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Abstract. Several of the most important high-performance computing ap-
proaches available in the Python programming environment of the LNCC Santos
Dumont supercomputer, are compared using a specific test problem. Python in-
cludes specific libraries, implementations, development tools, documentation,
optimization and parallelization resources. It provides a straightforward way
to program using a high level of abstraction, but the parallelization features for
exploring multiple cores, processors, or accelerators such as GPUs, are diverse
and may not be easily chosen by the user. Serial and parallel implementations of
a test problem in Fortran 90 are taken as benchmarks to compare performance.
This work is a primer for the use of HPC resources in Python.

1. Introduction
Python is a modern and friendly language, has clean syntax, good readability, easy inter-
face with external applications, allows quick implementation through the use of scripts,
has access to a wide community of developers and has a large collection of scientific
libraries. In addition, it supports High Performance Computing (HPC) through inte-
grated or external libraries. A powerful programming environment is provided, combin-
ing Python with an interactive shell like IPython, allowing for rapid prototyping. Python’s
availability comes in compiler packages like Intel or in most supercomputer program-
ming environments. Application programs implemented in languages like Fortran 90
(hereinafter referred to as F90) or C, although they require massive parallel processing,
can be encapsulated in the Python environment through modular wrappers, but eventu-
ally with some loss of performance. Such flexibility facilitates simulations, analyzes and
data visualization [Beazley and Lomdahl 1997], including large-scale scientific applica-
tions. Therefore, Python provides a friendly and interactive programming environment
that is convenient for trial and error, greedy optimization, or other common exploitation
schemes. According to the IEEE Spectrum classification, Python is the most popular
programming language, followed by Java and C [IEEE Spectrum 2020].

This work aims to explore some parallelization approaches available in the Python
ecosystem on the Santos Dumont (SDumont) supercomputer of the National Scientific
Computing Laboratory (LNCC), which includes libraries, frameworks and tools. The
intention is to describe and discuss some HPC approaches available in Python program-
ming, such as parallel processing or the use of a Graphics Processing Unit (GPU). The
performance of the Python HPC approaches is compared to the corresponding serial and
parallel F90 implementations for a specific test problem. Regarding the ease of program-
ming and processing performance, there is an exchange between languages like F90 or



C and the Python environment, although the implementation of an application is more
difficult than in Python, they are simple to optimize, parallelize and provide better per-
formance. However, today there are many libraries and frameworks that provide HPC
capabilities for Python, making it difficult to analyze this trade-off.

In short, this work implements an HPC application in Python, focusing on sub-
sidies for those who are starting in the Python ecosystem, perhaps attracting more users
to the HPC environment. It compares the serial and parallel performance of different
implementations of a 5-point stencil test problem, related to a 2D heat transfer prob-
lem. The implementations were coded in F90 and also in Python using some resources
for HPC 1. Some more common HPC resources were chosen for this work, as there are
countless HPC features available for Python. Except for a GPU implementation, paral-
lelization is achieved using the Message Passing Interface (MPI) communication library
[Argonne National Laboratory 2020]. Here are some general considerations about this
work to explain its scope in the vast Python environment:

1. Python environment is very diverse, and Python code can be linked to a multitude
of APIs/libraries for HPC and therefore programs can be written in different ways;

2. The Python implementations in this work include HPC solutions for standard
Python, Cython, Numba, Numba-GPU and F2Py, but there are many others;

3. The Python multiprocessing environment allows parallelization by MPI processes,
OpenMP threads or even GPU threads. However, in this work, Python imple-
mentations are based on MPI, except for the GPU-based implementation, used
to exemplify the use of such a processing accelerator. All implementations were
executed on a supercomputer;

4. The performance results are specific to the selected test problem and its size.
Therefore, it can be expected that different applications and problem sizes can
lead to a different analysis of processing performance. However, they can help the
Python programmer choose a more convenient Python HPC implementation.

This work is a small primer for the use of HPC resources in the Python program-
ming environment, in particular the use on a supercomputer.

2. The Five-Point Stencil Test Problem

The adopted test problem is a known problem of heat transfer over a finite surface, mod-
eled by the partial differential equation of Poisson. It models the normalized temperature
distribution on a surface over a series of iterations that make up the simulation. As com-
monly used for numerical solutions, this equation is discretized in a finite grid and solved
using a finite difference method. The specific algorithm requires the calculation of a 5-
point stencil in the 2D domain grid [Chen et al. 2002] to update temperatures every step
of the time. A uniform temperature field with a zero value is assumed on the surface
and, typically, adiabatic or Dirichlet boundary conditions are assumed, the latter being
assumed for this problem. Three constant rate heat sources were placed at localized grid
points, each introducing an amount of unit heat in each time interval. The heat transfer
simulation is modeled by a finite number of time steps, with all points on the grid be-
ing updated at each time step. The temperature distribution will be determined by the

1The code is available at https://github.com/efurlanm/bs21
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heat sources and the boundary conditions of Dirichlet, which implies zero temperature
at the points of the boundary grid [Langtangen and Cai 2008]. The 5-point stencil con-
sists of updating a point on the grid by averaging the temperatures of yourself with the
temperatures of your four neighbors, left-right and top-bottom in the grid. The tempera-
ture field U is defined on a discrete grid (x, y) with spatial resolutions ∆x = ∆y = h.
Thus, discretization maps the real Cartesian coordinates (x, y) to a discrete grid (i, j),
with Ux,y = Ui,j , Ux+h,y = Ui+1,j for the dimension x and similarly for the dimension y.
The 2D discretized Poisson equation with a 5-point stencil is expressed by the Equation 1.

∂2U

∂x2
+

∂2U

∂y2
≈ Ui+1,j + Ui,j+1 − 4Ui,j + Ui−1,j + Ui,j−1

h2
(1)

Figure 1. Left: final temperature distribution; Right: the discretized 2D domain.

Considering the chosen test problem, an initial implementation of the algorithm
proposed by Balaji [Balaji et al. 2017] in the C language, was easily ported to F90. The
discretized 2D domain of the heat transfer problem chosen as the test problem, showing
9 subdomains divided by green lines, with their grid points and phantom zones in yellow,
is shown to the right of Figure 1, where the red cross denotes the 5-point stencil. The
left side of Figure 1 shows the final temperature distribution over a finite surface after 500
iterations, exemplified by the grid 10×10 and three arbitrarily chosen heat sources, shown
as red cells, where the simulation only covers the inner grid 8 × 8, and the initial zero
temperature distribution is indicated in blue. This scheme requires splitting the original
square domain into a perfect square number of square subdomains.

3. F90 and Python Implementations of the Test Problem
Several serial and parallel implementations of the test problem, described in the previ-
ous section, have been written and executed. Its description and results of processing
performance are shown below. Implementations include F90, taken as a reference, stan-
dard Python, Fortran-to-Python (F2Py), Cython, and Numba (including Numba-GPU).
In this work, all parallel versions of these implementations are based on the Message
Passing Interface (MPI) communication library, which is wrapped by the MPI API for
Python (mpi4py) [Dalcı́n and et al. 2008], and allows the execution of MPI processes of
the Python environment. Parallelization using threads is restricted to the execution of a
Numba-compiled Python function in a GPU, which will also be discussed later. Paral-
lelization using mpi4py allows the use of one or more computer nodes.



3.1. F90 Serial and Parallel

F90 is described because it was taken as a reference for Python implementations, and
was compiled with GNU gfortran. The serial version is the implementation of the algo-
rithm described in the previous section, and the parallel version employs the standard MPI
asynchronous non-blocking communication functions MPI ISend() and MPI IRecv(). At
the end of each time step of the algorithm, synchronization is necessary for each sub-
domain to update the phantom zones of all neighboring sub-domains. For a square grid
with N ×N points and p MPI processes, each process is assigned to a sub-domain with a
total of [(N/p) + 2]× [(N/p) + 2] points. The part of the code that requires performance,
updates the domain grid using the 5-point stencil (Listing 1).

Listing 1. Time-consuming part of the F90 code of the test problem

do j = 2,by+1
do i = 2,bx+1

anew(i,j)= 1/2.0∗(aold(i,j) + 1/4.0∗(aold(i−1,j) + aold(i+1,j) + aold(i,j−1) + aold(i,j+1)))
enddo

enddo

3.2. Standard Python Serial and Parallel

The portability of the F90 code to Python is straightforward, without any external library
except the NumPy library of numerical tools. Part of the Python loops can be executed
transparently by resources from the Numpy library. The structure and sequence of the
original code are preserved and executed interactively by the Python interpreter in the
Jupyter Notebook environment. In this way, it is easy to modify the code or its param-
eters, show and record the results, perform the prototyping to check the accuracy of the
algorithm and document its code and description. In this step, the user can take advan-
tage of the modular nature of Python to selectively optimize the code, for example, by
porting a specific module to F90 or replacing it with a library function for performance.
Parallelization is possible using the Python multiprocessing environment which provides
many ways of providing parallel execution, according to the chosen library. However, in
this work, the library mpi4py (MPI for Python) was used.

3.3. F2Py Serial and Parallel

F2Py is a wrapper that creates a Python module by compiling the F90 source code and
requires the definition of a function with a list of arguments to be passed for the execution
of the Python module, such as number of grid points, location and heat rate of sources,
number of iterations, etc. In the case of the F90 code already parallelized with MPI, the
module can be executed in parallel by the F90 code itself. However, if the F90 code
has not yet been parallelized, the typical alternative is to use the mpi4py library (MPI
for Python), but, eventually, it will be necessary to break the original code into parts and
choose computationally intensive ones to parallelize with MPI. Therefore, F2Py seems
more convenient when different Python modules need to be generated and called interac-
tively. The mpi4py library resembles the F90 MPI and allows Python to perform a job
using one or more shared memory computer nodes, each with multi-core processors.



3.4. Cython Serial and Parallel
Cython is a static optimization compiler for the Python and Cython programming lan-
guages. It is generally used to create standard modules and to wrap C/C++ code. The
Cython source code is first compiled for the C/C++ language, which is then compiled
transparently by the operating system’s standard compiler, generating executable machine
code. Each module generated by Cython requires the definition of a corresponding stan-
dard Python function, and the performance depends on the syntactic and semantic exten-
sions used, the resources used by the Python interpreter and the choice of libraries. The
result of the compilation is a Python module that includes an API for the generated code.
In the case of the serial test problem, the complete code was compiled by Cython, while
in the case of the parallel code, a separate module was created compiling the double loop
that updates the 2D domain, and then the mpi4py library was used. The time-consuming
function that updates the domain grid using the 5-point stencil is shown in Listing 2.

Listing 2. Time-consuming part of the Cython code of the test problem

cpdef stp(double[:,::1] anew, double[:,::1] aold,Py ssize t by,Py ssize t bx) :
for i in range(1,bx+1) :

for j in range(1,by+1) :
anew[i,j] = 1/2.0∗(aold[i,j] + 1/4.0∗(aold[i−1,j] + aold[i+1,j] + aold[i,j−1] + aold[i,j+1]))

3.5. Numba Serial and Parallel
Numba is a JIT (just-in-time) compiler, which compiles the code at run time and uses
part of the Python language and part of the NumPy module. It uses resources from the
LLVM project, which is a set of modular and reusable technologies and tools for building
compilers, developed by the University of Illinois at Urbana-Campaign since 2000, which
allows the generation of machine code optimized for CPU or GPU. In order to compile the
code for the test problem, an approach similar to Cython was adopted, creating a Python
function that embeds part of the code and is compiled by Numba. The rest of the Python
code is interpreted by the standard Python, as it runs quickly. In the case of parallel code,
to run on multiple cores, the mpi4py library is used, and GPU execution is also possible,
as Numba supports part of the NVidia CUDA API, requiring the definition of the kernel
that will run on the GPU. The processing performance for the Numba-GPU version is
shown below in subsection 4.2. The time-consuming function is shown in Listing 3.

Listing 3. Time-consuming part of the Numba code of the test problem

@jit(nopython=True)
def kernel(anew,aold):

anew[1:−1,1:−1] = 1/2.0∗(aold[1:−1,1:−1] + 1/4.0∗(aold[2:,1:−1] + aold[:−2,1:−1] + aold[1:−1,2:] + aold[1:−1,:−2]))

4. Analysis of the Parallel Performance for the Test Problem
In all F90 and Python implementations of this work, the GNU 4.8.5 compiler set and the
OpenMPI 4.0.1 library were employed, with the -O3 optimization flag. In the case of F90
implementations, the version compiled with the Intel 19.1.2 and Intel MPI 19.1.2 library
was also tested, however the performance results were similar and, therefore, only GNU
gfortran with OpenMPI is shown in the rest of this work. It is important to note that only
one Bull Sequana X node was available and, therefore, in general, tests of one and several
nodes were performed using Sequana B710 nodes.



Table 1. Performance of test problem implementations, depending on the number
of MPI processes. The best values for serial or MPI are highlighted in red.
The execution time of the serial code compiled with GNU-Fortran was taken
as a reference for calculating the speedup (highlighted in blue).

Processing time (s)
Serial 1 4 9 16 36 49 64 81

F90 19.25 21.91 7.34 6.15 4.68 2.13 1.89 1.23 1.69
F2Py 18.94 23.60 7.45 6.17 4.62 2.15 1.63 1.27 1.01
Cython 23.97 23.98 7.46 6.29 4.69 2.23 1.67 1.31 2.06
Numba 30.48 30.53 8.18 6.33 5.86 3.22 2.68 1.79 2.07
Python 212.43 227.19 64.74 44.78 33.46 15.21 10.43 7.85 6.70

Speedup
F90 1.00 0.88 2.62 3.13 4.11 9.04 10.21 15.67 11.42
F2Py 1.02 0.82 2.58 3.12 4.16 8.96 11.83 15.14 19.03
Cython 0.80 0.80 2.58 3.06 4.10 8.64 11.55 14.74 9.36
Numba 0.63 0.63 2.35 3.04 3.29 5.98 7.19 10.75 9.32
Python 0.09 0.08 0.30 0.43 0.58 1.27 1.85 2.45 2.87

Parallel efficiency
F90 1.00 0.88 0.66 0.35 0.26 0.25 0.21 0.24 0.14
F2Py 1.02 0.82 0.65 0.35 0.26 0.25 0.24 0.24 0.23
Cython 0.80 0.80 0.65 0.34 0.26 0.24 0.24 0.23 0.12
Numba 0.63 0.63 0.59 0.34 0.21 0.17 0.15 0.17 0.12
Python 0.09 0.08 0.07 0.05 0.04 0.04 0.04 0.04 0.04

4.1. Comments on the Performance of the CPU-executed Implementations

The Table 1 shows the processing times for the different implementations, in one or more
Bull B710 nodes, for serial and MPI with 1, 4, 9, 16, 36, 49, 64 and 81 processes. These
processes allow for perfect square subdomains (as explained in section 2) in the imple-
mentation performed. The Figure 2 shows the corresponding speedups calculated using
the F90 serial time as a reference. In general, F90 and F2Py achieved the best perfor-
mances and are followed by Cython and Numba, with Python well behind. F2Py requires
few changes to the original F90 code, while Cython and Numba requires minor changes
to the Python code. However, Numba’s performance was comparable, from 4 to 36 pro-
cesses. The low performance of Python versions shows the convenience of using imple-
mentations like F2Py, Cython, or even Numba. As can be seen, the parallel scalability
is poor, since the test problem algorithm updates all points of the grid at each time step,
thus requiring the exchange of boundary temperatures between neighboring subdomains,
in order to update the phantom zones corresponding, requiring a lot of communication be-
tween processes, which leaves the parallel efficiency below 40% for processes of 9 MPI
or more. It can be seen that for up to 36 MPI processes, running on two Bull B710 nodes,
all implementations performed similarly, except for standard Python. In the case of 81
MPI processes, which requires 4 computer nodes, the performance of the implementa-
tions has dropped significantly compared to 64 MPI processes, which requires 3 nodes.
It is intended, as a future work, to investigate the reason for the performance differences
between the different implementations. Besides these CPU-executed implementations,
the next section briefly shows the use of a GPU-executed implementation.



Figure 2. Speedups and efficiency of the implementations, depending on the
number of processes. Dashed line denotes the linear speedup.

4.2. Processing Performance of the Numba-GPU Implementation

Numba-GPU implementation was made as an example, in order to make a very rough
comparison between the performance of CPU and GPU implementations. It should not
be used to draw conclusions, as such a comparison would require an extensive number
of tests. This section aims to compare the performance on a single node, of: (i) im-
plementation of a single Numba-GPU process performed on a Bull B715 node, or Bull
Sequana-X node; (ii) single and serial F90 process implementations running on one or
more processor cores of the Bull B715 node or Bull Sequana-X node. Note that Bull
Sequana-X is a very up-to-date SDumont node, with the latest processors and GPUs. The
Numba-GPU implementation was tested on a Bull B715 node using a single core, and
the Tesla K40 GPU runs at 22.28 s, close to the execution time of the F90 serial imple-
mentation. The same Numba-GPU implementation performed on a Bull Sequana-X node
using a single core and a single Volta V100 GPU, was performed in just 8.02 s, slightly
more than most parallel implementations running with 4 MPI processes in the Bull B715
node. The implementation of the Numba-GPU required more modifications compared to
the standard Python serial code than the others. The loop was encapsulated in a function
with a Numba decorator to be executed on a single GPU using just-in-time (JIT) compila-
tion. These execution times correspond to blocks of 8× 8 threads in the case of the GPU
V100 (node Bull Sequana-X), and blocks of 16× 16 threads in the case of the GPU K40
(node Bull B715). These block sizes have been optimized by trial and error. The multi-
threaded single instruction (SIMT) paradigm models the execution of the GPU, with the
problem domain mapped in a block grid composed of a series of threads. The blocks are
then divided into warps, usually 32 threads, and executed by one of the streaming multi-
processors that make up the GPU. Numba-GPU uses a wrapper for the CUDA API in C
language, providing access to most of its features.

5. Final Remarks
This work presented a comparison of the most common approaches in Python in SDumont
to increase computational performance, using a given test problem. The test problem is
a 2D heat transfer problem modeled by the Poisson partial differential equation, being
solved by a finite difference method. Requires the calculation of a 5-point stencil over



the discretized domain grid. Its serial and parallel implementations in F90 were taken as
a reference to compare its performance with some serial and parallel implementations of
the same algorithm available in the Python environment: F2Py, Cython, Numba, Numba-
GPU and the standard Python itself. The processing times, speedups and parallel efficien-
cies were presented and discussed for these implementations, considering a problem size
specific to the test problem. The Python environment is a high-level interactive tool for
rapid prototyping and development of computer code, allowing the integration of modules
written in F90, and the use of several third-party libraries. This work intends to show that
Python can also be used for HPC through APIs / libraries such as F2Py, Cython, Numba
and Numba-GPU. Faster implementations are generated, porting time-consuming parts of
Python code to a new function that is called from the Python program, except in the case
of F2Py, which reuses an existing F90 code. The performance results of serial and parallel
processing for the given test problem show that such an approach is feasible. Therefore,
Python not only allows the programmer to readily develop and test the intended Python
code, but also to port parts of it to obtain HPC using multiple cores and / or GPUs. The
resulting code offers the portability of Python, but provides another level of modular-
ity, since it is possible to exchange a function implemented in Cython, for example, for
another one in Numba-GPU according to the available computer architecture.
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