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We investigate the minimal theory of massive gravity (MTMG) in the light of different observational
datasets that are in tension within the Λ cold dark matter cosmology. In particular, we analyze the MTMG
model, for the first time, with the Planck–cosmic microwave background (CMB) data, and how these
precise measurements affect the free parameters of the theory. The MTMG model can affect the CMB
power spectrum at large angular scales and cause a suppression on the amplitude of the matter power
spectrum. We find that on adding Planck-CMB data, the graviton has a small, positive, but nonzero mass at
68% confidence level, and from this perspective, we show that the tension between redshift space
distortions measurements and Planck-CMB data in the parametric space S8 − Ωm can be resolved within
the MTMG scenario. Through a robust and accurate analysis, we find that theH0 tension between the CMB
and the local distance ladder measurements still remains but can be reduced to ∼3.5σ within the MTMG
theory. The MTMG is very well consistent with the CMB observations, and undoubtedly, it can serve as a
viable candidate among other modified gravity theories.
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I. INTRODUCTION

Over the past two decades, a large volume of cosmo-
logical information has been obtained by several data
surveys, making the estimates of cosmological parameters
increasingly accurate. The understanding of the cosmo-
logical probes has been well modeled through the standard
Λ cold dark matter scenario (the ΛCDM scenario). The
ΛCDM cosmological model provides a wonderful fit to the
current cosmological data, but recently a few tensions and
anomalies became statistically significant while analyzing
different datasets. The most discussed tension in the
literature is in the estimation of the Hubble constant H0,
between the cosmic microwave background (CMB) and the
direct local distance ladder measurements. Assuming the
ΛCDM scenario, Planck-CMB data analysis provides
H0 ¼ 67.4� 0.5 km s−1Mpc−1 [1], which is in 4.4σ ten-
sion with a cosmological model-independent local meas-
urement H0 ¼ 74.03� 1.42 km s−1 Mpc−1 [2] from the
Hubble Space Telescope (HST) observations of 70
long-period cepheids in the Large Magellanic Cloud.

Additionally, a combination of time-delay cosmography
from H0LiCOW lenses and the distance ladder measure-
ments are in 5.2σ tension with the Planck-CMB constraints
[3]. Recently, based on a joint analysis from several
geometrical probes, a tension of ∼6σ was observed in
[4] under the consideration of minimal theoretical assump-
tions. Motivated by these observational discrepancies, it
has been widely discussed in the literature whether a new
physics beyond the standard cosmological model can solve
the H0 tension (see [5–7] and references therein for a
review). In addition to the H0 disagreement, a significant
tension between Planck data with redshift surveys data and
weak lensing measurements has been reported, about
the value of the matter density Ωm and the amplitude of
growth of the structures σ8, also quantified in terms of
the parameter: S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.30

p
. A higher S8 value

is estimated from CMB data assuming ΛCDM,
namely, S8 ¼ 0.834� 0.016 [1] from Planck data and
S8 ¼ 0.840� 0.030 from ACTþWMAP joint analysis
[8]. The cosmic shear and redshift space distortion
(RSD) measurements have predicted a lower value
of S8. This tension is above the 2σ level with
KiDS-450 (S8 ¼ 0.745� 0.039) [9], KiDSþVIKING−
450 (S8 ¼ 0.737þ0.040

−0.036 ) [10], and Dark Energy Survey
(DES) ðS8 ¼ 0.783� 0.021Þ [11]. The KiDS-1000 team
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reported a 3σ tension with Planck-CMB [12]. The tension
becomes 3.2σ if we consider the combination of VIKING-
450 and DESY1 [13] and 3.4σ for BOSSþ VIKING − 450
(S8 ¼ 0.728� 0.026Þ [14]. Also, in agreement with a
lower value, there is an estimate from the BOSS Galaxy
Power Spectrum S8 ¼ 0.703� 0.045 [15]. See [16] and
references therein for a minireview and additional infor-
mation on S8 estimations. Although this tension could be
due to systematic errors, it is worthwhile to investigate the
possibility of new physics beyond the standard model to
explain the S8 tension [17–29]. Additionally, the authors in
[24] identified a large tension between RSD and CMB
measurements. Disagreement between CMB and combi-
nations of RSD measurements with other datasets, includ-
ing the EG statistic, is discussed in [30], pointing out a
tension up to 5σ, depending on the datasets.
On the other hand, there are theoretical and observational

reasons to believe that general relativity (GR) should be
modified when gravitational fields are strong and/or on
large scales. From an observational point of view, the
physical mechanism responsible for accelerating the expan-
sion of Universe at late times is still an open question, and it
has been intensively investigated whether modified gravity
scenarios can explain such an accelerated stage, as well as
to fit very well with the observational data from different
sources (see [31] for review). Also, theories beyond
GR can serve as alternatives to explain the current H0

tension [32–36]. One of the most interesting possibilities
for modification of gravity is to give a mass to the graviton
(see [37] for review about massive gravity theories). In this
work, we investigate in detail the observational feasibility
of the minimal theory of massive gravity (MTMG) [38,39],
due to its infrared Lorentz violations measurable at cos-
mological scales. We robustly constrain the MTMG frame-
work using observational probes of the fσ8 growth rate of
cosmological perturbations, which is a useful bias-free
statistical cosmic test; we also combine these growth rate
data with several geometric observations, such as the most
recent data from type Ia supernovae and baryon acoustic
oscillations. We derive and discuss observational perspec-
tives from how the MTMG scenario predicts the statistical
plane for S8 −Ωm in direct comparison with the ΛCDM
model, as well as the potential of the model in alleviating
the H0 tension. Furthermore, we investigate for the
first time how the Planck-CMB data constrain the
MTMG baseline model. Our results also provide a new
constraint on the graviton mass from Planck-CMB data,
obtained in the MTMG context. We find that the use of
Planck-CMB data selects parameter space for MTMG,
which is compatible with a nonzero but positive value of
μ2=H2

0 ¼ 0.25þ0.16
−0.10 , μ being the mass of the graviton. This

is probably the newest and most interesting result from
this study.
This paper is structured as follows. In Sec. II, we review

and introduce the MTMG scenario. In Sec. III, we present

the datasets and methodology used in this work. In Sec. IV,
we discuss the main results of our analysis. In Sec. V, we
summarize the main findings of this study.

II. MINIMAL THEORY OF MASSIVE GRAVITY

The model we study here is a model that has been
introduced in order to fix the cosmology of massive gravity,
i.e., to have a stable Friedmann-Lemaître-Robertson-
Walker (FLRW) background without ghosts or strong-
coupling issues. The model has been introduced in order to
study a standard cosmological phenomenology to the
theories with a massive graviton. In order for this
goal to be achieved, the theory in its simplest form (i.e.,
in vacuum) has only two gravitational degrees of freedom
(corresponding to the two polarization gravitational
waves). Furthermore, on FLRW background, MTMG
shares the same background of de Rham–Gabadadze-
Tolley (dRGT) [40,41]. This fact was implemented by
construction in MTMG. Therefore, also MTMG is
endowed, as dRGT, with two branches that are named
the (1) self-accelerated branch and (2) normal branch.
These two branches have, in general, different FLRW

background and perturbation dynamics. In particular, the
self-accelerated branch has a phenomenology that is
identical in everything to the standard ΛCDM except for
the propagation of tensor modes, which are now massive
(compared to GR). On the other hand, in the normal branch,
we have the possibility of giving a general dynamics for the
graviton mass. This allows for many phenomenological
possibilities. However, in order to study this branch, it is
somehow convenient to study its simplest realization,
namely, the one for which the effective energy density
of the MTMG component becomes a constant during the
whole evolution.
More in detail, MTMG relies on the presence and choice

of a three-dimensional fiducial metric, which, in unitary
gauge, will be written here as γ̃ij ¼ ã2δij, where ã ¼ ãðtÞ is
the fiducial scale factor. On top of that, there is need of the
fiducial lapse M ¼ MðtÞ and of another 3D tensor ζ̃ij,
which represents the time variation of the fiducial vielbein
(for details, see [38,39]). Out of the fiducial and physical
metrics, one builds up the following quantities:

Kk
n ¼

� ffiffiffiffiffiffiffiffiffi
γ̃−1γ

q �
k

n
; ð1Þ

Kk
n ¼

� ffiffiffiffiffiffiffiffiffi
γ−1γ̃

q �
k

n
; ð2Þ

Kk
nKn

m ¼ δkm ¼ Kk
nKn

m: ð3Þ

Out of these quantities, one defines the following sym-
metric tensor:
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Θij ¼
ffiffiffĩ
γ

p
ffiffiffi
γ

p fc1ðγilKj
l þ γjlKi

lÞ

þ c2½KðγilKj
l þ γjlKi

lÞ − 2γ̃ij�g þ 2c3γij; ð4Þ

where c1;2;3 are constants. We then need the following
building blocks:

C0 ¼
1

2
m2MKijΘij −m2M

� ffiffiffĩ
γ

p
ffiffiffi
γ

p ½c1ζ̃ þ c2ðKζ −Km
nζ̃

n
mÞ�

þ c3Km
nζ̃

n
m

�
; ð5Þ

Cni ¼ −m2M

� ffiffiffĩ
γ

p
ffiffiffi
γ

p
�
1

2
ðc1 þ c2KÞðKn

i þ γnmKl
mγliÞ

− c2γ̃nlγli

�
þ c3δni

�
; ð6Þ

where γ and γ̃ represent the determinants of γij and γ̃ij,
respectively. Furthermore Kij is the extrinsic curvature of
γij, namely, Kij ¼ 1

2N ð_γij −DiNj −DjNiÞ, where N is the
lapse, Ni is the shift vector, and D is the covariant
derivative compatible with the 3D metric γij. Finally,
K≡Kn

n and ζ̃≡ ζ̃nn. We are now ready to define the
action of MTMG as follows:

S ¼ Spre þ
M2

P

2

Z
d4xN

ffiffiffi
γ

p �
m2

4

M
N
λ

�
2
�
ΘijΘij −

1

2
Θ2

�

−
M2

P

2

Z
d4x

ffiffiffi
γ

p ½λC0 − ðDnλ
iÞCni� þ Smat; ð7Þ

where Smat represents the standard matter action. We still
need to define the last bits of the theory, which are given by

Spre ¼ SGR þM2
P

2

X4
i¼1

Z
d4xSi; ð8Þ

SGR ¼ M2
P

2

Z
d4xN

ffiffiffi
γ

p ½ð3ÞRþ KijKij − K2�; ð9Þ

S1 ¼ −m2c1
ffiffiffĩ
γ

p
ðN þMKÞ; ð10Þ

S2 ¼ −
1

2
m2c2

ffiffiffĩ
γ

p
ð2NKþMK2 −Mγ̃ijγjiÞ; ð11Þ

S3 ¼ −m2c3
ffiffiffi
γ

p ðM þ NKÞ; ð12Þ

S4 ¼ −m2c4
ffiffiffi
γ

p
N: ð13Þ

The theory has been defined on the unitary gauge (for the
Stuckelberg fields), so we cannot make any further gauge

choice. In what follows, we describe the background and
perturbation analysis byusing the following variables. For the
scalar modes, the flat 3D metric is then written according to

ds23¼ γijdxidxj¼½aðtÞ2ð1þ2ζÞδijþ2∂i∂jE�dxidxj; ð14Þ
a being the scale factor of the physical metric. Then we can
define the lapse and shift vector as

N ¼ NðtÞð1þ αÞ; ð15Þ

Ni ¼ NðtÞ∂iχ: ð16Þ

We also need to give

λ ¼ λðtÞ þ δλ; ð17Þ

λi ¼ 1

a2
δij∂jδλV: ð18Þ

Finally, we need to give all matter actions together with their
own variables.
It is possible to show that, on the background, λðtÞ ¼ 0.

In this case, the dynamics of MTMG imposes the following
constraint:

�
HX −H

M
N

þ
_X
N

�
ðX2c1 þ 2Xc2 þ c3Þ ¼ 0; ð19Þ

where we have defined the variable X ≡ ã=a, being the
ratio between the fiducial and the physical scale factors.
The functionH ¼ _a=ðaNÞ is the Hubble parameter, and the
coefficients c1;2;3 are instead constant coefficients. On
solving Eq. (19), we can see that in this setup only two
solutions are possible: (1) setting X2c1 þ 2Xc2 þ c3 ¼ 0,
which defines the self-accelerating branch and leads to
X ¼ const and (2) the normal branch for which
M ¼ NX þ _X=H, where the time dependence of X is still
not imposed. From here onward, we will only focus on the
normal branch and, in particular, we fix the dynamics of X
so that X ¼ X0 ¼ const.
As a consequence of this choice, the background

equations of MTMG read as follows:

3M2
PH

2 ¼
X
I

ρI þ ρMTMG; ð20Þ

2M2
P

_H
N

¼ −
X
I

ðρI þ PIÞ; ð21Þ

_ρI
N

¼ −3HðρI þ PIÞ; ð22Þ

where ρMTMG ≡ m2M2
P

2
ðc1X3

0 þ 3c2X2
0 þ 3c3X0 þ c4Þ is a

constant. Here the sum over the index I is over all the
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standard matter components. In this case, we can see that
the background equations of motion exactly reduce to the
ones of ΛCDM (endowed with an effective cosmological
constant; i.e., the model is self-accelerating).
Let us now describe the dynamics of the perturbation

equations of motion. We will follow here a procedure
similar to the one introduced in [32,42,43]. We will have
the perturbation equations of motion coming from the
gravity sector (the ones for α, χ, ζ, E, δλ, and δλV) together
with the ones coming from each matter component. We
then find the equations of motion for each of the fields we
have. In the following, we will (and can) set NðtÞ ¼ aðtÞ as
to have dynamics in terms of the conformal time. Although
we cannot fix any gauge for the perturbations, we can still
perform field redefinitions. In particular, we will introduce
the following ones:

α ¼ ψ −
_χ

a
þ 1

a
d
dt

�
a
d
dt

�
E
a2

��
; ð23Þ

ζ ¼ −ϕ −Hχ þ aH
d
dt

�
E
a2

�
: ð24Þ

These definitions correspond to the usual gauge-invariant
definitions for the Bardeen potentials ϕ and ψ . Then we
will use the Newtonian gauge-invariant fields ϕ and ψ to
rewrite the modified Einstein equations. For each matter
component, labeled with I, we also introduce gauge-
invariant combinations δI’s and θI’s (in place of the density
contrast δρI=ρI and the scalar speed uIi ¼ ∂ivI, respec-
tively) as follows:

δρI
ρI

¼ δI −
_ρI
aρI

χ þ _ρI
ρI

d
dt

�
E
a2

�
; ð25Þ

vI ¼ −
a
k2

θI þ χ − a
d
dt

�
E
a2

�
: ð26Þ

In terms of these variables, the equations of motion for each
matter component, for the lowest multipoles, read as
follows:

_δI ¼ 3aðwI − c2sIÞHδI − ð1þ wIÞðθI − 3 _ϕÞ; ð27Þ

_θI ¼ aHð3c2sI − 1ÞθI þ k2ψ þ c2sIk
2

1þ wI
δI − k2σI; ð28Þ

where wI ≡ PI=ρI , and c2sI ¼ ð∂pI∂ρIÞs is the speed of propa-
gation for each matter species (i.e., _pI=_ρI , which vanishes
for dust and equals 1=3 for photons). This result merely
shows that the dynamical equations of motion for the
matter components exactly coincide with the same ones in
ΛCDM. This is not a surprise, as modifications of gravity
only enter in the gravity sector.
The equations of motion for δλV impose

χ ¼ −
ϕ

H
þ

_E
a
− 2HE: ð29Þ

We can solve the equations of motion for χ in terms of δλ
(and other fields) and the equations of motion for α in terms
of E. We can consider a linear combination of the equations
of motion for ζ and E in order to find a solution for δλV.
At this point, the equation of motion for δλ gives

E0 ≡
�ðYθ − 2Þk2

a2
þ 9θYΓ

2

�
ϕ − 3

X
I

ϱIδI

þ 9aHðYθ − 2Þ
2k2

X
I

ΓIθI ¼ 0; ð30Þ

where we have introduced ρI ¼ 3M2
PϱI , PI ¼3M2

PpI ,

ΓI ≡ ϱI þ pI , Γ¼
P

IΓI, Y¼H2
0=H

2, and θ≡m2X0

2H2
0

ðc1X2
0þ

2c2X0þc3Þ, which represents the only extra parameter that
enters into the equations of motion in addition to the
background effective cosmological constant. In the ΛCDM
limit, whenever jθYj ≪ 1, we recover the GR standard
evolution.
The equation of motion for E, the last one available in the

gravity sector, gives

E1 ≡ _ϕþ 3YθaΓϕ
2HðYθ − 2Þ þ aHψ þ 3a2

k2ðYθ − 2Þ
X
I

ΓIθI ¼ 0:

ð31Þ

On taking the time derivative of E0 and removing _ϕ from
E1, we find the following derived equation of motion:

E2 ≡ ψ þ 9a2

2k2
X
I

ΓIσI −
9a2θY

k2ð2Yθ − 4Þ
X
I

c2sIϱIδI −
�
1þ 3θYΓ

ð2Yθ − 4ÞH2
þ 27Yθa2

2k2ð2 − YθÞ
�X

J

c2sJΓJ −
Γ2

2H2

��
ϕ

−
27θYΓa3

4k4ðYθ − 2ÞH
X
I

ΓIθI ¼ 0; ð32Þ
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where we have also used the matter equations of motion in
order to replace _δI , etc. In the limit jθYj → 0, the above
equations reduce to the standard GR form. We will use, as
in GR, both E1 and E2 as the dynamical equations in the
gravity sector. The fact that we do not have any additional
dynamical equation of motion is a consequence of the fact
that MTMG does not add any new dynamical degree of
freedom in the theory.
Although the previous equations, never appearing before

in the literature, completely define the behavior of gravity
in MTMG, at any time and scale, we finish the description
of the theory by considering the behavior of the theory
under the influence of a single dust fluid at late times
(i.e., neglecting radiation), in order to understand the effect
of MTMG for the effective gravitational constant. Since
this last step has already been performed in the literature
(see, e.g., [39,44,45]), this last calculation can then be
considered to be a check of the calculations presented so
far in this paper. Then on considering a dust fluid
(mimicking CDM or late-time baryons), Eqs. (27) and
(28) reduce to

ED ≡ _δc þ θc − 3 _ϕ ¼ 0; ð33Þ

EV ≡ _θc þ aHθc − k2ψ ¼ 0: ð34Þ

We can then solve Eq. (32) for ψ in terms of ϕ and θc (dust
having no shear, and vanishing c2s). On replacing, by using
Eq. (31), _ϕ into Eq. (33), we can then solve ED ¼ 0 for θc
in terms of ϕ and _δc. We can now replace θc, ψ , and _ϕ

(coming from _θc) inside Eq. (34) and solve EV ¼ 0 for ϕ in
terms of _δc and δ̈c. Finally, on replacing ϕ and θc in
Eq. (30), we find a closed second-order differential equa-
tion for δc. On evaluating this last equation for subhorizon
scales, that is, for k=ðaHÞ ≫ 1, we find

δ̈c þ aH _δc −
3

2

Geff

GN
ϱca2δc ¼ 0; ð35Þ

where M2
P ¼ ð8πGNÞ−1, Ωc ¼ ϱcðtÞ=H2, and

Geff

GN
¼ 2

2 − θY
−

3θYΩc

ð2 − θYÞ2 ; ð36Þ

matching the result found, e.g., in [44]. The same dynami-
cal equation holds also for the late-time baryonic
fluid. Since we are going to use bounds on integrated
Sachs-Wolfe (ISW) galaxy cross-correlations, it is worthy
to find the expression for the ISW field, defined as
ψ ISW ≡ ϕþ ψ , in the subhorizon scales approximation.
We find that

ψ ISW ¼ −
3H2

0Ωm0

k2
Σδm
a

; ð37Þ

Σ≡ 8 − ð4þ 3ΩmÞθY
2ð2 − θYÞ2 ; ð38Þ

where here Ωm ¼ ΩmðtÞ ¼ ρm=ð3M2
PH

2Þ, and Ωm0 ¼
Ωmðz ¼ 0Þ (in the next sections, unless specified otherwise,
Ωm will be used to rewriteΩm0). This result for ψ ISW agrees
with the one found in [45].
Let us finally discuss the equations of motion for the

gravitational waves propagating on this flat FLRW back-
ground (the vector modes do not show any deviation from
GR). In fact, the contribution of MTMG to the tensor
modes consists, by construction (see, e.g., [38,39]), of
introducing a nonzero squared mass μ2 ¼ H2

0θ to them. The
equations of motion for the two tensor modes polarizations
(hf labeled with f ∈ fþ;×g) become

ḧf ¼ −2
_a
a
_hf − ðk2 þ θH2

0a
2Þhf; ð39Þ

where on the right-hand side a source term can further
be added.
We implemented the model described above in the CLASS

code [46]. In Fig. 1, we quantify the MTMG model affects
on the CMB temperature power spectrum, i.e., CTT

l , with
respect to GR-ΛCDM prediction. We can see that increas-
ing θ enhances the CMB temperature power spectrum at
low l. This effect is well known for dark energy and
massive gravity (MG) models, and it is due to the integrated
Sachs-Wolfe effect, which affects the CMB spectrum at low
l, but has no significant effect at large scales. For scales
larger than l > 100, we note CGR;TT

l ≈ CMTMG;TT
l . In Fig. 2,

we show the difference on the Pðk; zÞ at four different
redshift values on the scales k ∈ ½10−4; 1� h=Mpc. These z
values are chosen because our RSD sample covers the
range z ∈ ½0.02; 1.94�. For a quantitative example, taking

FIG. 1. Deviations of the CMB TT power spectrum for ΛCDM
from MTMG for some values of θ.

MINIMAL THEORY OF MASSIVE GRAVITY IN THE LIGHT OF … PHYS. REV. D 104, 104057 (2021)

104057-5



θ ¼ −0.2, we find that the difference with respect to
ΛCDM is ∼25% at k ¼ 10−3 h=Mpc, while for k >
10−2 h=Mpc the difference is <0.2%, for all z values.
For the case with θ ¼ 0.2, we note that for
k > 10−3 h=Mpc, we have a similar difference as in the
previous case, but with different Pðk; zÞ behavior at differ-
ent z values, as expected, since the dynamics depends on
the signal in θ. For scales k < 10−3, significant deviations
are noted. It is important to mention that on very large
scales, the cosmic variance effects can be significant. In
these simulations, the predictions of the nonlinear effects
are performed using the HMcode code [47]. Nonlinear
dynamics of the MTMG framework using N-body simu-
lations were investigated in detail in [48].

III. DATA AND METHODOLOGY

In this section, we present the datasets and methodology
used to obtain the observational constraints on the model
parameters by performing Bayesian Markov chain
Monte Carlo analysis. In order to constrain the parameters,
we use the following datasets.
CMB.—We use the full Planck-2018 [1] CMB tempera-

ture and polarization data which comprise the low-l
temperature and polarization likelihoods at l ≤ 29,
temperature (TT) at l ≥ 30, polarization power spectra,
and cross-correlation of temperature and polarization,
while also including the Planck-2018 CMB lensing power
spectrum likelihood [49] in our analysis.

RSD.—The growth rate data comprise fðzÞσ8ðzÞ mea-
surements from a variety of redshift space distortion
surveys. The current measurements of fσ8ðzÞ come from
a plethora of different surveys with different assumptions
and systematics, thus an approach to study the statistical
properties and robustness of the data is imperative. In [50],
an internal robustness analysis was used to validate a subset
of fσ8ðzÞ measurements. In our analysis, we use the
compilation of the fσ8ðzÞ measurements presented in
Table I in [50], which are minimally affected by system-
atic-contaminated data points. We refer to this dataset as the
dataset of RSD measurements. To build the likelihood
function, we follow the same methodology as presented in
[51]. It is important to highlight that the RSD sample is still
fiducial to some cosmology, for example, fixed on aΛCDM
baseline, different assumptions on the reference value of
Ωm, and nonlinearities modeling of which starts to play an
important role on smaller scales and at later epochs. These
points should be taken into account to accurately estimate
the cosmological parameters. Our sample is minimally
affected by systematic-contaminated fσ8 data points,
checked through the Bayesian model comparison frame-
work described in [50], identifying potential outliers as
well as subsets of data affected by systematics or new
physics.
BAO.—The baryon acoustic oscillations (BAOs) provide

an important cosmological probe, which can trace expand-
ing spherical waves of baryonic perturbations from acoustic
oscillations at recombination time through the large-scale

FIG. 2. Left: deviations of the matter power spectrum, ΔPðk; zÞ ¼ jPðk; zÞMTMG − Pðk; zÞGRj=ðPðk; zÞMTMG þ Pðk; zÞGRÞ, for
ΛCDM from MTMG with θ ¼ −0.2 for some values of z. Right: same as on the left, but assuming θ ¼ 0.2.

TABLE I. Constraints at 95% C.L. on Ωm, σ8, S8, and θ ¼ μ2=H2
0, inferred from different dataset combinations, in the MTMG model.

Dataset θ Ωm σ8 S8

RSD −5.2þ7.1
−4.8 0.37þ0.17

−0.16 0.808þ0.086
−0.084 0.89þ0.19

−0.20

RSDþ BAOþ Pantheon −1.8þ3.3
−4.4 0.305þ0.041

−0.039 0.796þ0.091
−0.073 0.802þ0.10

−0.096

RSDþ BAOþ Pantheonþ ISW −0.12þ0.28
−0.26 0.293þ0.018

−0.018 0.775þ0.055
−0.055 0.766þ0.057

−0.055
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structure correlation function. In this work, we consider
the most recent BAO data compilation composed of the
DVðzÞ=rd, DMðzÞ=rd, and DHðzÞ=rd measurements com-
piled in Table III in [52], regarding BAO-only data.
Pantheon.—The supernovae type Ia have traditionally

been one of the most important astrophysical tools in
establishing the so-called standard cosmological model.
For the present analysis, we use the Pantheon compilation,
which consists of 1048 SN Ia distributed in the redshift
range z ∈ ½0.01; 2.3� [53].
ISW.—The late-time integrated Sachs-Wolfe effect on

the CMB is an effect imprinted in the angular pattern of the
CMB in the presence of a time-varying cosmological
gravitational potential, which can be due to a nonflat
universe [54], as well as for a flat one in the presence of
dark energy or modified gravity theories [55–57]. A non-
zero ISW necessarily implies the presence of a generating
physical source for the accelerated expansion of the
Universe at late times. For the present analysis, we use
the cross-correlation of the CMB with galaxy surveys that
derive constraints on the ISW as obtained in [58]. We use
the five catalogs of extragalactic sources as presented in
[58], namely, the 2MASS Photometric Redshift catalog, the
WISE SuperCOSMOS photo-z catalog, the NRAO VLA
Sky Survey radio sources catalog, and the SDSS DR12 and
SDSS DR6 QSO photometric catalogs.
We use the Metropolis-Hastings mode in CLASS+

MONTEPYTHON code [46,59,60] to derive the constraints
on cosmological parameters using various data combina-
tions from the datasets described above, ensuring a
Gelman-Rubin convergence criterion of R − 1 < 10−3. In
what follows, we describe our main results.

IV. RESULTS AND DISCUSSIONS

We divide the analysis into two parts. First, we consider
RSD and RSDþ BAOþ Pantheon data, that is, the growth
data and its combination with the geometric data. Thus, we
can quantify the dynamics of the model and the constraints
on θ without CMB data influence. It is important to check
the prediction of the model about σ8 or S8 in the absence of
the CMB data. Then, we add ISW information to these data.
In the second round of analysis, we analyze the model with
CMB data and discuss the potential of the model to solving
and/or alleviating the H0 and S8 tensions.

A. Analysis with the growth, geometric, and ISW data

Modelwise, we consider ΛCDMþ θ model baseline,
spanned by the five parameters: the Hubble constant
H0 or, equivalently, the reduced Hubble constant
h≡H0=ð100 km s−1Mpc−1Þ, the physical baryon density
ωb ≡Ωbh2, the physical cold dark matter density
ωc ≡Ωch2, σ8, and θ, quantifying deviations from GR.
The matter density parameter today Ωm is derived by
Ωm ¼ Ωb þ Ωc. Another important derived parameter is

S8 ≡ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. To constrain the physical baryon den-

sity, we adopt a Gaussian prior on ωb from big bang
nucleosynthesis: 100ωb ¼ 2.233� 0.036 [61]. So that the
tensor modes do not develop instability with a timescale
shorter than the age of the Universe, we impose the prior
θ ≥ −10. In the limit θ ¼ 0, we recover the evolution
equation for the perturbations as in GR. Note that the
ΛCDM and MTMG models are indistinguishable at the
background evolution. Thus, the data combination BAOþ
Pantheon is indistinguishable for both scenarios. We use
BAOþ Pantheon to break the statistical degeneracy on
Ωm, which may be present when considering RSD data
only. Since both ΛCDM and MTMG models can predict
different constraints on Ωm in light of only the RSD
data, breaking this background degeneracy with BAOþ
Pantheon can significantly improve the results. Finally, we
also consider ISW sample data. Table I summarizes the
main results of our statistical analyses.
Figure 3, on the left panel, shows the parameter space in

the S8 −Ωm plane at 68% and 95% C.L. with various
datasets in ΛCDM and MTMG models. First, we note that,
in direct comparison with the constraints provided
with ΛCDM, the MTMG model can provide an enlarge-
ment in both S8 and Ωm estimations. The right panel shows
the regions at 68% and 95% C.L. in the θ −Ωm plane
with RSD and RSDþ BAOþ Pantheon data in the
MTMG model. We find θ ¼ −5.2þ7.1

−4.8 , θ ¼ −1.8þ3.3
−4.4 and

θ ¼ −0.12þ0.28
−0.26 at 95% C.L. from RSD, RSDþ BAOþ

Pantheon, and RSDþ BAOþ Pantheonþ ISW data,
respectively. The addition of the ISW data improves the
constraints on θ because θ can significantly affect the late-
time ISW effect [45]. So, ISW data improve θ and,
consequently, by correlation, improvements on the other
parameters in the baseline are also reached, which are
already well constrained from other datasets. The joint
analysis with RSDþ BAOþ Pantheonþ ISW data pro-
vides robust and accurate constraints on the theory using
only late-time probes. As we will show in the next section,
the constraints are further improved with the addition of

FIG. 3. Left: 68% and 95% confidence levels on the S8 − Ωm
plane from various datasets inΛCDM andMTMGmodels. Right:
68% and 95% confidence levels on the θ − Ωm plane from
various datasets in MTMG model. GR is recovered for θ ¼ 0.
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CMB data. All these constraints are consistent with the GR
prediction, i.e., θ ¼ 0 even at 68% C.L. For comparison,
assuming ΛCDM cosmology, from RSD data, we find
Ωm ¼ 0.293þ0.10

−0.083 and S8 ¼ 0.758þ0.082
−0.073 . From the joint

analysis with RSDþ BAOþ Pantheon data, we findΩm ¼
0.286þ0.015

−0.015 and S8 ¼ 0.765þ0.055
−0.054 . We can clearly see that

the addition of BAOþ Pantheon improves the constraint
by breaking down the degeneracy on Ωm, in both models,
i.e., ΛCDM and MTMG. As we will see in the next section,
in the MTMG model, there is no tension in the S8 −Ωm
plane, when analyzed from CMB and RSD data. Therefore,
MTMG brings an agreement between these data.

B. MTMG in the light of CMB data

For the first time, here we find the constraints on the
MTMGmodel from the full Planck-CMB dataset alone and
its combination with several other data. The baseline seven
free parameters set of the MTMG model is given by

P ¼ fωb;ωcdm; θs; lnð1010AsÞ; ns; τreio; θg;

where the first six parameters are the baseline parameters of
the standard ΛCDM model, namely, ωb and ωcdm are,
respectively, the dimensionless densities of baryons and
cold dark matter, θs is the ratio of the sound horizon to the
angular diameter distance at decoupling, As and ns are,
respectively, the amplitude and spectral index of the
primordial curvature perturbations, and τreio is the optical
depth to reionization. As commented before, the parameter
θ quantifies deviations from GR induced by the MTMG
framework.
Table II displays summary of our statistical analyses

using the full Planck-CMB dataset and its combination
with several other datasets. In the last column, the full
joint analysis stands for CMBþ BAOþ Pantheonþ
RSDþ ISW. Figure 4, on the left panel (right panel),
shows the parameter space in the S8 −H0 (θ − Ωm) plane,

at 68% and 95% C.L. from the Planck-CMB dataset and its
combination with other data.
In all the analyses carried out here, we note that θ can be

non-null at 68% C.L., but consistent with θ ¼ 0 at
95% C.L. Thus, we do not find any significant evidence
for deviations from GR. In the full joint analysis, we obtain
θ ¼ 0.25þ0.16

−0.10 at 68% C.L. The constraints on MTMG using
the CMB data alone are well consistent with the ΛCDM
baseline. Despite θ being non-null at 68% C.L., all other
parameters do not show significant deviation from the
ΛCDM baseline. When BAOþ Pantheon and BAOþ
Pantheonþ RSD are added, we notice a minor shift of
Ωm to low values and H0 to high values. This behavior is
clear in Fig. 4. On the other hand, these data are known to
be in tension (∼3σ) within ΛCDM [30]. Thus, we can
combine CMB and RSD in the MTMG scenario. In other
words, there is no tension in the S8 −Ωm plane for the
MTMG model.
We know that MTMG affects the CMB spectrum

predominantly at low l, and practically no effects are
observed at high l. Thus, we also consider ISW data in
combination with the datasets described above. We find

FIG. 4. Left: 68% and 95% C.L. in the S8 −H0 plane from
various datasets in the MTMG model. Right: same as on the left,
but in the θ − Ωm plane. GR is recovered for θ ¼ 0.

TABLE II. Summary of the 1σ constraints on the baseline parameters of the MTMG scenario from CMB and its combination with
several other datasets. In the last column, the full joint analysis means CMBþ BAOþ Pantheonþ RSDþ ISW. The parameter H0 is
measured in the units of km s−1 Mpc−1.

Parameter CMB CMBþ BAOþ Pantheon CMBþ BAO þ Pantheonþ RSD Full joint analysis

102ωb 2.242� 0.015 2.245� 0.013 2.252� 0.013 2.247� 0.013
ωcdm 0.1195� 0.0012 0.11903� 0.00090 0.11819� 0.00090 0.11886� 0.00095
100θs 1.04195� 0.00029 1.04197� 0.00028 1.04202� 0.00028 1.04197� 0.00028
ln 1010As 3.042� 0.014 3.042� 0.014 3.035� 0.014 3.036� 0.015
ns 0.9663� 0.0044 0.9672� 0.0036 0.9692� 0.0039 0.9681� 0.0037
τreio 0.0538� 0.0071 0.0542� 0.0071 0.0520� 0.0070 0.0517� 0.0075
θ 0.19þ0.14

−0.10 0.21þ0.13
−0.10 0.26þ0.14

−0.10 0.129þ0.13
−0.088

Ωm 0.3115� 0.0077 0.3089� 0.0054 0.3038� 0.0054 0.3018� 0.0056
H0 67.65� 0.57 67.84� 0.40 68.22� 0.42 68.44� 0.43
σ8 0.8071� 0.0064 0.8057� 0.0065 0.8001� 0.0060 0.8169� 0.0068
S8 0.822� 0.014 0.818� 0.011 0.805� 0.010 0.819� 0.011
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H0 ¼ 68.44� 0.43 km s−1Mpc−1 from CMBþ BAOþ
Pantheonþ RSDþ ISW data. This constraint minimizes
the H0 tension up to 3.5σ compared to cosmological
model-independent local measurement of H0 from the
HST observations [2]. From our joint analysis, we have
Ωm ¼ 0.301� 0.0056 and σ8 ¼ 0.8169� 0.0068, which
represents a deviation to low (high) values on Ωm (σ8),
respectively, compared to the CMB only constraints.
Figure 5 shows a scatter plot for the correlations between

the parameters of interest in our model from the RSDþ
BAOþ Pantheonþ ISW and CMBþ RSDþ BAOþ
Pantheonþ ISW data. We note that, in both cases, θ
exhibits negative, positive, and negative correlations with
Ωm,H0, and S8, respectively. We found similar correlations
in other analyses as well. Despite all the constraints
on θ, from the different analyses performed here be
statistically consistent with each other, it is interesting to
note that θ shows a best-fit preference to θ < 0 from
RSDþ BAOþ Pantheonþ ISW, and θ > 0 when we add
the CMB data. We know that θ < 0 causes a suppression on
the amplitude of the matter perturbations. This suppression
behavior is necessary to fit well, for instance, with the RSD
data and its combination with the BAOþ Pantheon sam-
ple. On the other hand, in light of these data, the parameter
θ is degenerate with the other baseline parameters. Thus, it
is expected that, in the presence of RSD data with BAOþ
Pantheonþ ISW data, preference exists for θ < 0 values
while not excluding the possibility of θ > 0 values. Next,
the addition of CMB data is expected to yield a tight
constraint on θ. We find in this case that the correlation of θ
with Ωm, H0, and S8, increases. It is quantified in Fig. 5
comparing both panels. That increase especially occurs on
Ωm and H0, where the correlation with H0 increases 400%.
Note thatH0 is strongly constrained using CMB data; in the
MTMG model, H0 is constrained to 0.6% accuracy. The

global constraint on θ is also very tight, and the best fit on θ
changes the signal due to the correlation change in
the analysis RSDþ BAOþ Pantheonþ ISW to CMBþ
RSDþ BAOþ Pantheonþ ISW. That is caused by the
addition of the CMB data. We also note from the joint
analysis CMBþ RSDþ BAOþ Pantheonþ ISW that
θ > 0 at 68% C.L. Changes in the other baseline param-
eters are understandable looking at Fig. 5.
It is interesting to note that CMB data can break the

degeneracy present in RSD and BAOþ Pantheonþ RSD
data, providing a tight constraint on θ when all these data
are combined. It is clear from a comparison between the
Tables I and II. Using the relation μ2 ¼ H2

0θ, and con-
straints on H0, we can infer direct constraints on the gravi-
ton mass. Figure 6, in the right panel, shows the constraint
on the graviton mass squared from CMB alone, CMBþ
BAOþPantheon, CMBþBAOþPantheonþRSD, and
CMBþ BAOþ Pantheonþ RSDþ ISW. If we take an
inference with prior μ2 ≥ 0, we find the bound

FIG. 5. Left: scatter plot quantifying the correlations for some parameters of interest in MTMG model from the RSDþ BAOþ
Pantheonþ ISW data. Right: same as the left, but for CMBþ RSDþ BAOþ Pantheonþ ISW data.

FIG. 6. Left: 68% and 95% C.L. on the parametric space
S8 − Ωm from CMB and RSD datasets under the ΛCDM and
MTMG model assumptions. Right: 68% and 95% C.L. on the
parametric space μ2 − Ωm from several different datasets.
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μ ⪅ 4 × 10−34, ⪅ 4.4 × 10−34, ⪅ 4.8 × 10−34, and ⪅ 3.4 ×
10−34 eV at 95% C.L. from CMB alone, CMBþ BAOþ
Pantheon, CMBþ BAOþ Pantheonþ RSD, and CMBþ
BAOþ Pantheonþ RSDþ ISW, respectively. Without
loss of generality, this inference on μ can be performed
for the other datasets. We chose to perform only using the
most accurate measurements.
Our constraints are consistentwith the bound μ < 10−23 eV

on the graviton mass set by the LIGO Collaboration [62].
Bounds from the Solar System tests provide μ < 10−24 eV
[63]. Analyzing Galactic dynamics under n-body simulations,
it was shown that μ < 10−26 eV [64]. Constraints from
observation-derived energy condition bounds show that
μ < 10−31 eV [65]. Recently, using 14 well-timed binary
pulsars, from their intrinsic orbital decay rates, the authors
in [66] found μ < 10−28 eV. Primordial gravitational waves
modeled with a massive graviton will induce extra effects on
theB-mode polarization of theCMBat low-l scales,which can
place a boundon themassivegraviton toμ < 10−30 eV [67].A
more strong bound can be imposed from weak gravitational
lensing observations [68] and lunar laser ranging experiments
[69], viz.,μ < 10−32 eV. InTable I in [70], the authors provide
a compilation of several bounds on the graviton mass.
Although found for a given (but realistic and stable) model
describing a massive graviton, our constraint on the graviton
mass is complementary and someorders ofmagnitude stronger
than the previous ones. We refer to [44] for other bounds on μ
in MTMG.

V. FINAL REMARKS

Despite the ΛCDM successes, some challenges at both
the theoretical and observational levels have placed the
ΛCDM cosmology in crossroads. At the observational
level, it faces, in particular, the H0 and growth tensions.
The growth tension is based on the fact that the observed
growth of cosmological perturbations at low z is weaker
than the growth predicted by the standard Planck-ΛCDM
parameter values. In this work, we have investigated in
detail the MTMG model in the light of different observa-
tional datasets. In particular, we have derived constraints on
the MTMG using Planck-CMB data for the first time. From
our full joint analysis, we have found μ2=H2

0 ¼ 0.25þ0.16
−0.10 ,

with μ being the mass of the graviton. It represents a non-
null measurement on μ at 68% C.L.
From the theoretical side, in obtaining our results, we

have considered the scalar and tensor perturbative effects
under a FLRW metric, while the background evolution is
equivalent to the ΛCDM model as described in Sec. II. We
know that the H0 value from CMB data depends on the
angular scale θ� ¼ d�s=D�

A, where d
�
s is the sound horizon at

decoupling (the distance traveled by a sound wave from the
big bang to the epoch of the CMB-baryons decoupling) and
D�

A is the angular diameter distance at decoupling, which in

turn depends on the expansion history HðzÞ after decou-
pling, controlled also by the ratio Ωm=Ωde and H0 mainly.
In its simplest form, the MTMG scenario does not lead to
changes in HðzÞ evolution with regard to the ΛCDM
model. Thus, significant changes on H0 that are obtained
in other models in the literature are not observed here. All
changes on H0 as well as on the full baseline are due to the
changes on the evolution of the scalar potentials ϕ and ψ in
Einstein’s field equations. Within this framework, we have
found that the current H0 tension at 4.4σ can be reduced to
3.5σ. It does not completely solve this tension, but leads us
to conclude that the possibility for a non-null μ can affect
the cosmological parameters estimation to the CMB level
too. Going beyond the simplest implementation of the
MTMG model, namely, changing also HðzÞ, may address
this point more significantly. It may be interesting, in a
future communication, to verify massive theories with
change on the background evolution, which certainly
should reduce the H0 tension significantly. We also con-
clude that the well-known tension on the S8 parameter can
be solved in the MTMG model, as shown in the previous
section. Recently, the weak lensing and galaxy clustering
measurements from the Dark Energy Survey have been
updated, providing new and robust estimates on S8, viz.,
S8 ¼ 0.776þ0.017

−0.017 and S8 ¼ 0.812þ0.012
−0.012 (DESþ CMB)

[71,72], within a ΛCDM baseline. It is interesting to
interpret that the MTMG scenario, without using the
CMB data, predicts S8 ¼ 0.802� 0.06, while enlarging
the error bar a bit, in general, on the S8 − Ωm plane
compared toΛCDM. Thus, comparing with DES constraint
within ΛCDM baseline results, we can postulate that
MTMG can also solve the S8 tension between DES and
CMB, which is around 2.3σ.
We simulate an addition of the DES and Kilo-Degree

Survey (KiDS-1000) data on our full joint analysis by
adding Gaussian priors on S8 to our analysis. Figure 7, in
the left panel, shows the parameter space in the S8 − μ2

plane under the prior S8 ¼ 0.776� 0.017 from the DES
results [71]. In the right panel, we show the results
assuming the prior S8 ¼ 0.759þ0.024

−0.021 from the KiDS-1000
data [73]. In both cases, we note that the amplitude in S8
decreases and slightly extends the expectation of the
graviton mass, but is consistent with all other results
developed here. Of course, an analysis within the
MTMG baseline using the full DES and KiDS likelihoods
must confirm this prediction. We hope to provide such
investigation in a future communication.
Therefore, in this work, we conclude that the MTMG is

very well consistent with the CMB observations, as well as
with other observational ones that are sensitive to the
cosmological perturbation theory. Undoubtedly, the
MTMG model is a viable candidate among the modified
gravity theories.
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