a Schur product
(i.e., element by element multiplication) to spatially localize the covariances. The
distance-dependent correlation matrix of Gaspari and Cohn (1999) was used for
every grid point, in which the correlation is close to 1.0 near the observation location
and decreases to 0.0 as the distance increases. A length scale needs to be specified
in the correlation matrix which determines how the ensemble covariance varies with
distance. For small (large) ensemble size it was pointed out that the localization
function should also be small (large). As confirmed by Hamill and Snyder (2000)
and Whitaker et al. (2004), this approach is particularly important in areas of low
data density such as over the Antartica and the Southern Hemisphere.

Furthermore, other approaches such as the covariance (or multiplicative) inflation,
the additive inflation, and the relaxation-to-prior have been developed in order to
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mitigate the filter divergence problem and are referred in the literature as param-
eterizing the model error. The relaxation-to-prior is performed after the analysis is
obtained by modifying the analysis perturbations back toward the prior perturba-
tions (WHITAKER et al., 2008). In the inflation methods, the covariances are either
multiplied by a factor or random noise is added, respectively. Using both inflation
approaches, Hamill and Whitaker (2005) have proved their effectiveness with better
results when using the additive inflation. The inflation can be defined in several
ways. For example, in Hamill et al. (2001) the covariances were inflated by 1% each
cycle. However, finding the adequate values for the inflation can be computation-
ally expensive which have motivated the development of adaptive methods for the
parameters estimation (KOTSUKI et al., 2017).

Using the EnSRF, Whitaker et al. (2008) explored the three model errors parame-
terization methods in comparison with an experiment using 3DVar. In this study,
the authors used the Blackman window distant-dependent function of Oppenheim
and Schafer (1989) for the localization of the covariances instead of the function
of Gaspari and Cohn (1999). The additive inflation was set to vary with latitude
and in the vertical, and it was found to produce better results than multiplicative
inflation and relaxation-to-prior. The geopotential height forecast skill was greatly
improved over Southern Hemisphere extratropics and modest improvements were
also found in the Northern Hemisphere extratropics.

2.1.4 Hybrid data assimilation

An alternative method for the objective analysis was proposed by Hamill and Snyder
(2000) which combines the background error covariance from the 3DVar system
(static or climatological statistics) with the ensemble background error covariance
of the EnKF. This method takes the advantages of both methods and therefore is
called hybrid. It allows the use of flow dependent background error covariance while
helping the rank deficiency by combining it with the static matrix. It also avoids
the development and maintenance of a tangent linear and adjoint model. Thus,
its implementation is more straightforward with a reduction of the computational
cost involved. In this method the most probable optimal analysis state is found as
in 3DVar by minimizing the cost function J. The analysis formulation follows the
incremental form of Equation 2.4 and uses an iterative conjugate residual descent
algorithm to find the analysis increment. In the study, the B matrix from the 3DVar
has the following form:

Bstatic = SCST (2.11)
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where C is the diagonal matrix of variances of the spectral coefficients and S is a
transform from spectral coefficients to grid points. The study ofHamill and Snyder
(2000) was conducted using a quasegeostrophic spectral forecast model. On the other
hand, the sample covariance matrix estimated for each member using the EnKF
(Pb

i) follows the suggestion of Houtekamer and Mitchell (1998) of excluding the last
forecast from the estimation of the covariance in order to avoid an underestimate of
the variance of the forecast errors, and is defined as:

Pb
i = 1

n− 2
∑

j=1,j 6=i

(xb
j − xb

i)(xb
j − xb

i)T (2.12)

where the overbars represent the ensemble mean, n is the number of members
and subscripts refer to ensemble members. Finally, the B matrix of the hybrid
EnKF–3DVar scheme proposed has the form:

Bhybrid = (1− α)Pb + αSCST (2.13)

where the parameter α controls the relative weight that is given to each covariance
matrix and can have values up to 1. The difference 1 − α indicates the weight
given to the ensemble background error covariance. The case of α = 0 indicates the
use of pure ensemble-based background error covariance and α = 1 for pure static
background error covariance. Different values of α were tested in Hamill and Snyder
(2000), such as 0.1, 0.4, 0.7, and 1.0, along with various size of the ensemble (25,
50, and 100). Compared with 3DVar, the hybrid system proved to be superior with
encouraging results for sparse observation networks, especially for small ensemble
sizes. The analysis errors were more reduced when using a α = 0.1 and 50 members,
and slightly better when using 100 members. It also showed potential for higher
resolution forecasts.

Thereafter, this method was explored in many researches using a combination of
variational and ensemble methods variants. Etherton and Bishop (2004) explored
a hybrid data assimilation scheme based on the ensemble transform Kalman filter
(ETKF) and 3DVar. This study was inspired by the fact the many of the studies
at the time were conducted under perfect model assumptions. Thus, the perfor-
mance of these systems was examined in the presence of model errors, such as
resolution and parameterization errors, using a two-dimensional turbulence model.
A relaxation method was applied for the model errors parameterization. Differ-
ent ensemble generation schemes were also tested. In this sense, the authors found
that a perturbed observations hybrid and a singular vector hybrid showed a better
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performance among the schemes tested. Overall, the hybrid ETKF/3DVar system
outperforms the purely isotropic correlation model in 3DVar. Smaller errors in the
average 24 h forecast were found for any combination of the ensemble-based data
assimilation tested when compared to 3DVar and for both model errors. The results
demonstrated that the data assimilation performance can be significantly improved
even in cases of very small relative weight of ensemble-based error correlations to
the hybrid error correlation model.

A hybrid system also based on the ETKF was investigated by Wang et al. (2007). In
this case instead of 3DVar, the optimal interpolation analysis scheme gave the frame-
work to find the mean analysis state. This hybrid system was then compared with
an EnSRF analysis using a two-layer primitive equation model and perfect model
assumptions. As expected, the hybrid and EnSRF systems outperformed the pure
optimal interpolation. For α values between 0.2 and 0.6, the hybrid ETKF–Optimal
interpolation scheme using 50 member ensemble showed lower root mean square
analysis error when spatially localizing the covariances than when not. The results
using the EnSRF showed similar performance to the hybrid when using those α val-
ues. Larger errors were found when reducing the size of the ensemble to 20 members
and filter divergence was experienced in EnSRF when reducing the ensemble size
to 10 and 5 members. The authors pointed out that the better results found for
the hybrid system for small ensemble sizes was due to the static background error
covariance, which helped to keep the EnKF stable.

A further study of Wang et al. (2009) focused on the case of the imperfect model
case, this is including model errors. The hybrid system used was also based on the
ETKF and compared with an EnSRF analysis. In addition, the same two-layer prim-
itive equation model was used. Additive noise was used to parameterize model errors
in the background ensemble for both schemes. As in the previous study, the EnSRF
showed to be more sensitive to the ensemble size than the hybrid system, experi-
encing filter divergence for small sizes. The authors pointed out that this was due
to sampling errors in parameterizing the model errors and the additional covariance
localization in EnSRF (only one in EnKF) which could have led to unbalance in the
analysis.

A variation of the hybrid method was proposed by Penny (2014) using a hybrid gain
data assimilation. In this new method the philosophy is inverse, it seeks to explore
the impacts that a 3DVar system has on an EnKF. The variational approach is
used to stabilize the EnKF within the model space. In this study the hybrid gain
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system uses the local ensemble transform Kalman filter (LETKF) (HUNT et al., 2007)
and the 3DVar. The goal is to calculate a hybrid Kalman gain matrix that will be
used to obtain a hybrid analysis by using the LETKF. The hybrid gain matrix is
composed of the Kalman matrix as in Equation 2.9 and the correction applied to
the background fields in the variational algorithm as in Equation 2.3. Although,
the Lorenz-96 model was used, the results showed better results when using this
new method over pure 3DVar and LETKF. Nevertheless, the filter diverge issue was
faced for a 5 members ensemble. Additionally, this method relies on the tuning of the
parameter α. To avoid the definition of the relative weight necessary in the hybrid
gain approach, Chang et al. (2020) developed a method in which the correction from
the variational is restricted to the subspace orthogonal to the linear basis defined
by the analysis ensemble perturbations. This study uses a quasigeostrophic model
and the EnKF for the hybrid analysis. In the recent work of Azevedo et al. (2020),
a geographically varying weighting factor alpha is defined and the ensemble spread
is used for the assignment of the weights.

Since hybrid systems give better results even for small ensemble size (depending
on the approach applied), the attractiveness of the hybrid ensemble variational
(3D/4DEnVar) data assimilation method for operational activities was quickly rec-
ognized by the scientific community (LORENC, 2003; BUEHNER, 2005). Nowadays,
it has gained mainstream practice and is widely used by the research community
as well as operational NWP centers (KLEIST; IDE, 2015a; BANNISTER, 2017), in
particular for convective scale applications (GUSTAFSSON et al., 2018).

2.2 Convective scale data assimilation

A better understanding of atmospheric processes related to convective clouds and
storms was possible with the development of nonhydrostatic cloud-scale numerical
models in the late 1970s (LILLY, 1990). As NWP models increased their spatial res-
olution and more dense and frequent observations were available, the need for initial
conditions with a more realistic representation of the phenomena occurring in a
high spatiotemporal scale along with the favorable dynamical and thermodynamical
environments for those phenomena to occur became crucial. Typically, atmospheric
phenomena lasting few minutes to several hours and with horizontal scale of about
2 m to 2000 km are between the microscale and mesoscale. For example, cumulus
cloud convection has a characteristic scale of 1 km, deep convection of 10 km, and
mesoscale processes of 100 km (COLEMAN; LAW, 2015). Particularly, the scale at
which the moist-convective processes occur is known as convective scale. NWP at
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convective scales aims to accurately predict local weather such as a preconvective
environment, convection initiation, cloud, precipitation, etc. (CLARK et al., 2016).

Currently, that is achieved using convection-allowing models with small grid lengths,
typically 1–4 km. At such grid lengths, a more detailed representation of the to-
pography is possible as well as the surface fluxes and local circulations. Using the
WRF model with three nested domains, Germano and Oyama (2020) identified local
circulation features over eastern Amazon. Within the smaller domain (0.3 km grid
spacing), a river-breeze circulation was detected and confirmed in the anomaly of the
zonal and meridional wind fields for Belem, Para, Brazil. The river breeze is a very
important mechanism controlling convection initiation in the Amazon. However, it
should be mentioned that the sensitivity to horizontal grid spacing in convection-
allowing models is subject of active research and development (SCHWARTZ; SOBASH,
2019). Lean et al. (2008) using the Met Office’s Unified Model showed that the 4 and
1 km grid length models generally give precipitation fields more realistic than with
12 km grid spacing because convection processes are explicitly resolved on this scale,
primarily the time evolution of the convection. It results in better forecasts than
when the processes are parameterized in the larger scale. However, the showers in
the simulations were too small and overall too intense. As mentioned previously and
as the name indicates, convection-allowing models do not require to active a convec-
tive parameterization in order to adequately represent deep convection. A problem
with convective parameterizations is the fact that the parameterization is called ev-
ery so many time steps. Thus, convective forcing is not continuous in time. Clark
et al. (2016) pointed out that these models are able to represent with a good de-
gree of realism the formation of daughter cells and back-building of storms, advect
showers realistically with the flow, organize convection, and improve the location of
showers. In these models, the microphysical and turbulence parameterization pass
then to play a very important role. However, accurate estimates of the model fore-
cast uncertainty are necessary for realistic predictions at this spatial and temporal
scale. The errors in the initial conditions can grow more rapidly in a short period.
Therefore, the use of ensemble-based data assimilation systems can be essential.

Initially, much of the developments successfully used for the data assimilation at
synoptic scales, such as those described previously, were applied or adapted for
convective scales. Brousseau et al. (2011) using differences between forecasts from
an AROME (Applications of Research to Operations at Mesoscale) ensemble as-
similation, introduced spatial localization to the climatological background error
covariances used in the operational 3DVar system at Météo-France. In a follow up
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study, Brousseau et al. (2012) generalized the covariance calculation in order to
account for flow dependency in the background error covariances in the AROME-
France (2.5 km resolution) 3DVar operational system. Although a small number
of members was used (6 members), the authors affirmed that the flow dependent
covariance estimates were statistically robust. A clear improvement was found in
terms of the Brier Skill Score for the 6 h rainfall totals forecasts when compared to
an experiment using the 3DVar with static background error covariance. Ballard et
al. (2012) showed that using pure variational methods there was an improvement of
18 hours gain in the skill of the Limited Area Forecasting as measured by the UK
Index during the period of 2001 to 2007. Moreover, between 2006 and end of 2010,
there was a 24 hours increase in skill of forecasts of cloud fraction > .325. A multi-
incremental 4DVar scheme for the HIgh Resolution Limited Area Model (HIRLAM)
forecasting system was introduced in Gustafsson et al. (2012). During the tangent
linear model integrations as part of the 4DVar minimization, a weak digital filter
constraint was applied in order to damp high-frequency oscillations. It removed the
need for explicit initialization for the HIRLAM integration. The multi-incremental
4DVar system designed was superior to the 3DVar, showing improvements on the
baroclinicity of the initial state which led to an adjustment in the intensity of the
storm development.

Hybrid systems have also proved to be beneficial for convective scales, as it al-
lows a greater ability to deal with errors. At NOAA, HRRR was made opera-
tional in September 2014 using a 3DEnVar approach and GSI as the analysis sys-
tem (BENJAMIN et al., 2016). HRRR uses lateral boundary conditions from the 13 km
RAP forecasts and performs 18 hour forecasts every cycle and 48 hour forecasts at
00:00 and 12:00 UTC. Similar to RAP, HRRR performs hourly updated cycles us-
ing a digital-filter initialization, pseudo-innovations from near surface observations
within the planetary boundary layer (PBL), radar reflectivity assimilation using a
latent heating approach, and a cloud and hydrometeor assimilation techniques using
a combination of information from METAR (METeorological Aerodrome Reports),
Geostationary Operational Environmental Satellite (GOES) and the background
state (BENJAMIN et al., 2016). The recent study of Benjamin et al. (2021) describes
the updated version of the stratiform cloud and hydrometeor assimilation tech-
nique (HU et al., 2006a; HU et al., 2006b). The latent heat approach in HRRR aims
to update the temperature tendency during the beginning of the model integration
with a reflectivity-based temperature tendency. It allows to introduce observed deep
convection into the model. At grid points without radar coverage, the tendency calcu-
lated by the model is then used. The PBL pseudo-observation function was initially
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developed to further leverage the information provided by METAR observations,
extending their representativeness through the PBL depth and then obtaining a
better representation of the PBL in the Rapid Update Cycle (RUC) analyses. Us-
ing this function, Benjamin et al. (2004) found improvements in the temperature,
dew point, and CAPE forecasts when spreading the innovations from temperature,
moisture, and wind in the layers above surface and below the top of the PBL. Smith
et al. (2007) also found a positive impact in the 3 h forecast of CAPE by using the
PBL pseudo-observations, and the impact was greatly increased when additionally
assimilating GPS-IPW. Benjamin et al. (2010) found higher positive impact during
the summer, when the PBL is deeper. This is an important point that needs to be
carefully analyzed in the Amazon convective system. Precipitation by warm clouds
is quite important in the Amazon. The Large-Scale Biosphere-Atmosphere Exper-
iment research shows that warm cloud precipitation may be responsible for about
50% of the precipitation during the wet season in southwest Amazon (KELLER et

al., 2004). However, most models do not appropriately account for the warm cloud
precipitation. The vertical distribution of latent heating in shallow warm precipita-
tion cloud is much shallower than the convective diabatic heating of deep clouds.
Therefore, the vertical structure of the response circulation to the convective forcing
is not like the response to deep convection forcing (upper tropospheric divergence
and low level convergence) and is therefore an important issue for future research.

A new data assimilation method for the convective scale using a local particle filter
is presented in Poterjoy et al. (2017). Although the potential of the method was
explored in an idealized framework.

High resolution and dense observations from different sources are core in convective
scale data assimilation. For example, polarimetric radars provide a high and frequent
volume of information on the types, shapes, and size distributions of hydrometeors
which are used to identify and characterize the convection as well as estimate the
precipitation occurring in the radar range. However, to introduce these data into the
assimilation system an observation operator is needed as well as control variables
related to hydrometeoros. For the radar-derived radial wind velocities the observa-
tion operator needs contribution from the prognostic continuity equation for radial
velocity in order to estimate the entire velocity field. Radar-derived reflectivities,
on the other hand, are more difficult to assimilate and therefore are basically used
to retrieve hydrometeors information (TONG et al., 2020). Several studies have been
carried out exploring the use of these data using different approaches. For instance,
the 3DVar has been used, however the addition of radar data leads to unbalance in
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the initial condition and therefore the impact of assimilating these data is mainly in
the first forecast hours, up to 3 h forecast in Sun et al. (2012) and up to 7 h forecast
in Wang et al. (2013a) using the WRF model. The 4DVar approach can implicitly al-
leviate part of this issue (WANG et al., 2013b), but despite of the success the method,
at the beginning of the assimilation window a static background error covariance is
used (GAO et al., 2021). Snyder and Zhang (2003) introduced the use of the EnKF
method to provide cross covariances between the predicted radar reflectivity and the
other model state variables with satisfactory results. However, this method is still
affected by sampling and model errors. Alternatively, more promising results have
been found when using hybrid systems, such as the hybrid 3DEnVar (SHEN et al.,
2017) and 4DEnVar within the WRF model (GAO et al., 2021). Gao et al. (2021) used
75% weighting value for the ensemble covariance with a 50 member ensemble. In this
study, the velocity components were used as new control variables and an indirect
scheme was used to assimilate radar reflectivity. The results outperformed those ob-
tained with pure 3DVar and hybrid 3DEnVar, in terms of the neighborhood-based
fraction skill score and bias.

In the Netherlands, other data that have been explored are wind and temperature
observations retrieved using the tracking and ranging radar from the air traffic con-
trol facility at Schiphol Airport, Amsterdam (HAAN; STOFFELEN, 2012). A range
of 270 km from the surveillance radar is considered to extract the observations.
Hourly cycles assimilating these new data into the HIRLAM (version 7.0) model
with 11 km horizontal resolution and using a 3DVar technique improved wind and
temperature forecasts up to 2–3 hours. This is of particular importance for now-
casting applications. Upper air observations are not available from many sources,
usually radiosondes and aircraft. Thus, as a new data source for upper air wind
and temperature profiles, it should be more explored and considered in other NWP
centers.

Other sources of dense and high temporal resolution data are radiances derived from
GOES satellites, especially those from microwave and infrared channels sensitive to
humidity, cloud, and precipitation. For many years operational activities in NWP
centers only included the assimilation of clear sky radiances (i.e., not cloud and
precipitation-affected). However, many efforts in the last years have been focused
on the development of a forward operator (radiative transfer model) that calculates
the model counterpart that account for these effects, and therefore that is currently a
reality in some centers. However, several issues arise. For example, the undetermined
problem in the absence of background and viceversa, nongaussianity in the error
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statistics, observation operator with scattering capabilities, the tangent linear and
adjoint moist physics models, among others (GEER et al., 2017). Despite those known
issues, results have proved the positive impact of assimilating those data, and thus,
work is underway in most of NWP centers toward their assimilation (GEER et al.,
2018).

Although observations with higher spatiotemporal availability are desired for con-
vective data assimilation, observation error correlations can break the assumption of
uncorrelated errors that is usually made in data assimilation algorithms (as explained
previously). A common practice in NWP is thinning and/or superobbing observa-
tions, such as satellite-derived radiances and radar-derived radial winds. Thinning is
applied in order to reduce redundant data and thereby reduce the error correlation
between observations very close to each other. Meanwhile, superobbing reduces the
density of the data by averaging the innovations in a region and assigning this av-
erage (plus the background value) as a single superobservation value. This method
intends to reduce representativeness errors when comparing simulated against ob-
served ones due to, for example, the model discretization (HOFFMAN, 2018).

Simulation and sensitivity experiments with convective scale models can provide
more details on the relative importance of different meteorological variables as initial
conditions. Weissmann et al. (2017) used the information from the ensemble to
estimate the impact of different observations. The authors concluded that attention
need to be paid to possible systematic errors in the verification metric, especially if
it is correlated with the analysis. A large beneficial impact in the surface pressure
observations was found, but the authors presume that, at some extent, it could be
related to the model bias correction. Therefore, the objective would be to remove
the cause of the model bias and not the symptom. For the ensemble approach,
the authors stated that a better understanding of where to place our priorities in
relation to regional observation networks and the inclusion of new observations in
the regional assimilation of data is needed.

Currently, there is a wide variety of available observations that have not yet been
exploited in convective scale data assimilation systems, such as Global Navigation
Satellite System (GNSS) radio occultation (GNSSRO) observations. Obviously, that
is due to its current distribution in space and time. Ladstädter et al. (2015) pointed
out the urgent need to continue GNSSRO missions with a sufficient number of
GNSSRO observations, considering that at least 20.000 events per day are a required
number for climate and other applications, including at regional scale. Other studies
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such as VILLANUEA-BIRREL et al. (2008), have addressed the assimilation of
GNSSRO data in a limited area to study mesoscale convective systems. The impact
of assimilating GNSSRO data on cases of severe weather has also shown encouraging
results (HA et al., 2014; HUANG et al., 2009). With the Constellation Observing System
for Meteorology, Ionosphere, and Climate (COSMIC-2) launched in June 2019, new
horizons for GNSSRO applications have been opened, especially for the tropical
latitudes.

As shown here, convective scale data assimilation is a research area with great
challenges. Continued efforts are being made to develop new methodologies that
address the current demand for initial conditions for high resolution forecast models.
Some review studies, such as Bannister (2017), Gustafsson et al. (2018), Yano et al.
(2018), Bannister et al. (2019), offer a broad spectrum of information on what is
being done in terms of both, research and operations, as well as discuss several of
the challenges of these activities. Furthermore, these studies provide new ideas on
observations that could be used and methodologies that could be followed, opening
a path for further research.

2.3 Data assimilation at CPTEC

Operational data assimilation activities at CPTEC started in 1998 with the Physical-
space Statistical Analysis System (PSAS) using the regional Eta model. But it was
not until 2004 that data assimilation in both regional and global scales became
operational (HERDIES et al., 2008). Between 2006 and 2013, several efforts were ded-
icated to implement the LETKF with the the General Atmospheric Circulation
Model (MCGA; acronym in Portuguese for Modelo de Circulação Geral Atmos-
férico)) (FERTIG et al., 2009). However, in practice, in January 2013, the PSAS was
replaced with the 3DVar algorithm of the GSI analysis system. The new system
was called G3DVar integrating the 3DVar method with the MCGA. The difference
between PSAS and the algorithms presented in Section 2.1 is that, as the name indi-
cates, the minimization is performed in the observations space instead of the model
space. A greater number of observations was possible to ingest into the assimila-
tion window mainly due to the capability to directly assimilate satellite radiances
in GSI, with the greatest positive impacts on the Southern Hemisphere and South
America (AZEVEDO et al., 2017). Using the G3DVar, Penna et al. (2015) assessed
the impact of the brightness temperature from channels sensitive to the surface from
the series of NOAA satellites 15, 18, and 19. The results indicated that the radia-
tive transfer model in GSI, the Community Radiative Transfer Model, overestimates
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the brightness temperature from the channels sensitive to the earth surface for all
the three satellites included and over South America during the austral summer.
G3DVar was operational until December 2015 (BASTARZ, 2017).

At present, all operational models are cold started using the GFS analyses. Also,
GFS forecasts are used to provide lateral boundary conditions for the operational re-
gional models. Meanwhile, in research mode, multiple efforts are underway focusing
on testing and evaluating different models, methods, cycling strategies, data, and
configurations that can guide future applications for global and regional scales. Sa-
pucci et al. (2016), for example, investigated the impact of GNSSRO-derived refrac-
tivities using the LETKF coupled with the MCGA. The Radio Occultation Process-
ing Package (ROPP) observation operator from the Radio Occultation Meteorology
Satellite Applications Facilities/European Organization for the Exploration of Me-
teorological Satellites (ROM SAF/EUMETSAT) was used to calculate the model
counterpart. The authors found significantly positive impacts over South America,
for all variables evaluated and during the entire time of integration of the model. Sil-
veira (2017) focused on the contribution of the soil and vegetation characteristics
used to simulate the microwave land surface emissivity and their impacts on the anal-
ysis. It was found that the soil moisture and temperature are the parameters that
contribute more to the emissivity simulations, consequently, have a higher contribu-
tion to the simulated brightness temperature in the data assimilation. The system
used was the BAM/GSI resulting from the coupling between the Brazilian global
Atmospheric Model (BAM) (FIGUEROA et al., 2016) and the GSI version 3.3 utilizing
the background error covariance matrix from the GFS. Bastarz (2017) computed a
new background error covariance matrix using the NMC method with forecasts pairs
from the BAM model. This represented significant progress compared to G3DVar.
Using the G3DVar, Banos et al. (2018) explored the assimilation of GNSSRO re-
fractivities from the European Meteorological Operational (MetOp) B satellite. The
inclusion of these data allowed for more data from other included low Earth orbit
(LEO) satellites to be assimilated. The zonal and meridional wind components at
250 hPa were indirectly benefited as indicated by an increase in the anomaly cor-
relation coefficient values. Later, using the BAM/GSI, Banos et al. (2019) studied
the impacts of using GNSSRO-derived bending angle instead of refractivity using
the NCEP’s Bending Angle Method (NBAM) (CUCURULL et al., 2013) available in
GSI. A higher amount of data was possible to assimilate with positive impact in the
upper levels, specifically a reduction in the root mean square error (RMSE) values
was observed for the zonal and meridional wind components and geopotential height
at 250 hPa.
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Some studies have advanced to regional and convective scales. For example, Ven-
drasco et al. (2016) investigated the impact of adding a large scale analysis constraint
on the problem of unbalanced initial conditions when assimilating radar data us-
ing a 3DVar approach. The constraint consisted on adding the departures of a high
resolution 3DVar analysis from a coarser GFS analysis for the variables horizontal
velocity components, temperature, and humidity to the 3DVar cost function. As
mentioned in Section 2.1.1, constraints can be added as a new term Jc to the varia-
tional cost function (see Equation 2.1). Radar radial wind and reflectivity data were
from the Paraiba Valley Experiment of the CHUVA project. The WRF Variational
Data Assimilation (WRFDA) system was used. The results indicated that when us-
ing the proposed constraint, a closer fit to the radar observations is achieved, with a
distribution of the analysis increments in areas outside the radar range. The verifi-
cation against radar-derived precipitation showed improvements for all the statistics
analyzed. Ferreira et al. (2017) also explored the assimilation of radar radial wind
and reflectivity from the radars Cascavel e Assunção which cover part of southern
Brazil and Paraguay as well as a close region from Argentina. The 3DVar algorithm
within the WRFDA was also used with a cold start using the GFS analysis. As-
similating the radar data indirectly impacted the variables throughout the entire
atmosphere and showed improvements on the forecast of intense precipitation cores.
Overall, results showed the potential of radar data assimilation for nowcasting in
Brazil. Campos (2018) also used the WRF model but with the 3DVar application in
GSI to investigate the impact of assimilating PWV from the GPS network installed
in Belem, Para during the CHUVA project. The assimilation of these data allowed
to better represent the initiation and evolution of the different types of squall lines
analyzed in the study.

Moreover, the potential use of lightning density rates from the Geostationary Light-
ing Mapper (GLM), onboard the GOES-16 satellite, as a proxy for data assimilation
was investigated in Vendrasco et al. (2020). This study was inspired by the fact that
previous investigations had showed the existence of correlations between lightning
frequency and microphysics using radar reflectivity. From these correlations, rela-
tions between reflectivity thresholds and the lightning occurrence can be extracted.
Therefore, the GLM lightning density rates can be indirectly assimilated through
mean reflectivity profiles using the WRFDA 3DVar system. Substantial improve-
ments were found in the forecasts of reflectivity patterns and storm motion. This
work indicates the possible use of GLM data over areas with low data density, as
in regions of South America. It also show the potential of these data for nowcasting
applications. Recently, Nobre et al. (2021) explored the hybrid 3DEnVar, EnSRF,
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and 3DVar methods available in GSI version 3.3 integrated with the WRF model
into the Regional Modeling System in development at CPTEC. The 21 members
from the Global Ensemble Forecast System (GEFS) with 1◦ of resolution were used
to cold start the systems at 00:00 UTC and for the computation of the statistics for
the ensemble-based covariance matrix. For the two cases study, the analysis systems
showed different results with 3DEnVar outperforming the pure variational and en-
semble for one case. For the other case study, the EnSRF showed better results in
terms of the RMSE values.

2.4 Mesoscale convective systems: squall lines

Over tropical and mid-latitudes, mesoscale convective systems (MCS) are among
the weather systems that most contribute to annual precipitation totals. MCS re-
sult from the grouping of individual convective clouds extending over areas with
horizontal scale of about 20 to 200 km (COLEMAN; LAW, 2015). According to Schu-
macher and Rasmussen (2020), in the Great Plains of the US these systems account
for ∼40% of the annual and >60% of the warm season rainfall. Meanwhile in the
tropics, for instance over Amazon, Rehbein et al. (2019) analyzed the MCS con-
tribution to rainfall occurrence during the Green Ocean Amazon experiment from
January 2014 to December 2015 (GoAmazon2014/54) (MARTIN et al., 2016), which
accounted for ∼70% of the total registered in that period.

When MCS are organized in the form of bands (lines) of convective storms, they
are called instability lines or squall lines. Squall lines occur with a high frequency
in the central US, especially over the Great Plains, causing severe weather events,
such as hail, tornadoes, high wind, flash floods as well as much of the precipitation
that falls in that region particularly during spring and summer. Using a 10-year
period (1994–2003) of radar data, Hocker and Basara (2008) found that squall line
storms are one of the most significant storm modes observed in Oklahoma, as shown
in previous studies such as Bluestein and Jain (1985). Due to its associated severe
weather and contribution to the hydrological cycle, squall lines have been subject of
many studies (BLUESTEIN; JAIN, 1985; ROTUNNO et al., 1988; WEISMAN et al., 1988;
TAO et al., 1993; LOEHRER; JOHNSON, 1995; PARKER; JOHNSON, 2000; TRAPP et al.,
2005).

Over the years, squall lines have been categorized considering different criteria. They
can be classified as broken line, back-building, broken areal, and embedded areal

4http://chuvaproject.cptec.inpe.br/portal/goamazon/
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according to their morphology (BLUESTEIN; JAIN, 1985), symmetric and asymmetric
considering the position of mesolows and mesohighs (LOEHRER; JOHNSON, 1995),
and leading stratiform, parallel stratiform, and trailing stratiform by taking into
account the position of the stratiform area (PARKER; JOHNSON, 2000). Additionally,
they can also be distinguished by the associated precipitation, as heavy convective
precipitation. One of the most well known references on squall lines is the study
of Rotunno et al. (1988), in which the authors show that the vertical low level wind
shear and the cold pool intensity are the main ingredients for long-lived and intense
squall lines. Although these studies have been conducted for squall lines over the
US, their concepts have been investigated and extended for other regions, such as
the southern Brazil (RIBEIRO; SELUCHI, 2019) and the Amazon basin (GRECO et al.,
1994; COHEN et al., 1995; ALCÂNTARA et al., 2011).

2.4.1 Amazon coastal squall lines

In the Amazon basin, coastal squall lines are among the main rain-producing sys-
tems, as defined by Greco et al. (1990). Using GOES infrared imagery, the authors
identified three major rain-producing systems: Coastal Occurring Systems (COS),
Basin Occurring Systems (BAS), and Locally Occurring Systems (LOS). In par-
ticular, COS can attain a spatial length of 3500 km and last 20 to 24 hours, or
more, reaching dimensions between the mesoscale and synoptic scale. These sys-
tems form along the northern coast of South America and propagate inland at an
average speed of 50–60 km h−1, reaching sometimes the central Amazon. The max-
imum rainfall amounts were found to occur between 16:00 UTC and 18:00 UTC,
with peaks of surface convergence coinciding with the onset of rainfall and maxi-
mum divergence afterwards. This study was conducted during the second phase of
the Amazon Boundary Layer Experiment (ABLE 2B) field campaign conducted in
the central Amazon basin during April and May of 1987 (GARSTANG et al., 1990).
The precipitation associated with the COS occurrence, represented 40% of the ex-
periment rainfall. Nevertheless, these systems had already been explored in previous
works, such as Kousky (1980), in which it was identified that these COS systems
result from the convection induced by the sea-breeze during the afternoon and that
propagate inland along the sea-breeze front, reaching as far as the Andes 48 hours
after their initiation. Later, using a linear model Sun and Orlanski (1981) found
that the propagation inland could be associated with the trapeze instability, which
is triggered by the sea-breeze circulation. Cavalcanti and Kousky (1982) identified
that these systems occur all year round following the meridional displacement of the
ITCZ.
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In order to understand the dynamics of these squall lines, Silva-Dias and Ferreira
(1992b) used a linear nonhydrostatic spectral model with the wave-conditional in-
stability of the second kind (CISK) theory to parameterize the heating induced by
the cumulus scale and vertical profiles of temperature and wind observed during the
ABLE 2B field campaign. With this model configuration the authors were able to
analyze the group velocity for the most unstable modes, which are related to the
squall lines propagation. The results indicated that, even though it was used a linear
model, it was possible to satisfactorily simulate cases with no squall line propaga-
tion as well as to produce reasonably realistic unstable modes (speeds comparable to
those observed in propagating squall lines). More importantly, this study showed the
importance of a deep low level jet in order to obtain results closer to the observed
propagating squall lines (i.e., a 700 mb jet of 13 m s−1, with a wind speed greater
or equal to 10 m s−1 at 600 mb).

The data collected during the ABLE 2B field campaign was also used by Garstang
et al. (1994) to study the structure, kinematic, and life cycle of these squall lines. In
this study the authors introduced the term ”Amazon coastal squall lines“ to refer
to the COS of Greco et al. (1990). Thereafter, this term has been widely used in the
literature. Besides data from the ABLE 2B campaign, the authors explored other
sources, such as GOES infrared imagery, radar, upper air rawinsonde, and surface
Portable Automated Mesonet. One of the main findings of this study is the life cycle
of Amazon coastal squall lines: coastal genesis, intensification, maturity, weakening,
reintensification, and dissipation. The coastal genesis refers to the initiation of the
first convective cells during the afternoon in the sea-breeze convergence zone along
the coast. During this stage, the cells continue to develop increasing in number and
size. Later, during the late afternoon and evening, larger clusters are developed and
organized in a quaselinear pattern parallel to the coast. During the night the system
moves inland and by early morning it has increased its length, but the strongest
convection has weakened because the absence of solar heating. Midlevel clouds have
spread horizontally and some clusters of the system have reached maturity. These
characteristics define the intensification stage. The maturation stage follows after-
wards, in which the system is the strongest and has reached its maximum length and
width. The authors stated that, at this stage it is possible to identify the squall line
in the synoptic scale as a discontinuous or arc of discrete clusters of cells, organized
on the mesoscale. The system starts to decay in the weakening phase. The cloud
tops become warmer, the width decreases, and the speed of propagation decreases
as well. However, after the weakening, the authors observed that in many cases,
the system can regenerate due to the diurnal heating and therefore the convective
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clusters intensify and grow. At some point, it starts to dissipate again until it dis-
appears, enclosing the last phase of dissipation. Additionally, three different cloud
components were identified: a prestorm region, leading edge convection, and a trail-
ing stratiform region. These results are in agreement with the model of Gamache
and Jr (1982), in which two circulation features are identified: a convective squall
line region and a stratiform anvil region. Another important result from this study
is the model of the flow structure for a mature Amazon coastal squall line. This
model describes the major updrafts and downdrafts that maintain the structure of
the system and indicates the convergence in the midlevels where can be found the
trailing stratiform region (the anvil region).

In a follow up study, Greco et al. (1994) investigated the convective and stratiform
contribution to the total budgets of heat and moisture transport. The authors found
a peak heating in the midlevels at around 550–500 mb and a peak drying around
450–650 mb in a mature squall line case. This was attributed to strong detrainment
processes in the convective region of the system. Consistently, a peak in the vertical
eddy flux of total heat in the trailing stratiform region between 550 to 700 mb
was found. In addition, it was found a substantial amount of heat being transported
within the leading edge convection and the trailing stratiform, but that only 2 to 3 %
reaches the upper levels between 300 to 100 mb. The authors suggested that this
occurs because the use of the low level energy to maintain the deep convection in
the leading edge and to support the stratiform development.

Through an observational case study, Cohen et al. (1995) confirmed the role of the
magnitude and thickness of the low level jet in days with squall line occurrence,
as had been previously suggested by Silva-Dias and Ferreira (1992b). During the
ABLE 2B period, it was observed an easterly low level jet at around 800 hPa that
was stronger and parallel to the coast during the days with squall lines than the days
without them. The layer of maximum winds was located between 900 and 650 hPa
in cases of squall lines. Easterly waves over the Atlantic Ocean were observed during
the squall line case study which could have contributed to the intensification of the
low level jet, however, this was not conclusive since the presence of a localized heat
source in the western Amazon was also favoring the convergence toward that region.
The authors pointed out the interaction among system of different scales that were
present during that case study, this is, the presence of easterly waves over the At-
lantic Ocean and tropical heat sources in the western Amazon in the larger scale,
the sea-breeze formation in the mesoscale, and the interaction within the convective
leading edge and the stratiform region in the cloud circulation scale. Furthermore,
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some climatological aspects of these squall lines were discussed, following the study
of Cohen et al. (1989) in which squall lines were classified according to the dis-
placement inland. Cohen et al. (1995) pointed out that these systems have a higher
frequency between April and August with those that propagate more than 400 km
inland occurring more frequently during July.

The role of low level jets in Amazon squall lines was investigated by Alcântara et
al. (2011). GOES imagery were used to identify squall lines along with ECMWF
reanalyses to identify the low level jet occurrence and characteristics. Low level jets
were identified as areas of maximum velocity of the zonal wind between the 900 and
600 hPa levels. The presence of a low level jet was found in each type of squall line
analyzed and as in Cohen et al. (1995), a higher the number of low level jets was
found as the number of squall lines were also identified. In addition, it was found
that propagating squall lines occur under the presence of more intense and deeper
low level jets. In this study a climatology of Amazon squall lines is obtained in which
cases with low level jet are distinguished. Overall, the results corroborate that July is
the month with the most occurrence. Thereafter, several studies have been conducted
for the dry season and specifically for July, such as the studies of Oliveira and Oyama
(2015) and Ghate and Kollias (2016). Oliveira and Oyama (2015) investigated the
atmospheric conditions prior to a squall line occurrence. The month of July was
selected for the analysis and an objective method was developed using Forecasting
and Tracking the Evolution of Cloud Clusters (ForTraCC) (VILA et al., 2008). Once
the squall line cases were filtered, a subjective analysis was conducted in order to
find the atmospheric conditions occurring in each case. A moister layer between
850 and 350 hPa, and a northeasterly flow at 350 hPa were the main conditions
found during the midmorning, given that the squall lines form during the afternoon.
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3 RAPID REFRESH FORECAST SYSTEM COMPONENTS

Since RRFS is the convection-allowing forecast system explored in this research, a
brief description of each of the components of the current prototype is provided in
this chapter. As mentioned previously, the prototype RRFS includes the FV3LAM
model with pre-processing utilities, the CCPP, a unified post-processing system, and
data assimilation capability using GSI analysis system. Each of these components are
briefly described, especially the main capabilities of GSI are presented. The workflow
used to streamline all components of the system and the cycling configuration is
also presented. The MET tools are covered here since MET will be the verification
package for UFS. The use of MET was relevant in this research as many of its tools
were explored.

3.1 Atmospheric model

The FV3 dynamical core was implemented in GFS replacing the spectral dynamical
core for an operational upgrade in June 2019. The FV3 is a fully compressible, nonhy-
drostatic core featuring a Lagrangian vertical coordinate and cubed sphere grid (LIN;

ROOD, 1996; LIN; ROOD, 1997; LIN, 1997; LIN, 2004; PUTMAN; LIN, 2007; HARRIS et

al., 2020a). The Lagrangian vertical coordinate allows for a unique, straightforward
representation of vertical motions directly through the relative deformation of the
vertical layers. This is in contrast to the Eulerian framework presently featured in op-
erational nonhydrostatic dynamical cores in use at the convective-scale, such as the
Advanced Research Weather Research and Forecasting model (WRF-ARW) (SKA-

MAROCK et al., 2008)) and Non-hydrostatic Multiscale Model on the B-grid (JANJIć

et al., 2001).

The FV3, originally a global model, features three types of local refinement capabil-
ities: stretching of the global grid using the Schmidt refinement technique (HARRIS

et al., 2016), one- and two-way nesting within the global grid (HARRIS; LIN, 2013),
and recently a LAM capability (BLACK et al., 2021). The LAM capability underpins
the future RRFS and thus is the focus in this study. It requires fewer computing
resources to achieve similar forecast performance as compared to a two-way nesting
method at lead times less than 24 hours (BLACK et al., 2021). For the FV3LAM, a
parent domain is not needed to provide the initial and lateral boundary conditions
(ICs and LBCs). Instead, an external model can be used. A linear interpolation is
performed in space and time between the external model fields and the grid points
of the regional domain. However, the grid needs to be carefully configured allowing
for at least four extra rows and columns beyond the area of interest. These addi-
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tional grid points compose what is called the halo region and are used to ensure the
correct integration of the model. ICs must also be provided at least once to initiate
the forecast sequence for subsequent data assimilation cycling. A more complete
description of the FV3LAM and additional justification for limited area modeling
in the context of operational, convection-allowing numerical weather prediction can
be found in Black et al. (2021).

The pre-processing is done by the utilities (UFS_UTILS1) developed by NCEP’s
Environmental Modeling Center (EMC) and other collaborators. UFS_UTILS can
be used to generate the model grid, orography, and surface climatology (e.g. max-
imum snow albedo, soil, vegetation type, vegetation greenness, etc.). UFS_UTILS
can also read from external models and prepare ICs and LBCs for a FV3LAM model
run.

3.2 Physics

The CCPP2 is a collaborative effort between scientists at NOAA and the National
Center for Atmospheric Research (NCAR). The goal is to assemble parameteriza-
tions developed by different groups into a common framework to be used inter-
changeably for numerical prediction at any scale (HEINZELLER et al., 2019). Hence,
the CCPP contains a set of physical schemes and a common framework that fa-
cilitates the interaction between the physics and a numerical model (BERNARDET

et al., 2020). The current common framework was developed by the Developmen-
tal Testbed Center (DTC). A number of physics suites are available allowing great
flexibility for a wide range of users. A single-column model (CCPP SCM) option
has also been developed, which is available in the latest CCPP release (version 5.0,
CCPPv53). The CCPPv5 supports the RRFSv1a and GFS version 15 (GFS_v15p2,
GFSv15 for simplicity) physics suites for the SRW.

The RRFSv1a physics suite in CCPPv5 is under active development for its use in op-
erational RRFS. It is based on physical schemes implemented in the operational RAP
and HRRR systems. This suite is composed by a subgrid-scale cloud pre-radiation
interstitial following (XU; RANDALL, 1996), the Mellor-Yamada-Nakanishi-Niino–
eddy diffusivity-mass flux (MYNN-EDMF) (NAKANISHI; NIINO, 2009; OLSON et al.,
2019) boundary layer and shallow cloud scheme, the unified gravity wave physics
scheme version 0 (ALPERT et al., 2019), the Thompson Aerosol-Aware microphysics

1https://github.com/NOAA-EMC/UFS_UTILS
2https://dtcenter.org/community-code/common-community-physics-package-ccpp
3https://dtcenter.ucar.edu/GMTB/v5.0.0/sci_doc/index.html
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scheme (THOMPSON; EIDHAMMER, 2014), the Rapid Radiative Transfer Model for
Global Circulation Models (RRTMG) for longwave and shortwave radiation pro-
cesses (MLAWER et al., 1997; IACONO et al., 2008), the surface layer scheme of Long
(1986), the near-surface sea temperature (NSST) scheme of Li et al. (2015), the
NoahMP (Noah Multi-Physics) land surface model (NIU et al., 2011), and the Navy
Research Laboratory (NRL) ozone photochemistry (2015) and stratospheric wa-
ter vapor schemes (MCCORMACK et al., 2008). Table 3.1 summarizes the RRFSv1a
physics as well as GFSv15, which are tested in this study. The default configuration
for each CCPP suite is used.

Table 3.1 - Common Community Physics Package (CCPP) suites tested.

Physical process Physics suites
RRFSv1 GFSv15

Deep Cu off GFS sa-SAS for deepcnv
Shallow Cu MYNN-EDMF GFS sa-MF for shalcnv
Microphysics Thompson GFDL
PBL/TURB MYNN-EDMF Hybrid EDMF

Radiation RRTMG and RRTMGSGSCLOUD
Surface layer GFS GFS

Land Noah-MP Noah
Gravity wave drag uGWP uGWP

Ocean NSST NSST
Ozone NRL 2015 NRL 2015

Water vapor NRL 2015 NRL 2015

SOURCE: Author’s production.

3.3 Data assimilation system

GSI is a variational data assimilation system featuring 3DVar (WU et al., 2002;
KLEIST et al., 2009), hybrid 3DEnVar (WANG, 2010; WANG et al., 2013; WU et al.,
2017), and hybrid 4DEnVar methods (KLEIST; IDE, 2015a). It also includes an op-
tional nonvariational, complex cloud analysis capability that executes after the varia-
tional analysis as a method to specify cloud and hydrometeor variables, as mentioned
previously. GSI features the following standard control (analysis) variables: stream-
function, velocity potential, temperature, surface pressure, and normalized relative
humidity following Holm et al. (2002). However the choice of control variable is flex-
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ible and one may extend or modify the standard set to include other fields, such as
hydrometeors or radar reflectivity (WANG; WANG, 2017). In 3DVar and the associ-
ated hybrid variants, the static background error covariance is approximated through
the application of a recursive filter which models the autocorrelations (PURSER et al.,
2003) while cross-covariances are handled in the standard context through statisti-
cal balance relationships obtained via regression (PARRISH; DERBER, 1992; WU et al.,
2002). The analysis is obtained by minimizing the incremental form cost function
through the preconditioned conjugate gradient method (BATHMANN, 2021).

The extension of GSI from traditional 3DVar to hybrid 3DEnVar and to hybrid
4DEnVar is accomplished through the extended control variable approach (LORENC,
2003; WANG, 2010; KLEIST; IDE, 2015a; KLEIST; IDE, 2015b). In this configuration,
one is able to incorporate flow-dependent covariance information obtained from a
complementary suite of ensemble forecasts. Typically this ensemble is obtained from
a companion ensemble-based data assimilation system, such as the EnKF. However
one may use any suitably available ensemble. In fact, the regional operational data
assimilation systems at NCEP have used the ensemble members from the GFS Data
Assimilation System directly in the hybrid 3DEnVar framework with considerable
benefit to the resulting forecast (WU et al., 2017). Although the use of lower-resolution
global ensemble members may not be ideal for the representation of the error char-
acteristics at finer scales, Wu et al. (2017) showed that considerable forecast im-
provement can be obtained even if the ensemble provided is from a different system,
which is consistent with findings in other studies such as (HU et al., 2017). This
study focuses on the 3DVar and hybrid 3DEnVar frameworks and uses the global
ensembles as described in (WU et al., 2017). The localization function in GSI is im-
plemented as a single application of an isotropic recursive filter (PURSER et al., 2003)
and the radius is specified as a Gaussian half-width, either in scale height (ln p) or in
terms of number of vertical layers. Future work on RRFS involves the extension to
a convective-scale ensemble in the EnKF, which will improve the representativeness
associated with the forecast error covariance at finer scales. However, such a change
is not a panacea. Aside from increased computational expense, the problem of rank
deficiency of the ensemble-derived error covariance becomes more apparent with the
expanded degrees of freedom associated with the finer spatial resolution. While lo-
calization helps somewhat, a computationally affordable ensemble is one that is often
insufficiently sized. Therefore future work also includes efforts to introduce multi-
scale data assimilation capabilities, such as scale dependent localization (HUANG et

al., 2021).
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GSI is capable of assimilating a large suite of observations. This includes, but is not
limited to, satellite radiances, derived GNSSRO observations, radar radial velocity
and reflectivity, GLM lightning flash rates, web-camera derived estimates of hor-
izontal visibility (CARLEY et al., 2021), and conventional observations. After 2014
it became a community system, maintained and supported by the EMC and the
DTC (SHAO et al., 2016). Recently, it has been added as the analysis component to
improve initial conditions for the RRFS (HU et al., 2021).

Presently, GSI is the data assimilation system used at NCEP for all operational
atmospheric data assimilation applications (KLEIST; IDE, 2015a; HU et al., 2017).
It was initially developed by the EMC (WU et al., 2002) and implemented as the
analysis component in the operational GFS in May 2007 (KLEIST et al., 2009) and
in the operational RAP in May 2012 (BENJAMIN et al., 2016).

3.4 Post-processing

UPP is used at NCEP in all operational models. A community version is currently
supported and maintained by the DTC. UPP takes native output from the model
grid points/cells and creates post-processed outputs including numerous diagnos-
tic quantities in the same model output grid and model-native or isobaric vertical
coordinate (UPP, 2021). Post-processed outputs include diagnostics fields that are
not part of the model computation that have been developed for different appli-
cations. These include, for example, precipitation type, composite reflectivity, sim-
ulated satellite brightness temperatures, updraft helicity, storm motion, ceiling or
cloud-base height, vertically integrated liquid water, and lightning, among several
others. More details on the diagnostic fields developed for hourly updated NOAA
weather models such as RAP and HRRR, and how they are calculated, can be
found in Benjamin et al. (2020). These products are critical for users in their fore-
cast processes. UPP was selected as the unified post-processing system for UFS and
modifications have been made to work with FV3-based models. Currently, it can be
used in the UFS medium range weather and SRW applications.

3.5 Workflow

The workflow ties all RRFS components together and handles all system interde-
pencies. In essence, it manages the cycling configuration taking into account each
task dependency and specification. It oversees that tasks to generate ICs and LBCs
only start if all needed information was obtained from the previous step. It manages
how the data assimilation cycle advances, i.e. by running the forecast to generate
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the first guess and running the analysis once the first guess is completed. It handles
the model execution by supervising availability of ICs and LBCs for the specific
hour, and controls that model outputs only be postprocessed if they exist in the
model run directory. It also manages crucial information on computational resource
requirements to run each task.

A schematic diagram of major tasks and the general pipeline of the RRFS sys-
tem is provided in Figure 3.1. The task “Make Fixed Files” generates the model
grid, orography, and climatological information needed for the model execution.
The tasks “Make ICs” and “Make BCs” read data from external models (such as
GFS and HRRR), perform the necessary calculation, interpolation, conversion, and
then generate appropriate ICs and LBCs for a FV3LAM model run. The task “Run
analysis” (the gray shaded area in Figure 3.1) executes the data assimilation system
for a FV3LAM run. It ingests various types of observations and combines them with
a first guess (or background) to generate a best possible atmospheric analysis for the
initialization of the FV3LAM model integration. The first guess can be either an IC
from an external model (after the task “Make ICs”) or a short term forecast (1 – 6 h
forecast, configurable by users) from a previous FV3LAM model run. The first sce-
nario is referred to as a “cold start” (the blue box in Figure 3.1) while the latter is
called a “warm start” (the red box in Figure 3.1). In practice, for a FV3LAM “warm
start,” the first guess comes from “restart” forecast files generated by the FV3LAM
model. The task “Run model” is to run the FV3LAM model with ICs and LBCs pre-
pared from the previous steps. It is worth mentioning that besides the “cold start”
and “warm start,” a FV3LAM model run can also start from an IC made directly
from an external model without the data assimilation step. This is also referred as
a “cold start.” The task “Run post” is to post-process the FV3LAM forecasts and
generate all target model fields for downstream plotting and/or examination.
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Figure 3.1 - Schematic diagram of the RRFS tasks and workflow.
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SOURCE: Author’s production.

3.6 Verification tools for RRFS forecasts

The community MET is the unified verification package that will be used for UFS
applications (BROWN et al., 2021). MET was developed at the DTC and has been
widely used by the NWP community. It includes several tools from re-formatting,
re-gridding, masking the input observations to the computation of traditional met-
rics, wavelet, neighborhood, and object-based verification as well as analysis tools to
process the outputs. Specifically, the PB2NC, Point-Stat, Grid-Stat, Stat-Analysis,
Method for Object-Based Diagnostic Evaluation (MODE), and MODE-analysis
tools were used in this study.

The PB2NC tool converts observations from prepBUFR (prepared Binary Universal
Form for data Representation) files to NetCDF, the format used by MET tools.
Information on the observation quality provided in the prepBURF files (WMO, 2002)
is taken into account by the PB2NC tool. A maximum quality mark setting in
PB2NC allows only observations with this quality flag or below to be used in the
verification. The Point-Stat tool computes traditional metrics, such as the mean,
RMSE, bias, and standard deviation of the difference between the point observations
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and forecasts. The calculation of statistics is based on the matched pairs. Various
methods to interpolate model values to the observation locations are available. For
example, nearest neighbors, bilinear interpolation, minimum and maximum value,
distance-weighted mean, among others. The Grid-Stat tool is similar to Point-Stat,
but using gridded reference data. It can be an analysis, gridded precipitation and
reflectivity from different sources, etc. Similar interpolation methods can be applied.
Thresholds can be applied to compute the statistics. MODE in MET follows the work
of Davis et al. (2009). This method mimics what a human specialist would do in order
to find a region of rain in the forecast and decide if it has analogous characteristics
in the observation. Different metrics can be computed, for example the median of
maximum interest (MMI (F+O)). This metric results from the median between the
maximum interest from each observed object with all predicted objects (MIF), and
the maximum interest from each predicted object with all observed objects (MIO). It
takes into account all attributes used in the total interest calculation, summarizing
them into a single value. The forecast with the best quality or in greater agreement
with the observations will give MMI (F+O) values close to one. Otherwise, the
value will close to zero. MET version 9.0 (JENSEN et al., 2020) is used for forecast
verification. At this moment, it is part of the RRFS workflow.
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4 RRFS OVER CENTRAL NORTH AMERICA

This chapter gives more information on the motivation of this work using the RRFS
with data assimilation. An overview of the case study selected over central US is
presented along with the data, methods, the results obtained, and subsequent dis-
cussions.

4.1 Introduction

The current suite of operational convection-allowing models at the NCEP consists
of multiple dynamical cores and physics schemes, none of which have shared much in
the components with their global counterpart (i.e. the GFS). At present, convection-
allowing forecasts at the NCEP are produced by the North American Mesoscale Fore-
cast System (NAM) 3 km nests, the HRRR model, and the High Resolution Window
(HIRESW) systems. These systems are then combined into a convection-allowing en-
semble known as the High Resolution Ensemble Forecast system (HREF) (ROBERTS

et al., 2020). The global modeling suite is based on the FV3 dynamical core with
a physics suite developed and tuned for global applications, while the regional op-
erational models are based on unique physics suites and dynamical cores, such as
the Advanced Research WRF model (WRF-ARW) (SKAMAROCK et al., 2008) and
Nonhydrostatic Multiscale Model on the B-grid (JANJIć et al., 2001).

Considerable human and computing resources and efforts are required to maintain
and improve such a variety of models in order to continuously provide successful nu-
merical guidance for different sectors of society (LINK et al., 2017). Therefore, NOAA
is currently transitioning toward the UFS (EMC, 2018). This transition forms part of
the Research to Operations Initiative aiming to build the Next Generation Global
Prediction System (NGGPS) for the US. A unified forecasting system brings to-
gether advanced developments in weather and climate models, maximizing collective
efforts and resources, while also connecting expertise across the scientific commu-
nity (NATIONAL RESEARCH COUNCIL, 2012). Within the UFS framework, the GFS
was coupled with the Wavewatch III wave model in the operational upgrade of March
2021, improving the low-level cold bias seen in the previous GFS version during the
cool season (NWS, 2021). The UFS encompasses medium and short range weather,
hurricane, subseasonal to seasonal, air quality, coastal, marine and cryosphere as
well as space weather applications (UFS, 2019). The UFS and its components are
currently under development, but early versions are available allowing contributions
from the research community to become available for operational activities.
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As previously mentioned, RRFS is the future operational convection-allowing ensem-
ble prediction system of the US, and is built upon the SRW. Harrold et al. (2021)
investigated how the SRW represents the convective gray zone for varied model grid
spacing in two physics suites: GFS version 16 and the RRFS (RRFSv1a). It was
found that for both physics suites a 3 km resolution yields a more realistic represen-
tation of convection but with a cool 2 m temperature bias and an underforecast of
lower reflectivity values. Kalina et al. (2021) also examined these two SRW physics
suites and demonstrated that they failed to depict trailing stratiform precipitation
in simulations of a squall line and Hurricane Barry (July 2019). Preliminary results
indicate that this issue could be related to a smaller amount of ice crystals in the
model runs than in the radar-derived data. Moreover, the same experimental con-
figuration was used by Newman et al. (2021) to investigate the land-atmosphere
interactions using a heatwave case and a winter cold air outbreak case. A cooler
PBL with increased cloudiness and less surface downward shortwave were found in
the heatwave case simulations, while an increase is seen in the 10 m wind speed
in the cold air outbreak case. All recent studies using SWR v1.0.0 are cold started
using an external model, since the application does not have integrated a data as-
similation system. Tong et al. (2020) filled that gap using an earlier version of the
FV3LAM and the GSI to generate the analyses. However, this is the only work found
in the literature using data assimilation with the FV3LAM. Although results were
for a single case study, positive impacts of assimilating radar data were found in all
analyses and forecasts. Using hybrid 3DEnVar with 75 % of the ensemble-based and
25 % of the static background error covariance showed storm structures in the 2 h
forecast comparable to when using EnKF, although EnKF outperformed 3DEnVar
in the first hour forecast. Both methods, hybrid En3DVar and EnKF, showed higher
equitable threat scores (ETS) when compared to 3DVar and pure 3DEnVar during
the 4 h forecast analyzed.

As the GSI analysis system has been recently added as the analysis component of
prototype RRFS, it provides a suitable research framework to assess the current
ability of this forecast system to represent convection. This research seeks to de-
scribe the initial data assimilation infrastructure and performance of a prototype
RRFS system. The focus is on extensive testing within the context of a case study
to establish an understanding of baseline sensitivities, and an evaluation of various
configurations and algorithms available in GSI is performed in order to investigate
the impact of using data assimilation on forecasts of convective storms. The 3DVar
and hybrid 3DEnVar data assimilation algorithms, supersaturation removal, PBL
pseudo-observations, and various weights of the ensemble background error covari-
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ance in the hybrid EnVar analyses are assessed. A cycling strategy is configured and
its effect on the cycled analyses is evaluated. A case study that focuses on a severe
convective weather event is used to demonstrate sensitivities. Experiment results
were verified using MET. Results obtained provide developers insight into the ca-
pabilities of current prototype RRFS developments in predicting convection as well
as suggestions for the RRFS data assimilation system framework.

4.2 Methods

In order to achieve skillful forecasts comparable to the current operational
convection-allowing suite, each component of the RRFS needs to be exhaustively
tested to determine the best configuration. This study focuses on the initial config-
uration of the data assimilation framework. In this section, the case study, general
setup of the experiments, description of the experiments conducted, and verification
methodology are presented.

4.2.1 Case overview

A line of convective storms developed over northeastern Oklahoma ahead of a south-
ward moving cold front during the afternoon of 4 May 2020. At 18:00 UTC on 4
May 2020, a surface low pressure was observed across western Oklahoma with a
dry line extended over western Texas, favoring an environment with low-level con-
vergence, high temperatures, and humidity over these areas. Between 19:00 UTC
and 20:00 UTC, high values of mixed layer convective available potential energy
(MLCAPE) (3694 J kg−1) and effective bulk shear (48 kt for the surface to 3 km
layers and 36 kt for the surface to 6 km shear) were observed over northeastern
Oklahoma. This environment provided favorable conditions for severe convective
storms with potential for strong updrafts and development of supercells (WEISMAN;

KLEMP, 1982; MCCAUL; WEISMAN, 2001). At 20:00 UTC, the convective cells were
first seen in the radar reflectivity observations over that region (Figure 4.1a), and at
around 22:00 UTC (Figure 4.1c) a line of storms extended across central Oklahoma
along the pre-frontal wind shift. The system evolved while slowly moving southeast-
ward. A supercell developed over far southwestern Missouri at 00:00 UTC on 5 May
(Figure 4.1e), producing hail of 1.25 inches and 1.5 inches in diameter according
to hail reports from the Storm Prediction Center (SPC). Clusters of severe storms
developed across south-central Oklahoma along the intersection of the cold front
with the dry line. The convection associated with the squall line evolution resulted
in several instances of large hail and high wind, mostly over northeastern and south-
central Oklahoma, southeastern Kansas, southwestern Missouri, and northwestern
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Arkansas.

Figure 4.1 - Hourly Multi-Radar Multi-Sensor (MRMS) composite reflectivity and hourly
hail (black stars), high wind (black squares), and tornado (red circles) reports
from the SPC, from 20:00 UTC on 4 May 2020 through 01:00 UTC on 5 May
2020.

SOURCE: Author’s production.

4.2.2 Setup of experiments

For the simulation of this case, a domain is configured consisting of 460 × 460 grid
cells centered on Fort Smith, Arkansas with a 3 km horizontal grid-spacing and
64 vertical layers. The Extended Schmidt Gnomonic method developed by Purser
et al. (2020) and implemented in the SRW was used for grid generation. Figure 4.2
shows the domain coverage and orography created by the pre-processing utilities,
where the black star indicates the central point.
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Figure 4.2 - Domain with the orography created for numerical experiments of case study
over central North America. The black star indicates the central latitude and
longitude on Forth Smith, Arkansas.

SOURCE: Author’s production.

4.2.2.1 Data

All simulations start at 00:00 UTC on 4 May 2020 and run hourly cycles until
06:00 UTC on 5 May 2020. Hourly 3 km HRRR analyses and forecasts are used to
generate the ICs and LBCs for the FV3LAM. The observation data assimilated in
each experiment are the same as those used in the operational RAP system. Hourly
RAP observations are generated at NCEP for the hourly updated data assimilation
component in RAP and typically include all available data from 30 minutes before
to 30 minutes after the analysis hour (HU et al., 2017). Historic data were obtained
from NOAA’s High Performance Storage System (HPSS) archives. RAP observa-
tions include upper air observations from rawindsondes, dropsondes, pilot balloons,
aircraft, and wind profilers; surface data from synoptic stations, METAR, and the
Mesoscale Network (MESONET); radar radial velocity and the vertical azimuth dis-
play derived from radar radial velocity; Atmospheric Motion Vectors (AMV) wind
derived from satellite observations; and the GPS-IPW. Table 4.1 provides detailed
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information on the observation types as well as their sources, where ps stands for
station (surface) pressure; t for virtual temperature and/or sensible (dry bulb) tem-
perature; q for specific humidity; and uv for u- and v-components of wind. The
time window used is 1 hour, allowing for observations within 30 minutes before to
30 minutes after the central analysis time to be assimilated.

Table 4.1 - Sources of assimilated observations.

Observation Description Observation variable
Type ps t q pw uv

ADPUPA Rawindsonde
√ √ √ √

RASSDA RASS virtual temperature
√

AIRCFT AIREP and PIREP aircraft
√ √

AIRCFT AMDAR aircraft
√ √

ADPUPA Dropsonde
√ √

AIRCAR MDCRS ACARS aircraft
√ √ √

AIRCFT TAMDAR aircraft
√ √ √

AIRCFT Canadian AMDAR aircraft
√ √ √

GPSIPW GPS Integrated Precipitable Water
√

SFCSHP Ship, Buoy, C-MAN, and Tide Gauge reports
√ √ √ √

ADPSFC SYNOPTIC and METAR
√ √ √ √

SFCSHP Splash-level Dropsonde over ocean
√ √ √

ADPSFC METAR
√ √ √ √

MESONET Surface MESONET
√ √ √

SATWND Cloud drifts, cloud top, and deep layer
√

from different satellite imagery
ADPUPA PIBAL

√

PROFLR Wind Profiler
√

VADWND Vertical Azimuth Display from WSR88D radars
√

PROFLR Multi-Agency Profiler and SODAR
√

PROFLR Wind Profiler from PIBAL
√

SFCSHP ATLAS Buoy
√

WDSATR Scatterometer winds over ocean
√

SOURCE: Author’s production.

In addition, BUFR observation files from the Global Data Assimilation System
(GDAS) are used to assimilate bending angles derived from GNSSRO observations.
GDAS is the operational global data assimilation system used to create the initial
conditions for GFS, and its observation files are available daily at synoptic hours.
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GDAS observation files include all valid data from 3 hours before to 3 hours after
the analysis time (KLEIST et al., 2009). In order to use GDAS observation data in the
hourly cycles configured in this study (see Section 4.2.3, the same observation file is
reused for each of the 3 hours before and 3 hours after its analysis time, and two files
are used at overlapping times (Figure 4.3). For example, the file for synoptic hour
12:00 UTC was used to run the cycles 09:00 UTC through 15:00 UTC. However,
since observations before 09:00 UTC are also included in the 06:00 UTC GDAS
observation files, both 06:00 UTC and 12:00 UTC GDAS observation files are used
in GSI at 09:00 UTC, as the purple boxes indicate in Figure 4.3.

Figure 4.3 - Strategy used to assimilate GNSSRO bending angles from GDAS observations
each hour.
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SOURCE: Author’s production.

Available LEO satellites during 4 to 5 May 2020 include the second mission of the
COSMIC-2, the MetOp A, B, and C satellites, the Korea Multi-Purpose Satellite-5
(KOMPSat5), the Spanish mission PAZ, and the German Tandemx and TerraSARX
satellites. COSMIC-2 and MetOp C were not among the satellites that were currently
assimilated in the GSI version used in this study. Because GNSSRO observations
are not well distributed in the limited domain, these satellites were therefore added
to the code in order to increase the number of available bending angle observations
during the execution period. Quality control procedures were maintained similar to
those applied on COSMIC-1 and MetOp A and B observations, respectively. Bending
angles from all LEO satellites were assimilated up to 50 km.

Experiments are conducted testing the GSI 3DVar and 3DEnVar systems. For the
hybrid 3DEnVar analysis, the Global Data Assimilation System (GDAS) 80 member
ensemble forecasts (9 h forecasts) are used to provide the ensemble background
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error covariance (WU et al., 2017). These forecasts have a horizontal resolution of
approximately 25 km and are available four times per day, therefore the same 9 h
GDAS ensemble forecasts are used for the 2 hours before and 3 hours after its valid
hour as indicated in Figure 4.4. For example, the 9 h GDAS ensemble forecasts
initialized at 00:00 UTC (valid at 09:00 UTC) are used for the cycles from 07:00 UTC
to 12:00 UTC. Similarly, the 9 h forecast GDAS ensemble initialized at 06:00 UTC
(valid at 15:00 UTC) is used for the cycles from 13:00 UTC to 18:00 UTC. This
follows the same strategy in the RAP system (HU et al., 2017). As shown in Hu et
al. (2017), using off-time global and fixed ensemble based BEC still produces better
results than just using the static BEC. In all experiments with data assimilation, two
outer loops with 50 iterations each loop are performed to minimize the cost function
and find each analysis. In each outer loop a re-linearization is performed (KLEIST

et al., 2009). The increment is zero for the first outer loop while for the second it is
updated with the solution found after the 50 iterations of the first outer loop. In
this study, 50 iterations were enough to achieve convergence. The grid ratio of the
analysis and the ensemble to the background was 1, yielding a spatial resolution of
the analysis of 3 km.

Figure 4.4 - Strategy to reuse 9 h forecast GDAS ensembles in GSI every hour.
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SOURCE: Author’s production.

4.2.3 Cycling configuration

The current cycling configuration of the prototype RRFS is similar to the one used
in RAP, i.e. cold starts are performed every 12 hours and warm starts are performed
at all other cycles using the 1 h forecast from the previous cycle as background for
the analysis. RAP performs hourly-updated continuous cycles with cold starts at
09:00 UTC and 21:00 UTC using the 1 h forecast from cycles initialized at 08:00 UTC
and 20:00 UTC in 6 h parallel hourly spin-up cycles. The parallel spin-up cycles are
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cold started from GFS atmosphere analyses and RAP surface fields at 03:00 UTC
and 15:00 UTC. Cold starts in RAP introduce the atmospheric conditions while
RAP land surface fields are fully cycled in the continuous cycle (BENJAMIN et al.,
2016; HU et al., 2017). Periodic updates of the large scale atmospheric conditions are
needed in regional modeling systems in order to account for corrections made by
global observations over land and ocean and to avoid model drift from those con-
ditions (BENJAMIN et al., 2016). At the time of execution of this research not many
RAP functionalities were available for use in the RRFS data assimilation framework,
therefore a more simplified configuration with partial cycling is used. Development
currently underway includes establishing a partial cycling capability for the inaugu-
ral operational implementation, RRFS version 1, with subsequent plans to consider a
fully cycled version in later versions leveraging recent advances discussed in Schwartz
et al. (2022). Figure 4.5 illustrates the RRFS cycling configuration from cycles ini-
tialized between 00:00 UTC through 06:00 UTC. In each cycle, an 18 h free forecast
is launched following the analysis, with hourly outputs. A cold start is performed at
00:00 UTC and warm starts between 01:00 UTC to 06:00 UTC using the FV3LAM
1 h forecast from the previous cycle as background for the analysis.

Figure 4.5 - Diagram of the hourly cycling configuration for RRFS.
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4.2.4 Sensitivity experiments

GSI provides many functionalities and parameters, enabling users to make the best
data assimilation configurations for different applications. A series of experiments
were designed to examine the impact of different configurations on the analyses and
forecasts. Some RAP configurations were tested in the experiments following Hu
et al. (2017). An experiment with no data assimilation is provided, acting as the
baseline for all other experiments. This baseline experiment is called NoDA and
uses the same cycling configuration as experiments with data assimilation in terms
of the cold and warm start ICs. The 3 km ICs from the HRRR are consistent with
the 3 km grid-spacing of the RRFS, such that fine scale features found in the HRRR
are present in the RRFS ICs. Table 4.2 lists all experiments in this research.

However, before performing the experiments with data assimilation, two experi-
ments were conducted testing the RRFSv1a and GFSv15 CCPP suites available in
the SWR. This was in order to choose the appropriate physics suite for this study
over central US. Results testing other suites in CCPPv4 are available in Banos et al.
(2021a). These experiments used the same NoDA baseline configuration. Figure 4.6
presents the 2, 4, and 6 h composite reflectivity forecasts from the 19:00 UTC cy-
cle on 4 May 2020, with 5 dBZ (solid lines) and 35 dBZ (dash lines) reflectivity
observation contours overlaid for NoDA experiments ccpp_RRFS and ccpp_GFS
using RRFSv1a and GFSv15 suites, respectively. The ccpp_RRFS experiment shows
stronger convective cells but a better coverage of the convection occurring in different
parts of the domain at all forecast lengths. Meanwhile, the ccpp_GFS shows weaker
and smoother cells with overall less convection coverage. At 2 h forecast, the convec-
tion initiation over northeastern Oklahoma is misplaced when using RRFSv1 and
at 4 and 6 h forecast there are noticeable misplacement errors in both experiments.
Nevertheless, the experiment with RRFSv1a presents a slightly better representa-
tion of the convection than the experiment with the GFSv15 suite. Therefore, the
RRFSv1a suite is used in the baseline configuration of all experiments presented in
this study.
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Figure 4.6 - 2, 4, and 6 h composite reflectivity forecasts from experiments ccpp_RRFS
(a, b, and c) and ccpp_GFS (d, e, and f), initialized at 19:00 UTC 4 May
2020. Solid and dashed black lines are the 5 and 35 dBZ MRMS observation
contours, respectively.

SOURCE: Author’s production.

Additionally, comparison experiments were executed to investigate the impact of
different analysis resolution for this squall line case. GSI has the flexibility to per-
form data analysis at the same or at different resolutions from the first guess. In
this research, the FV3LAM model runs at a 3 km resolution. Thus, the data can
be analyzed either at 3 km or, for example, 9 km to save computation time. It was
found that in this case study, a 3 km analysis resolution allows for more convec-
tive scale details in the analysis increments and a slightly better representation of
the composite reflectivity forecasts (see Figure 4.7). Therefore, all the subsequent
experiments are performed at the 3 km resolution.
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Figure 4.7 - As in Figure 4.6, but for experiments using 3DVar data assimilation with
analysis grid ratio of 3 (GR3 (9 km)) (a, b, and c) and 1 (GR1 (3 km)) (d, e,
and f).

SOURCE: Author’s production.

In order to examine how different weights of the ensemble background error co-
variance affect the results and what would be the best choice for the RRFS analy-
sis, experiments with different ensemble weights were conducted. Only results from
three experiments are presented here, i.e. 3DVar, 100EnBEC, 75EnBEC. The exper-
iment with 3DVar does not include the ensemble background error covariance part,
100EnBEC uses pure ensemble background error covariance and does not include
the static part, and 75EnBEC uses a combination of 75 % ensemble and 25 % static
background error covariance. The static background error covariance for the 3DVar
is the same as currently used in RAP and HRRR (BENJAMIN et al., 2016)
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Previously, it was shown that ensemble localization length scales play an important
role in ensemble-based data assimilation algorithms, such as hybrid EnVar analyses,
as an effective way to mitigate sampling errors due to the relatively small ensemble
size available for hybrid EnVar and ensemble analyses (HOUTEKAMER; MITCHELL,
2001; HAMILL et al., 2001), especially at convective scales (GUSTAFSSON et al., 2018).
At this stage, it is important to determine how large the localization radius needs
to be for RRFS analyses. Hu et al. (2017) tested a vertical localization radius of
9 layers in RAP, but using this larger localization radius degraded the forecast when
compared to 3 layers. Knowing the expected results for a relatively larger vertical
localization value using an 80 member ensemble, this study looked at the impact
of reducing the vertical localization radius from 3 grid points to 1 in the lowest 10
vertical model levels in the experiment VLOC. VLOC was designed to examine the
vertical localization radius that yields more realistic forecasts in RRFS. A separate
study is underway in which the optimal horizontal localization for RRFS is also
investigated and therefore it is not examined here. The localization function in GSI
is implemented as a single application of an isotropic recursive filter (PURSER et al.,
2003) and the radius is specified as a Gaussian half-width, either in scale height
(ln p) or in terms of number of vertical layers. In this study, the radius is specified
in terms of layers. In VLOC, the vertical ensemble localization radius is changed
from 3 vertical layers for the whole atmosphere (used in all other experiments) to a
height-dependent localization setting: 1 vertical layer in the lowest 10 model layers
and 3 layers for other model layers. A comparison experiment (not shown) was
conducted reducing the vertical localization to 2 layers in the first 10 model layers,
but results showed neutral impacts over VLOC.

The PBL pseudo-observation function mentioned in Chapter 2 has been used opera-
tionally since RAP version 3 (BENJAMIN et al., 2016). In practice, it first identifies the
PBL height using the background forecast. It then computes the 2 m temperature
and 2 m moisture observation innovations (OmB) such that they are inserted at mul-
tiple vertical levels, from the surface to the level corresponding to 75 % of the PBL
height and spaced every 20 hPa (BENJAMIN et al., 2016). This technique works as if
additional PBL observations are available at those levels and thus more observation
innovations can be computed. Therefore, they are called “PBL pseudo-observations”.
Many studies have reported the benefits of using it. Therefore, it needs to be tested
and tuned for its potential use in RRFS analyses. To test whether and how this
function works for a prototype RRFS system, experiment PSEUDO is designed and
results are presented in Section 4.3.3.
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The study of Tong et al. (2020) showed that regardless of the data assimilation
method used, the storm coverage was overestimated and reflectivity values were
much higher than the observed, which is likely to be linked to the physics suite
used. However, it is also well known that nonphysical solutions (nonrealistic up-
draft/downdraft, negative humidity, supersaturation, etc.) can arise as a result from
the data assimilation procedure (JANJIĆ et al., 2014) and can be tackled using con-
straints. Tong et al. (2016) used a divergence constraint in an hourly update 3DVar
data assimilation system and found more skillful forecasts 1than when the constraint
was not applied. In this study, experiment CLIPSAT is conducted to analyze how
the supersaturation removal procedure available in GSI affects the storm forecasts
of RRFS. This function constitutes a simple adjustment in the background super-
saturation during the cost function minimization. More details on this function are
presented in Section 4.3.4.

Experiments VLOC, PSEUDO, and CLIPSAT are performed using the hybrid
3DEnVar algorithm with 75 % of the ensemble background error covariance and
compared against 75EnBEC results. Considering the good results obtained for ex-
periment 75EnBEC (see Section 4.3.2) and that RAP uses operationally 75 % of
the ensemble background error covariance (HU et al., 2017), this percentage was then
used for these other experiments.

Table 4.2 - List of experiments presented in this study.

Experiments BEC Supersat. PBL Vertical
weights removal pseudo-obs. scale

NoDA No data assimilation

3DVar 0 % ensemble false false 3 layers100 % static

100EnBEC 100 % ensemble false false 3 layers0 % static

75EnBEC 75 % ensemble false false 3 layers25 % static

CLIPSAT 75 % ensemble true false 3 layers25 % static

PSEUDO 75 % ensemble false true 3 layers25 % static

VLOC 75 % ensemble false false 1 layer in first 10
25 % static 3 layers above

SOURCE: Author’s production.

54



4.2.5 Forecast verification

After executing the experiments, MET is used for the forecast verification. Specifi-
cally, the PB2NC, Point-Stat, Grid-Stat, and Stat-Analysis tools were used in this
study. Upper air (ADPUPA) and surface (ADPSFC) RAP observations were used
to verify the forecasts. First, the PB2NC tool was used to convert RAP observations
to the format used by MET tools. For upper air observations, the time window used
was from 1 hour and 30 minutes before to 1 hour and 30 minutes after the verification
time, and it was narrowed to 15 minutes before to 15 minutes after the verification
time for surface observations. This was because upper air data, such as soundings,
are available twice a day while surface data are available with a higher frequency.
Information on the observation quality provided in the prepBURF files (WMO, 2002)
was also taken into account by the PB2NC tool. The maximum quality mark setting
in PB2NC allowed only observations with this quality flag or below to be used in
the verification. Here, the maximum quality mark used for the observations was 2.

Next, the Point-Stat tool was used to compute the mean, RMSE, bias, and stan-
dard deviation of the difference between the point observations and forecasts. Var-
ious methods to interpolate model values to the observation locations were tested.
Figure 4.8 shows the bias results for 6 h forecast of 2 m temperature at each cycle
when using bilinear and nearest neighbors interpolation methods. Since the differ-
ence between the bias calculated with these two methods was very small, the bilinear
method was selected for the rest of the calculations.
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Figure 4.8 - Bias for 6 h forecast of 2 m temperature against METAR and SYNOP reports
using bilinear and nearest neighbors interpolation methods.

SOURCE: Author’s production.

The analysis of matched pairs found that some stations had observation values
diverging significantly from surrounding stations. Thus, a quality control procedure
was applied to flag those stations and filter them from the verification. A quality
control similar to the gross check in GSI was applied using the GSI observation error
table (HU et al., 2018). The 2 m temperature and 2 m dew point temperature use
the METAR observation errors. The temperature and wind vertical profiles use the
observation errors from the radiosonde observations.

Figure 4.9 shows the spatial distribution of the matched pair errors (forecast minus
observation) for 2 m dew point temperature in Kelvin at valid hour 17:00 UTC on
4 May 2020 (0 h forecast), before (Figure 4.9A.) and after (Figure 4.9C.) applying
the quality control. The purple point in Figure 4.9B. indicates that an extremely
divergent station was correctly identified. The color bar in Figure 4.9A. indicates
the large magnitude of the errors before implementing the quality control. After the
quality control application, this magnitude decreased considerably (see the color bar
in Figure 4.9C.).

56



Figure 4.9 - Matched pairs for 2 m dew point temperature (K) forecasts against SYNOP
and METAR stations valid at 17:00 UTC on 4 May 2020 (0 h forecast),
before (A) and after (C) applying quality control. Panel B. shows the spatial
distribution of METAR observations at this valid hour.

A. B.

C.

SOURCE: Author’s production.

The RMSE and bias are computed, displayed with 95 % confidence intervals that
were derived using a bootstrap resampling technique of 1000 replications with re-
placement at each forecast lead hour in every cycle, and with bias-corrected per-
centiles (WILKS, 2006). Upper air statistics are further analyzed at 00:00 UTC and
12:00 UTC valid times.

Precipitation forecasts are verified against the hourly Stage IV precipitation prod-
uct (LIN; MITCHELL, 2005) in terms of the ETS and frequency bias (FBIAS) for
different thresholds, but only >0.01 inches h−1 (0.254 mm h−1) for lighter precipi-
tation and >0.25 inches h−1 (6.35 mm h−1) for heavier precipitation are presented
here. The grid-to-grid approach in MET is used.

Hourly MRMS composite reflectivity mosaics (optimal method) observa-
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tions (ZHANG et al., 2016) are used to verify the composite reflectivity forecasts using
the MODE in MET. In order to quantitatively identify the experiment configura-
tion that yielded better forecasts, the MMI (F+O) metric explained in Section 3.6
is analyzed.

4.3 Results and discussions

4.3.1 Examination of analyses

Observation availability and coverage play an important role in the data assimilation
process. Therefore, how many and what type of observations are available for this
squall line case are examined. Figure 4.10 shows the spatial distribution of assimi-
lated temperature observations at the 19:00 UTC cycle on 4 May 2020 for experiment
3DVar (other cycles and experiments have similar distributions and are not shown
here). The analysis residuals (OmA) are also depicted in Figure 4.10 using red and
blue color depth for positive and negative values, respectively. In this analysis, assim-
ilated temperature observations include those from aircraft, surface marine synoptic
stations, METAR, and MESONET observations. There are a total of 3307 obser-
vations, which are well distributed across the limited model domain. Among these
observations, 1545 are from aircraft, which concentrate around a few major airports
as the flight descends or ascends, and spread along flight paths during the cruising
portion of the flight. Moreover, a substantial amount of MESONET surface obser-
vations are also assimilated. There are far fewer METAR observations, but they are
distributed evenly in the domain. A very limited number of surface marine synoptic
stations are found near the coast on the Gulf of Mexico. The analysis residuals for
temperature are generally small for aircraft and METAR observations, mostly less
than ± 1◦ K in magnitude, while some MESONET observations have large analysis
residuals. As pointed out in Morris et al. (2020), while some MESONET stations are
well maintained, the majority do not meet siting standards and maintenance pro-
tocols and therefore are assigned a higher observation error via a station blacklist.
As expected, larger residuals are found from these observations when compared to
other observation networks.
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Figure 4.10 - Spatial distribution of temperature observations and analysis residuals
(OmA) for the analysis at 19:00 UTC on 4 May 2020 from experiment 3DVar.
The color scale to the right indicates the magnitude of analysis residuals. The
legend of observation type markers is shown at the top along with brackets
listing associated counts and RMS error for the OmA.
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In order to check how results of the RRFS analysis behave at different cycles and
whether it executes correctly, Figure 4.11 presents time series of the RMS error and
bias for the backgrounds (1 h forecasts) as well as the analyses, verified against
temperature observations (including all surface and upper air data as mentioned
in Section 4.2.2). Results presented are for experiments 75EnBEC (Figure 4.11a)
and 3DVar (Figure 4.11b). Verification is conducted by utilizing the observation
innovations (OmB) and the analysis residuals (OmA) generated by GSI for each
assimilated observation. Based on these OmB and OmA data, the RMS error and
bias for the background and analysis are computed. It can be seen from Figure 4.11
that the analyses have smaller RMS errors and biases compared to the background in
both experiments. This means the analyses fit the observations more closely, though
owing to observation error not perfectly, which is expected from a correctly executed
data assimilation procedure. There is a noticeable jump in the RMS error values of
the OmB from 00:00 UTC (12:00 UTC) to 01:00 UTC (13:00 UTC) on 4 May 2020.
This is because 00:00 UTC and 12:00 UTC are cold started from HRRR analyses. On
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the contrary, at 01:00 UTC (13:00 UTC) on 4 May, the background used is from the
FV3LAM 1 h forecast. Therefore, forecasts used to initialize cycles at 01:00 UTC
and 13:00 UTC undergo a spin-up process. The FV3LAM 1 h forecasts are still
in this spin-up process and hence yield larger RMS errors. In Figure 4.11a, the
background RMS error increases steadily from 14:00 UTC to 23:00 UTC, compared
to the relatively gentle increase between 02:00 UTC to 11:00 UTC on 4 May. This
may be due to the fact that there is active convection during the afternoon hours
and, hence, it is harder to obtain good forecast skill. Figure 4.11b has a much larger
increase in the RMS error of OmB than that in Figure 4.11a during the same time
period (from 14:00 UTC to 23:00 UTC), indicating that 75EnBEC performs better
than 3DVar. Results from 100EnBEC are similar to 75EnBEC and not shown here.

Figure 4.11 - RMS and bias of the temperature background (OmB) and analysis (OmA)
against all observation types for analyses in all cycles performed for experi-
ments (a) 75EnBEC and (b) 3DVar. Black arrows highlight the time period
from 14:00 UTC to 23:00 UTC.
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4.3.2 The impact of hybrid ensemble weights and ensemble localization
radius

4.3.2.1 The impact of hybrid ensemble weights

In this hourly updated RRFS system, the hybrid 3DEnVar method is tested. One of
the major concerns is how to obtain the optimal weight for the ensemble background
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error covariance in the hybrid 3DEnVar analysis. A series of weighting sensitivity
experiments were conducted in order to find the best option for this study.

Figure 4.12 shows the specific humidity and temperature analysis increments for the
19:00 UTC cycle on 4 May 2020 for experiments 100EnBEC, 75EnBEC and 3DVar.
The analysis conducted at 19:00 UTC is during a cycling period using warm starts
and is close in time to the initiation of convection in the afternoon hours. Forecasts
initialized by this analysis cover the squall line evolution from its initiation to decay
stages. Therefore, this cycle was selected to show the analysis increments and storm
forecasts in the following sections. The analysis increments from experiment 3DVAR
(Figure 4.12c and f) are smoother as compared to those from 75EnBEC (Figure 4.12b
and e), which exhibits some flow-dependent features. As it goes into pure ensemble
background error covariance (Figure 4.12c and d), more flow-dependent increments
are obtained.
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Figure 4.12 - Analysis increment for temperature (K) (a, b, and c) and specific humidity
(g kg−1) (d, e, and f) at the first level above the surface for 19:00 UTC on
4 May 2020, using 100 % ensemble background error covariance (a and d),
75 % ensemble background error covariance (b and e), and 3DVar (c and f).

SOURCE: Author’s production.

Figure 4.13 shows the 2, 4, and 6 h forecasts of composite reflectivity from the
19:00 UTC cycle on 4 May 2020, with 5 dBZ (solid lines) and 35 dBZ (dash lines)
reflectivity observation contours overlaid for experiments 100EnBEC, 75EnBEC,
3DVar, and NoDA. The regridding tool in MET is used to interpolate the MRMS
composite reflectivity observations to the same grid as the model forecasts. Ad-
ditionally, MMI (F+O) results for reflectivity values larger than 35 dBZ for each
experiment are shown in the lower right corner of each panel. All experiments pre-
dict the general evolution of the squall line, from the initial stage to maturity, with
overforecasting of high reflectivity values and underforecasting of spatial coverage.
At the 2 h forecast, the experiments capture the convective initiation around north-
eastern Oklahoma, but the extent and intensity of the cells are overpredicted (Fig-
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ure 4.13a, d, g, and j). The initial cells are represented and located more accurately
in the experiments with data assimilation, especially 75EnBEC with a MMI (F+O)
value of 0.540 (Figure 4.13d). In the 4 h forecast, the squall line enters its mature
stage and a line of storms are ranged from southwest Missouri to central Oklahoma
(Figure 4.13b, e, h, and k). Every experiment predicts a squall line, but there is
substantial location and coverage error in the NoDA experiment. 3DVAR improves
a little over NoDA, but due to coverage predicted a decrease in the MMI (F+O)
value from 0.632 to 0.556 is observed. 75EnBEC does well to predict the squall
line at the correct location with the larger MMI (F+O) value of 0.698, although the
storm near the southwest tip of the observed squall line is still missing as in all other
experiments (Figure 4.13e). 100EnBEC overproduces the convection associated with
the squall line, but still improves over 3DVar and NoDA at this forecast hour. In
the 6 h forecast, the squall line moves eastward and covers from southern Missouri
and northwestern Arkansas to southeastern Oklahoma. At this time, 3DVAR again
performs better than NoDA with very close MMI (F+O) results, and 75EnBEC still
makes the best forecast among all experiments (Figure 4.13c, f, i, and l). However, in
terms of the MMI (F+O) values, the experiment 75EnBEC shows a slightly degra-
dation for the forecast of reflectivity values larger than 35 dBZ and the experiment
100EnBEC shows the best MMI (F+O) value of 0.555. Overall, data assimilation
introduces evident, positive impacts to the storm forecasts in terms of the squall
line location, orientation and coverage, though different assimilation strategies yield
different impacts. The improvement from 3DVar is somewhat limited while hybrid
3DEnVar is seen to perform much better. Among the experiments, 75% ensemble
BEC gives the overall best forecasts.
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Figure 4.13 - 2, 4, and 6 h forecasts of composite reflectivity from experiments 100EnBEC
(a, b, and c), 75EnBEC (d, e, and f), 3DVar (g, h, and i), and NoDA (j, k,
and l), initialized at 19:00 UTC on 4 May 2020. Solid and dashed black lines
are the 5 and 35 dBZ reflectivity observation contours, valid at the forecast
time, respectively.

SOURCE: Author’s production.
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In order to examine the convective environment a few hours before the convection
developed over central Oklahoma (Figure 4.1c), Figure 4.14 shows the temperature,
dew point temperature, and wind vertical profiles in a Skew-T log-P diagram for
the experiments 100EnBEC, 75EnBEC, 3DVar, and NoDA. The observed sounding
is from the KOUN, Norman, Oklahoma station and forecast values are from the
nearest grid point to the station latitude and longitude [35.18;-97.44] at 19:00 UTC
on 4 May 2020. As indicators of the thermodynamic instability, the CAPE and
convective inhibition (CIN) for different lifted parcel, such as surface-based (SB-
CAPE), most unstable (MUCAPE), and mixed layer (MLCAPE) are also shown
in this figure. The temperature and dew point temperature profile forecasts show a
dryer and colder environment than the observations especially in the lower levels.
Temperature forecasts are similar among the experiments and colder than obser-
vations below 600 hPa and between 275 and 225 hPa. Otherwise, the temperature
forecasts are slightly warmer. Dew point temperature forecasts are also colder than
observations through almost the entire atmosphere, except at the layers between
325 and 300 hPa, where the experiments predict warmer values. A very pronounced
inversion is predicted at 300 hPa, which was not observed. The inversion around
875 hPa is sharper in the forecasts than that in the observations, with the 3DVar
and 75EnBEC showing the coldest values in this level. Moreover, the wind is weaker
than observed at all layers, mainly at middle levels. The turn of winds direction
from the south closer to the surface to the west at around 400 hPa, is smoother in
the forecasts than in the observations. The observed strong southwesterly low-level
jet was not present in the forecasts of any experiments. All of the lift parcel CAPE
values are much lower in the forecast than observed, while the predicted inhibition
indices more than double the value of those observed in most of the experiments.
Additionally, the pressure of level from which parcels were lifted (LPL) in the exper-
iments are lower than the observed LPL. These environment characteristics are not
favorable for convective initiation, which may be the reason of the lack of convection
over central and south-central Oklahoma in all of the forecasts.
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Figure 4.14 - Observed skew-T log-P diagram for KOUN, Norman, Oklahoma station at
19:00 UTC on 4 May 2020 and the 2 h forecast counterparts from experiments
100EnBEC, 75EnBEC, 3DVar, and NoDA initialized at 17:00 UTC on 4 May
2020. The observed and predicted SBCAPE, MUCAPE, and MLCAPE are
shown in J kg−1.

SOURCE: Author’s production.

Vertical profiles of RMSE and bias with 95 % confidence intervals for the 2 h forecast
of temperature, specific humidity, and wind at 00:00 UTC and 12:00 UTC valid hours
(from cycles initialized at 22:00 UTC and 10:00 UTC on 4 May, respectively) are
shown in Figure 4.15. The confidence intervals help to highlight where the differences
between the experiments are statistically significant. Experiments show a consistent
warm bias at both 00:00 UTC and 12:00 UTC in most vertical levels (Figure 4.15a
and d). A cold temperature bias is present in the layers between 850 and 650 hPa at
00:00 UTC and at 1000 hPa and 150 hPa at 12:00 UTC in all experiments. Exper-
iment 75EnBEC has smaller temperature RMSE values between 400 and 250 hPa
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at 00:00 UTC and between 550 and 400 hPa at 12:00 UTC. The improvements for
the temperature bias at 00:00 UTC are statistically significant between 500 and
400 hPa. Experiment 100EnBEC shows smaller RMSE at 850 hPa at both valid
hours. All experiments with data assimilation have smaller temperature RMSE and
bias below 850 hPa for 00:00 UTC, which are statistically significant as shown by
the confidence intervals indicating the positive impact from data assimilation, but
the impact of the analysis on the 2 h temperature forecast valid at 12:00 UTC is
less clear. Similarly, the specific humidity forecasts show improved RMSE and bias
from data assimilation below 900 hPa at 00:00 UTC and varied results among the
experiments at 12:00 UTC (Figure 4.15b and e). The 2 h forecast of wind profiles
has a positive bias in the lower levels at both valid hours, but mostly negative above
850 hPa (Figure 4.15c and f). The wind RMSE results do not clearly indicate which
experiment is best, but in general 100EnBEC shows the lowest values when consid-
ering all vertical levels. These results may indicate that the static BEC matrix used
may not be optimal for RRFS v0.1 and efforts are underway in order to obtain a
better BEC matrix. Moreover, an online estimation approach may be explored for
the specification of the hybrid weighting parameter, such as the method proposed
by Azevedo et al. (2020) in which a geographically varying weighting factor alpha
is defined and the ensemble spread is used for the assignment of the weights.
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Figure 4.15 - Vertical profiles of RMSE (left), bias (right), and upper (95 %) and lower
(5 %) limits of the confidence interval (shading) for the 2 h forecast of tem-
perature (a and d), specific humidity (b and e), and wind (c and f) against
rawindsonde, dropsonde, and pilot balloon observations at 00:00 UTC (a, b,
and c) and 12:00 UTC (d, e, and f) valid hours on 4 May 2020 for experi-
ments 100EnBEC, 75EnBEC, 3DVar, and NoDA. Matched pair counts used
for RMSE and bias computation at each level are shown on the right vertical
axis. Each experiment’s mean RMSE and bias across all vertical levels are
shown in the upper corner of each panel.
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SOURCE: Author’s production.

Figure 4.16 presents the RMSE and bias for the 2 h forecast of 2 m temperature
(Figure 4.16a and c) and 2 m dew point temperature (Figure 4.16b and d) for
experiments 100EnBEC, 75EnBEC, 3DVar and NoDA. 2 m temperature and 2 m
dew point RMSE are evidently larger between cycles initialized at 16:00 UTC and
23:00 UTC in all experiments. This may be related to the initiation and development
of convection in many areas of the domain. During this period, all data assimilation
experiments have smaller 2 m temperature and 2 m dew point RMS errors compared
to the NoDA experiment, demonstrating the positive impact from data assimilation.
Further, experiments 75EnBEC and 3DVar perform better than 100EnBEC between
cycles initialized at 16:00 UTC and 20:00 UTC (18:00 UTC and 22:00 UTC valid
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hour) (Figure 4.16a). Among them, 75EnBEC produces the smallest 2 m temper-
ature and 2 m dew point RMSE. From 16:00 UTC to 23:00 UTC valid hour, the
2 h forecasts from all experiments show a warm and dry bias. Data assimilation
experiments helped to reduce this warm and dry bias to some extent.

Figure 4.16 - RMSE and bias for the 2 h forecast of 2 m temperature (a and c) and
2 m dew point temperature (b and d) against synoptic station and METAR
observations for experiments 100EnBEC, 75EnBEC, 3DVar, and NoDA. On
average 600 observations between these two sources were used each analysis
cycle for the statistics computation. The legend for each experiment is shown
at the bottom of each panel along with brackets listing the associated RMSE
averaged over all cycles in panels (a) and (b).

SOURCE: Author’s production.

To summarize, experiment 75EnBEC performs the reasonably better among all ex-
periments discussed in this section. It gives the smallest 2 m temperature and 2 m
dew point RMSE during the afternoon storm hours and a better representation of
the storm in all forecasts lengths. Therefore, all subsequent experiments use the
75 % ensemble background error covariance.
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4.3.2.2 The impact of vertical ensemble localization radius

As discussed in Chapter 2, a function is applied to the ensemble-based covariances
in order to spatially localize their variation with distance. Gustafsson et al. (2018)
pointed out that the localization needs to be large enough to not disrupt the large
scale balance but small enough to represent fluctuations at the convective scale.
Thus, unlike at global scales, the operational RAP and HRRR systems use a hori-
zontal localization radius of 110 km in combination with a vertical localization radius
of 3 layers, which give optimal forecast skill in RAP applications (HU et al., 2017). In
the experiment VLOC, a reduction in the vertical localization radius from 3 to 1 is
adopted to capture finer vertical features of low atmosphere from the observations
close to the surface and below the PBL.

Figure 4.17 presents the RMSE and bias with 95 % confidence intervals for verti-
cal profiles of the 2 h forecast of temperature, specific humidity, and wind valid at
00:00 UTC and 12:00 UTC for experiments VLOC and 75EnBEC. For the temper-
ature forecasts, VLOC has a lower RMSE between 800 and 550 hPa and smaller
bias in the lower atmosphere between 1000 to 900 hPa and 800 to 700 hPa during
the late afternoon (valid hour 00:00 UTC) (Figure 4.17a). At valid hour 12:00 UTC,
VLOC gives a lower RMSE between 950 and 900 hPa and 350 and 300 hPa, and
lower bias in the upper atmosphere between 450 and 250 hPa (Figure 4.17d). For
specific humidity, the RMSE and bias are improved at all levels above 650 hPa at
00:00 UTC with VLOC. However, a degradation is observed in the RMSE in the
lower levels below 700 hPa. Degradation is also seen in the bias between 950 and
800 hPa (Figure 4.17b). At valid 12:00 UTC, not much improvement is shown in
either the RMSE or bias from VLOC (Figure 4.17e). Most of the differences between
these experiments are not statistical significant as indicated by the confidence inter-
vals. Meanwhile, a general positive impact is observed in the RMSE and bias for the
winds above 650 hPa but negative impact in lower levels at 00:00 UTC valid hour.
At 12:00 UTC valid hour, slight improvements are shown for VLOC in the RMSE
between 650 and 500 hPa and at 400 hPa, and in the bias at 550 hPa and 350 hPa
(Figure 4.17f).

70



Figure 4.17 - As in Figure 4.15, but for experiments 75EnBEC and VLOC.
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SOURCE: Author’s production.

The change in vertical localization slightly improves the extent and intensity of
convection over northeastern Oklahoma in the 2 h forecast, however MMI (F+O)
values indicate that the experiment 75EnBEC is still more skillful representing the
reflectivity larger than 35 dBZ with a decrease from 0.540 in 75EnBEC to 0.528 in
VLOC. An underforecast of the convection over central and eastern Oklahoma is
observed in VLOC in the 4 h forecast with a smaller MMI (F+O) value of 0.587 and
an overforecast over north-central Arkansas and south-central Missouri is observed
in the 6 h forecast with a slight improvement in the MMI (F+O) value from 0.544 in
75EnBEC to 0.563 in VLOC (Figure 4.18). While reducing the vertical localization
scale did produce small improvement at some vertical levels and larger forecast
lengths, degradation dominated the overall signature, indicating this variation of
localization scale produces overall less skillful storm forecasts. The analysis cycling
technique and multivariate relationships in the background error covariance spread
the observations impact throughout different levels and locations, which could have
led to the slight positive impact above 650 hPa instead of the lower atmosphere
where the modification in the vertical localization is made. It suggests a vertical
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ensemble localization radius of 3 layers is already a good choice if not the best.

Figure 4.18 - As in Figure 4.13, but for experiments VLOC (a, b, and c) and 75EnBEC
(d, e, and f).

SOURCE: Author’s production.

4.3.3 The impact of PBL pseudo-observations

The impact of adding PBL pseudo-observations to the analysis based on surface
temperature and moisture observations is evaluated in experiment PSEUDO. This
function is tested with the PBL pseudo-observation configuration used in the oper-
ational RAP system.

The 2, 4, and 6 h composite reflectivity forecasts from experiments PSEUDO and
75EnBEC are presented in Figure 4.19. PSEUDO clearly predicted more convection
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than 75EnBEC in the 2 h forecast, with a smaller MMI (F+O) value of 0.533 in
comparison to 0.540 in the experiment 75EnBEC (Figure 4.19a). However, noticeable
improvements in the coverage and positioning of the storm are found in 4 and 6 h
forecasts, with a corresponding increase in the MMI (F+O) values when compared
to 75EnBEC (Figure 4.19b and c). Especially at 4 h, the representation of the squall
line over Oklahoma is greatly improved after adding PBL pseudo-observations with
a better coverage of the squall line, although an increase in the intensity of the
convective cores is also noted (Figure 4.19b). Spurious convection also appeared
over northwest Oklahoma and Texas in the 4 h forecast and over Texas in the 6 h
forecast. These results indicate the potential of using PBL pseudo-observations in
RRFS to improve the representation of convection.

Figure 4.19 - As in Figure 4.13, but for experiments PSEUDO (a, b, and c) and 75EnBEC
(d, e, and f).

SOURCE: Author’s production.
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The RMSE and bias vertical profiles for the 2 h forecast of temperature, specific
humidity, and wind against sounding observations at the 00:00 UTC and 12:00 UTC
valid hours are presented in Figure 4.20. The use of PBL pseudo-observations gives
subtle positive impacts at both valid hours and most vertical levels for the RMSE and
bias of temperature and specific humidity (Figure 4.20a, b, d, and e). Improvements
in the RMSE and bias of temperature are observed below 900 hPa at valid hour
00:00 UTC. The positive impact in the bias extends to 800 hPa, indicating the better
representation of the lower atmosphere in the experiment PSEUDO (Figure 4.20a).
A slight degradation is observed in the middle levels at the same valid hour. For
wind, the RMSE shows more promising results with a positive and statistically
significant impact between 500 and 550 hPa at 00:00 UTC and 12:00 UTC valid
hours. This positive impact is also significant at 300 hPa in the RMSE and bias
results at 00:00 UTC (Figure 4.20c). At 12:00 UTC, the bias shows more subtle
improvements in 750 hPa and 300 hPa (Figure 4.20f).

Figure 4.20 - As in Figure 4.15, but for experiments 75EnBEC and PSEUDO.
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SOURCE: Author’s production.
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Similar to the upper air verification, the RMSE and bias of 2 m temperature and 2 m
dew point temperature for the 2 h forecast in PSEUDO show overall neutral impact.
A degradation in the RMSE of 2 m temperature is observed between cycles initial-
ized at 21:00 UTC and 00:00 UTC (Figure 4.21a) and in the bias between cycles
initialized at 17:00 UTC and 21:00 UTC. A subtle improvement in the bias of 2 m
temperature between cycles initialized at 21:00 UTC and 23:00 UTC. Slight improve-
ments are observed in the RMSE and bias of 2 m dew point temperature between
cycles initialized at 19:00 UTC and 23:00 UTC. Adding PBL pseudo-observations
helps to mitigate near surface dry bias during afternoon hours, makes upper air fore-
casts better in some levels of middle and upper atmosphere, and clearly improves the
storm forecast in the 4 h and 6 h forecasts. Nevertheless, more tuning and testing
of this function are needed before applying this technique in the RRFS.

Figure 4.21 - As in Figure 4.16, but for experiments 75EnBEC and PSEUDO.
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4.3.4 The impact of supersaturation removal

GSI has a function to remove supersaturation in the background by capping specific
humidity to its saturation value in each outer loop during the minimization of the
cost function, as calculated using the background fields (CIMSS, 2014). Figure 4.22
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shows the difference in the specific humidity (g kg−1) analyses between the 75En-
BEC analysis and the 75EnBEC analysis with the supersaturation clipping function
activated (75EnBEC vs. CLIPSAT) for the 19:00 UTC cycle on 4 May 2020. Since
more moisture is present in the lower atmosphere, model hybrid level 50 (located
in the lower atmosphere at around 850 hPa) was selected to show this result. Posi-
tive (negative) differences in Figure 4.22 indicate that more (less) specific humidity
is found in the 75EnBEC analysis than in CLIPSAT. The figure suggests that su-
persaturation is removed in the CLIPSAT analysis mostly over southwestern and
northwestern Missouri, southeastern Kansas, northern Arkansas and Oklahoma. It
is worth mentioning that the computational run time of the analyses in CLIPSAT
was quite similar to 75EnBEC (not shown).

Figure 4.22 - Difference in specific humidity (g kg−1) fields for the 19:00 UTC cycle on
4 May 2020 between analyses without and with supersaturation clipping
activated (75EnBEC - CS), at model hybrid level 50.

SOURCE: Author’s production.
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The 2, 4, and 6 h composite reflectivity forecasts are shown in Figure 4.23 for
experiments CLIPSAT and 75EnBEC. When the supersaturation removal function
is activated in the analyses, a better evolution of the squall line is observed in the
4 and 6 h forecasts (Figure 4.23b and c). The displacement errors are reduced and
less spurious convection is seen over southern Missouri and northern Arkansas at
these forecast hours (Figure 4.23b, c, e, and f). As seen in Figure 4.22, over these
areas the CLIPSAT analysis showed less specific humidity content than in 75EnBEC.
However, less spatial coverage of the convection is forecast over eastern Missouri, and
the spurious convection is increased over southwestern Missouri at the 2 h forecast
in CLIPSAT when compared to 75EnBEC (Figure 4.23a and d). The MMI (F+O)
values show more skillful forecast of reflectivity larger than 35 dBZ for all forecast
lengths in the experiment CLIPSAT. These values are greatly increased at 2 h
forecast from 0.540 in 75EnBEC to 0.811 in CLIPSAT, and from 0.698 to 0.793 at
4 h forecast. Results from CLIPSAT indicate the presence of longer-term bias that is
being corrected to some extent in this experiment. However, because the atmospheric
state is periodically refreshed with the large scale conditions as part of the partial
cycling procedure, the model bias cannot be fully examined. Further investigation
involves adapting the approach employed by Wong et al. (2020) in which forecast
tendencies are used to investigate systematic model biases in a continuously cycled
experiment.

77



Figure 4.23 - As in Figure 4.13, but for experiments CLIPSAT (a, b, and c) and 75EnBEC
(d, e, and f).

SOURCE: Author’s production.

Although this function imposes a nonphysical constraint to remove the supersatura-
tion from the background when minimizing the cost function, it leads to overall more
skillful forecasts without an increase in the computational cost. These results agree
with what is found in previous studies, in which the use of constrains in the analyses
led to more skillful forecasts (VENDRASCO et al., 2016; TONG et al., 2016) using a di-
vergence constraint). This is a common practice in order to preserve nonnegativity
in the analyses but also comes at the cost of violating mass conservation (JANJIĆ et

al., 2014; JANJIĆ et al., 2021).
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4.3.5 Quantitative precipitation forecast verification

To further evaluate the experiments conducted, the FV3LAM 1 h accumulated pre-
cipitation is also analyzed. Precipitation forecasts remain a challenge for NWP mod-
els at various spatial and temporal scales. Because of their complexity, precipitation
forecasts are frequently used to evaluate model performance.

As mentioned in Section 4.2.5, precipitation forecasts are verified against Stage IV
precipitation observations at various thresholds. Figure 4.24 shows the ETS and
FBIAS for 1 h accumulated precipitation greater than 0.01 inches h−1 (Figure 4.24a
and c) and 0.25 inches h−1 (Figure 4.24b and d) for all experiments at each forecast
lead hour. These verification measures are based on the two-by-two contingency table
used for categorical (dichotomous) variables (JENSEN et al., 2020). ETS is based on
the threat score or critical success index and is commonly used to examine the
performance of precipitation forecasts. Perfect forecasts have ETS values close to 1,
while forecasts without skill have ETS values close to 0. Meanwhile, FBIAS indicates
when an event is forecast more or less often than it is observed. FBIAS greater than 1
indicates an event is overforecast, while less than 1 suggests an event is underforecast.
An FBIAS equal to 1 indicates that the event is predicted as frequently as it is
observed (WILKS, 2006).

For this case study, ETS values decrease as the precipitation threshold increases
in all of the experiments assessed (Figure 4.24a and b), indicating the difficulty
in predicting heavier precipitation events. Most of the experiments with data as-
similation have higher ETS scores for precipitation greater than 0.01 inches h−1

than NoDA during almost the entire 18 hour forecast (Figure 4.24a). This shows
the positive impact of data assimilation in the analyses and subsequent lighter pre-
cipitation forecasts. Experiments 100EnBEC, CLIPSAT, 75EnBEC, and PSEUDO
show higher ETS values in the first 4 hours of the forecast. Between 4 h and 16 h
forecast, experiment CLIPSAT shows the best performance among all experiments,
followed by 100EnBEC, 75EnBEC, and PSEUDO which shows very close results to
75EnBEC. In terms of FBIAS, 100EnBEC shows better scores until the 11 h forecast
lead (Figure4.24c). Between 2 and 8 h forecast, experiment VLOC shows the largest
underforecast among all experiments. The verification of 1 h accumulated precipita-
tion greater than 0.25 inches consistently shows that using hybrid and pure ensemble
BEC in data assimilation improves the precipitation forecasts in the first 13 hours
forecast, with 75EnBEC outperforming 100EnBEC within the first four hours (Fig-
ure 4.24b). After the 13 h forecast, experiment NoDA performs better, which shows
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data assimilation mainly improves the short term forecast and the major factor for a
good long term forecast is the quality of the background from the outside model as
well as the FV3 LAM model itself. For the 0.25 inches h−1 threshold, precipitation
is overforecast in experiments 100EnBEC and NoDA in the first 3 hours, under-
forecast in experiments 3DVar, 75EnBEC, PSEUDO, VLOC, and CLIPSAT. All
experiments underforecast accumulated precipitation greater than 0.25 inches h−1

after the 9 h forecast (Figure 4.24d).

Figure 4.24 - ETS (a and b) and FBIAS (c and d) for 1 h accumulated precipitation
forecasts greater than 0.01 inches (a and c) and 0.25 inches (b and d) from
experiments CLIPSAT, PSEUDO, VLOC, 100EnBEC, 75EnBEC, 3DVar,
and NoDA for 18 hour forecasts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Forecast lead hour

0.05

0.10

0.15

0.20

0.25

ET
S

>0.01 inches h 1(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Forecast lead hour

0.05

0.10

0.15

0.20

0.25

ET
S

>0.25 inches h 1(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Forecast lead hour

0.7

0.8

0.9

1.0

1.1

1.2

1.3

FB
IA

S

(c)

NoDA 3DVar 75EnBEC 100EnBEC VLOC PSEUDO CLIPSAT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Forecast lead hour

0.7

0.8

0.9

1.0

1.1

1.2

1.3

FB
IA

S

(d)

SOURCE: Author’s production.
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5 RRFS OVER NORTHERN SOUTH AMERICA

This chapter is divided into two main parts: the first is dedicated to the case study
selection (see Section 5.2) and a second part focuses on the configuration and execu-
tion of numerical simulations of the selected case (see Section 5.3). An overview of
the data and methods employed is presented in each section along with the results
and discussions of the impacts on the analyses and forecasts.

5.1 Introduction

The Amazon offers favorable conditions for the development of deep convection
that is organized in MCS. In northern South America, MCS occurrence is related
to Amazon coastal squall lines and to the incursion of cold outbreaks, mostly in
southwest Amazon. Amazon coastal squall lines are observed in satellite imagery as
discontinuous clusters of convective cells along the northern coast of South America,
developed on the sea-breeze circulation, organized on the mesoscale, and considered
one of the main rain-producing systems in the region (GARSTANG et al., 1994; CO-

HEN et al., 1995). Because of the role the Amazon plays on the regional weather and
climate, numerous studies have been conducted using observations derived from
field campaigns held in the Amazon, meteorological satellites, in situ sources, re-
analyses, and numerical models providing the scientific community with a better
understanding of processes at various scales. In particular, the data collected dur-
ing field campaigns, such as the ABLE field campaign (GARSTANG et al., 1990), the
Large-Scale Biosphere-Atmosphere Experiment (KELLER et al., 2004) and more re-
cently the GoAmazon2014/5 experiment (MARTIN et al., 2016), have been invaluable
in providing large amounts of data that otherwise would not be possible to obtain.
The results from these field campaigns have greatly improved the knowledge and
understanding of the atmospheric chemistry of the Amazon as well as the dynamics,
environmental conditions, structure, rainfall characteristics, and life cycle of convec-
tive systems that occur in the Amazon basin. However, despite all these efforts, the
deep convection and diurnal cycles of precipitation and convection in the Amazon
region are not satisfactorily simulated by the models.

As global numerical models increase the horizontal resolution and more NWP cen-
ters are concentrating their efforts on unified models, it is important to examine
what is the current capability of regional and convection-allowing models represent-
ing a wide variety of phenomena. As mentioned previously, NOAA is transitioning
toward a unified model in which the same dynamical core is used for all applications,
from global to convective scale through the UFS. RRFS, as the UFS application for
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regional and convective scales, is intended to cover a similar domain as the opera-
tional RAP, which imposes the need to investigate the capability of the prototype
RRFS to represent convection over part of northern South America and the Atlantic
Ocean. In particular, the initiation and development of Amazon coastal squall lines
can give an insight in the capabilities of RRFS over areas with low data density.
Another important issue is the role of the tropical waves in establishing the dynam-
ical and thermodynamical conditions for triggering the intense coastal lines that
eventually develop into long lasting lines. Therefore, the data assimilation system
should be able to capture the wave structure over the ocean and not just over the
continent.

In this study, the data assimilation framework for the prototype RRFS is assessed
and impacts on forecasts of an Amazon coastal squall line case study are investi-
gated. Overall, this study examines to what extent the assimilation of few and sparse
data can still have a positive impact in the RRFS analyses over this region. Due to
the data availability issues along with a lack of severe weather reports in this re-
gion, a methodology is determined for the selection a case study. This methodology
follows Oliveira and Oyama (2015) in an attempt to create an objective algorithm
to identify squall lines in the outputs of the tracking system ForTraCC (VILA et al.,
2008). It is worth mentioning that ForTraCC outputs give information on individual
tracked convective systems where one or more can be part of a squall line. Therefore,
identifying squall lines in ForTraCC outputs in an objective manner is still a chal-
lenge. Here, the goal is to test available methodologies and provide a list of steps to
follow to select case studies in this area with data availability issues, especially for
modeling purposes. Once the case is selected, sensitivity tests using RRFS are per-
formed similar to the experiments conducted in Chapter 4. Different configurations
in GSI are tested, such as various ensemble background error covariance weights in
hybrid analyses, supersaturation removal, the PBL pseudo-observations function as
well as varied observation types. Two physics suites are tested: one based on the
GFS version 15 physics and a suite based on the HRRR physics. As in the previous
chapter, MET is used for forecast verification. Although the area studied has a low
density data coverage, results show that large scale patterns are well captured in all
experiments and the forecasts are improved when using data assimilation.

5.2 Case study selection

Differently from the mid-latitudes, seasons in the tropics are defined following the
rainfall frequency rather than temperature. Thus, precipitation distribution along
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the year determines the rainy and dry periods as the main seasons. This has been at-
tributed to the South American monsoon system (SAMS) (MARENGO et al., 2001).
Determining the onset (end) and end (onset) of the dry (rainy) season has been
the subject of many studies (LIEBMANN; SMITH, 1996). Various methodologies have
been applied and there are climatological dates in which these periods are expected
to occur. However, due to the interannual variability in rainfall occurrence (ZENG,
1999), the first step for the case study selection is to determine the onset and end
of the dry season for the Amazon in 2020. The dry season was chosen in order to
better identify the convection associated to the Amazon squall line from the diur-
nal convection which occurs everywhere during the rainy season. The methodology
proposed in Marengo et al. (2001) based on the computation of pentads (5-days
average) of accumulated precipitation is applied in this research. The second step is
to execute ForTraCC for the period corresponding to the dry season using GOES-16
imagery from channel 13. Finally, an algorithm for the identification of squall lines
using ForTraCC outputs is developed based on the objective method of Oliveira and
Oyama (2015). The objective method is complemented with a visual analysis of the
corresponding satellite imagery.

5.2.1 Data

For the pentads computation, the MERGE product from CPTEC (ROZANTE, 2017)
is used. This product combines observed data from SYNOP observations, data
collection platforms (DCPs) and data from regional meteorological centers with
satellite-derived precipitation estimates from the Global Precipitation Measurement
(GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG-Early) (HUFFMAN

et al., 2015a; HUFFMAN et al., 2015bb; HUFFMAN et al., 2015ba). The goal is to correct
precipitation estimates from satellites with surface observations by minimizing the
uncertainties, especially over regions with a low density of rain gauges, such as the
Amazon. The product became available in 2010 (ROZANTE et al., 2010), and since
then, various updates with new data have been made available. A recent compari-
son between MERGE and the product Combined Scheme (CoSch) (VILA et al., 2009)
also developed at CPTEC, showed that MERGE outperforms CoSch in terms of the
magnitude of the bias and in the analysis of rain/no rain and light to moderate
rainfall (0.5 to 20.0 mm) (ROZANTE et al., 2020). MERGE data are in a grid point
with a spatial resolution of 10 km and cover 87% of the globe between the latitudes
of 60 oN and 60 oS. The daily product is the one used in the computations.

Images from the GOES-16 infrared channel 13 with spatial resolution of 2 × 2 km
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and temporal resolution of 10 minutes are used for the tracking of the convective
systems. This channel is a clean infrared longwave band being less sensitive to at-
mospheric moisture than other infrared channels. These images are processed at
the Satellite Division and Environmental Systems of CPTEC and are available in
rectangular projection and NetCDF format.

5.2.2 Onset and end of the dry season

The methodology proposed by Marengo et al. (2001) focuses on determining the
onset of the rainy (dry) season as the pentad with daily average precipitation greater
(less) than 4.5 mm day−1 and this value remains above (below) 4.5 mm day−1 in
the 6 to 8 subsequent pentads. Prior to pentads indicating the initial (ending) date,
the values of pentads with daily average precipitation must be more (less) than
3.5 mm day−1 in the subsequent 6 to 8 pentads. This computation is performed for
the area in the mouth of the Amazon River as defined in Marengo et al. (2001). This
area is representative of the precipitation regime for the convection initiated over
the northern coast of South America. Figure 5.1 presents the reference area (grey
circle). This area is centered at the mouth of the Amazon River with coordinate
point at Ecuador and 49◦W and the accumulated precipitation data inside a 3.5◦

radius is considered for the pentad computation. The solid black line in Figure 5.1
indicates the bio-geographic limits of Amazon basin according to RAISG (acronym
in Portuguese for Rede Amazônica de Informação Socioambiental Georreferenciada).
This georeferenced data is publicly available and can be found at: https://www.
amazoniasocioambiental.org/en/maps/#download
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Figure 5.1 - Reference area considered in the computation of rainfall pentads.
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The onset (end) of the dry (rainy) season in the Amazon varies regionally. According
to Marengo et al. (2001), the rainy season ends first in the southeast and progresses
toward the north. However, the authors pointed out that the withdrawal is slower
than onset. In that study, it was found that near the mouth of the Amazon, the
onset of the rainy season occurs in December with the earliest pentad of the onset
centered on 4 November and the latest centered on 24 December. On the other hand,
the end of the rainy season was found for the pentad centered on 17 July with the
earliest recorded withdrawal date in the pentad centered on 22 June.

Figure 5.2 shows the time series of the 73 pentads of rainfall, in which can be
observed that the dry season of 2020 near the mouth of the Amazon began in the
pentad centered on 21 June and ended in the pentad centered on 29 October. In this
figure, the pentads where the values did not exceeded 4.5 mm day−1 are highlighted
in orange. This means that the onset of the 2020 dry season occurred inside the
earliest limits suggested by Marengo et al. (2001) while the end occurred slightly
earlier than the range considered in the climatological values. ForTraCC is then
executed for the period between 21 June and 29 October 2020.
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Figure 5.2 - Time series of average precipitation over 5 consecutive days (pentads) during
the period from 1 January to 31 December 2020 over the area near the mouth
of the Amazon river.
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5.2.3 Tracking of convective systems

ForTraCC is an algorithm for tracking and predicting the morphological and radia-
tive characteristics of convective systems using infrared channel images from GOES
satellites (VILA et al., 2008). In this work, only the tracking module is used because
predicting the system displacement is not part of the objective of this work. For-
TraCC performs the convective system detection using a brightness temperature
threshold, considering that temperatures below this threshold adequately represent
convective systems. Following several works and the study of Vila et al. (2008), a
threshold of 235 K is used to detect the systems. Once the systems in an image are
identified, a method of superposition of at least 25 % of the system between one
image and the next at time t + dt is observed. In terms of number of pixels, the
overlay must be found in 150 pixels in order to consider that the system is a contin-
uation of the previous one. From the application of the superposition criterion, it is
possible to identify whether the system is new or spontaneously generated; a con-
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tinuity (Conti) of the previous system, a split (Split) if two systems with the same
characteristics as in the previous time are found in the image in time t + dt, or a
merge (Merge) when at time t there are several systems and at the next time t+ dt

only one is found. Statistics of the size, system duration, minimum temperature,
average and maximum speed, direction of displacement, are among the parameters
derived from ForTraCC for each detected system. The ForTraCC tracking system is
currently operational at CPTEC/INPE.

Prior to the execution of ForTraCC, a quality control procedure is applied to the
GOES imagery. Figure 5.3 presents an example of an image in which bad pixels (see
the black band on the bottom of the figure) are observed. This can be related to
failures in the transmission systems among other reasons. This control consisted of
determining the images with temperatures below 180 K and removing them.

Figure 5.3 - Example of an image with bad pixels.

SOURCE: Author’s production.

Convective systems with initiation inside the limits of the Amazon basin are selected
for further analyses (Figure 5.4). Figure 5.4c shows a 2D spatial histogram with the
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distribution of pairs of latitude/longitude at which convective systems were initiated
during the entire period. Figure 5.4a and b show the latitudinal and longitudinal
distributions, respectively. During this period, the area where most convective sys-
tems were formed is centered on the northwestern Amazon, extending through parts
of the west and central west Amazon. This area coincides with higher terrain eleva-
tion indicating the influence of high topography (lifting mechanism) to the genesis
of convection. This result is similar to what is found in Rehbein et al. (2018), also
using ForTraCC but for the period between 2000 and 2013 using a composite of
infrared imagery from GOES west and east, Meteosat, and the Japanese Geosta-
tionary Meteorological Satellite (GMS). Over northern Amazon can be identified
the source region for the Amazon coastal squall lines.

Figure 5.4 - (a) Latitudinal, (b) longitudinal, and (c) spatial distribution for convective
system genesis inside the limits of the Amazon basin during the 2020 dry
season.

SOURCE: Author’s production.
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The monthly spatial distribution for July, August, September, and October is pre-
sented in Figure 5.5. The few days from June that are inside the dry season range
are not considered in this monthly analysis. During the four months analyzed, the
preferred region of initiation varies slightly from the north and northwest in July,
to be more concentrated on the northwest in September, to spread toward the west
and slightly to the central and southern region, to then completely spread toward
the central and eastern Amazon with some spread over the south. These results are
in agreement with previous studies such as Rehbein et al. (2018). Over the north-
ern Amazon, there are convective systems initiating throughout the four months,
however, July is the month with the most convective genesis. The results for July
corroborate what is found in many studies that this is the most of preferred initiation
for Amazon squall lines (COHEN et al., 1995; ALCÂNTARA et al., 2011).

Figure 5.5 - Spatial distribution of the preferred regions of genesis of convective systems
for (a) July, (b) August, (c) September, and (d) October.

SOURCE: Author’s production.
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The number of systems is computed for each month and they are classified as short-
lived and long-lived following Rehbein et al. (2018) (Figure 5.6). For this analysis,
only systems that lasted more than 3 hours are considered. Short-lived systems are
those that lived more than 3 hours but less than 6 hours, whereas long-lived systems
consider those that lasted more than 6 hours. Not surprisingly, among the months
analyzed, a larger amount of convective systems are initiated in October, which
agrees with what is observed in Figure 5.5. The amount of short- and long-lived
systems between these months do not show a significant variation, but it is noted
that October is the month with the largest amount of short-lived system, followed
by September and July. Similarity between the months for the long-lived systems is
also found in Rehbein et al. (2018). However, slightly more long-lived systems were
initiated in July.

Figure 5.6 - Number of systems with genesis inside the Amazon basin during the months
July, August, September, and October (green bars) as well as the monthly
variation of short- (blue bars) and long-lived (red) convective systems. The
difference between green bar and the total of blue and red bars corresponds
to systems with span-life < 3 h.
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Following the squall lines classification of Cohen et al. (1995), convective systems are
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categorized according to their propagation. This classification is used in an attempt
to find a squall line case that propagates inland. Table 5.1 presents the classification
details.

Table 5.1 - Classification of squall lines according to their propagation inside the continent.

Coastal line Convection ≥ 170 km
(CLC, Coastal line Convection)

Squall Lines Type 1 170 km < SL1 ≥ 400 km
(SL1, Squall lines type 1 )

Squall Lines Type 2 SL2 > 400 km
(SL2, Squall lines type 2 )

SOURCE: Author’s production.

According to Cohen et al. (1995), the formation region for Amazon coastal squall
lines is between the latitudes 10◦N and 5◦S, south of the ITCZ during the dry season.
The results shown in Figure 5.5 confirm that. The source region considered in this
study corresponds to the shaded blue polygon in Figure 5.7.

Figure 5.7 - Source region considered for coastal convection.
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The number of systems with genesis in the blue area of Figure 5.7 is presented in
Figure 5.8. In this figure, the orange bars correspond with all systems that had initi-
ation along the coast, the cyan, yellow, and fuchsia bars correspond with the number
of systems classified as CLC, SL1, and SL2, respectively. On the secondary axis of
this figure is also plotted the maximum duration in hours of the systems in each
classification, indicated by the small squares with the colors matching each classi-
fication. As expected, most of the convective systems in all categories have genesis
in July, followed by August, October, and September. On average, the maximum
duration of all systems is around 12 hours which corresponds with the mean maxi-
mum duration of SL2. This agrees with results of Rehbein et al. (2018) for oceanic
systems. Nevertheless, those classified as SL1 always show the longer duration. This
can indicate that SL1 systems were slower than SL2, although SL2 traveled a greater
distance.

Figure 5.8 - Number of all systems with genesis inside the Amazon basin (orange bars)
classified as CLC (cyan bars), SL1 (yellow bars), and SL2 (fuchsia bars) and
the corresponding maximum duration during July, August, September, and
October.
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The last step for the case selection is to analyze the morphological characteristics
of the tracked convective systems (called families in ForTraCC) following part of
the algorithm proposed by Oliveira and Oyama (2015). The method applied in
this thesis consists of filtering convective systems according to their morphological
characteristics after it is verified that the convective system had genesis inside the
shaded blue area in Figure 5.7. The area, tilting, and eccentricity are examined in
order to find tracked convective systems that are more linear and tilted. The initial
criteria is to check whether one convective system of the families with coastal genesis
had an area >100 and tilting <2.5◦. If this condition is satisfied, then search if at
least one cluster of the convective systems had an area >1750 pixels and eccentricity
≤0.7. If this condition is met, the algorithm will also check if at least two clusters had
an area >1300 pixels and eccentricity≤0.75. Finally, if this condition is also satisfied,
the algorithm will check if three clusters had eccentricity ≤0.75. The identification
numbers of convective systems that meet all the conditions are saved along with
their morphological and radiative characteristics.

Figure 5.9a shows that this methodology is able to identify the main tracked con-
vective system associated with cases of Amazon squall lines. The linear organization
along the coast line as the system evolved is well identified by the algorithm. How-
ever, there are two points that need to be considered. The first is that Amazon
coastal squall lines can reach the synoptic scale with the form of a discontinuous
or arc of discrete clusters of cells (GARSTANG et al., 1994), and second is that new
cells can be developed as part of the squall line circulation (interaction between
the updrafts and downdrafts), and be identified by ForTraCC as a separate system
rather than as part of the whole system. Two examples are shown in Figure 5.9b–c
of convective systems tracked in ForTraCC for which hour and longitude genesis are
very close to the main system in Figure 5.9a. With a visual analysis of the satellite
imagery, it is possible to identify that these other systems are part of the same Ama-
zon coastal squall line that reached synoptic dimensions with new convection being
developed at different times. Therefore, with this current methodology, a subjective
analysis is still needed to complement the information obtained with ForTraCC.
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Figure 5.9 - Tracked convective systems associated with an Amazon coastal squall line
from ForTracc outputs using the modified objective method. The blue clus-
ters represent the positioning and extent of the tracked system during its
evolution. Panels present the evolution of (a) the convective system identified
with number 4596, (b) the convective system identified with number 4630,
and (c) the convective system identified with number 4915.

SOURCE: Author’s production.

The morphological and radiative characteristics of three tracked convective systems
are summarized in Table 5.2. The systems with identification numbers (Ids) 4596
and 4630 were identified with only 40 minutes of difference where 4630 seems to
be one of the clusters initially developed at the edge of the system. Meanwhile
the system with Id: 4915 was identified 6 hours and 10 minutes later, when the
main system seems to be between the intensification and maturation stage. The
three systems show a consistent wind propagation direction, from the northeast
to southwest (third quadrant: 180 to 270◦). System 4596 shows more of a linear
shape with mean eccentricity of 0.35. In general, systems 4596, 4630, and 4519
propagated 256, 1657, and 144 km inland toward the southwest with a mean velocity
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of 41.4, 49.56, and 34.12 km h−1, and a span-life of 7.348, 26.553, and 4.509 hours
respectively. According to the traveled distance inland, these systems are classified
as SL1, SL2, and CLC, respectively. Considering that the three systems are part
of a larger scale squall line, after several continuous, split, and merge stages, the
whole system had an average span-life of 12.8 h, similar to what is found in other
studies (REHBEIN et al., 2018).

Table 5.2 - Morphological and radiative characteristics of tracked convective systems as-
sociated with an Amazon coastal squall line from ForTracc outputs, where:
Lat_ini and Lon_ini are the initial latitude and longitude where the system
was detected; Dir is the direction of movement of the system; Dista is the
distance traveled; Siz_max, Siz_me, Tilt_max, Tilt_me, Ecc_max, Ecc_me,
Vel_max, and Vel_me are the mean and maximum size, tilt, eccentricity, ve-
locity achieved by the convective system along its trajectory; Tmin_min and
Tmin_me are the mean and minimum of the minimum temperature achieved
by the system; New, Conti, Split, and Merge are the different classifications
according to the superposition criterion explained in Section 5.2.3; and Class
corresponds to the classification received according to Cohen et al. (1995) and
presented in Table 5.1. The date format is yyyymmddhhmm.

Ids 4596 4630 4915
Date 202007051720 202007051800 202007052330
Lat_ini -0.758 4.71 0.001
Lon_ini -47.912 -53.748 -52.487
Dir 245.081 265.611 246.285
Dista 256 1657 144
Dura 7.348 26.553 4.509
Siz_max 13906 20975 2837
Siz_me 5674.93 10424.19 1770
Tilt_max -2.21 42.9 6.64
Tilt_me -16.25 0.06 -28.57
Ecc_max 0.64 1 0.92
Ecc_me 0.35 0.72 0.6
Vel_max 63.23 68.55 62.48
Vel_me 41.4 49.56 34.12
Tmin_min 187.2 184.38 193.96
Tmin_me 198.02 197.71 202.87
New 1 1 0
Conti 35 124 25
Split 5 16 3
Merge 4 19 0
Class SL1 SL2 CLC

SOURCE: Author’s production.
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5.2.4 Case overview

The Amazon coastal squall line case previously presented is selected for the numer-
ical simulations. Figure 5.10 shows the initiation and evolution of the convection
associated with this system. Some of the initial cells are observed between French
Guiana, the state of Amapá and northern Para in Brazil. Between 19:00 UTC and
21:00 UTC, more cells develop and a line of discontinuous convective storms is
observed along the coast in the satellite images. The strongest convection occurs
at 23:00 UTC, and it is also observed that the stratiform part has widened. This
cloud band, with a northwest-southeast orientation, slowly propagates inland from
northeast to southwest. Some inner clusters have very cold cloud tops (white shade
indicates temperatures lower than -75◦) indicating possible overshootings and that
deep convection is occurring. At 01:00 UTC the line has propagated more inland and
some clusters have decreased their intensity while some are still very deep. 4 hours
later, at 05:00 UTC, the squall line is further into the continent and afterwards
it seems to merge with other convective systems in the area. The convection asso-
ciated with the squall line continues to propagate toward the southwest Amazon,
but it loses its linear characteristics. Over the Atlantic ocean, strong convection is
occurring associated with the ITCZ.
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Figure 5.10 - Brightness temperature from the GOES-16 infrared 13 channel from
17:00 UTC on 5 July 2020 through 01:00 UTC on 6 July 2020 every 2 hours
(a, b, c, d, and e) and at 05:00 UTC on 6 July 2020 (f).

SOURCE: Author’s production.

In order to explore the large scale conditions on 5 and 6 July 2020, the wind speed
is examined. Figure 5.11 presents the mean of the wind speed at 250 hPa and
at 850 hPa for both days from the ECMWF Reanalysis v5 (ERA5) (EUROPEAN

CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS, 2019). The presence of a low
level jet is clear at 850 hPa, which can also be observed through 900 hPa to 600 hPa
(figures not shown) as indicated in previous studies (COHEN et al., 1995). Level
850 hPa shows the average characteristics among those vertical levels. The easterly
low level jet with maximum winds between 20 to 25 kts (10 to 12.86 m s−1) is
observed parallel to the coast, from French Guiana to the north of Ceara, Brazil and
extending into the continent. At 23:00 UTC, maximum winds reach 30 to 35 kts
(15.43 to 18 m s−1) on the area over the ocean and northern Amapá. This indicates
the support of the low level jet to the propagation of the squall line toward the
continent. At higher levels, an anticyclonic circulation is observed over the southwest
Amazon as a response to heat sources supporting the divergence in altitude and
convergence in the lower levels. The ITCZ is observed at around 5◦, as expected for
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this month. Part of the subtropical jet is observed on the Pacific Ocean at around
20◦S.

Figure 5.11 - Mean of the wind speed at 250 hPa (a) and at 850 hPa (b) on 5 and 6 July
2020 from the ECMWF Reanalysis v5 (ERA5).

SOURCE: Author’s production.

5.3 Numerical experiments

The focus of this section is to extend the testing and evaluation of RRFS to the
context of the case study over northern South America. Many of the options tested
for the case study in the central US are also tested for this domain over South
America. In this section, the general setup of the experiments, cycling configuration,
description of the experiments conducted, verification methodology, and results and
subsequent discussions are presented.
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5.3.1 Setup of the experiments

For the simulation of this case, a domain is configured using 1200 × 700 grid cells
centered on the coordinate point at 1◦N and 57◦W with 3 km horizontal grid spacing
and 64 vertical layers. The domain covers the area of formation and propagation of
the squall line through the western Amazon. It is configured to also include part
of the Atlantic Ocean in order to provide the model adequate boundary conditions
with information on the larger scale systems, such as part of the ITCZ that can
be observed in Figure 5.10. Similar to the case over the central US, the Extended
Schmidt Gnomonic method developed by Purser et al. (2020) and implemented in
the SRW application is used for grid generation. Figure 5.12 shows the domain
coverage and orography created by the pre-processing utilities.

Figure 5.12 - Domain with the orography created for numerical experiments of the case
study over northern South America. The black star indicates the central
latitude and longitude of the domain.
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SOURCE: Author’s production.

5.3.1.1 Data

A survey of available data sources in the area was carried out for data assimilation
purposes. Some of the available sources for meteorological weather applications on
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the Amazon have been discussed in Wohl et al. (2012). In this region, some meteo-
rological stations are available, both conventional and automatic, from the Brazilian
Institute of Meteorology1 (INMET; acronym in Portuguese for Instituto Nacional de
Meteorologia). Although there are very few locations, radiosondes are launched pro-
viding vertical profiles of pressure, temperature, wind, and humidity. Airports and
conventional weather stations provide METAR reports and aircrafts also provide at-
mospheric information in the different phases of flights. In this region, there is radar
coverage, mainly from the Protection System of the Amazon (SIPAM2; acronym in
Portuguese for Sistema de Proteção da Amazônia). Another data source is the Brazil-
ian Network for Continuous Monitoring of the GNSS Systems (RBMC3; acronym in
Portuguese for Rede Brasileira de Monitoramento Contínuo dos Sistemas GNSS em
tempo real) which provides GPS-IWV measurements. The availability of these data
sources was verified for the period of occurrence of the squall line. Among all sources
listed, there was no coverage over the interest area from RBMC stations and SIPAM
radars. Therefore, most of the available data are from conventional sources which
already go into the GTS. Hence, observations from GDAS prepBUFR are used for
the data assimilation which includes sondes, marine, synotic and METAR reports.

All simulations start at 00:00 UTC on 4 July 2020 and run 3-hourly cycles until
21:00 UTC on 6 July 2020. Analyses and forecasts from the GFS with 0.25◦ of
resolution are used to generate the ICs and LBCs for the FV3LAM. GDAS prep-
BUFR observations are assimilated in each experiment along with BURF GNSSRO
bending angles and satellite-derived winds and radiances. Available LEO satellites
during 4 to 6 July 2020 include the same missions as for the case over the cen-
tral US (see Section 4.2.2.1), that is, COSMIC-2, MetOp A, B, and C satellites,
KOMPSat5, PAZ, and Tandemx and TerraSARX satellites. Assimilated radiances
included the Microwave Humidity Sounder (MHS), the Infrared Atmospheric Sound-
ing Interferometer (IASI), the High resolution Infrared Radiation Sounder (HIRS/4),
the Atmospheric Infrared Sounder (AIRS), and the Advanced Microwave Sounding
Unit-A (AMSU-A) sensors. Table 5.3 shows the sensors and satellites from which
radiance observations are assimilated, using the symbol

√
. The strategy followed

in Section 4.2.2.1 to assimilate GNSSRO observations from GDAS observations is
followed for this case study for all the data assimilated. At overlapping hours, such
as 03:00 UTC, 09:00 UTC, 15:00 UTC, and 21:00 UTC, observation files from the

1https://portal.inmet.gov.br/
2https://ipam.org.br/glossario/sipam-2/
3https://www.ibge.gov.br/en/geosciences/geodetic-positioning/

services-for-geodetic-positioning.html
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adjacent synoptic hours are reused, as shown in Figure 4.3. The time window used
is 3 hours, allowing for observations within 1 hour and 30 minutes before to 1 hour
and 30 minutes after the analysis time to be assimilated. Furthermore, the hybrid
3DEnVar analysis uses the GDAS 80 member ensemble forecasts (9 h forecasts),
following the same strategy in the RAP system as in the case study over the US
(see Figure 4.4).

Table 5.3 - Assimilated radiances observations from each sensor and satellite.

Satellites
Sensors NOAA-18 NOAA-19 MetOp A MetOp B AQUA
MHS

√ √ √

AMSU-A
√ √ √ √ √

HIRS/4
√ √

IASI
√ √

AIRS
√

SOURCE: Author’s production.

5.3.2 Cycling configuration

For this case study, the cycling configuration of Section 4.2.3 was modified due to
the lack of hourly resources (observations, analyses, and forecasts) to provide model
initial and boundary conditions. Therefore, a 3 hourly updated cycling strategy
is configured using GFS ICs and LBCs and GDAS observations. Cold starts are
similarly performed every 12 hours at 00:00 and 12:00 UTC and warm starts are
performed at all other cycles using the FV3LAM 3 h forecast from the previous
cycle as background for the analysis. In each cycle, a 24 h free forecast is launched
following the analysis, with hourly outputs. Figure 5.13 illustrates the RRFS cycling
configuration from cycles initialized between 00:00 UTC through 18:00 UTC.
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Figure 5.13 - Diagram of the 3-hourly cycling configuration for RRFS for the case study
over northern South America (SA).
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5.3.2.1 Sensitivity experiments

Various configurations and algorithms available in GSI that were tested over the US
are also tested in this chapter in order to understand sensitivities of the system in this
different environment with low data density and to what extend the low data density
assimilation can positively impact the analyses. Table 5.4 lists all experiments in
which GSI options are tested.

As in Chapter 4, an experiment with no data assimilation called NoDAsa is pro-
vided, which is used as the baseline for all other experiments. Similar to NoDA,
NoDAsa uses the cycling configuration of Section 5.3.2 but without data assimila-
tion in any cycle. Two physics suite were also tested in order to choose the most
appropriate one for this case study: the GFSv15 physics suite and a suite based on
the HRRR physics, which is an updated version of the physics suite used in Chap-
ter 4 and is called FV3_HRRR. As the physics suite RRFSv1a, FV3_HRRR is
based on the Thompson Aerosol-Aware microphysics scheme (THOMPSON; EIDHAM-

MER, 2014) and keeps the other physical parameterizations mentioned in Section 3.2.
On the other hand, the GFSv15 is based on the GFDL six-category cloud micro-
physics scheme. Figure 5.14 shows precipitation forecasts from these experiments
which were run without data assimilation. 1 h accumulated precipitation estima-
tions from the Climate Prediction Center (CPC) morphing technique (CMORPH)
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satellite precipitation estimates are used for comparison. The ccpp_HRRR shows
smaller coverage than ccpp_GFSv15, but it captures the main precipitating pat-
terns shown in the observations and with intensity closer and scattered patterns as
in the precipitation estimations. The ccpp_GFSv15 overestimates the accumulated
precipitation in terms of coverage and the intensity, which is greatly overestimated
at 6 h forecasts. Therefore, the suite based on HRRR physics was the selected suite
in all experiments.

Figure 5.14 - 2, 4, and 6 h forecasts of 1 h accumulated precipitation from experiments
ccpp_HRRR (d, e, and f) and ccpp_GFSv15 (g, h, and i), initialized at
19:00 UTC on 4 July 2020 and the precipitation estimates from CMORPH
at valid hours 17:00, 19:00, and 21:00 UTC (a, b, and c), respectively.

SOURCE: Author’s production.

In previous chapters, the importance of using hybrid methods for areas with sparse
data was discussed. Thus, a series of experiments were conducted testing different
relative weights of the ensemble background error covariance. These experiments

103



explore what is the best weight of the ensemble background error covariance for this
region. For this case, pure ensemble background error covariance, a combination
of 85 % ensemble and 15 % static background error covariance, and 3DVar are
examined in experiments 100EnBECsa, 85EnBECsa, and 3DVarsa, respectively. An
experiment using a combination of 75 % ensemble and 25 % static background error
covariance (75EnBECsa) was also conducted, but since differences were subtle in
comparison with 85EnBECsa, only results from the experiment 85EnBECsa are
presented. These values where selected considering previous studies with RAP and
GFS and current study using HAFS. As mentioned in Subsection 4.3.2, the method
proposed by Azevedo et al. (2020) should be explored in order to provide a more
objective and appropriate hybrid weights for the system and study area.

Previous studies (HAMILL; SNYDER, 2000; WHITAKER et al., 2004) have shown that
the localization of the covariances can bring relevant improvements in the analyses
and forecasts in areas of low data density. Therefore, in this study both the vertical
and horizontal localization of the covariances are explored. Three experiments are
conducted testing horizontal localization values of 110 km and 330 km, and vertical
localization values of 3 and 9 layers as in in Hu et al. (2017) for RAP. The experiment
HL330sa is performed changing the horizontal localization radius to 330 km and
keeping a vertical localization radius of 3 layers. The experiment VL9sa is then
conducted increasing the vertical localization radius to 9 layers and maintaining
the original horizontal localization radius of 110 km. Finally, a third experiment is
performed in which both parameters are modified adopting a horizontal localization
radius of 330 km and a vertical localization radius of 9 layers. This experiment
is called VL9HL330sa. A horizontal localization radius of 110 km and a vertical
localization radius of 3 layers is used in the rest of the experiments, following the
results obtained in Chapter 4.

The supersaturation removal function in GSI showed great improvements in the
forecasts of the case over central US, and then is also tested for this case study with
the experiment CLIPSATsa. In CLIPSATsa, a combination of 85 % and 15 % static
background error covariance is used.

Other experiments were performed, such as using an updated GSI code in which the
PBL pseudo-observations function has been adjusted to be used with an FV3-based
model. This experiment, called PSEUDOsa, showed similar results to 85EnBECsa
in all forecasts and statistics analyzed, therefore the results are only shown in the
analysis of the quantitative precipitation in Section 5.3.6. In addition, observation
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system experiments (OSE) were conducted in order to examine the impact of the
different data types used. Better results were found when all observations are assim-
ilated, in terms of the precipitation representation and the ETS and FBIAS results,
but the impacts of adding a data type each time is very small and are not shown.

The same baseline configuration in the analyses of the previous study is adopted in
the simulations of this case over the tropics. This is in terms of the analysis grid
ratio, ensemble grid ratio, and outer and inner loops for the minimization of the
3DVar cost function.

Table 5.4 - List of experiments conducted testing different options in GSI in this study.

Experiments BEC Supersat. PBL Localization
weights removal pseudo-obs. scales

NoDAsa No data assimilation

3DVarsa 0 % ensemble false false hloc=110 km
100 % static vloc=3 layers

100EnBECsa 100 % ensemble false false hloc=110 km
0 % static vloc=3 layers

85EnBECsa 85 % ensemble false false hloc=110 km
15 % static vloc=3 layers

VL9sa 85 % ensemble false false hloc=110 km
15 % static vloc=9 layers

HL330sa 85 % ensemble false false hloc=330 km
15 % static vloc=3 layers

VL9HL330sa 85 % ensemble false false hloc=330 km
15 % static vloc=9 layers

CLIPSATsa 85 % ensemble true false hloc=110 km
15 % static vloc=3 layers

PSEUDOsa 85 % ensemble false true hloc=110 km
15 % static vloc=3 layers

SOURCE: Author’s production.

5.3.3 Forecast verification

The lack of observations is not only an issue for the generation of the analyses but
also for the verification of forecasts. In this case, satellite data are invaluable since
they are available worldwide covering the Amazon region and have been extensively
used in many researches (BUARQUE et al., 2011). Satellite-derived precipitation es-
timates is therefore used for the model verification along with surface observations
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from GDAS prepBUFR for the 2 m temperature and dew point examination.

The CMORPH satellite precipitation estimates (XIE et al., 2017) are used for the
verification of precipitation forecasts. CMORPH precipitation estimates are derived
from geostationary satellite infrared data combined with passive microwave (PMW)
retrievals from LEO satellites. A bias correction is applied using the CPC daily
gauge analysis over land and the Global Precipitation Climatology Project (GPCP)
pentad merged analysis of precipitation over ocean (XIE et al., 2017). In an assessment
of the precipitation diurnal cycle over Brazil using various precipitation estimate
products, Afonso et al. (2020) found that for northern South America including the
coastal region and continental Amazon, CMORPH produces the best performance
when compared to rain gauges. Nevertheless, it is worth mentioning that Palharini
et al. (2020) showed that this product tends to overestimate the precipitation over
this region. This product has a temporal frequency of 1 hour. The hourly MERGE
has also great potential for being used for convective scales, however, an extensive
evaluation and calibration of the product is needed for that temporal scale.

MET tools are used for the forecast verification. The PB2NC tool is used to convert
the GDAS observations in BURF to the format used by MET. Since GDAS includes
observations in a 6 hours time window, individual files were extracted to facilitate
the verification at hours in between the synoptic times. The time window used for
these data ranges from 1 hour and 30 minutes before to 1 hour and 30 minutes.
Using the Point-Stat tool, the mean, RMSE, bias, and standard deviation of the
difference between the point observations and forecasts are computed. The Grid-
Stat tool is used for the verification of precipitation using the same thresholds as in
Section 4.2.5. The ETS and FBIAS statistics are used for the statistical analysis.

5.3.4 Results and discussions

In this section, the results and subsequent discussions are presented. It follows the
main sections of the results in the previous chapter in order to provide similar
analyses for both cases study.

5.3.4.1 Examination of analyses

As shown in results from the case study over central US, the data availability and
coverage are the backbone of rapid updated analyses. Figure 5.15 presents the spa-
tial distribution of assimilated temperature (Figure 5.15a), wind (Figure 5.15b and
c), and radiance observations (Figure 5.15d) at the 15:00 UTC cycle on 5 July 2020
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for experiment 3DVarsa. The data availability and coverage is similar in other ex-
periments and are not shown here. The analysis residuals are shown at each point.
Temperature observations in Figure 5.15a are from conventional sources including
radiosondes, surface marine observations such as buoys, synoptic observations over
land, and METAR reports. At most of the same locations, humidity and surface
pressure observations are also available. The conventional data is sparse and scat-
tered throughout the domain but with the lowest analysis residuals. In Figure 5.15b,
the winds are from the same conventional sources and from scatterometers over the
ocean (ASCATW). Satellite-derived winds are shown in Figure 5.15c. Radiance ob-
servations from the MHS sensor from the MetOp B satellite covering the western
side of the domain are presented in Figure 5.15d. The mean of the RMS(OmA) value
in the bottom of each figure indicates that radiances present the larger values. At
upper levels the coverage is improved by nonconventional sources. All these data
combined have great potential to positively impact the analyses and forecasts.
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Figure 5.15 - Spatial distribution of temperature (a), winds (b and c), and radiance (d)
observations and analysis residuals (OmA) for the analysis at 15:00 UTC
on 5 July 2020 from the experiment 3DVarsa. As in Figure 4.10, the color
scale to the right indicates the magnitude of analysis residuals. The legend
of observation type markers is shown at the top along with brackets listing
associated counts and RMS error for the OmA. In the bottom of each panel
is presented the total and averaged RMS of the OmA of all observations.

SOURCE: Author’s production.

The RMS error and bias of the OmA and OmB of the temperature from all obser-
vation types for analyses in all cycles performed for experiments 85EnBECsa and
3DVarsa are shown in Figure 5.16. These results allow a further examination of the
RRFS analysis on this region and confirm the good performance of the analysis
system. The analyses created at each cycle are closer to the observations with lower
RMS and bias of the OmA values. Especially, the hybrid 3DEnVar with 85 % of the
ensemble error covariance shows less biased analyses when compared to 3DVarsa.
However, there is an evident diurnal cycle with an increase of the errors during the
afternoon hours and a decrease during the night and early morning. As observed in
the case over central US, the RMS of the OmB shows an increase in the first cycle
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after the model is cold started which may be related to the need of an spin-up in the
cycling configuration. This occurs at cycles initialized at 03:00 UTC and 15:00 UTC
followed by a noticeable increase in the RMS of OmB values at 18:00 UTC. These re-
sults corroborate the difficulty of predicting convection during the afternoon hours,
which is more evident in these experiments because of the lower coverage of surface
data, as shown in previous figure. This problem could be related to the fact that
numerical models tend to produce rainfall earlier in the day than in the observations.
Therefore, it would be interesting to evaluate the model diurnal cycle compared to
CMORPH products in future studies. This issue could also be alleviated by using a
different cycling configuration, which is a work already underway for RRFS.

Figure 5.16 - RMS and bias of the temperature background (OmB) and analysis (OmA)
against all observation types for analyses in all cycles performed for experi-
ments (a) 85EnBECsa and (b) 3DVarsa.
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5.3.4.2 The impact of hybrid ensemble weights and ensemble localiza-
tion radius

5.3.4.3 The impact of hybrid ensemble weights

The benefits of using hybrid analysis through a 3DEnVar analysis is investigated for
this case study. Figure 5.17 presents the temperature and specific humidity analysis
increments for the 15:00 UTC cycle on 5 July 2020 for experiments 100EnBECsa,
85EnBECsa, and 3DVarsa. The selection of this analysis hour follows the criteria
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used in the previous case study; it is closer to the convection initiation and is created
using warm start. The increments have lower magnitude than, for example, those
shown for the case study over US. This is expected due to the lower data cover-
age and the temperature horizontal gradients in the tropics is much smaller than at
higher latitudes (where the geostrophic adjustment induces a strong temperature re-
sponse). The increments are more concentrated over certain points and some spread
is observed in the surrounding areas. In 3DVarsa, the increments are smoother than
in 85EnBECsa and 100EnBECsa. Meanwhile, the increments in 100EnBECsa are
slightly more noisy than those in 85EnBECsa. This indicates the effects of using the
contribution from an ensemble background error covariance in producing analyses
with more flow-dependent characteristics. Although not shown here, the results of
the OmA and OmB statistics for these experiments show lower RMS of the OmA in
85EnBECsa and 100EnBECsa when compared to 3DVar, with 85EnBECsa slightly
better than 100EnBECsa.

Figure 5.17 - Analysis increment for temperature (K) (a, b, and c) and specific humidity
(g kg−1) (d, e, and f) at the first level above the surface for 15:00 UTC on
5 July 2020, for experiments 100EnBECsa (a and d) 85EnBECsa (b and e),
and 3DVarsa (c and f).

SOURCE: Author’s production.
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The 2, 4, and 6 h forecasts of 1 h accumulated precipitation from the 15:00 UTC
cycle on 5 July 2020 are examined in Figure 5.18 for experiments 100EnBECsa,
85EnBECsa, 3DVarsa, and NoDAsa along with the precipitation estimates from
CMORPH at valid hours 17:00, 19:00, and 21:00 UTC, respectively. The exper-
iments using RRFS correctly capture the the precipitation along the coast from
northern Para, Brazil until eastern Venezuela and the convection occurring over
northern Amazonas and Roraima, Brazil, and southeastern Venezuela. This indi-
cates the ability of the system in representing the large scale conditions, which are
better represented in the experiments using data assimilation. The data assimila-
tion has a greater impact in the first 2 and 4 h forecast where experiments with
data assimilation show positive impacts over the experiment NoDAsa. Between the
experiments with data assimilation, 3DVarsa shows an overestimate of the intensity
and coverage of the precipitation at all forecasts lengths. Meanwhile, the experiment
85EnBECsa shows a better agreement with the precipitation estimates than 100En-
BECsa and 3DVarsa. At 4 h and 6 h forecast, the experiment 100EnBECsa shows
improvements in the precipitation coverage along the coast as in other parts of the
domain, but 85EnBECsa shows slightly better results. All experiments overproduce
the precipitation over the ocean, especially in 3DVarsa.
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Figure 5.18 - As in Figure 5.14, but for experiments 100EnBECsa (d, e, and f), 85EnBECsa
(g, h, and i), 3DVarsa (j, k, and l), and NoDAsa (m, n, and o).

SOURCE: Author’s production.

Figure 5.19 presents the RMSE and bias for the 3 h forecast of 2 m temperature
(Figure 5.19a and c) and 2 m dew point temperature (Figure 5.19b and d) for experi-
ments 100EnBECsa, 85EnBECsa, 3DVarsa and NoDAsa. First of all, it is noticeable
that 2 m temperature and 2 m dew point RMSE and bias values follow the diurnal
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cycle, with lower RMSE and bias values during the night and larger values during
the afternoon, which is similar to results in Figure 5.16. The larger negative temper-
ature bias during the afternoon may be a consequence of the fact that the observed
temperature is “biased” towards the river margin temperature and not the temper-
ature away from rivers since most of the conventional data sources are located along
the Amazon River. 2 m temperature RMSE values show a positive impact from the
data assimilation at cycles initialized between 00:00 UTC to 09:00 UTC (03:00 UTC
to 12:00 UTC), with the lower RMSE values in the experiment 85EnBECsa (Fig-
ure 5.19a–b). However, between cycles initialized at 15:00 UTC and 21:00 UTC, the
lower RMSE and bias are in the experiment NoDAsa. This indicates that although
the analyses are closer to the observation at these hours, as shown in Figure 5.16,
the forecasts are still dominated by the large scale boundary conditions due to less
data availability for the surface. 2 m dew point temperature RMSE and bias values
show improvements in experiments 85EnBECsa and 100EnBECsa over NoDAsa at
the same hours as in 2 m temperature, while more neutral impact during the after-
noon cycles. Overall, results between experiments with data assimilation show that
3DVarsa has the lowest performance in both variables.
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Figure 5.19 - RMSE and bias for the 3 h forecast of 2 m temperature (a and c) and 2 m
dew point temperature (b and d) against synoptic station and METAR obser-
vations for experiments 100EnBECsa, 85EnBECsa, 3DVarsa, and NoDAsa.
The legend for each experiment is shown at the bottom of panel (c). The
RMSE averaged over all cycles is shown in panels (a) and (b) for each ex-
periment.

SOURCE: Author’s production.

5.3.4.4 The impact of covariance localization

In order to increase the correlations between variables at larger distances in both
vertical and horizontal scales, experiments VL9sa, HL330sa, and VL9HL330sa were
conducted and results are explored in this subsection. Similar to Figure 5.17, Fig-
ure 5.20 presents the analysis increments of temperature and specific humidity for
the 15:00 UTC cycle on 5 July 2020 but for experiment VL9sa, HL330sa, and
VL9HL330sa. For this case study, the increase of the vertical localization radius
from 3 to 9 layers shows almost neutral impact in the analysis when compared to
85EnBECsa. However, increasing the horizontal localization from 110 to 330 km
shows a clear impact in the temperature and specific humidity analysis increments
(Figure 5.20b and e). Larger analysis increments, in coverage and magnitude, are ob-
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served in many parts of the domain. Increments are also more detailed (less smooth)
than increments in VL9sa. In the experiment VL9HL330sa (Figure 5.20c and f), in
which both length scales are modified, the analysis increments are similar to HL330sa
but slightly less intense because of the change in the vertical localization. These re-
sults corroborate the importance of the covariance localization.

Figure 5.20 - As in Figure 5.17, but for experiments VL9sa (a and d), HL330sa (b and e),
and VL9HL330sa (c and f) for 15:00 UTC on 5 July 2020.

.

SOURCE: Author’s production.

An analysis of the RMS and bias of the OmA and OmB gives another view of the
impact of the localization scale modifications in this study. Figure 5.21 presents these
results for experiments 85EnBECsa and VL9HL330sa. The results from VL9HL330sa
are very similar to 85EnBECsa. However, the spikes in the RMS of the OmB values
observed in 85EnBECsa are improved in VL9HL330sa, in particular in the cycles
initialized at 18:00 UTC. The bias in VL9HL330sa is also slightly lower than in
85EnBECsa. However, an increase of the same magnitude is observed in the averaged
RMS of the OmA in VL9HL330sa when compared to 85EnBECsa.
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Figure 5.21 - As in Figure 5.16, but for experiments 85EnBECsa (a) and VL9HL330sa (b).
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In order to investigate whether or not the adjustments in the temperature and spe-
cific humidity analysis increments have also improved the forecasts, the precipitation
forecasts are analyzed. Figure 5.22 presents the 2, 4, and 6 h forecast of 1 h accu-
mulated precipitation and the estimates from CMORPH. Overall, the results are
slightly similar, but improvements in the precipitation along the coast are observed
in the experiments with the increase of the horizontal localization at all forecast
lengths. A slightly better coverage of the precipitation is shown in HL330sa and
VL9HL330sa at 2 h forecast when compared to 85EnBECsa. At 4 and 6 h fore-
casts, the experiment VL9HL330sa show results that match better the precipitation
estimates.
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Figure 5.22 - As in Figure 5.18, but for experiments 85EnBECsa (d, e, and f), VL9HL330sa
(g, h, and i), HL330sa (j, k, and l), and VL9sa (m, n, and o).

SOURCE: Author’s production.

The RMSE and bias for the 3 h forecast of 2 m temperature (Figure 5.23a and
c) and 2 m dew point temperature (Figure 5.23b and d) for experiments 85En-
BECsa, VL9HL330sa, HL330sa, VL9sa, and NoDAsa are presented in Figure 5.23.
The RMSE and bias show the same diurnal pattern as in Figure 5.19. However,
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the differences between experiments with data assimilation and without it are more
marked. The impact of the variation in the horizontal and vertical localization radius
is almost neutral to negative in most of the cycles and for both variables when com-
pared to 85EnBECsa. The experiment VL9HL330sa shows the worst performance at
cycles initialized between 15:00 UTC and 21:00 UTC, when the NoDAsa performs
best.

Figure 5.23 - As in Figure 5.19, but for experiments 85EnBECsa, VL9HL330sa, HL330sa,
VL9sa, and NoDAsa.

SOURCE: Author’s production.

5.3.5 The impact of supersaturation removal and PBL pseudo observa-
tions

The function to remove supersaturation in the background, during the analysis pro-
cess in GSI, was activated in the experiment CLIPSATsa. As in Section 4.3.4, the
difference in the specific humidity (g kg−1) analyses between experiments with and
without activating this option is analyzed. Figure 5.24 shows the difference between
the 85EnBECsa analysis and the CLIPSATsa analysis with the supersaturation clip-
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ping function activated (85EnBECsa vs. CLIPSATsa) at model hybrid level 50, for
the 15:00 UTC cycle on 5 July 2020. More positive and negative differences with
a larger magnitude are observed in the southwestern part of the domain over state
of Amazonas and northwestern Para in Brazil, and also over Guyana which corre-
sponds with the area where precipitation is occurring according to the CMORPH
estimates.

Figure 5.24 - Difference in specific humidity (g kg−1) fields for the 15:00 UTC cycle on
5 July 2020 between analyses without and with supersaturation clipping
activated (85EnBECsa vs. CLIPSATsa), at model hybrid level 50.

SOURCE: Author’s production.

The 2, 4, and 6 h forecasts of 1 h accumulated precipitation from the 15:00 UTC cycle
on 5 July 2020 for experiments CLIPSATsa and 85EnBECsa are shown in Figure 5.25
along with the precipitation estimates from CMORPH at valid hours 17:00, 19:00,
and 21:00 UTC, respectively. CLIPSATsa shows improvements when compared with
85EnBECsa, especially over the ocean at all forecast lengths. However, over land,
the improvements are mainly at 4 and 6 h forecasts with a slightly better coverage
of the precipitation along the coast.
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Figure 5.25 - As in Figure 5.18, but for experiments 85EnBECsa (d, e, and f), CLIPSATsa
(g, h, and i).

SOURCE: Author’s production.

5.3.6 Quantitative precipitation forecast verification

A further evaluation of the precipitation forecasts was performed in terms of the
ETS and FBIAS for the same thresholds analyzed in the case over central US (i.e.,
0.01 inches h−1 and 0.25 inches h−1). Figure 5.26 shows the ETS and FBIAS for
1 h accumulated precipitation greater than 0.01 inches h−1 (Figure 5.26a and c)
and 0.25 inches h−1 (Figure 5.26b and d) for experiments CLIPSATsa, PSEUDOsa,
VL9H330sa, 100EnBECsa, 85EnBECsa, 3DVarsa, and NoDAsa aggregated at each
forecast lead hour. Overall, the ETS and FBIAS results for both thresholds indicate
that 3DVar performs better than the other experiments especially in the first 2 h
forecast. For the next forecast lengths, a better performance of the 1 h accumu-
lated precipitation greater than 0.01 inches h−1 is achieved in 85EnBECsa followed
by PSEUDOsa, VL9H330sa, and CLIPSATsa until 9 h forecast. In the following
forecast hours, the impact from the data assimilation starts to decay, although the
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experiment CLIPSATsa shows the slightly best performance from the 9 h to the 24 h
forecast. The experiment 100EnBECsa shows better performance than NoDAsa, but
worse than the other experiments with data assimilation. The FBIAS results for
this threshold shows that 3DVar performs better followed by the experiments 85En-
BECsa, PSEUDOsa, VL9H330sa, and CLIPSATsa which show better results than
100EnBECsa and NoDAsa. The values of the FBIAS indicate that all experiments
underperfom the frequency with which observed events were observed. For 1 h accu-
mulated precipitation greater than 0.25 inches h−1, the performance of the system
is overall low, with the ETS and FBIAS results from all experiments concentrating
at lower ranges and 3DVar showing the best results at shorter lead times. How-
ever, these results should be carefully interpreted since a grid-to-grid approach is
being used for the computation of the ETS and FBIAS, which may not be ideal
for this case. A grid-to-grid verification may benefit the experiment that overesti-
mates precipitation (3DVar) given that the estimated precipitation shows scattered
areas of accumulated precipitation throughout the domain, which is more difficult
for the model to accurately predict. A more appropriate approach for convective
scales such as the neighborhood approach may be considered in future studies as
indicated in Schwartz and Sobash (2017).
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Figure 5.26 - ETS (a and b) and FBIAS (c and d) for 1 h accumulated precipitation fore-
casts greater than 0.01 inches (a and c) and 0.25 inches (b and d) from ex-
periments CLIPSATsa, PSEUDOsa, VL9H330sa, 100EnBECsa, 85EnBECsa,
3DVarsa, and NoDAsa for 24 hour forecasts.
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6 CONCLUSIONS, FINAL REMARKS, AND FUTURE WORK

The NOAA next generation rapidly-updated, convection-allowing forecast system,
or RRFS, is under development and aims to replace the current operational suite of
convection-allowing models at NCEP in the next operational upgrade. RRFS is built
upon the SRW and the current prototype RRFS uses GSI as the analysis component,
providing a suitable research framework to assess the ability of this forecast system
to represent convection. In this study, the data assimilation framework for the proto-
type RRFS is investigated through the simulation of frequent weather systems over
mid- and tropical latitudes, such as a case of a typical spring squall line over central
US and an Amazon coastal squall line case during the 2020 Amazon dry season.
Over both regions, sensitivities to various configurations and algorithms available in
GSI are analyzed in order to find the best configuration to produce more realistic
convection forecasts and provide guidance on the convective scale data assimilation
over regions of the globe with low data density, as in the Amazon region.

6.1 Conclusions

The case study over central US is an squall line that occurred over Oklahoma during
the afternoon of 4 May 2020. Overall, the configurations tested are able to capture
the main characteristics of the major convective systems during the execution period.
The main findings from this case study are listed below:

a) FV3LAM with the RRFSv1a physics suite has good potential for storm
forecasts, giving a reasonably good simulation of the convective initiation
and evolution of the squall line;

b) The convection in the current prototype RRFS tends to be overestimated
in intensity and underestimated in its extent, as found in previous studies
on FV3-based convection-allowing models;

c) The data assimilation makes the analyses fit the observations more closely
in all cycles. However, the RMS errors of the OmB show distinguishable
spikes in cycles where FV3LAM 1 h forecasts are initialized from an exter-
nal model as background for the analyses, which indicates the FV3LAM
is still under spin-up in this situation;

d) Experiments with data assimilation show an overall positive impact com-
pared with the experiment without data assimilation. The data assimila-
tion using pure ensemble background error covariance (100EnBEC) per-
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forms better at 2 h forecasts for the storms, but 75 % ensemble back-
ground error covariance (75EnBEC) produces better forecasts in all fore-
cast lengths with a better positioning of the squall line evolution, especially
at 4 h forecast. Lower RMSE and bias are also found in experiment 75En-
BEC for the analyzed surface variables and most vertical profiles;

e) Reducing the vertical localization from 3 layers to 1 layer in the lowest 10
layers of the analysis grid leads to, in general, a less skillful forecast. This
suggests that the vertical localization configuration used in RAP is already
a good choice and should be used in RRFS;

f) Convection is greatly improved when using PBL pseudo-observations from
surface 2 m temperature and 2 m moisture observations based on RAP
configurations, especially at 4 h forecast with a better coverage and po-
sitioning of the convection. The promising results found in this study for
the storm forecast indicates the potential of the PBL pseudo-observations
function in future versions of RRFS;

g) Supersaturation clipping in GSI can improve specific humidity fields in the
analyses, allowing for more realistic storm and precipitation forecasts at
longer forecast lengths. At shorter forecast lead hours, it produces more
spurious convection but precipitation forecasts are as skillful as in experi-
ments 75EnBEC and 100EnBEC;

h) FV3LAM hourly accumulated precipitation forecasts for different thresh-
olds indicate that heavier precipitation (>0.25 inches (6.35 mm)) is more
difficult to predict than light precipitation (>0.01 inches (0.254 mm)). The
data assimilation clearly improved precipitation forecasts up to 13 h for
both thresholds analyzed;

i) The experiment using 100 % ensemble background error covariance showed
the best 1 h accumulated precipitation forecast quality in the first 4 hours
forecast for lighter precipitation, while experiment 75EnBEC performed
better for 1 h accumulated precipitation greater than 0.25 inches.

The second case study is investigated in Chapter 5. The initial challenge for this
study is the case selection. A methodology, based on different references, is devel-
oped and applied. The following steps are followed, firstly determining the onset and
end of the dry season for the Amazon during 2020 following the work of Marengo
et al. (2001), then executing the ForTraCC to identify and track convective systems
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in satellite infrared imagery for the period previously determined, and finally, fol-
lowing Cohen et al. (1995) and Oliveira and Oyama (2015) search for clusters in
the convective system that meet certain criteria, in terms of their size, tilting, and
eccentricity. The last step is more subjective since it was not possible to establish
the whole life cycle of the squall line case with this objective methodology. From
this methodology, it is found that:

a) The dry season of 2020 near the mouth of the Amazon was between 21
June and 29 October 2020, approximately. This is between the earliest cli-
matological limits suggested in the literature, although the end was earlier
than the climatological range;

b) The results from the ForTraCC execution indicate that northwestern Ama-
zon is the preferred region of formation of convective system during this
period. It extends through the west and central west Amazon;

c) The source region for the Amazon coastal squall lines is clearly identified
over northern Amazon and occur mostly in July, as shown in previous
studies. In this month is also observed a slightly larger amount of long-
lived systems. The largest amount of systems that lasted between 3 and
6 hours are initiated in October;

d) Most of the convective systems in all categories have genesis in July, fol-
lowed by August, October, and September and the average maximum du-
ration of all systems is around 12 hours;

e) The objective methodology applied in this study is able to adequately
identify the main convective system associated with an Amazon coastal
squall line, as a linear band along the coast. During the occurrence of this
system there was the presence of a low level jet parallel to the coast in the
vertical level from 900 to 600 hPa, as suggested in the literature.

The Amazon coastal squall line case that initiated during the afternoon of 5 July
2020 is studied through the execution of various numerical experiments. Overall,
results suggest that RRFS provide reasonably good guidance for the tropical region.
From this results can be concluded that:

a) RRFS is able to capture the main large scale patterns with a correct po-
sitioning of the precipitating systems as analyzed using the CMORPH
precipitation estimates.;
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b) A CCPP physics suite based on HRRR physical parameterizations shows
a better representation of the precipitation, while the GFS-based physics
suite shows larger coverage and intensity than the precipitation estimates;

c) Despite the low coverage of the available data for experiments with data
assimilation, the data assimilation system performs adequately over this
region, with RRFS analyses closer to the observations in all cycles;

d) The precipitation coverage along the coast and other parts of the domain
are improved when using data assimilation. Experiments 85EnBECsa and
100EnBECsa show a closer agreement with the precipitation estimates of
the domain at 4 and 6 h forecast, with 85EnBECsa showing better results
at all forecast lengths;

e) There is a notable diurnal cycle in the RMSE and bias values, with the
NoDAsa outperforming the experiments with data assimilation during the
afternoon hours. Errors associated with the convection occurrence and the
less coverage of surface observation in the domain may have contributed
to these results;

f) The experiment 3DVarsa shows the large RMSE and bias for when com-
paring against observations of 2 m temperature and 2 m dew point tem-
perature in all cycles, while the experiment 85EnBECsa performs better
than the others during the night and early morning hours;

g) Increasing the localization radius in the ensemble-based error covariance,
analysis increments show more flow-dependent characteristics, particularly
when increasing the horizontal localization radius from 110 km to 330 km
which also allows for improvements in the RMS of the OmA values and
to represent slightly better the satellite-derived precipitation estimates.
Nevertheless, when comparing against surface observations, the impact is
neutral to negative;

h) When activating the supersaturation removal in GSI for this case study,
the results show positive impacts against 85EnBECsa with a slightly better
representation of the precipitation along the coast. However, the improve-
ments are small and mainly concentrated at larger forecast lengths;

i) The 1 h accumulated precipitation forecasts for different thresholds cor-
roborates the results found for the case over central US, that heavier pre-
cipitation (>0.25 inches (6.35 mm)) is more difficult to predict than light
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precipitation (>0.01 inches (0.254 mm)), which has also been found in
many other studies using different forecasting systems;

j) The 1 h accumulated precipitation forecasts skill in terms of ETS and
FBIAS using a gridpoint-based verification does not seem appropriate for
the precipitation verification of this case study.

6.2 Final remarks

Since RRFS is under development and an official release is still not available, not
many studies are found in the literature covering the different components of the
system. Therefore, aside from the study of Tong et al. (2020), this thesis is the
first study investigating convective scale data assimilation developments with the
FV3LAM modeling system within the RRFS framework. Furthermore, the results
found in this study contribute to fill a major gap in the literature on the current
capabilities of RRFS, over regions with high and low data density. Additionally,
it is the first study over the Amazon region using a convective data assimilation
system to represent the convection associated with Amazon coastal squall lines and
all the challenges that represents are highlighted. At the same time, taking into
account that RRFS is under active development, results shown here are linked to
the specific version used which may differ from the latest developments of each of
RRFS components.

Though a single case of squall line is analyzed over each region and RRFS com-
ponents are under development, this study provides valuable insights into the per-
formance of prototype RRFS with diverse configurations. More extensive testing
of RRFS, covering a wider variety of cases, larger domain, and longer period of
time, is needed to demonstrate whether results found here are robust or may be
case dependent. Through the case study over northern South America it is shown
that ForTraCC outputs can serve as a starting point for modeling studies over the
Amazon region. The results from Chapter 5 show that RRFS has potential for the
tropical areas, especially when using a HRRR-based CCPP suite. Even though the
amount of data available for the simulations was sparse over the domain config-
ured, results show that using hybrid data assimilation forecasts outperform results
from 3DVarsa. Other verification approaches should be considered for the forecast
verification when comparing against satellite-derived products, such as neighbor-
hood and object-based methods. This work give indication of the performance of
a convection-allowing system using 3-hourly cycles and data already available in
the GTS. Although further testing and evaluation are warranted in addition to the
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options tested here, data assimilation proves to be crucial to improve short term
forecasts of storms and precipitation in RRFS.

Finally, it is important to mention that the activities developed in this work and the
results reported in this thesis are connected with a current Memorandum of Under-
standing between CPTEC-INPE and NCEP-NOAA, which is in conclusion process.
This doctorate thesis is an example of collaboration between these institutions, con-
tributes with the internationalization of the Graduate Program, and give indications
of the potential of the RRFS for future convective data assimilation applications at
CPTEC-INPE inside this collaboration process.

Preliminary results of Chapter 4 are already published in the DTC Newslet-
ter (BANOS, 2020) and as a final report in the DTC Visitor Project website (BANOS

et al., 2021a), and a seminar was presented at the Developmental Testbed Cen-
ter (the recorded video can be found at https://www.youtube.com/watch?v=
0KbZHyRe4IQ). Additionally, an article is under revision and posted as preprint on
Geoscientific Model Development (BANOS et al., 2021c). Results from Chapter 5 are
under preparation for submission to the journal Monthly Weather Review.

6.3 Future work

CPTEC has a new PNT development strategy based on community efforts involving
universities and other Brazilian Institutes. The goal is to provide Brazilian society
with a community-based Unified Earth System Model, in which the data assimila-
tion in all components has been taken into account from the initial conception of
the project. Continuing research along the same lines as this thesis will contribute
significantly to this community model in different aspects, such as the evaluation
process, data assimilation activities, etc.

Despite all the options tested in this study, it is clear that there is still much to
investigate regarding the capabilities of RRFS over the CONUS and the tropics.
As many topics were covered, several paths for the continuation of this work in the
future are being considered. A few suggestions are listed below:

• Future studies may be focused on defining a more complete methodology
to objectively identify squall lines using ForTraCC. This is particularly
important for modeling studies over the Amazon region where the radar
coverage and availability is limited;

• Explore other cycling strategies in which the large scale atmosphere is
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efficiently updated in order to reduce the spikes showed in the OmB and
OmA statistics. This can lead to analysis closer to the observations and
model forecasts. At present, work is underway at NOAA’s Global Systems
Laboratory (GSL) and EMC to determine the best cycling strategy for this
system.

• Investigate the assimilation of radar data over the CONUS and the Ama-
zon, which can help to improve the information on the convective scale
related to hydrometeors;

• Explore ensemble methods for the analysis and model forecasts. Although
this approach is more computationally expensive, the use of ensemble may
help to create analyses closer to the observations through the use of ade-
quate perturbation methodologies for the analysis and forecast ensemble;

• Investigate the use of GOES-16 GLM data as proxy for reflectivity in the
data assimilation system. This approach would be particularly important
for the convective scale data assimilation over regions that relies on satellite
data, such as the Amazon;

• Extend the satellite radiance data assimilation to all sky situations in which
cloud and precipitation-affected pixels are also included. This has proved
to improve the forecasts in NWP centers in recent years and with the
high temporal and spatial resolution of sensors on geostationary satellites
such as the Advanced Baseline Imager (ABI) on GOES16, more realistic
analyses and forecasts can be achieved for convective scales.

• In this study, GSI is the analysis system used for prototype RRFS, how-
ever, it needs to be pointed out that for UFS applications, the Joint Effort
for Data assimilation Integration (JEDI) is being developed, which will
replace GSI as the operational data assimilation system of the NCEP in
the future (TREMOLET; AULIGNE, 2018). Two public releases of JEDI are
already available (https://www.jcsda.org/jedi-fv3-release), foster-
ing community contributions since early stages of development. Therefore,
future studies may be focused on the use of JEDI for RRFS instead of GSI.
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APPENDIX A - CODE AND DATA AVAILABILITY

The source code repository of the SRW version 1.0.0 is available at https://
github.com/ufs-community/ufs-srweather-app (last access: 22 January 2021).
The source code of the GSI analysis system used can be found at https://
github.com/NOAA-EMC/GSI, branch feature/rrfs (last access: 4 February 2021).
The frozen version of the prototype RRFS used in this study (RRFS v0.1) can
be found in Banos et al. (2021d). The MET v9.0.0 source code can be found at
https://github.com/dtcenter/MET/tree/main_v9.0. ICs, LBCs, and RAP ob-
servations used to perform the experiments and verify the forecasts were obtained
from NOAA’s High Performance Storage System (HPSS) archives. Stage IV pre-
cipitation observations were downloaded from the NCAR Earth Observing Labo-
ratory data server at https://data.eol.ucar.edu/cgi-bin/codiac/fgr_form/
id=21.093 (last access: 2 December 2020). Hourly MRMS composite reflectivity
mosaic (optimal method) observations are available on the Iowa Environmental
Mesonet archives at https://mesonet.agron.iastate.edu/archive/ (last access:
27 February 2021). Storm reports were obtained from the SPC archives available at
https://www.spc.noaa.gov/climo/reports/200504_rpts.html (last access: 14
July 2021). All data used for the case study over northern South America are pub-
licly available at the Research Data Archive (RDA1) of NCAR. The namelist files
used for cold or warm start the model, for the analyses in each experiment, and for
the generation of the model grid, topography and surface climatology are provided
online along with the model configuration file, the file used in the analyses to read
the horizontal and vertical scales from an external file, all scripts used to execute
every task of the workflow, all scripts used to process model outputs with MET,
as well as all scripts and data used to create all figures of the paper, via Zenodo
(BANOS et al., 2021b).

1https://rda.ucar.edu/
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