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“You’re an interesting species. An interesting mix. You’re capable of
such beautiful dreams, and such horrible nightmares. You feel so lost,

so cut off, so alone, only you’re not.
See, in all our searching, the only thing we’ve found that makes the

emptiness bearable, is each other”.

Carl Sagan
in “Contact”, 1985
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ABSTRACT

The present work analyses cylindrical diffusion flames (Tsuji burner) along with the
implementation of the unsteady artificial compressibility approach in the limit of a
zero Mach number with constant and variable density. Combining a finite-volume
approach on fully staggered meshes along with the artificial compressibility method,
the resulting code proves to be versatile enough to cope with flow configurations
ranging from unsteady cylinder wakes, heated cylinder or steady and unsteady dif-
fusion flames with excellent accuracy, in the limits of the underlying physical mod-
elling. The resulting numerical code has been used to simulate the Tsuji Burner in
three main cases: steady Tsuji flame with forced convection, namely Classical Tsuji
flame (Case A), steady Tsuji flame with natural convection with heated ambient
atmosphere, namely Buoyant Tsuji Flame (Case B), and finally the unsteady Tsuji
flame with natural convection at low Froude number, namely Puffing Tsuji Flame
(Case C). The results for Case A show that the flame width is proportional to the
mass stoichiometric coefficient and reciprocal to the Peclet number the 1/4 power
and free stream velocity the 3/4 power, and that the flame height is proportional
to the square of the mass stoichiometric coefficient and to the square root of the
ratio of Peclet number to free stream velocity. The results for Case B showed that
an increase of the ambient temperature leads to the appearance of a counterflow
zone below the burner where the flame is undergoing very low levels of strain rate.
The overall flame proves to be shorter than its counterpart observed in the forced
convection regime, Case A. In addition, it is shown that an order of magnitude
analysis is able to recover the sensitivity of the flame behaviour to the Péclet and
Froude numbers as well as to the combustion parameters. In a certain range of
the ambient-atmosphere temperature, the flow field changes dramatically: for the
same boundary conditions, there are two steady-state solutions which depend on
the initial conditions, i.e., the system presents a hysteresis. Lastly, the results for
case C with constant density showed that the low-frequency instability generated
by the displacement of the initial state of the flame was damped, eventually lead-
ing to a nonphysical stationary diffusion flame. In the variable density case C, the
transient puffing flame was found and two instability mechanisms were highlighted,
namely the Kelvin-Helmholtz mechanism near the cylinder and the Rayleigh-Taylor
mechanism near the flame pinch-off. Finally, a parametric study varying the Froude
number showed that the puffing regime for Tsuji flames follows the same relation
as for jet flames, St ∝ Fr−1. However, it was found that the frequency level of the
puffing Tsuji flames is not the same as described in the literature for jet and pool
flames.

Keywords: diffusion flames. buoyancy-driven flow. vortex breakdown. finite volume
method. artificial compressibility method.
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QUEIMADOR TSUJI COMO UM LABORATÓRIO NUMÉRICO
PARA O ESTUDO DE DIVERSOS ASPECTOS DA CHAMA DE

DIFUSÃO
RESUMO

O presente trabalho analisa as chamas de difusão cilíndricas (queimador Tsuji) junta-
mente com a implementação da abordagem de compressibilidade artificial transiente
no limite de um número Mach zero com massa específica constante e variável. Com-
binando uma abordagem de volume finito em malhas totalmente deslocadas junto
com o método de compressibilidade artificial, o código resultante provou ser versá-
til o suficiente para lidar com configurações de escoamento que vão desde esteiras
transientes em cilindro, cilindro aquecido ou chamas de difusão estacionarias e tran-
sientes com excelente precisão, nos limites da modelagem física subjacente. O código
numérico resultante foi usado para simular o Queimador Tsuji em três casos princi-
pais: Chama Tsuji estacionária com convecção forçada, nomeadamente Chama Tsuji
Clássica (Caso A), Chama Tsuji estacionária com convecção natural com atmosfera
ambiente aquecida, nomeadamente Chama Tsuji Flutuante (Caixa B), e finalmente
a chama transiente de Tsuji com convecção natural em baixo número de Froude,
ou seja, a chama de Tsuji puffing (Caso C). Os resultados para o Caso A mostram
que a largura da chama é proporcional ao coeficiente estequiométrico de massa e
recíproca ao número de Peclet a 1/4 da potência e a velocidade do escoamento livre
a 3/4 da potência, e que a altura da chama é proporcional ao quadrado do coefici-
ente estequiométrico de massa e à raiz quadrada da razão entre o número de Peclet
e a velocidade do escoamento livre. Os resultados do Caso B mostraram que um
aumento da temperatura ambiente leva ao aparecimento de uma zona de recircula-
ção abaixo do queimador onde a chama está passando por níveis muito baixos de
taxa de estiramento. A chama em geral prova ser mais curta do que sua contraparte
observada no regime de convecção forçada, Caso A. Além disso, é mostrado que
uma análise de ordem de magnitude é capaz de recuperar a sensibilidade do com-
portamento da chama aos números de Péclet e Froude, bem como aos parâmetros
de combustão. Em uma determinada faixa de temperatura ambiente-atmosfera, o
campo do escoamento muda drasticamente: para as mesmas condições de contorno,
existem duas soluções de estado estacionário que dependem das condições iniciais,
ou seja, o sistema apresenta uma histerese. Por fim, os resultados para o caso C
com massa específica constante mostraram que a instabilidade de baixa frequência
gerada pelo deslocamento do estado inicial da chama foi amortecida, levando a uma
chama de difusão estacionária não física. No caso C de massa específica variável,
a chama de puffing transiente foi encontrada e dois mecanismos de instabilidade
foram destacados, a saber, o mecanismo Kelvin-Helmholtz próximo ao cilindro e o
mecanismo Rayleigh-Taylor próximo ao estrangulamento da chama. Finalmente, um
estudo paramétrico variando o número de Froude mostrou que o regime de puffing
para chamas Tsuji segue a mesma relação que para chamas de jato, St proptoFr−1.
No entanto, verificou-se que o nível de frequência das chamas do Tsuji não é o mesmo
descrito na literatura para chamas de jato e poça.

Palavras-chave: chamas de difusão. escoamento gerado por flutuabilidade. quebra de
vórtice. método de volumes finitos. método de compressibilidade artificial.
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1 INTRODUCTION

The main object of this study is the Tsuji Burner as a numerical laboratory for dif-
fusion flames. This work was inspired by the importance of the geometry of the Tsuji
Burner for the combustion domain, combined with the lack of exploration of different
configurations besides the classical one. Moreover, the exploration of this diffusion
flame geometry was closely related to the development of a self-developed numerical
code for computational fluid dynamics, hence the term “numerical laboratory” used
in the text.

The classical configuration of Tsuji Burner consists of a fuel ejection from a porous
cylinder into an oncoming air stream such that a free stagnation line parallel to
the cylinder axis is formed upstream of the porous surface. This line lies in the
plane of symmetry of a stagnation point boundary layer, and combustion occurs as
a counterflow diffusion flame. This diffusion flame configuration was the main object
of investigation of the experimental setup proposed in the seminal work of Tsuji and
Yamaoka (1967).

The Tsuji burner is a simple geometry that allows access to several fundamental
aspects of diffusion flames that are important for modelling processes of reacting
fluid dynamics. For example:

a) diffusion flames in the counterflow regime are found upstream and around
the axis of symmetry and the flame properties from this configuration are
used in modelling turbulent combustion;

b) the flame is very long and slender downstream of the burner;

c) long flames provide a large residence time for intermediate chemical species,
e.g., C2H2 and C3H3, within the flame, which favours soot formation;

d) long flames are unstable with a characteristic frequency that can be coupled
to the natural frequency of the chamber, resulting in flickering combustion
instability; and

f) the interaction between the flame and the vortex breaks up the flame and
the resulting fuel ball is taken by the flow and burns, resulting in the
so-called puffing flames regime.

The applications of all the results from these analyses are as numerous as the fun-
damental aspects uncovered. For example:

1



a) long and sooty flames aiming at heat transfer by thermal radiation;

b) development of new combustion chambers;

c) safety issues related to fire propagation under normal conditions and also in
microgravity (the covering protection of electric wires can be burnt in case
of a short circuit and the flame can ignite other material in the vicinity);

d) also in safety issues, the dynamics of the detached flame ball can determine
the spread of the fire;

e) by controlling the ambient temperature, it is possible to control the shape
of the flame, which allows simulating a certain level of microgravity on the
surface of the Earth.

In addition to the knowledge of the basic processes conveyed by Tsuji flames and
their applications, the analysis of the proposed work requires the development of a
self-developed numerical code (solver) suitable to simulate compressible flows in the
regime of zero Mach number.

The aim of this work is to analyse the total diffusion flame formed in the Tsuji
burner (horizontal cylindrical burner from which the fuel is injected) under the
influence of forced convection and buoyancy, which in the latter, the cases studied
here, are controlled by the ambient temperature. This low-speed buoyant diffusion
flame enforces a flow field in the zero Mach regime, which requires a special treatment
for its simulation. The use of this burner allows the employment of the steps to build
the treatment of the zero Mach number framework in the context of a new numerical
code.

The present work is divided into three parts, as follows:

• Part I: It deals with the phenomenology of the physical problems that
arise in the subject of this work. Here, the Tsuji burner configurations
used and their main properties are explained. Then, the puffing flames
are presented as an important flame behaviour for one of the Tsuji burner
configurations studied.

• Part II: It focuses on the modelling and numerical tools used to solve the
proposed problem. In this part, the numerical solution method and the mo-
tivation for choosing such a method are presented. Moreover, the specifics
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of the verification and validation cases for the self-developed numerical
code are presented.

• Part III: This part consists of all the obtained results and their discus-
sions.
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Part I

Phenomenology





2 INTRODUCTION TO THE PHENOMENOLOGY OF THE TSUJI
BURNER

It is seen in the literature that the Tsuji burner in a uniform forced flow, as showed
schematically in Figure 2.1, is used to establish a counterflow diffusion flame (Tsuji
flame) (TSUJI, 1982), from which the flamelet properties are determined (PETERS,
1983; PETERS, 1984); with curvature in one direction around the stagnation point.
It is possible to control the stretch rate around the counterflow and its position
in relation to the burner changing the fuel injection velocity and the air velocity,
which permits to study the influence of the stretch rate and the heat loss on
the flame stability. In general, the stretch rate is large, which leads to reactants
leakage through the flame and, above a critical value, extinction occurs. Special
experimental sets are constructed to obtain low stretch rates, i.e. planar flames
(JACONO et al., 2005) and impinging flow onto low curvature body (HAN et al., 2005).

Figure 2.1 - Schematic picture of the diffusion flame established around a horizontal cylin-
drical burner in an uniform flow field (the velocity in y direction). v̂∞ is the
inlet forced convection and ûb is the burner fuel injection.

SOURCE: The Author.
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In the present work, the surrounding (ambient) temperature of the burner is in-
creased to reduce the buoyancy and, consequently, the flow velocity around the
stagnation point, which permits obtaining low stretch rates, and to modify the
flame shape. As pointed by a preliminary analysis through an incompressible model
(DONINI et al., 2020), the increase of the ambient temperature generates a vortex
downstream close to the burner through the combination of the positive buoyancy
of hot flame gases and negative buoyancy of cold fuel vapour. The presence of that
vortex changes drastically the flame shape, increasing the flame width about four
times and the flame height almost twice.

By reducing the buoyancy with an increase in temperature, the velocity decreases,
which extend the transport of heat through conduction to farther regions around
the flame. Then, the region of high temperature gases increases, which is responsible
for augmenting the heat loss by radiation. Therefore the stability of the flame in
the downstream in the region far from the burner is influenced strongly by radiation
heat loss (BONNE, 1971).

In a recent study (BIANCHIN et al., 2019), flames established by the Tsuji burner
without casting the backside of the burner is found to be very large. Long flame
means enough time to any perturbation to evolve. Taking into account the
velocity profile to be proper to generate Kelvin-Helmoltz hydrodynamic instability
(due to inflection on the curvature), one can expect transient process along the flame.

Besides that instability, previous exploratory analysis showed the interaction of
Kelvin-Helmoltz instability and the vortices close to burner. This coupling makes
the vortices change their properties. In addition, the modification on the flow field
affect directly the flame.

Throughout the text, the Tsuji burner will be classified into two main categories:

• The classical Tsuji burner: The classical configuration means that there is
forced convection carrying the oxidant from the bottom and the buoyant
force is negligible. This configuration strongly correlates with the one used
in the seminal Tsuji paper.

• The buoyant Tsuji burner: in the buoyant configuration, there is no inlet
forced convection and the buoyant force plays the essential role of carrying
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the oxidant towards the cylindrical burner by entrainment.

The buoyant configuration, so far as it is concerned, is divided into steady and
unsteady cases.

The problem addressed in this thesis is the use of the above mentioned Tsuji burner
configurations as a “numerical laboratory” for studying several aspects involving
diffusion flames.

2.1 The classical Tsuji flame

While under normal gravity conditions, the forced convection transport is not sepa-
rated from the natural convection transport in combustion problem, in microgravity
environments the forced convection transport has no contribution of natural one.
Then, the understanding of the whole (forward and backward) Tsuji flame under
forced convection is important to, e.g., prevent accidental fire in spaceship.

Diffusion flames established around cylindrical burner with oxidant provided by the
ambient atmosphere do not exist in steady state (BUCKMASTER; LUDFORD, 1982).
The diffusive transport from the atmosphere to the burner is unable to supply ox-
idiser mass flux in stoichiometric proportion corresponding to the fuel mass flux
provided by convective and diffusive transport from the burner to maintain a flame
at a stationary position. It implies one-dimensional cylindrical diffusion flames to
be inherently unsteady (QIAN; LAW, 1997). Therefore, cylindrical diffusion flames
depend at least on two variables: one temporal and one spatial, or two spatial. The
latter case is well known and found around the Tsuji burner: a forced convection
around a cylindrical burner from which the radial fuel injection causes a second
spatial coordinate dependence (TSUJI; YAMAOKA, 1967). The main focuses of Tsuji
burner analyses have been the dependence of flame morphology on the forced convec-
tion and extinction of the flame forward the burner. The diffusion flame established
in Tsuji burner is very long, thus, to shorten it, the backward part of the cylindrical
burner was covered to reduce the fuel mass injection and allowing also the estab-
lishment of a recirculating flow zone. Since the flame height is very large compared
to the cylindrical burner radius, numerical simulations are performed in a truncated
domain from which only information about the flame close to the burner is ob-
tained, e.g. envelope flame, side flame, wake flame and liftoff flame (CHEN; WENG,
1990; TSA; CHEN, 2003). No effort, however, has been dedicated on revealing the
processes controlling the flame width far from the burner and the flame height.
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2.2 Steady buoyant Tsuji flame

The strain rate of the counterflow region of the buoyant Tsuji flame is determined
by the fuel injection velocity and the position of the stagnation point imposed by
the component of the velocity along the flame driven by the buoyancy. The proposed
strategy for reducing the strain rate is to reduce the buoyancy, not by reducing the
gravitational acceleration, but by changing the density differences.

The buoyant force is given by ĝ(ρ̂∞−ρ̂) and in the present work, the density ρ̂ satisfies
ρ̂f ≤ ρ̂ ≤ ρ̂b, in which ĝ is the gravity acceleration and ρ̂f , ρ̂∞ and ρ̂b are density of
the gases in the flame, in the ambient-atmosphere and in the burner, respectively.
A schematic of the problem showing the ambient-atmosphere and burner regions
is exhibited in Figure 2.2. The conditions addressed in this analysis are such that
ρ̂f ≤ ρ̂∞ ≤ ρ̂b. Thus, in the region with density in the range ρ̂f ≤ ρ̂ ≤ ρ̂∞, the
buoyant force is positive, ĝ(ρ̂∞ − ρ̂) ≥ 0, implying that the velocity of the fluid
is positive. Meanwhile, in the region with density in the range ρ̂∞ ≤ ρ̂ ≤ ρ̂b, the
buoyant force is negative, ĝ(ρ̂∞ − ρ̂) ≤ 0, implying that the velocity of the fluid
can be negative, which is the condition of the gases in the lower part of the burner.
Inside the flame, the density varies from the hot gases density around the flame up
to cold gases density close to the burner, i.e., ρ̂f ≤ ρ̂ ≤ ρ̂b. Outside the flame, the
density varies from the hot gases density, around the flame, up to cold gases density
of the ambient atmosphere, i.e., ρ̂f ≤ ρ̂ ≤ ρ̂∞. Hence, decreasing the ambient-
atmosphere density through the increase of the temperature, the difference of density
(ρ̂∞ − ρ̂f ) > 0 diminishes, consequently, the positive buoyancy is reduced and the
result is a low upward velocity along the flame. However, inside the flame, gases are
found in the density range ρ̂∞ ≤ ρ̂ ≤ ρ̂b, and, consequently, the buoyant force is
negative, ĝ(ρ̂∞ − ρ̂) < 0. Then, the cold fuel ejected from the forward part of the
burner is accelerated by the action of negative buoyancy. The downward velocity
of the cold fuel increases and the stagnation point is established farther from the
burner.

Therefore, the increase of the ambient-atmosphere temperature leads to the reduc-
tion of the positive buoyancy of the hot gases, and to the increase of the negative
buoyancy of cold gases. The combination of these two forces by the systematic vari-
ation of the temperature of the ambient atmosphere will be used to achieve a low
strain rate in the lower region of Tsuji diffusion flame.

The rise in the ambient-atmosphere temperature not only reduces the positive buoy-
ancy intensity and augments the negative buoyancy intensity but it also impacts
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their distribution. These changes in the buoyant force modify the flow field and
consequently the flame properties. Unexpectedly, a drastic change is observed in the
flow field in a specific range of ambient atmosphere temperature. The upper vortex
in the wake of the burner is breaking in two. One of them is established close to the
position of the primary vortex, but the other is established forward the burner.

Figure 2.2 - Problem schematic (horizontal porous cylinder with fuel injection). Close to
the burner, the flame presents a cylindrical geometry driven by the fuel injec-
tion, but, above the burner, a rectangular geometry driven by the buoyancy.

SOURCE: The Author.
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3 PHENOMENOLOGY OF PUFFING FLAMES

The low frequency oscillations of buoyant diffusion flames have been known for a
long time with the direct observation of candle or of any other light source using
solid or liquid fuels. The intrinsically periodic behaviour of those flames was recorded
initially by photographs of flame (CHAMBERLIN; ROSE, 1928; KIMURA, 1965; CHEN;

ROQUEMORE, 1986), by Schiliren photographs (TOONG et al., 1965; GRANT; JONES,
1975; EICKHOFF; WINANDY, 1985) and by photographs from seeded flow (reactive
Mie scattering technique)(CHEN et al., 1988). The low frequencies of flame oscillations
(flame flickering) are around 15 Hz and independent on the fuel type (CHAMBERLIN;

ROSE, 1928), on the geometry of the source of fuel, and on the flow field in the wake,
regarding jet flames and pool fires (TOONG et al., 1965). The coupling among flow
field ( accelerating around the flame and decelerating in the plume above it ), tem-
perature and species field found in buoyant diffusion flames imposes the formation
of large vortex outside the flame (WOHL et al., 1949). As the vortex displaces along
the flame in direction of the tip, it is forced against the flame. Close to the flame
tip, the vortex strangles the flame, a neck is established, large strain rate leads to
extinguish locally the flame ending up to the separation of part of the flame tip, in
which it is carried out by the flow (CHEN et al., 1988). Using toy models, it is shown
that the main process controlling the hydrodynamic instability observed out of the
flame is the density gradient effect on the flow field besides the buoyancy.

In general, it would be expected that the mechanisms controlling plume instability
could be the same as those controlling buoyant diffusion flame. The reason for that
it would be the accelerating flow in both cases. However, the geometrical factor and
the increasing acceleration of the flow around flame give a particular character to
the buoyant diffusion flames (FLEMING, 1982).

By making use of linear analysis, it was found frequency of 28 Hz for flame oscillation
(KIMURA, 1965), which does not agree with experimental results (CHAMBERLIN;

ROSE, 1928; KIMURA, 1965; TOONG et al., 1965; DURãO; WHITELAW, 1974; GRANT;

JONES, 1975). Even considering the flow and temperature field in the region of
the flame and downstream it (KIMURA, 1965; GRANT; JONES, 1975), the failure of
the linear analysis on the low frequency prediction is due to no inclusion of the
buoyancy. With a infinite candle model (diffusion flame established between two
large reservoirs of fuel and oxidant) and buoyancy-induced flow, it is found that the
frequency increases with distance from the burner rim and, chosen a proper position,
the frequency of 17 Hz is determined (BUCKMASTER; PETERS, 1986). The result of
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frequency dependence on the distance from the rim is in accordance with the stability
analysis of buoyancy-driven flow in vertical heated plate (BUCKMASTER; PETERS,
1986).

As pointed out, numerical simulations of toy (simplified) models are used to observe
the influence of individual process or group of them on the structure and stability
of jet flame established by buoyancy-driven flow. The numerical results are able to
describe the recirculation zones, the flame bulge formation and displacement, small
counter-rotating and large vortices outside the flame, the frequency of about 13Hz
of flame oscillation and the flame necking and separation at the same frequency
(ELLZEY; ORAN, 1990; DAVIS et al., 1992; CHEN et al., 1992; KATTA; ROQUEMORE,
1993).

The flickering frequency is independent on flux and type of fuel, but is not on the size
of the burner (pool). The frequency decreases with the burner diameter according to
f = 1.68D−1/2 (MALALASEKERA et al., 1996). This line is a good approximation of
the data presented by Malalasekera et al. (1996), although the scatter is considerable
for burners smaller than 0.01m in diameter. In the order hand, since the large scale
instability is produced by the buoyancy, the frequency increases with its strength,
described by Strouhal number as a function of Froude number, St = 0.29Fr−1

(DUROX et al., 1995; MALALASEKERA et al., 1996; SATO et al., 2000; SATO et al., 2002;
SATO et al., 2008; XIA; P.ZHANG, 2018). The break of the flame in two parts, one
attached on the burner and the other carried out by the flow occurs only for certain
conditions. The main of them is the length of the flame, controlled by the degree
of dilution of the fuel stream. This characteristic reveals the dependency of the
breaking process on the evolution of the large vortex out of the flame (CARPIO et

al., 2012).

Detail analysis of the outer vortex shows that it presents a absolute instability in its
genesis. However, for a wavelength larger than a critical value, the outer vortex loses
the previous behavior and becomes convective unstable, explaining its displacement
along the flame (SEE; IHME, 2014; MORENO-BOZA et al., 2016)
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4 FORMULATION

4.1 Governing equations

The transport coefficients (dynamic viscosity µ̂ , thermal conductivity k̂, and species
diffusivity D̂i) are functions of the temperature and the thermodynamic coefficient
(constant pressure specific heat ĉp) is considered constant. In the following and unless
stated otherwise, any quantity Γ̂ is dimensional whereas its dimensionless counter-
part is written as Γ. The governing equations include the conservation equations for
mass, momentum, energy and species:

∂ρ̂

∂t̂
+ ∇̂ · ρ̂v̂ = 0 (4.1)

∂ρ̂v̂
∂t̂

+ ∇̂ · ρ̂v̂v̂ = − ∇̂p̂ + ∇̂ · τ̂ + (ρ̂ − ρ̂∞)ĝ (4.2)

∂ρ̂ĉpT̂

∂t̂
+ ∇̂ · ρ̂ĉpv̂T̂ = ∇̂ · (k̂∇̂T̂ ) + v̂ · ∇̂p̂ + Φ̂ + Q̂ ˆ̇w (4.3)

ρ̂∂Yi

∂t̂
+ ∇̂ · ρ̂v̂Yi = ∇̂ · (ρ̂D̂i∇̂Yi) − si

ˆ̇w (4.4)

in which the subscript represent i = F for fuel and i = O for oxidant, ĝ = (0, ĝ, 0),
ˆ̇w = ρ̂BYO

ν1YF
ν2e−Êa/(R̂T̂ ) (B is frequency factor, R̂ is constant of gases, and Êa is

the activation energy) is the reaction rate, Q̂ is the heat released by the combustion,
and Φ̂ is the dissipation function defined as Φ̂ = τ̂ : ∇̂v̂.

In the zero Mach number approximation utilised here, the pressure variations can
be neglected in the first approximation when writing the equation of state, which
therefore reduces to ρ̂T̂ = 1. Furthermore, in this zero Mach number limit, the
viscous stress term proportional to the second viscosity coefficient can be incorpo-
rated in the definition of the variable p that represents in Equation 4.2 the pressure
difference from the unperturbed ambient distribution. Correspondingly, the result-
ing viscous stress tensor reduces to τ̂ = µ̂(∇̂v̂ + ∇̂v̂T ) ,with both p and τ̂ scaled
with the characteristic value of the dynamic pressure. The power-law expression is
µ̂/ρ̂ = D̂i = k̂/ρ̂ĉp = T̂ σ, with σ = 0.7.
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4.2 Adimensionalization

To reduce the number of variables and to be independent of system of unit, the
equations are expressed in dimensionless form. Thus dimensionless variables used in
the analysis are defined as

t ≡ t̂

t̂c

, x ≡ x̂

L̂c

, y ≡ ŷ

L̂c

, z ≡ ẑ

L̂c

,

ρ ≡ ρ̂

ρ̂c

, v ≡ v̂
V̂c

, p ≡ p̂

p̂c

, T ≡ T̂

T̂c

, YF ≡ ŶF

ŶF 0
, YO ≡ ŶO

ŶO∞
,

∇ ≡ ∇̂
L̂c

,
∂

∂t
≡ 1

t̂c

∂

∂t̂

The variables T , ρ, YF , YO are temperature, density, fuel mass fraction and oxi-
dant mass fraction, respectively. All lengths are scaled with the reference length
L̂c, the velocities with the reference velocity V̂c and the temperature by the ref-
erence temperature T̂c. The time is non-dimensionalized using the residence time
t̂c = t̂r = L̂c/V̂c. The pressure p̂ is nondimentionalized by the reference pressure
p̂c = ρ̂cV̂

2
c . The transport coefficients are non-dimensionalized by their values from

the ambient atmosphere, kinematic viscosity ν = (µ̂/ρ̂)/(µ̂∞/ρ̂∞), the thermal diffu-
sivity α = (k̂/ρ̂ĉp)/(k̂∞/ρ̂∞ĉp∞), and the species diffusivity Di = D̂i/D̂i∞. Where ∞
represents ambient conditions. All the reference parameters are defined separately
for each case studied. Thereby, the nondimensional governing equations are

∂ρ

∂t
+ ∇ · ρv = 0 (4.5)

∂ρv
∂t

+ ∇ · ρvv = − ∇p + 1
Re

∇ · τ + 1
Fr2 (1 − ρ)ey (4.6)

∂ρT

∂t
+ ∇ · ρvT = 1

Pe
∇ · (ρα∇T ) + Ecv · ∇p + Ec

Re
Φ + Qẇ (4.7)

∂ρYi

∂t
+ ∇ · ρvYi = 1

PeLei

∇ · (ρα∇Yi) − siẇ (4.8)

where Q ≡ Q̂/(ĉpT̂c) is the dimensionless heat of combustion. The dimensionless
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parameters Fr ≡ V̂c/
√

ĝL̂c, Re ≡ L̂cV̂c/ν̂, Ec ≡ V̂ 2
c /(ĉpT̂c), Pr ≡ ν̂∞/α̂∞ and

Lei ≡ α/Di are Froude, Reynolds, Eckert, Prandtl and Lewis for the i species
numbers, respectively, in which i = F for fuel and i = O for oxidant and ν̂ is the
viscosity. Q is the rate of heat added by heat source and ẇi = SiρDaYO

ν1YF
ν2e−Ea/T

is the net rate of work done on fluid element by surroundings, with Ea ≡ Êa/R̂T̂∞.
The parameter Da ≡ Ba∗2

0 Ŷ ν1
O∞Ŷ ν2

F 0/α∞ is the dimensionless Damköhler number.
The viscous stress tensor is τ = µ(∇v + ∇vT ) + 2

3µ(∇ · v)δ, in which δ is the unit
tensor.

4.2.1 Final governing equations

The operator ∇ is defined as

∇ = ∂

∂x
ex + 1

xη

∂

∂y
ey + ∂

∂z
ez (4.9)

where ei is the unit vector and η is 0 for Cartesian Coordinates and 1 for Cylindrical
Coordinates. The velocity vector is defined as v = [u, v].

Taking Equation 4.9 into the nondimensional governing equations, Equations 4.5-4.8
and neglecting the terms Ecv · ∇p + (Ec/Re)Φ, knowing that Ec ≡ (γ − 1)M2 → 0
for the framework M → 0 considered here. The final form of the governing equations
are

∂ρ

∂t
+ 1

xη

∂(xηρu)
∂x

+ ∂(ρv)
∂y

= 0 (4.10)

∂ρu

∂t
+ 1

xη

∂xηρuu

∂x
+ ∂ρvu

∂y
= −∂p

∂x
+ 1

Re

[
2
xη

∂

∂x

(
xηµ

∂u

∂x

)

+ ∂

∂y

(
µ

∂u

∂y

)
− 2

3
1
xη

∂

∂x

(
µ

∂(xηu)
∂x

)
− 2

3
1
xη

∂

∂x

(
xηµ

∂v

∂y

)
+ ∂

∂y

(
µ

∂v

∂y

)

+η

(
−2µu

xη2 + 2
3

µ

xη2
∂(xηu)

∂x
+ 2

3
µ

xη

∂v

∂y

)]
(4.11)
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∂ρv

∂t
+ 1

xη

∂xηρuv

∂x
+ ∂ρvv

∂y
= −∂p

∂y
+ 1

Re

[
xη 1

xη

∂

∂x

(
xηµ

∂v

∂x

)
+ 2 ∂

∂y

(
µ

∂v

∂y

)

−2
3

∂

∂y

(
µ

xη

∂(xηu)
∂x

)
− 2

3
∂

∂y

(
µ

∂v

∂y

)
+ 1

xη

∂

∂x

(
xηµ

∂u

∂y

)]
+ 1

Fr2 (1 − ρ)ey (4.12)

∂ρT

∂t
+ 1

xη

∂xηρuT

∂x
+ ∂ρvT

∂y
=

1
Pe

[
1
xη

∂

∂x

(
xηρα

∂T

∂x

)
+ ∂

∂y

(
ρα

∂T

∂y

)]
+ Qẇ (4.13)

∂ρYi

∂t
+ 1

xη

∂xηρuYi

∂x
+ ∂ρvYi

∂y
=

1
PeLei

[
1
xη

∂

∂x

(
xηρα

∂Yi

∂x

)
+ ∂

∂y

(
ρα

∂Yi

∂y

)]
+ Qẇ (4.14)
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5 ELEMENTARY ASPECTS OF DIFFUSION FLAMES

We begin by introducing some essential aspects of diffusion flames, including the
thermochemical parameters that plays the key role of determining the flame position
and flame temperature when the irreversible chemical reaction is infinitely fast.
This chemical reaction is addressed in this section, along with the parameters and
variables that rises by introducing this consideration.

In the broadest sense, a diffusion flame may be defined as any flame in which the fuel
and oxidizer initially are separated. With this usage, the term is synonymous with
nonpremixed combustion . In a restricted sense, a diffusion flame may be defined as
a non- premixed, quasisteady, nearly isobaric flame in which most of the reaction
occurs in a narrow zone that can be approximated as a surface. This surface is a
reaction sheet where the reaction occurs infinitely fast (WILLIAMS, 1985).

Figure 5.1 shows a typical configuration of diffusion flame with the reaction sheet
assumption. As the fuel and oxidant are transported toward each other by diffusion
and any convective motion of the system, they are heated and eventually meet at
the reaction sheet. Fuel and oxidizer are each confined to their respective regions of
supply, and reach vanishing concentrations at the reaction sheet. Consequently no
leakage occurs. The reaction sheet acts as a sink for the reactants and a source of
combustion heat and products (LAW, 2006).

Figure 5.1 - Diffusion flame temperature and concentration profiles with reaction-sheet
assumption.
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SOURCE: The Author.
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5.1 The thermochemical parameters

For the totality of this study, focused on the fluid mechanics aspects of nonpremixed
combustion, it is adopted the overall reaction

CnH2n+2 + 3n + 1
2 O2 → nCO2 + (n + 1)H2O (5.1)

as a description of the underlying stoichiometry for the oxidation a given hydrocar-
bon of the generic formula CnH2n+2. From Equation 5.1, the unit mass of fuel reacts
with a mass s = 8(3n + 1)/(7n + 1) of oxygen to give a mass sCO2 = 22n/(7n + 1)
and sH2O = 9(n+1)/(7n+1) of CO2 and sH2O, respectively, releasing in the process
an amount of energy given by q = 1

2(bo
CnH2n+2 −nbo

CO2 − (n+1)bo
H2O)/(7n+1), where

bo
i represents the enthalpy of formation per mole of species i. For all the combustion

related cases studied in this thesis, the selected fuel is methane (CH4), thereby,
s = 4 and Q̂ = 50.15kJ/g. For other hydrocarbons that share the same molecular
structure, the combustion properties, s and Q, differs by a small amount.

As showed in Figure 5.1, the streams that provide the air and the fuel in a diffusion-
controlled combustion system are different. A fundamental thermochemical parame-
ter plays an important role in nonpremixed combustion and is extensively remarked
throughout this thesis, namely

sO = s
ŶF 0

ŶO∞
(5.2)

the mass of air that one needs to mix with unit mass of the gaseous fuel stream
to generate a stoichiometric mixture. For air, YO∞ ≃ 0.232 and YF 0 stand for the
mass fractions of oxygen and fuel in their respective streams. Diluted fuel-stream
takes values YF 0 < 1, which is frequently admitted in experiments and numerical
computations. Common values for S in a hydrocarbon-air flame with undiluted fuel
stream, i.e. YF 0 = 1, initially at normal ambient temperature is sO = s/YO∞ ≃ 15.

5.2 The limit of infinitely fast reaction and the Shvab-Zel’dovich formu-
lation

A major difficulty in the solution of chemically reacting flows is the presence of the
reaction term, which is not only nonlinear but also couples the energy and species
equations, Equation 4.7 and 4.8. However, recognizing that the concentrations of
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YF and YO species and the system enthalpy are related through stoichiometry, it
is reasonable to expect that under suitable situations these quantities can be sto-
ichiometrically combined such that the resulting term is not affected by chemical
reactions in the flow. Such a combined quantity is called a coupling function (LAW,
2006).

To couple the energy and species equations, the Shvab-Zel’dovich formulation is
applied and the assumption of an ” infinitely fast chemical reaction rate” is consid-
ered. In this model the flame zone is of infinitesimal thickness and is represented by
a surface rather than an extended reaction zone. In this model the Lewis number of
i species is considered equal to unity. The goal of this formulation is to transform
the system of three equations, Equation 4.7 for energy and Equation 4.8 for fuel and
oxidant, in two linear equations as functions of Z and H, representing the mixture
fraction and excess enthalpy, respectively. Neglecting the terms Ecv·∇p+(Ec/Re)Φ
and combining Equation 4.7 and 4.8:

∂

∂t


ρT

ρYO

ρYF

+ ∇ ·


ρvT

ρvYO

ρvYF

 =

∇ ·


ρα∇T/Pe

ρα∇YO/(PeLeO)
ρα∇YF /(PeLeF )

+


Q

−sO

−sF

 ẇ (5.3)

Knowing that sF = 1, multiplying the second line by LeO and the third by LeF in
Equation 5.3:

∂

∂t


ρT

ρLeOYO

ρLeF YF

+ ∇ ·


ρvT

ρvLeOYO

ρvLeF YF

 =

1
Pe

∇ ·


ρα∇T

ρα∇YO

ρα∇YF

+


Q/LeF

−LeOsO/LeF

−1

LeF ẇ

Multiplying the third line by S = sOLeO/LeF and subtracting the second line:
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∂

∂t
ρ (LeF SYF − LeOYO) + ∇ · ρv (LeF SYF − LeOYO) =

1
Pe

∇ · [ρα∇(SYF − YO)]

Adding a unitary constant on the terms inside the derivatives:

∂

∂t
ρ (LeF SYF − LeOYO + 1) + ∇ · ρv (LeF SYF − LeOYO + 1) =

1
Pe

∇ · [ρ∇(SYF − YO + 1)]

Defining mixture fraction by Z = SYF − YO + 1 and LeO = LeF = 1:

∂ρZ

∂t
+ ∇ · ρvZ = 1

Pe
∇ · (ρα∇Z) (5.4)

where the thermochemical parameter S is definded by Equation 5.2. Applying the
Del operator (Equation 4.9) into the Equation 5.4, we have the final mixture fraction
governing equation

∂ρZ

∂t
+ 1

xη

∂xηρuZ

∂x
+ ∂ρvZ

∂y
= 1

Pe

[
1
xη

∂

∂x

(
xηρDT

∂Z

∂x

)
+ ∂

∂y

(
ρα

∂Z

∂y

)]
(5.5)

Multiplying the first line in Equation 5.3 for ((S + 1)LeF /Q) and adding to the
second and third line:

∂

∂t
ρ

(
(S + 1)LeF

Q
T + LeF YF + LeOYO

)
+∇·ρv

(
(S + 1)LeF

Q
T + LeF YF + LeOYO

)
=

1
Pe

∇ ·
[
ρα∇

(
(S + 1)LeF

Q
T + YF + YO

)]

Defining the enthalpy excess H = (S + 1)LeF T/Q + YF + YO:

24



∂ρH

∂t
+ ∇ · ρvH = 1

Pe
∇ · (ρα∇H) (5.6)

Again, applying the Del operator (Equation 4.9) into the Equation 5.6, we have the
final enthalpy excess governing equation

∂ρH

∂t
+ 1

xη

∂xηρuH

∂x
+ ∂ρvH

∂y
= 1

Pe

[
1
xη

∂

∂x

(
xηρα

∂H

∂x

)
+ ∂

∂y

(
ρα

∂H

∂y

)]
(5.7)

The general Shvab-Zel’dovich formulation (Equations 5.4 and 5.6) describes the tem-
perature and the oxygen and fuel mass fractions by determining the mixture fraction
and the enthalpy excess functions in the fuel region and in the oxygen region. In the
present model, is assumed that the combustion process occurs under condition of
Damköhler number infinitely large (Da ≫ 1). In other words, the reaction charac-
teristic time is infinitely smaller than any mechanical characteristic time. Thus, the
reactants can not coexist, i.e., the flow field is divided in two domains separated by
a reaction sheet. In the fuel region YO = 0 the oxygen concentration is zero. In the
oxygen domain, YF = 0. Both reactants have zero concentration at the flame, where
the chemical reaction takes place.

In order to obtain an equation to describe the temperature profile, the enthalpy
excess and mixture fraction were combined resulting the following expression:

T (Z, H) =


Q[H − (Z − 1)/S]/[(S + 1)LeF ], for Z > 1

Q(H − Z − 1)/[(S + 1)LeF ], for Z ≤ 1
(5.8)

In a similar way, the mass fraction is obtained through the mixture fraction distri-
bution:

Yi(Z) =


(Z − 1)/S, for Z > 1

1 − Z, for Z ≤ 1
(5.9)
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6 PRESENTATION OF THE NUMERICAL METHOD

6.1 Numerical difficulties (zero and low Mach number flows)

The flow around the Tsuji Burner discussed at Part I of this thesis can be charac-
terised as a low speed chemically reacting flow. This configuration is one example
of cases that frequently pose difficulties for numerical simulation. The characteristic
features of these flows are that the fluid velocity is much smaller than the acoustic
speed in all or part of the domain, yet the variations in density are significant to
restrain an incompressible formulation (WITHINGTON et al., 1991). For such flows
characterised by a zero Mach number (i.e. Ma << 1), the pressure, supposed to be
thermodynamically constant, is affecting the flow motion only through its spatial
derivatives present in the momentum equations. Thus, the fact that the pressure
field cannot be obtained from the equation of state indicates that a specific proce-
dure has to be derived to accurately calculate this pressure field (CORVELLEC et al.,
1999).

Another way of perceiving the problem of solving low speed reacting flows is by the
investigation of the disparity among the system’s eigenvalues (stiffness), that rises
by the mathematical nature of the governing equations. At high Mach numbers, the
conservation equations (specifically mass, momentum and energy) are closely linked,
and conventional numerical algorithms for compressible flows normally show their
best performance over this Mach number range. However, when the Mach number
becomes very small, the inviscid compressible form of the conservation equations
becomes poorly coupled and stiff. This can be understood physically in that, as the
Mach number approaches zero, the sensible part of the fluid energy manifests itself
in the form of pressure, with the energy equation effectively decoupled from the rest
of the equations.

In extension to the eigenvalue stiffness problem, zero Mach number flows pose a nu-
merical problem with a truncating error that can restrict the solution from reaching
satisfactory accuracy. This error occurs in the estimation of the pressure and convec-
tive momentum flux terms in the momentum equation when the computer is forced
to truncate relevant digits. Since these two terms differ greatly in magnitude when
approximating zero Mach numbers (ratio being equivalent to the inverse of Mach
number squared), significant errors are introduced that contaminate consequently
the numerical solution (WITHINGTON et al., 1991).

In view of the above difficulties, the method to deal with the low speed reacting
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flow problems applied in the present thesis is the Artificial Compressibility (AC)
method. Originally introduced by Chorin (1967) for steady flows simulations, in this
work is employed for unsteady variable-density flows. The next section discusses
comprehensively the numerical and physical aspects of the AC method.

6.2 The artificial compressibility scheme

The artificial compressibility (AC) method is quite a well-established numerical ap-
proach for solving the (constant-density) incompressible Navier-Stokes equations.
This method consists of modifying the continuity equation by adding a non-
stationary pressure term. For the analysis in this section only, the continuity equation
is used in its incompressible form, namely:

1
β

∂p

∂τ
= −∇ · u (6.1)

in which p is the pressure, τ is an artificial non-physical time, u is the flow velocity
vector and β is the artificial compressibility factor which scales as a velocity square.

Physically, this modification in the continuity equation means that waves of finite
speed are introduced into the incompressible flow field as a way to distribute the
pressure. For a truly incompressible flow, the wave speed is infinite, whereas the
speed of propagation of the pseudo waves introduced by this formulation depends
on the magnitude of the artificial compressibility parameter. In a true incompressible
flow, the pressure field is affected instantaneously by a disturbance in the flow, but
with artificial compressibility, there will be a time lag between the flow disturbance
and its effect on the pressure field. Ideally, the value of artificial compressibility can
be chosen as high as the particular algorithm allows, so that incompressibility is
quickly restored, i.e., the artificial pressure waves are fully propagated.

The results are physically meaningful only when a steady-state solution in τ is
reached and the original continuity equation is recovered automatically (BRUEL et

al., 1996). The ongoing popularity and relative success of the artificial compress-
ibility method to deal with constant density flow simulations are mainly due to its
simplicity and clear physical interpretation. To obtain a time-accurate solution, a
dual time-step technique can be employed (SOH; GOODRICH, 1988; ROGERS; KWAK,
1989; CORVELLEC et al., 1999; CHANG; KWAK, 1984). Accordingly, in addition to
the aforementioned modification of the continuity equation, the non-physical time
derivative of the velocity field is introduced in the momentum equation, namely
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(dimensionless form):

∂u
∂t

+ ∂uτ

∂τ
= −∇ · (uu) − ∇p + 1

Re
∇2u (6.2)

where t is the physical time and Re the Reynolds number. These equations are
iteratively solved such that the velocity field approaches its new value in physical
time as its divergence goes towards zero. Thus, for each physical time step, the flow
field has to go through one complete sub-iteration cycle in artificial-time.

The existence of the artificial-wave propagation phenomenon associated with the
convergence towards the physically meaningful solution of the above set of equations
can be evidenced by writing the momentum equation under a characteristics-like
form (neglecting the viscous term and the physical time derivative and considering
a one-dimensional configuration), namely:

[
∂u

∂τ
+ 1

(u ± c)
∂p

∂τ

]
+ (u ± c)

[
∂u

∂x
+ 1

(u ± c)
∂p

∂x

]
= 0 (6.3)

The artificial sound speed, c, and the corresponding artificial Mach number, M , are
related to β by

c =
√

u2 + β, M = u

c
= u√

u2 + β
< 1 (6.4)

Thus, artificial waves of finite speed are introduced to distribute the static pressure
throughout the whole computational domain. The rate of convergence of the solution
during the pseudo-time integration loop heavily depends on the value of β, and this
can be thought of as a weak point of the method. Indeed, in order to converge to
the steady-state solution during the course of each sub-iterations cycle in artificial-
time, the waves associated to the hyperbolic nature of the artificial compressibility
based system of equations have to undergo at least a one round-trip propagation
to ensure the proper built-up of the pressure field (more precisely, of its gradient
field) over the whole computational domain. Based on this representation, Chang
and Kwak (1984) estimated the number N of artificial time-steps ∆τ required to
reach convergence in artificial time. By considering a characteristic length L of the
computational domain over which the artificial waves must travel once forth and
back, they obtained a lower bound for N expressed as:
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N >

√
1 + β

β

2L

∆τ
(6.5)

Compared to the numerous AC based simulations of constant density flows that
can be found in the literature (quite a significant number of them have been re-
cently recalled by Hodges (2020)), much less examples of AC based simulations of
non-constant density flows have been reported or are discussed in CFD textbooks,
to the noticeable exception of Oran and Boris (2005). In such cases featuring a
non-constant density field (in space and/or in time), one can distinguish between
configurations still featuring a divergence free velocity field (Bassi et al. (2018),
Shapiro and Drikakis (2005)) from those which did not. For the latter, they are
mostly related to the simulation of Mach zero reacting flows such as steady tur-
bulent premixed flames (Bruel et al. (1996)), unsteady turbulent premixed flames
(Corvellec et al. (1999), Dourado et al. (2004)), laminar confined and unconfined
diffusion flames (Azarkhavarani et al. (2017), Bianchin et al. (2019), Donini et al.
(2020)).

6.3 Method of solution and temporal discretization

The numerical solution of the Mach zero system of equations relies on a dual-step
time-accurate artificial compressibility method. An explicit second-order Runge-
Kutta Ralston’s method was adopted for the artificial-time integration and the
second-order Euler method was selected for the physical-time integration due to
its simplicity of implementation in a dual-time step approach. By replacing the
derivative terms with their numerical approximations, the resulting set of equations
can be written in compact form as:

dq(ac)

dτ
+ dq

dt
= RHS(q)i,j (6.6)

where q = [ρ, u, v, T ]T and q(ac) = [p/β, u, v, T ]T are the vector of primitive variables
for non reacting flows, and q = [ρ, u, v, Z, H]T and q(ac) = [p/β, u, v, Z, H]T are those
for reacting flows cases. RHS(q)i,j is the right-hand side of the discretized equation.
Then, introducing the residual value for the artificial time step as:

Res
(
qn+1,ν

)
i,j

= −3qn+1,ν + 4qn − qn−1

2∆t
+ RHS

(
qn+1,ν

)
i,j

(6.7)

30



permits to rewrite Equation 6.6 at times’ step (n + 1, ν + 1) as:

dq(ac)

dτ

∣∣∣∣∣
n+1,ν+1

= Res
(
qn+1,ν

)
i,j

(6.8)

The integration steps in artificial-time are finally given by:

q(1) = α1q
n+1,ν + ϕ1∆τ

[
Res

(
qn+1,ν

)
/∆Ω

]
q(2) = α2q

n+1,ν + ϕ2
[
q(1) + ∆τRes

(
q(1)

)
/∆Ω

]
qn+1,ν+1 = α3q

n+1,ν + ϕ3
[
q(2) + ∆τRes

(
q(2)

)
/∆Ω

]
(6.9)

where (α1, α2, α3) = (1, 3/4, 1/3), (ϕ1, ϕ2, ϕ3) = (1, 1/4, 1/3) and ∆Ω is the cell
volume.

To advance the solution by one physical time-step, the equations are iteratively
solved in a segregated way such that qn+1,ν+1 approaches the new value qn+1 as the
artificial time derivative approaches zero. For satisfying this constraint, the residual
value Res(q)i,j of Equation 6.8 is set to reach values below ε = 10−5. The flow chart
of the algorithm to solve the system is presented in Figure 6.1.
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Figure 6.1 - Flow chart of the algorithm.

SOURCE: The Author.

6.4 Spatial discretization

6.4.1 The finite volume framework

Consider the generic transport equation for the property ϕ and assume that the
velocity field and the fluid properties are known. The Finite Volume Method (FVM)
has a start point the integral form of the balance equation:

∫
t

∫
Ω

∂(ρϕ)
∂t

dΩdt +
∫

t

∫
A

ρϕv · ndAdt =
∫

t

∫
A

Γϕ∇ϕ · ndAdt +
∫

t

∫
Ω

SϕdΩdt (6.10)

It is worth to note that both steady and unsteady systems have the same treatment
of the finite volume integration of Equation 6.10 over a grid volume.

At this point the computational domain is subdivided into a finite number of small
grid cell volumes by a grid which defines both the grid cell volume boundaries and
the computational nodes, as shown in Figure 6.2, views as a cell-centred scheme. In
this figure is also sketched the general 2D cell containing the central node P and
four neighboring nodes identified as west, east, south and north nodes (W,E,S,N).
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The notation, w,e,s and n are used to refer to the west, east, south and north cell
faces, respectivelly. In each control volume, the scalar variable ϕ is defined at the
cell centre, i.e. (i, j), whereas the fluxes are defined at the cell boundaries.

Figure 6.2 - A Finite Volume Grid cell and the notation used for a Cartesian 2D structured
grid.
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The 2D grid cell volume surface is subdivided into four plane surfaces (e, w, n and
s), thus the net flux trough the grid cell volume boundary is the sum of integrals
over the volume faces, as

∫
A

fdA =
∑

k

∫
Ak

fdA (6.11)

in which f is the component of the convective or diffusive vector in the direction
normal to the volume face. The integral in Equation 6.11 is calculated by a integral
approximation in terms of the variable values at one location on the grid cell face.
These cell face values are approximated by interpolation of the nodal grid cell volume
centre values.
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The midpoint rule is applied as approximation of the surface integrals. Thus, the
surface integral is an approximation of the product of the mean value over the
surface an the cell face area. Equation 6.12 shows the surface integral at the south
face of the Figure 6.2. Analogous expressions can be derived for all faces by making
appropriate index substitutions.

Fs =
∫

As

fdA = f̄Ae ≈ feAe (6.12)

The terms in the transport equations that require integration over the the volume
of a grid cell, e.g source terms, again the midpoint rule approximations is applied.
The mean value is approximated as the value at the grid cell volume centre, thus

SP =
∫

Ω
sdΩ = s̄∆Ω ≈ sP ∆Ω (6.13)

where sP is the value of s at the grid cell volume centre and since all the variables
are available at node P, no interpolation is necessary.

6.4.2 Discretization of diffusive terms

In order to demonstrate the principles of the spatial discretization of diffusive trans-
port terms , it is considereted the steady state diffusion of a property ϕ in a one
dimensional domain as sketched in Figure 6.3. In Cartesian coordinates the process
is governed by:

d

dx

(
Γϕ

dϕ

dx

)
+ Sϕ = 0 (6.14)

where Γϕ is a diffusion coefficient and Sϕ a source term.

As shown in Figure 6.3, the west side face of the grid volume is referred to by w and
the east side grid volume face by e. The distances between the nodes W and P , and
between nodes P and E, are identified by δxW P and δxP E, respectively. By the use
of the Gauss theorem and the midpoint formula, it finds

∫
∆Ω

d

dx

(
Γdϕ

dx

)
dΩ +

∫
∆Ω

SϕdΩ =
(

ΓϕA
dϕ

dx

)
e

−
(

ΓϕA
dϕ

dx

)
w

+ S̄ϕ∆Ω (6.15)
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Figure 6.3 - A Finite Volume Grid cell and the grid spacing notation.
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where A is the cross section area of the grid cell volume face, ∆Ω is the grid cell
volume and S̄ϕ is the average value of Sϕ over the grid cell volume.

The linear profile is used to approximate the variable gradient, thus for the diffusive
flux at position e, the approximation is defined as

Γϕ,e

(
∂ϕ

∂x

)
e

≈ Γϕ,e
(ϕE − ϕP )
xE − xP

(6.16)

The interface e is midway between the grid node points, than the parameter Γϕ,e is
approximated as the arithmetic mean of Γϕ,P and Γϕ,E.

The final discretized equation can be written on the following algebraic form

aP ϕP = aW ϕW + aEϕE + Sϕ∆Ω (6.17)

where the coefficients are

aW = Γϕ,w

δxW P

Aw (6.18)

aE = Γϕ,e

δxP E

Ae (6.19)

aP = aW + aE − Sϕ,p∆Ω (6.20)
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6.4.3 Discretization of convective terms: the QUICK scheme

The momentum equations were discretized by the quadratic upstream interpola-
tion for convective kinetics (QUICK) scheme. This high order differencing scheme,
presented by Leonard (1979), uses a three-point upstream-weighted quadratic in-
terpolation for cell face values in the convection term. This scheme was selected
for its stability, sensitivity to the flow direction, third-order truncation error and
effectiveness for steady or quasi-steady flows (FLETCHER, 2012).

Since the classical upwind scheme is only first-order accurate in time and space,
researchers have proposed higher order upwind schemes to improve the accuracy of
the scheme and to preserve the advantage of the scheme in suppressing numerical
oscillations. QUICK is one of such schemes (e.g., Leonard (1979), Hayase et al.
(1992)). The scheme is based on the local upwind-weighted quadratic interpolation
for the convection term. The scheme is often used to solve the convection-diffusion
equation with the employment of second-order central difference for the diffusion
term. For the convection term, the scheme is third-order accurate in space, and
thus, it is sometimes called third-order upwinding.

Considering the two-dimensional control volume schematised on Figure 6.2, and tak-
ing the horizontal direction solely the discretization of the Cartesian one-dimensional
Equation 6.10 can be summarised as

∂(ρϕ)
∂t

+ aP ϕP = aW ϕW + aEϕE + aW W ϕW W + aEEϕEE + SM (6.21)

with central coefficient

aP = aW + aE + aW W + aEE + Fe − Fw (6.22)

and neighbour coefficients

aW = Dw + 6
8αwFw + 1

8αeFe + 3
8(1 − αw)Fw (6.23)
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aW W = −1
8αwFw (6.24)

aE = De − 3
8αeFe − 6

8(1 − αe)Fe − 1
8(1 − αw)Fw (6.25)

aEE = 1
8(1 − αe)Fe (6.26)

where
αw = 1 for Fw > 0, αe = 1 for Fe > 0

αw = 0 for Fw < 0, αe = 0 for Fe < 0

The variable F represents the convective mass flux per unit area and D the diffusion
conductance at cell faces. The term SM represents the source term of buoyancy and
pressure and the cross derivatives of the diffusive terms.

Since the QUICK scheme as presented above may be unstable due to the occurrence
of negative principal coefficients, it has been reformulated in different ways that
alleviate the stability problems. These formulations all involve placing perturbative
negative coefficients in the source term to obtain positive main coefficients. The
contributing part is weighted accordingly to obtain better stability and as positive
coefficients as possible (VERSTEEG; MALALASEKERA, 2007).

Hayase et al. (1992) rearranged the QUICK scheme and derived a stable and fast
converging variant that can be summarised as

∂(ρϕ)
∂t

+ aP ϕP = aW ϕW + aEϕE + S̄ + SM (6.27)

with central coefficient

aP = aW + aE + Fe − Fw (6.28)

and neighbouring coefficients
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aW = Dw + αwFw (6.29)

aE = De − (1 − αe)Fe (6.30)

The source is

S̄ = 1
8(3ϕP − 2ϕW − ϕW W )αwFw + 1

8(ϕW − 2ϕP − 3ϕE)αeFe

+1
8(3ϕW − 2ϕP − ϕE)(1 − αw)Fw + 1

8(2ϕE − ϕEE − 3ϕP )(1 − αe)Fe (6.31)

where
αw = 1 for Fw > 0, αe = 1 for Fe > 0

αw = 0 for Fw < 0, αe = 0 for Fe < 0

The advantage of this approach is that the main coefficients are positive and sat-
isfy the requirements of conservativeness, boundedness and transportiveness. The
assignment of the part of the discretization containing negative coefficients to the
source term is called deferred correction and is based on the fact that the scheme is
applied as part of an iterative loop structure. At the νth iteration, the source term
is evaluated with the values known at the end of the previous (ν − 1)th iteration,
i.e. the "correction" of the main coefficients is "deferred" by one iteration.

6.4.4 Numerical grid

To avoid possible pressure oscillations, a uniformly structured backward staggered
grid was used in which the pressure p is located at the cell centres, the horizontal ve-
locity u is located at the midpoints of the vertical cell edges, and the vertical velocity
v is located at the midpoints of the horizontal cell edges, as shown in Figure 6.4.
Consequently, not all extreme grid points lie on the boundaries of the domain. The
vertical boundaries, for instance, carry no v-values, just as the horizontal boundaries
carry no u-values. For this reason, an extra boundary strip of grid cells is introduced,
so that the boundary conditions may be applied by averaging the nearest grid points
on either side.
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There is no need to prescribe boundary conditions for the pressure, thanks to the
recourse of the fully staggered grid, as shown in Figure 6.4.

Figure 6.4 - Sketch of the fully staggered mesh used for the space discretization.
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SOURCE: The Author.

The non-uniform structured grid is refined (hyperbolic tangent distribution), on a
case by case basis, in zones where high gradients are expected.

For the one-dimensional stretching function, the normalised independent variable is
defined as

η∗ = η − ηA

ηE − ηA

(6.32)

so that 0 ≤ η∗ ≤ 1 as ηA ≤ η ≤ ηE.

The stretching function applied is due to Roberts (1971), and modified by Eiseman
(1979), is

s = Pη∗ + (1 − P )
(

1 − tanh[Q(1 − η∗)]
tanhQ

)
(6.33)

where P and Q are parameters to provide grid point control. P effectively provides
the slope of the distribution, s ≈ Pη∗, close to η∗ = 0. Q is a damping factor and
controls the departure from the linear s versus η∗ behaviour.

Once s is obtained it is used to specify the distribution of x and y, then defining
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x − xA

xA − xE

= f(s), y − yA

yA − yE

= g(s), (6.34)

generates x(s) and y(s) directly. A simple choice is f(s) = g(s) = s, so that Equa-
tions 6.34 gives

x = xA + s(xA − xE), y = yA + s(yA − yE) (6.35)
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7 VERIFICATION OF THE NUMERICAL METHOD

7.1 The oscillating plate (Stokes’ second problem)

The flow motion over an infinite flat plate that oscillates parallel to itself is investi-
gated. The coordinate system is 2D Cartesian, where x is the coordinate along the
plate and y is the coordinate normal to it. The plate oscillates in the y = 0 plane
with a velocity given by:

ŷ = 0 : ûplate
(
0, t̂
)

= ûmax cos
(
2πf̂ t̂

)
(7.1)

f̂ designates the plate oscillation frequency and t̂ the time. The fluid is air and
the reference kinematic viscosity is taken at ambient temperature e.g. ν̂ref = 1.55 ×
10−4m2/s. The maximum plate velocity is taken as the reference velocity e.g. ûmax ≡
ûref = 2×10−2m/s and the reference length is chosen equal to eight times the depth of
penetration of the viscous wave is defined by Lref = 8 × 6.25 × 10−3m = 5 × 10−2m.
Thus, the Reynolds number is such that Re = 64. The fluid velocity is given by
(SCHLICHTING; GERSTEN, 2016):

ûfluid (y, t) = ûmaxe−k̂ŷ cos
(
2πf̂ t̂ − k̂ŷ

)
(7.2)

where k̂ =
√

πf̂Re. The global error at time level n will be denoted by En=Qn−ξn,
where Qi,j is the computed value at each point of the grid and ξi,j represents the
exact value.

To quantify the error, the commonly used p-norm is chosen in order to estimate the
error at a given physical time level n, namely:

∥En∥p =
(∆t, ∆y)

i=imax, j=jmax∑
i=1, j=1

|En
i,j|p

1/p

(7.3)

Let’s assume the method has an order of accuracy s, then the error is expected
to behave like ∥En∥p = C (∆t, ∆y)s + high-order-terms, as the time step or grid
spacing are decreased and (∆t, ∆y) → 0.

Figure 3 shows the results of the mesh refinement influence study for the Stokes’
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second problem using the p-norm with p = 1. The exact and computed solutions
are compared on a sequence of time steps and grid spacing, and the norm of the
error is plotted as a function of∆t and ∆y. These are shown on a log-log scale, e.g.
log ∥En∥1 ≈ log |C| + s log |(∆t, ∆y)| so that a linear behaviour is expected in this
plot, with the slope providing the effective order of accuracy s. When decreasing ∆t,
the mesh refinement is adapted in order to keep constant the Courant–Friedrichs–
Lewy number at the value CFLt = 0.5.

Figure 7.1 - (a) velocity profile for one snapshot and (b) spatial order of accuracy.

SOURCE: The Author.

7.2 General Couette flow

The so-called Couette flow is a flow between two parallel flat walls, which one is at
rest and the other moving in its own plane with a velocity U , as shown in Figure
7.2. The size in the z direction is very large compared with their separation distance
h.

The flow between these walls is taken to be in the x direction, and since there is
no flow in the y direction, the pressure will be a function of x only. Using the fact
that u = u(y) only and v = w = 0 together with the fact that p = p(x) only, and
with the boundary conditions u(0) = 0 and u(h) = U , using the Equation 4.11, the
velocity is
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Figure 7.2 - General Couette flow.
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u(y) = y

h
U − h2Re

2
dp

dx

y

h

(
1 − y

h

)
(7.4)

In the case selected the fluid is air with ν̂ = 1.55×10−5m2/s, the characteristic lenght
ĥ = L̂c = 5cm and the characteristic velocity V̂c = 1cm/s, resulting in Re = 32.
The top wall velocity is U = 1 and the pressure gradient is dp/dx = −1.

Figure 7.3 shows the comparison between the numerical results and the analytical
solution from Equation 7.4. It is seen that the pressure gradient (dp/dx < 0) assists
the viscously induced motion to overcome the shear force at the lower surface and
the numerical results agrees well with the analytical solution.

7.3 Plane Poiseuille flow

The steady flow of a viscous fluid in a channel with two parallel stagnated flat walls,
as shown in Figure 7.4, is referred to as Poiseuille flow.

Since ∂p/∂y = 0, the pressure gradient in the direction of flow is constant, then
dp/dx = const. Let the distance between the walls be denoted by h, and the bound-
ary conditions u(y) = 0 for y = −h/2 and h/2. Solving Equation 4.11, the velocity
can be written as

u(y) = −Re

2
dp

dx

(h

2

)2

− y2

 (7.5)
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Figure 7.3 - Comparison of velocity profile for the Couette flow.

0 1 2 3 4
u

0.0

0.2

0.4

0.6

0.8

1.0

y

Numerical
Analytical

SOURCE: The Author.

Figure 7.4 - Parallel flow with parabolic velocity distribution.
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The flow depends upon the external pressure for its existence, and the resultant
velocity profile is parabolic. The case selected for this verification study is the same of
the general Couette flow in the last subsection, therefore, Re = 32 and dp/dx = −1.
Figure 7.5 shows a good agreement between the numerical and the analytical solution
provided by Equation 7.5.

Figure 7.5 - Comparison of velocity profile for the Poiseuille flow.
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8 VALIDATION OF THE NUMERICAL METHOD

A set of validation cases was gattered to show the full abillity of the present numerical
code to describe many applications. Table 8.1 shows the validation cases selected
and their charactristics. The comparison of the results obtained are shown in the
next sections.

Table 8.1 - Set of numerical validation test cases.

Case Temporal Reaction
Lid-driven Cavity Steady Non-reactive
Enclosure with a Heated Cylinder Steady Non-reactive
Excentric Flow Past a Circular Cylinder Unsteady Non-reactive
Confined Tsuji Flame Steady Reactive
Coflow Diffusion Flame Steady/Unsteady Reactive

8.1 Lid-driven cavity

The first validation problem is the classical lid-driven cavity. A laminar incompress-
ible flow in a isotherm square cavity whose top wall moves with a uniform velocity
in its own plane. The case configuration is depicted in the Figure 8.1. The cav-
ity has equal sides lenght of L̂ = L̂c = 1.55 × 10−2m and the top wall velocity is
Û = v̂c = 0.1m/s. The case selected here corresponds to Re = 100 and Pe = 70.4.

Figure 8.1 - Lid driven cavity configuration.
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The streamlines patterns for the lid-driven cavity flow configuration with a 61 × 61
grid is shown in Figure 8.2. Although a comparison is not shown here, the presence
of the secondary vortices in the present results, as reported by the literature for
Re = 100, shows the agreement of the results and that the grid is adequate for this
value of Re.

Figure 8.2 - Streamlines of the lid-driven Cavity case with 61 × 61 grid.
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The lid-driven cavity was explored experimentally by Nallasamy and Prasad (1977)
and numerically by Ghia et al. (1982). Figure 8.3a and 8.3b show the velocity profiles
for u along vertical lines and Fig 8.3c and 8.3d for v along horizontal lines, both
passing through the geometric centre of the cavity. Figure 8.3 also shows the available
results from literature (NALLASAMY; PRASAD, 1977; GHIA et al., 1982). For the case
selected of Re = 100, all the present results agree well with the experimental and
numerical results. With the exception of the coarser case, that presents a bit of
discrepancies for the vertical velocity pic, as shown in Figure 8.3c. Even though,
with a little refinement of plus 40 points, the preset code was able to reproduce
the literature results. The present results demanded around half the number of the
points in the mesh to represent the experimental results, when compared with the
computations of Ghia et al. (1982). It is important to notice that this coarse meshes
could gradually become inadequate as Re increases.
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Figure 8.3 - Lid driven cavity comparison for different mesh sizes and Re = 100. The ’◦’
marker corresponds to the present code numerical results, the dashed line
represents the numerical results of Ghia et al. (1982) with mesh (129 × 129)
and the ’×’ marker the experimental results of Nallasamy and Prasad (1977).
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8.2 Square enclosure with a heated circular cylinder

This case consists of a cooled square enclosure kept at a constant temperature Tc,
with sides of length L, within which a heated circular cylinder at constant tem-
perature Th, with a radius R(= 0.2L), is located in the centre of the enclosure.
This configuration was studied by Kim et al. (2008) to examine the natural convec-
tion phenomena by changing the location of the circular cylinder. The case selected
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here corresponds to Fr = 0.2, Re = 6.7 and Pe = 4.9. This case corresponds
to Ra = 103, where Ra is the Rayleigh number defined as Ra = (g∆TL3)/(να)
and ∆T = 2(Th − Tc)/(Th + Tc). The hot cylinder and cold wall temperatures are
Th = 1200K and Tc = 300K, respectively.

Figure 8.4 - Lid driven cavity configuration.
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Once the velocity and temperature fields are obtained, the local, surface-averaged,
time-averaged, and time-and-surface-averaged Nusselt numbers are defined as

Nu = ∂θ

∂n

∣∣∣∣∣
wall

, Nu = 1
K

∫ K

0
Nu dS (8.1)

where θ = (T − Tc)/(Th − Tc), n is the normal direction with respect to the walls,
K is the surface area of walls. The Nusselt numbers results presented by Kim et al.
(2008) were used to evaluate the applicability of the present solution approach.

Figure 8.5 shows the streamlines and comparison of the distribution of local Nusselt
numbers along the cold walls of the enclosure at Ra = 103. Because the problem
presented symmetry about the vertical centre line at x = 0, only the right half of
the enclosure is shown.

The surface-averaged Nusselt number defined by the Equation 8.1 is evaluated at

50



the top wall, NuT , the present approach obtained NuT = 1.73, while from Kim et
al. (2008) the value obtained is 1.67, difference of 3.59%.

Figure 8.5 - Streamlines (a) and Local Nusselt number distribution along the walls of the
enclosure (b). Grid resolution of 201 x 201 for Kim et al. (2008) and 101 x
101 for the present study.

(a) (b)
SOURCE: The Author.

8.3 Unsteady wake of a flow past a circular cylinder

The incompressible unsteady laminar flow around a cylinder with a circular cross
section of diameter d = Lc placed eccentrically in a channel of height h = 4.1d is
considered (see Figure 8.6). The coordinate system is 2D Cartesian, with y being
the streamwise coordinate and x the coordinate normal to the channel walls. This
configuration corresponds to one of those used by Schäfer et al. (1996) for a bench-
mark of different solution approaches for solving the incompressible Navier-Stokes
equations. The distances between the cylinder centre and the bottom and top walls
are 2.1d and 2d , respectively. The Reynolds number is defined by Re = vbulkd/νair,
where νair ≡ νc is the kinematic viscosity and vbulk ≡ vc denotes the bulk velocity.
The case selected here corresponds to Re = 100. As illustrated in Figure 8.6, the
governing equations are integrated with the following boundary conditions: on the
top (x = x/d = 2.1) and bottom (x = x/d = 2) walls and at the cylinder surface
(r2 = x2 + y2) the no-slip condition is imposed for velocities. At the inlet section
located at (y = y/d = 4), a parabolic profile is prescribed for the velocity streamwise
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component (with a maximum value v(x = h/2) = vmax = 3vbulk ) and the normal
component is set to 0.

Figure 8.6 - Unsteady cylinder wake: flow configuration and related boundary conditions.
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Among all the characteristics of this type of problem (lift, drag, and pressure co-
efficients), the correct prediction of the periodic vortex-shedding, illustrated by the
isocontour of velocity in Figure 8.7c was the target chosen to validate the present so-
lution approach. In particular, the Strouhal number is computed to measure the abil-
ity of the method to produce quantitatively accurate unsteady results. Figure 8.7a
presents the time evolution of the non-dimensional normal component of the velocity
at (x, y) = (0.5, 0.5) observed when the periodic regime of shedding is established.
For Re = 100, the experimentally obtained Strouhal number is St = 0.287 ± 0.003
(SCHÄFER et al., 1996). The power spectrum of the fluctuations of the streamwise
component of the computed velocity is shown in Figure 5b. The numerically ob-
tained Strouhal number value is St = 0.289 which agrees well (relative error of
1.35%) with its experimentally obtained counterpart.

For the present case, Figure 8.8 shows, for a given physical time-step, an evolution
of the maxima of the residuals Res(v)i,j (Equation 6.8) during the artificial-time
iteration cycle. It can be seen that calculations for β = 40 become unstable and
within 40 steps starts to diverge, whereas other cases converge to a stable solution.
For low values of β, it takes only 10 iterations for the solution to reach almost
constant residual values but then, further iterations do not improve the solution
and so the accuracy constraint cannot be met.
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Figure 8.7 - Unsteady cylinder wake (Mesh size of 43×246): (a) Velocity history signal at
(x, y) = (0.5, 0.5), (b) Corresponding power spectrum of such velocity signal,
and (c) Snapshot of the contour of the velocity norm (The marker × indicates
the location at which the data in (a) are recorded).

SOURCE: The Author.

Figure 8.8 - Unsteady cylinder wake (Mesh size of 43 × 246): (a) Convergence history as
a function of the dimensionless artificial compressibility factor β.
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The effect of the artificial compressibility factor β on the number of artificial-time
steps necessary to achieve convergence to the physical time step following that cor-
responding to the snapshot of Figure 8.7c is illustrated in Figure 8.9. L is defined as
the channel length and ∆τ = 0.14. The optimum value of βopt ≈ 34 is higher than the
expected value of βopt ≈ 8 reported in the literature (BRUEL et al., 1996; SHAPIRO;

DRIKAKIS, 2005). By using Equation 6.5, the dashed line in Figure 8.9 represents
the number of minimum time-steps to achieve convergence of the artificial-time in-
tegration for each value of β. Considering the convergence criteria of Res(v)max < ε,
it is possible to see a good agreement between the computation iterations and the
iterations described by Equation 6.5 until βopt. For β > βopt, the convergence rate
begins to degrade gradually until β ≈ 38, above which convergence is lost.

Figure 8.9 - Unsteady cylinder wake (Mesh size of 43×246): influence of the dimensionless
artificial compressibility factor β on the number of time steps required to
obtain an artificial-time converged solution. Comparison with the lower bound
proposed by Chang and Kwak (1984).
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SOURCE: The Author.

8.4 Steady Tsuji flame

This configuration is concerned with the flame stabilization over a porous cylindrical
burner with radius r̂ ≡ L̂ref inside a channel. The geometry is 2D Cartesian. As
shown in Figure 8.10, the gaseous fuel is injected from the forward half part of the
burner with velocity ûb ≡ ûref into the incoming airflow of velocity ûair.
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Figure 8.10 - Tsuji diffusion flame: flow configuration and boundary conditions.

SOURCE: The Author.

This configuration reproduces the experimental set-up of the Tsuji Burner, where
the rear side of the burner surface was coated to avoid the ejection of fuel into the
wake region (TSUJI; YAMAOKA, 1967). In such a configuration characterized by a low
incoming flow velocity, an envelope steady flame is found. The flame is described
by the set of Equations 4.10-4.12 and 5.5-5.7 where the other reference quantities
are chosen as ŶFc ≡ ŶFb

, ŶO2c
≡ ŶO2∞ , ĉpref ≡ ĉp∞ , T̂ref ≡ T̂∞ and ρ̂ref ≡ ρ̂∞ where

the index b and ∞ denote quantities taken at the burner exit and in the ambient
atmosphere, respectively.

Equations 4.10 to 4.12 and 5.5 to 5.7 are integrated with the following boundary
conditions: On the symmetry axis (x = 0), ∂xu = ∂xv = ∂xZ = ∂xH = 0; at the
burner boundary surface ( r2|+ = x2 +y2 = 1+), u−x = v −y = 0, Zs −Pe−1∂nZ =
SZ , Hs − Pe−1∂nH = SH (Robin’s like boundary type for Z and H ) where Zs ≡
S YFs − 1, Hs ≡ (S + 1) Ts/Q + YFs and the subscript n stands for the normal to
the burner surface. The terms SZ and SH are the Z and H fluxes which are imposed
at the burner injection surface r2|− = x2 + y2 = 1− as function of ŶFb

, T̂b and ûb,
namely SZ ≡ S + 1 and SH ≡ (S + 1) Tb/Q + 1. Note that YFs and Ts are found as
part of the solution of the problem and this holds only in the forward part of the
cylinder. The boundary conditions at the inlet (y = −7.5) are v = 1, u = Z = 0 and
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H = (S+1) T∞/Q+1. At the outlet (y = 13), they are ∂yu = ∂yv = ∂yZ = ∂yH = 0
and at the channel wall (x = 4), they read u = v = ∂xZ = ∂xH = 0. According
to the definition of the mixture fraction function Z, the flame position (xf , yf ) is
given by the isoline Z(x, y) = 1 where the flame temperature Tf is determined by
H(xf , yf ) = (S + 1) Tf/Q.

The steady diffusion flame results are presented in Figure 8.11 for different values
of fuel-ejection rate −fw and ûair, in which −fw = (ûb/ûair) (Re/2)0.5. This figure
depicts the temperature profile along the forward stagnation streamline. Figure 8.11
compares the predictions obtained in this study to the numerical finite-rate chem-
istry and experimental results of Tsa and Chen (2003) and Dreier et al. (1986),
respectively.

Figure 8.11 - Tsuji diffusion flame (Mesh size of 82 × 446): Temperature distribution
through the flame front of a Tsuji burner with Re = 38, Fr = 2.6, r̂ = 0.02m,
ûair = 1.15m/s, and −fw = 0.318. The continuous line and its corresponding
circles are the numerical result of the current study, the dashed line and its
corresponding squares are the numerical results of Tsa and Chen (2003)
and the dash-dot line and its corresponding triangles are the experimental
measurements of Dreier et al. (1986).
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The presented infinite-reaction-rate combustion model reproduces the data mea-
sured in both numerical and experimental studies, except in a small, but important,
region around the maximum temperature. The profiles show that, for this study,
the maximum temperature is approximately 2200 K (adiabatic flame temperature
for methane) with a sharp temperature profile, while it is about 1900 K in the
experimental study with a rounded distribution. This is due to the limitation of
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infinite-rate chemistry to describe the coexistence of reactants in the reaction layer
that is approximated as a flame-sheet, i.e., the reactants must reach the flame in
stoichiometric proportions.

Figure 8.12 directly compares the flame-sheet obtained in this study with the flame
boundary computed from fuel reaction-rate contours by Tsa and Chen (2003) rep-
resented as the dashed -line. The flame-sheet shape obtained (solid-line) is similar
to that given by the reaction-rate contours of the finite-rate computation, except
in the wake distant from the cylindrical burner, at which the recirculation zone is
affected by the thermal expansion.

Figure 8.12 - Tsuji diffusion flame (Mesh size of 82 × 446): streamlines and flame shape
with Re = 18, Fr = 1.95, r̂ = 0.015m, ûair = 0.75 m/s, and −fw = 0.5.
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8.5 Coflow diffusion flame

The unconfined flickering jet diffusion flame case was chosen to validate the full
transient implementation of the present numerical code. The geometry of this case
is 2D axisymmetric. As shown in Figure 8.13, the burner is composed by a fuel jet
with a radius L̂c ≡ r̂F = 1.3×10−2m surrounded by a annular air stream with radius
r̂air = 13 × 10−2m. The fuel is methane diluted by 50%, YFc ≡ YFb

= 0.5. The fuel
and air burner inlet velocities are v̂F = 10×10−2m/s and v̂c ≡ vair = 15×10−2m/s,
respectively. The resulted Reynolds number, Péclet number and Froude number
for this case are Re = 122, Pe = 86, and Fr = 0.42. Also, the Figure 8.13
shows the following boundary conditions: on the top (y = ŷ/r̂ = 40) and right
(x = x̂/r̂ = 10) boundaries, free-slip condition is imposed for velocities along with
zero fluxes for the temperature, mixture fraction and excess enthalpy. At the in-
let section located at (y = ŷ/r̂ = 0), a prescribed velocity streamwise component
for fuel and air, v(x ≤ 1) = v̂F /v̂c = 0.66 and v(x < 1) = vair/vc = 1, respec-
tively. The mesh dependency tests showed no significant differences in the large-
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scale flame features, such as flicker frequency and points of fuel pocket detachment.
The Courant–Friedrichs–Lewy condition was the base reference for the choice of the
numerical parameters. For the present case, the CFL numbers for the physical and
artificial-time integration, were chosen as CFLt = 0.27 and CFLτ = 0.2, respec-
tively. Another key parameter of choice was the ability of the physical time-step to
describe sufficiently well one cycle of flame flickering.

Figure 8.13 - Flickering diffusion flame: flow configuration and boundary conditions.
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SOURCE: The Author.

The resulting times steps were ∆t̂ = 4.3×103s and ∆τ̂ = 3.9×104s, for physical and
artificial times, respectively. The value of β = 8 led to a suitable convergence rate
for this set of time steps. The case introduced above reproduces the computations
done by Davis et al. (1994) who also used the flame sheet model, unit Lewis number
hypothesis, and validated their results against the experimental data by Chen et al.
(1988). One strong motivation behind the choice of this case was to assess the ability
of the present code to describe the temporal behavior and the formation of vortical
structures due to large density gradients and buoyancy effects. The low frequencies
of flame oscillations (flame flickering) were in the range 5 Hz 15 Hz and independent
of the fuel type, the geometry of the source of fuel and the flow field in the wake
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(TOONG et al., 1965). The coupling within the flow field between the accelerations
around the flame and decelerations in the plume above it due to the buoyant force
dramatically impacts the temperature and species field dynamics and is at the origin
of the formation of large vortices outside of the flame. As a vortex ascends along the
flame in direction of the tip, it is forced against the flame. Close to the flame tip, the
vortex strangles the flame, a bottleneck appears featuring a large strain rate which
leads to the local extinction of the flame ending up in the separation of part of the
flame tip (fuel pockets) which is carried away by the flow (CHEN et al., 1988). The
frequency analysis of this behaviour of the flickering jet diffusion flame is shown in
Figure 8.14.

Figure 8.14 - Flickering diffusion flame (Mesh size of 41 × 101): (a) Mixture Fraction
history at (x, y) = (1.3 × 102m, 101m), (b) power spectrum for the flame
fluctuation.

SOURCE: The Author.

The mixture fraction history was chosen to represent the flame fluctuations at
(x̂, ŷ) = (1.3×102m, 101m), as shown in Figure 8.14a. The dashed line represents the
stoichiometric value, thus, when the continuous line crosses this line, it means that
the detachment of a hot pocket of fuel occurred. The power spectrum derived from
the flame fluctuations are presented in Figure 8.14b. The numerically computed pre-
dominant frequency at the probe location of St/t̂c = 8.4Hz agrees well (relative error
of 5.5%) with the value predicted by the correlation f̂ −Fr = t̂c0.29Fr−1 = 7.96Hz,
suggested by Sato et al. (2000). Since the large-scale instability is produced mainly
by buoyancy, its frequency is an increasing function of the buoyancy strength as
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observed when plotting the Strouhal number as a function of the Froude number.
The weaker secondary frequency peak visible in Figure 8.14b probably results from
the preceding flame bulge interaction with the trailing one and is categorized here
as a sub-harmonic. The flame evolution between t̂ = 1.3s and t̂ = 1.52s is illustrated
by Figure 8.15 which displays the temperatures isocontours and vorticity contours
where the dimensional vorticity is defined by:

ω = ∂v

∂x
− ∂u

∂y
(8.2)

The bluish regions indicate the clockwise vortex structures and the reddish regions
the counter clockwise vortex ones. The flame bulge is prominent by the isocontour
of temperature. Meanwhile, the red isoline represents the flame sheet and evidences
the detachment of fuel pockets. As previously described, these pockets are regions
of hot gas enclosed by a flame that travels upward. The effective entrainment of
oxidizer in the region of the axis of symmetry is found to be the main mechanism of
the flame local extinction and release of this secondary flame. Detached fuel pockets
can be observed in Figures 8.15c and 8.15f. Also, Figure 8.15 displays the probe
location where the data from Figure 8.14 were acquired. This location was chosen
for illustrating the passage of the large vortical structure formed by the buoyant
effect, a key feature for the correct flame flickering frequency analysis. Beyond the
correct prediction of the flickering frequency, the unsteady flame structure appeared
to be in line with the results presented in the literature (not shown here).
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Figure 8.15 - (a) t̂ = 1.3s, (b) t̂ = 1.35s, (c) t̂ = 1.39s, (d) t̂ = 1.43s, (e) t̂ = 1.47s, (f)
t̂ = 1.52s. The red isoline represents the flame sheet (Z = 1) and the blue
X marker represents the location of the probe from Figure 8.14a.

SOURCE: The Author.
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Part III

Numerical Study





9 NUMERICAL STUDY

In this section, the Tsuji Burner configuration is going to be analysed through a set
of scenarios. In Figure 9.1 is presented the schematic view of the three main Tsuji
burner configurations investigated here. These cases share the same particularity of
a two-dimensional geometry, thereby an infinite cylinder.

The particularity of the first case (presented in Figure 9.1a and namely Case A) is
the absence of gravity and the presence of an inlet velocity of oxidant from upstream
the cylinder. The Case A is referenced as "Classical Tsuji Flame" because is the one
that resembles the most the experimental setup proposed by Tsuji and Yamaoka
(1969). At the contrary, the second case, namely Case B and shown in Figure 9.1b,
the gravity effect is present, but the main distinction is that the ambient temperature
varies from two to five times the burner temperature. Finally, the third case, namely
Case C, is the buoyant case with regular ambient temperature and parameters that
allows the cyclic transient behaviour of the flame.

On this section, the dimensionless independent and dependent variables for (time,
spatial coordinates, velocities, temperature and pressure) for all cases are defined as
τ ≡ τ̂(ûb/â), x ≡ x̂/â, y ≡ ŷ/â, u ≡ û/ûb, v ≡ v̂/ûb, T ≡ T̂ /T̂∞ and p ≡ p̂/ρ̂∞û2

b .
The fuel and oxidant mass fractions are normalized according to YF ≡ ŶF /ŶFb

and
YO ≡ ŶO/ŶO∞ , respectively.

The independent variables are nondimensionalized with the burner radius for the
Cases A and B, and the burner diameter for the Case C, but as seen in the Section
11, the appropriated characteristic length scales are imposed not only by the burner
geometry but also by the buoyant force and the combustion process.
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Figure 9.1 - Schematic view of (a) Case A (classical Tsuji burner), (b) Case B (buoyant
Tsuji burner with heated atmosphere) and (c) Case C (puffing Tsuji burner).

SOURCE: The Author.
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9.1 Boundary conditions

Equations 4.10-4.12 and 5.5-5.7 are integrated with the following boundary condi-
tions: on the symmetry axis (x = 0),

u = ∂xv = ∂xp = ∂xZ = ∂xH = 0, (9.1)

at the burner surface (r2|+ = x2 + y2 = 1+),

u − x = v − y = ∂np = 0, Zs − Pe−1∂nZ = SZ , Hs − Pe−1∂nH = SH , (9.2)

(Robin’s like boundary type for Z and H ) where Zs ≡ SYF s−1, Hs ≡ (S+1)Ts/Q+
YF s and the subscript n stands for the normal coordinate. The terms SZ and SH are
Z and H fluxes at the burner injection surface r2|− = x2 + y2 = 1− as function of
Ŷb, T̂b and ûb, namely SZ ≡ S + 1 and SH ≡ (S + 1)Tb/Q + 1. Note that YF s and Ts

will be found as part of the solution of the problem.

The boundary conditions for the limits of the computational domain, hy and lx, the
height and length, respectively, are dependent on the particular case:

• For Case A, for −y → hy ≫ 1:

v − 1 = u = Z = H − H∞ = 0 (9.3)

for (x, y) → (lx, hy), with lx ≫ 1 and hy ≫ 1:

∂nu = ∂nv = Z = H − H∞ = 0 (9.4)

in which H∞ ≡ (S + 1)/Q + 1.

• For Case B, for (x, |y|) → (lx, hy), with lx ≫ 1 and hy ≫ 1 :

∂nu = ∂nv = Z = H − H∞ = 0 (9.5)

• For Case C, for (x, |y|) → (lx, hy), with lx ≫ 1 and hy ≫ 1

∂nu = ∂nv = ∂nZ = ∂H = 0 (9.6)

According to the definition of the mixture fraction Z, the flame position (xf , yf ) is
determined by the isoline Z(x, y) = 1. The subscript f stands for flame condition.
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On the isoline Z = 1, the flame temperature Tf is determined by H(xf , yf ) =
(S + 1)Tf/Q.

There is no need to prescribe boundary conditions for the pressure, due to the
recourse of the fully staggered grid, as shown in Figure 6.4. However, the combination
of the mesh type and the artificial compressibility method demands a prescribed
value of pressure at one point of the mesh. This point sets the pressure level but
retains the freedom of getting the pressure gradient from the artificial continuity
equation.
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10 CASE A: CLASSICAL TSUJI FLAME

10.1 Asymptotic analysis

Far from the burner, the velocity field is given approximately by (u, v) = (0, V ), and
the burner can be seen as a line source of Z.

In that case, Equation 5.5 can be simplified to V ∂yZ = Pe−1∂xxZ, whose solution,
which is analogous to the classical problem of the point source of heat in transient
heat conduction, is given by (CARSLAW; JAEGER, 1959)

Z = (yf/y)1/2exp[−(V Pe/4)x2/y] (10.1)

in which the condition of Z = 1 at (x, y) = (0, yf ) (i.e., at the flame tip) was
used. The boundary conditions far from the burner are automatically satisfied by
the solution, and the boundary condition at the burner can not be used, since the
solution fails to describe the distribution of Z close to it. Therefore, the flame height
can not be found through analytical means.

An approximate expression for the flame shape is found substituting Z = 1 on
Equation 10.1, leading to

(V Pe/2yf )x2 = −(y/yf )ln(y/yf ) (10.2)

and the maximum flame width is xf = (2yf/eV Pe)1/2 at y = yf/e.

10.2 Navier-Stokes vs potential flow

Figure 10.1 exhibits the flame shape and the streamlines obtained by the solution
of the Navier- Stokes flow, (10.1a), and by the potential flow, (10.1b), given by

u = −2V xy/(x2 + y2)2 + x/(x2 + y2),

v = V [1 + (x2 − y2)/(x2 + y2)2] + y/(x2 + y2). (10.3)

for the case V = 3 and Pe = 1. In addition, the analytical flame shape, from
Equation 10.2, is presented for both cases with the value of yf given by each solution.
It can be seen that there is relatively good agreement in the flame shape between
the analytical solution and that found from the potential flow (right side). This
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agreement is also observed for the flame shape found by the Navier–Stokes flow on
the upper part of the flame, but the agreement fails in the lower part of the flame.
Due to the absence of viscous effects, the potential flow underestimates the influence
of the burner on the flow and the streamlines confirm this statement. On the other
hand, the Navier–Stokes model describes well the streamlines in the bottom part
of the flame, showing an important contribution of the burner in the x direction
velocity, and consequently on the flame shape. Then, the fuel convective transport
in x direction pushes the flame farther from the burner. The behavior of the flame
in that region of the flow establishes the shape for the whole flame.

Precisely, Figure 10.1 shows the isoline Z = 1, the stoichiometric surface. The sto-
ichiometric surface represents the flame in the regions in which the stability condi-
tions are satisfied. For yf >> 1, the velocity field returns to uniform configuration,
i.e. unstrained flow field. Indeed the fuel concentration is low but the temperature
inside the stoichiometric surface is very close to the flame temperature, which create
conditions for stable flame, according to the large activation energy asymptotics.

Figure 10.1 - Flame shapes (dashed line: numerical calculation; dotted line: analytical
model, Equation 10.2) and streamlines in the numerical domain are pre-
sented: (a) flow described by numerical solution of the Navier–Stokes equa-
tions and (b) flow described by the potential flow approximation. The con-
ditions addressed lead to V = 3 and Pe = 1. The fitting constant yf in
analytical solution is different in the two cases: (a) for Navier–Stokes flow
yf = 204.6 and (b) for potential flow yf = 270.1.
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SOURCE: The Author.
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To check with a higher degree of precision the existence of flame far from the burner,
it would be necessary to include radiative heat loss and to employ other asymptotic
method considering a more complex chemical mechanism (rate-ratio asymptotics)
(PETERS; WILLIAMS, 1987; SESHADRI; PETERS, 1988; FACHINI; SESHADRI, 2003) or
through numerical simulation with detailed chemical mechanism.

Figure 10.2 - The analytical distribution of Z along x and those obtained by
Navier–Stokes and potential flow in terms of the similarity variables of Equa-
tion 10.1 at y = 20, 100, for V = 1 and Pe = 3.
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SOURCE: The Author.

Figure 10.2 shows the distribution of Z along the x direction for the numerical
solutions and the analytical solution given by Equation 10.1. In order to put in
evidence the similarity behavior of Z distribution, the ordinate represents √

yZ

and the abscissa represents (V Pe/4y)1/2x. For y = 20, which is relatively close to
the burner, there is good agreement between the solution from potential flow and
the analytical one, since the flow is almost parallel in the potential flow, as shown
in Figure 10.1. However, the Navier–Stokes flow is not parallel at y = 20, then
the Z distribution is different from those found by potential flow and analytical
model. For y = 100, however, all three solutions shows good agreement, because
the flow is almost parallel, confirmed by Figure 10.1b. It can be observed a slightly
overestimation in Z for the potential flow close to x = 0, Figure 10.2 right side,
which causes a large overestimation in the flame height, confirmed by Figure 10.1,
since the gradients of Z are weak far of the burner.
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Figure 10.3 - Maximum flame width as a function of the free stream velocity V , keeping
Pe = 1 (continuous line), and of the Peclet number Pe, keeping V = 3
(dashed line).
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Numerical results show that the dependence of xf on Pe and V is given by xf ∝
Pe−1/4V −3/4, as exhibited in Figure 10.3. The decrease of xf with V can be compared
to the width of the wake generated by the fuel injection downstream of the burner,
which is proportional to V −1 .

Making use of the behavior for the flame width xf and the asymptotic solution,
Equation 10.1, the behavior for the flame height is revealed to be yf ∝ (Pe/V )1/2.
This expression shows the reduction of yf with the free stream velocity according
to V −1/2. Furthermore, imposing Z ∼ S + 1 for y ∼ 1 on Equation 10.1, one finds
yf ∼ (S + 1)2. Then, the dependence of the flame height yf on the nondimensional
parameters can be written as yf = A(S +1)2(Pe/V )1/2, in which the fitting constant
A is 3.8, as seen in Figure 10.4. Therefore, making use again of Equation 10.1 and the
expression for yf , the characteristic length scales of the problem (order of magnitude
of flame width and flame height) are

Lx ∼ (S + 1)/(Pe1/4V 3/4), (10.4)

Ly ∼ (S + 1)2(Pe/V )1/2 (10.5)
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Figure 10.4 - Flame height as a function of the free stream velocity V , keeping Pe = 1
(continuous line), and of the Peclet number Pe, keeping V = 3 (dashed line),
obtained by Navier-Stokes flow.
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The reduction on the flame width xf with V causes an increase of fuel diffusive
transport to the flame, which represents an increase of fuel consumption, leading
to a decrease of flame height, as shown in yf . Although the increase on Pe also
decreases the flame width, this dependence is weaker than the dependence on V .
This is the reason of the increase of yf with Pe since, for fixed V , the increase
on Pe decreases the intensity of the diffusion. Since diffusion is the only process
that provides transport of the reactants far from the burner, it is required a larger
distance (larger flame height) to the fuel to react with the oxidizer.

Another important result depicted by xf and yf is the dependence on S. For burning
of pure hydrocarbon in air, it is generally found S ≤ 20, then the terms S + 1 and
(S + 1)2 can be seen as order of magnitude for xf and yf , respectively.

Therefore, the asymptotic solution, Equation 10.1, captures the most important
processes that control the flame shape under the condition of (S + 1)2 ≫ 1, because
the major part of the flame is in a practically parallel flow field.

Based on these results, it is possible to affirm that the large value of yf was the
reason for covering the backward surface of the cylindrical burner, as presented by
Tsuji and Yamaoka (1967). The covered surface reduces not only the fuel injection
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but also creates recirculation in the wake, which help to diminish even more the
flame height by increasing the total area of the flame.
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11 CASE B: BUOYANT TSUJI FLAME

The cases presented and commented in this section are chosen to highlight the
processes controlling the diffusion flame established around a horizontal cylindrical
burner with a buoyancy-driven flow. In all cases, â and ûb are chosen to satisfy
Re ≤ 30, preventing any type of instabilities of the flame above the burner.

The temperature distribution exhibited in the figures is in dimensional form to
facilitate the comparison between the plots. Since the dimensional temperature of
the ambient atmosphere changes from case to case, the burner temperature is fixed
and the flame temperature varies slightly among the cases, then, it was decided to
present the dimensional temperature in the figures which leads to a minimal number
of modifications from case to case. In all cases the burner temperature is T̂b = 300K

and the fuel is methane.

11.1 Analysis of order of magnitude

Tsuji diffusion flames around cylindrical porous burner considering natural con-
vection are quite similar to those established considering forced convection. In the
latter case, the x-component (across the flame) of the convective transport is neg-
ligible. However, in the former case, oxygen is transported by convection from the
ambient atmosphere to near the flame, which imposes a higher oxygen flux to the
flame. Therefore, the fuel consumption is also augmented and, consequently, the
flame dimensions are reduced. To have a fundamental comprehension of Tsuji dif-
fusion flames under the influence of natural convection, the characteristic spatial
and velocity scales imposed by the buoyant force, fuel injection and combustion are
determined.

The orders of magnitude of the flame width Lx (≡ L̂x/â), flame height Ly (≡ L̂y/â),
variation of velocity in the x-direction U (≡ û∞/ûb) and variation of velocity in the
y-direction V (≡ v̂∞/ûb) are defined. The order of magnitude Lx is set at y = Ly/e

and Ly at the flame tip x = 0. The characteristic velocities driven by the buoyancy
are defined by (û∞, v̂∞). From the mass conservation, the following relation is found
U/Lx ∼ V/Ly.

Balancing inertia and buoyant force terms in the y-component of the Navier-Stokes
equation, the second and last terms of Equation 4.6, one finds the relation V 2/Ly =
∆2/(Fr)2, in which ∆2 ≡ 1 − 1/Tf . In the same way, balancing the inertia and
viscous terms of the Navier-Stokes equation, the second and the fourth terms of
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Equation 4.6, a third relation among the properties is obtained, U = 1/PeLx. In
the order of magnitude analysis, the approximation Re = Pe is justified since the
Prandlt number Pr is the order of unity.

The fourth relation, necessary to close the system, is the flame width found in the
Tsuji flame established by forced convection, Lx = (S + 1)Pe−1/4V −3/4 (BIANCHIN

et al., 2019). Although the flame width Lx is not explicitly dependent on the x-
component of the velocity U , its dependence is through the y-component of the
velocity V .

Then, the scales of the problem can be specified as a function of the Froude (Fr) and
Péclet (Pe) numbers, the expansion parameter (∆) and the combustion parameter
(S) according to

Lx = Pe−2/5(∆/Fr)−3/5(S + 1)2/5, (11.1)

Ly = Pe2/5(∆/Fr)−2/5(S + 1)8/5, (11.2)

U = Pe−3/5(∆/Fr)3/5(S + 1)−2/5, (11.3)

V = Pe1/5(∆/Fr)4/5(S + 1)4/5. (11.4)

Note that, since the Péclet number is based on the burner properties, it determines
qualitatively the effect of the fuel injection from the cylindrical burner on the flow
field and on the flame. In the same way, the term ∆/Fr quantifies the effect of buoy-
ancy on the flow field and on the flame. While (S + 1) term measures qualitatively
the effect of the combustion process on the flow field. This simple analysis reveals
also the dependence of the flame length on S, which is not as strong as in forced
convection case because of the oxidant flux across the flame.

The set of Equations 11.1 to 11.4 is also consistent with the known behavior of flames
i) in the micro-gravity regime ∆/Fr → 0 (QIAN; LAW, 1997), where (Lx, Ly → ∞)
and ii) in the forced convection regime where the velocity component V is vanishing
(BIANCHIN et al., 2019).

11.2 Influence of ∆/Fr, Pe and S on the flame

Figure 11.1 presents the behavior of the whole flame with reduction in the buoyancy
through reduction in the density difference in the buoyant force, (1−ρ)/Fr2, imposed
by the increase of the ambient-atmosphere temperature.
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Figure 11.1 - The colormap contour shows the temperature distribution and the dashed
line shows the flame shape for different ambient temperature: a) T̂∞ = 2T̂b

(1/Tb = 2, Pe = 7.83, Fr = 1, ∆ = 0.84) and b) T̂∞ = 4T̂b (1/Tb = 4,
Pe = 3.6, Fr = 1, ∆ = 0.63). The cylindrical burner is represented here by
the black area at the origin (x, y) = (0, 0).
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From an analysis of Equations 11.1 to 11.4, it is seen that a decrease of the buoyancy
term ∆/Fr through an ambient-atmosphere temperature rise leads to a reduction
of the velocity components (U, V ). The consequence is a decrease of the oxygen
and fuel convective fluxes to the flame. The decrease of the oxygen convective flux,
which is almost perpendicular to the flame, forces the flame to move away from the
symmetry axis, i.e., the flame width increases. This behavior is correctly captured by
the expression for Lx, Equation 11.1, and confirmed by the numerical results shown
in Figure 11.2a. However, the same arguments can not be used to describe the effects
of the reduction of fuel convective transport on the length of the flame Ly. Since the
fuel convective transport occurs mainly along the flame, its reduction results in a
shortening of the flame associated to the fuel concentration decrease inside the flame.
The proof of this conclusion is given by the dependency of the fuel flux on buoyancy.
From Equations 11.1 and 11.4, it is seen that the fuel convective transport in a
cross-section of the flame diminishes with the reduction of the buoyancy, according
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to Ly ∼ LxV ∼ (∆/Fr)−1/5. As in jet flames, the fuel convective transport in the y

direction determines the flame length, those results are confirmed by the numerical
results presented in Figure 11.2b.

Figure 11.2 - a) Flame width xf at y = y+
f /e and b) flame height y+

f as a functions of the
Froude number, for T̂∞ = 3T̂b, Pe = 5.2, ∆ = 0.74, S = 9.5.
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It is worth noticing that the expression for the flame length Ly ∼ (∆/Fr)−2/5, given
by Equation 11.2, does not capture the flame shortening driven by the decrease
of the buoyancy in the addressed conditions. Contrarily, the flame length increases
with the reduction of the buoyancy. This behavior is found for a vanishing buoyant
force (QIAN; LAW, 1997) and in forced convection Tsuji flames with incoming velocity
approaching zero (BIANCHIN et al., 2019). Therefore, combining these two behaviors,
it is possible to deduce that the reduction of the buoyancy initially shortens the flame
length because of the decrease in the y-component of the fuel convective transport.
After that, the reduction in the buoyancy extends the flame length because the y-
component of the fuel diffusive and convective transport become of the same order. In
such a condition, both processes control the behavior of the flame in the y direction.
The condition Ly ∼ Lx (or from the mass conservation V ∼ U) reflects the above
statement and is derived from (∆/Fr) ∼ [Pe4(S+1)6]−1 ≪ 1. Taking this result into
Equation 4.6 and re-scaling the time, spatial dimensions and velocity, it is seen that
the transient period would be of the order of τc ∼ (∆/Fr)−2 = [Pe4(S + 1)6]2 ≫ 1,
the characteristic spatial dimensions of the flame would be (xc, yc) ∼ (∆/Fr)−1 =
[Pe4(S + 1)6] ≫ 1 and the characteristic velocity imposed by fuel injection and
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buoyancy would be (uc, vc) ∼ (∆/Fr) = [Pe4(S + 1)6]−1 ≪ 1.

Figure 11.3 - a) Flame width xf at y = y+
f /e and b) flame height y+

f as a functions of the
Péclet number, for T̂∞ = 3T̂b, Fr = 1, ∆ = 0.74, S = 9.5.
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Figure (11.3) exhibits the behavior of the flame dimensions (width and length) in
terms of Péclet number Pe. The results from the order of magnitude analysis for the
flame width xf ∼ Pe−2/5 and flame height y+

f ∼ Pe2/5 are in line with the trend ob-
served in the numerical results, as seen in plots (11.3.a) and (11.3.b). An increase in
the Péclet number means that more fuel mass is injected by augmenting the velocity
of injection and/or the surface area of the burner. The injection of more fuel leads
to a longer flame for burning it, as seen in Figure 11.3b. Elongated flame represents
buoyant force acting over a large distance which increases the velocity along the
flame as V ∼ Pe1/5. However, as in forced convection Tsuji flames (BIANCHIN et al.,
2019), the increase on the y-component of the velocity reduces the flame width, as
depicted in Figure 11.3a.

Figure 11.4 shows the dependence of the width and length of the flame on the
combustion parameter S. Since S influences the flame temperature, and hence the
expansion parameter ∆, then the behavior of the flame width and length are com-
pared with ∆−3/5(S + 1)2/5 and ∆−2/5(S + 1)8/5, respectively. As seen in both plots,
Figures 11.4a and 11.4b, an increase in the fuel concentration of the fuel stream
injected at the burner demands the flame dimensions to become larger for burning
stoichiometrically the additional amount of fuel.
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Figure 11.4 - a) Flame width xf at y = y+
f /e and b) flame height YF as a functions of

the combustion parameter S, for T̂∞ = 3T̂b, Fr = 1, Pe = 4.5, 0.735 ≤ ∆ ≤
0.748.
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Figure 11.5 shows the whole re-scaled flame for four ambient-atmosphere temper-
atures T̂∞ = (2.5, 3, 3.5, 4) × T̂b and all of them present practically the same
dimensions. The concordance of these dimensions confirm that the spatial scales Lx

and Ly are the proper scales to study flames established around a Tsuji burner. As
can be easily noted, the flame shape for the case 1/Tb ≡ T̂∞/T̂b = 4 is displaced
downward. The reason for that is the establishment of a second recirculation zone
(second vortex) below the burner. The presence of this vortex changes substantially
the flow field close to the burner and the flame as consequence. The discussion of the
flow field under several ambient-atmosphere conditions is presented in detail below.

11.3 Influence of the ambient-atmosphere temperature on the flow field

The flow field above the burner is controlled only by the positive buoyancy of the hot
gases. Under this force, the flow field can be described as parallel and is accelerated,
like the flow field found in jet flames, as seen in Figure 11.1. However, the flow field
changes drastically around to (above and below) the burner. The combination of
the buoyant hot gases (around the flame) and the buoyant cold gases (around the
burner) and the fuel injection imposes a different flow field morphology. This flow
field resembles the one imposed by a forced flow around a cylinder, from which fluid
is injected backward and forward in the direction of the forced flow (SEN et al., 2017).
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Figure 11.5 - Re-scaled flame coordinates yf /Lx and xf /Ly for several value of the
ambient-atmosphere temperatures T̂∞ = 2.5T̂b, 3T̂b, 3.5T̂b, 4T̂b. The val-
ues of the parameters are Fr = 1, S = 9.5, Pe = 5.93, 5.2, 4.35, 3.6 and
∆ = 0.79, 0.74, 0.68, 0.63, respectively.

0 1 2 3
x f /Lx

0.0

0.2

0.4

0.6

y f
/L

y

2.5× T̂b

3× T̂b

3.5× T̂b

4× T̂b

SOURCE: The Author.

Figure 11.6 - The plots show the streamlines and the temperature contour for different
ambient temperature: a) T̂∞ = 2T̂b (Pe = 7.83, Fr = 1, ∆ = 0.84), b) 3T̂b

(Pe = 5.2, Fr = 1, ∆ = 0.74), c) 3.5T̂b (Pe = 4.35, Fr = 1, ∆ = 0.68) and
d) 4T̂b (Pe = 3.6, Fr = 1, ∆ = 0.63). The color-scale contour shows the
dimensional temperature distribution for all cases.

−8 −6 −4 −2 0 2 4 6 8
x

−8

−4

0

4

8

12

y

(a) (b)

300 650 1000 1350 1700 2000

T̂ [K]

−8 −6 −4 −2 0 2 4 6 8
x

−8

−4

0

4

8

12

y

(c) (d)

300 650 1000 1350 1700 2000

T̂ [K]

SOURCE: The Author.

81



The focus of this section is on the processes controlling the flow field around the
burner, in which the forward counterflow (Tsuji) diffusion flame is established. As
proposed in this analysis, the conditions of low strain rate for the Tsuji flame are
sought.

Figure 11.6 presents the flow field and the temperature distribution close to the
burner. in which the recirculation zones are established. For ambient-atmosphere
temperatures such that T̂∞ = 2T̂b, 3T̂b, and 3.5T̂b , Figures 11.6a, 11.6b and 11.6c,
the positive buoyant force overwhelms the negative one, even close to the burner. In
this scenario, the positive y-component of velocity is high enough to maintain the
recirculation zone above the burner, as well as the counterflow region close to the
bottom side of the cylinder. The vortex above the burner is established at a certain
distance from the burner because of the fuel injection. Unlike the recirculation zone
generated in the forced convection regime whose width is of the order of the cylinder
radius, in the present analysis, the vortex width depends not only on the burner
radius but also on the flame width, in which the buoyant force accelerates the flow.
Since the flame width increases with the reduction in the buoyant force, then the
vortex becomes wider as buoyancy is reduced.

The backward recirculation zone is due to adverse pressure gradient generated by
the buoyancy-driven flow field, which is imposed by the presence of the flame. The
flow field close to the burner is comparable to the (frozen) flow past a cylinder
with vortex shedding control through the blowing of the cylinder surface (LI et al.,
2003). However, the main difference between the frozen and reacting flow is the
x- component of the velocity generated by the buoyancy, which is responsible for
keeping the vortex stable within the fuel zone/ wake, preventing the occurrence of
vortex shedding. These changes in the flow field and temperature distribution are
proportional to the variation of the ambient-atmosphere temperature.

As seen in Figure 11.6d, the flow field changes dramatically for an ambient-
atmosphere temperature 1/Tb = T̂∞/T̂b = 4. An additional recirculation zone can
be observed below the burner, about y = −4. This new recirculation zone modifies
completely the flow field, which changes the flame shape and consequently the tem-
perature distribution and the buoyant force field. The conditions addressed in that
case are such that the negative buoyant force of the cold fuel, surrounding the cylin-
drical burner, overcomes the positive one, which imposes a negative y-component
of velocity. In addition to that, the region in which negative buoyancy is found in-
creases drastically, as shown by the blue region of Figure 11.6d. The consequences
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are a wider flame and a stagnation point pushed away from the burner.

Figure 11.7 - Streamlines for different ambient-atmosphere temperature: a) T̂∞ = 2.5T̂b,
b) 3.5T̂b, c) 3.8T̂b, d) 3.89T̂b, e) 3.895T̂b and f) 4.5T̂b.
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Therefore, the increase of the ambient-atmosphere temperature has two opposed
effects: a reduction of the positive buoyancy and an increase of the negative one.
The latter drives the cold fuel more downwards below the burner, creating a cold
gases pocket which deviates the inflow. The consequence is a wider flame.

The dramatic impact of the increase of the ambient-atmosphere temperature on the
flow field is evident in Figure 11.7. The switch between a one-vortex to a two-vortex
configuration is observed when T̂∞ exceeds a critical value of 3.895T̂b. Below that
value, the one-vortex configuration prevails (Figures 11.7a to 11.7d) with a stan-
dalone upper vortex whose size is an increasing function of T̂∞ and whose location
is slightly shifted away from the cylinder as T̂∞ increases. Above the critical value of
T̂∞, the two-vortex configuration takes over, Figs 11.7e,f. The change of the patterns
of the streamlines originating from the injection surface of the burner (red colour and
dashed lines) is clearly visible. This is caused by the fact that the negative buoyant
force overwhelms the positive one. As a consequence, the descending cold gases and
the ascending hot gases are energetic enough to create a circular anticlockwise mo-
tion corresponding to the observed lower vortex. It is worth mentioning the pattern
of the streamlines in the recirculation zone does not represent the mass flow rate.

83



Figure 11.8 - Flame shape (dashed line) and nondimensional vorticity contour, scaled
by Ω = V/Lx − U/Ly, for different ambient temperature: a) T̂∞ = 2T̂b

(Pe = 7.83, ∆ = 0.84) and b) T̂∞ = 4.5T̂b (Pe = 3, ∆ = 0.58). The
colormap contour shows the vorticity ω/Ω distribution and the continuous
line represents the isocontour of ω/Ω = 0.
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As a consequence of the one and two-vortex configurations, the combustion-driven
buoyancy creates two vortical structures close to the burner, as shown in Figure 11.8.
The first structure presented by Figure 11.8a is quite similar to the configuration
of a non-reactive flow past a cylinder without injection (FORNBERG, 1980). The
vortex is found in the wake of the burner as the one-vortex configuration, but the
maximum positive vorticity value is situated close to the surface of the burner where
the injected fuel is highly deflected by the positive buoyant force.

As seen in Figure 11.8b, the second vortical structure appears due to the two-vortex
configuration with high vorticity driven by the pair of negative and positive buoyant
forces below the burner, which create a large vortex in the fuel-containing region,
centred at (x, y) = (3, −4). Increasing the ambient-atmosphere temperature, not
only increases the intensity of the negative buoyant force but also the extension of
the region in which this force is found. Therefore, the vorticity is spread below the
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burner in a large region of the flow. This upstream vortical structure is similar to
that found in a non-reactive flow past a cylinder, from which fluid is injected and
aligned with the free stream flow (SEN et al., 2017). However, in that configuration
the upstream vortex is unstable, i.e., the vortex position initially oscillates and after
that is completely detached from the cylinder. On the other hand, the buoyancy-
driven vortical structure analysed in the present work remains close to the cylinder,
inside the fuel region and enclosed by the flame.

To quantify the overall effect of the ambient-atmosphere temperature T̂∞ on the
vorticity, it is defined the following vorticity integral

ωT =
∫ L

−L

(∫ xf (y)

0
|ω|dx

)
dy

over the fuel-containing region (limited by the dashed line as seen in Figure 11.8).
The dimensionless vorticity ω is ω = ∂xv − ∂yu. This definition captures not only
the changes of the vorticity intensity but also the changes on the extension of the
flame, as can be seen in two cases exhibited in Figure 11.8. The total vorticity varies
from ωT = 2.16 to ωT = 16, for T̂∞ = 2T̂b and 4.5T̂b, respectively.

Also, Figure 11.8 reveals that the vorticity is well scaled by the properties found in
the order of magnitude analysis, i.e., Ω = V/Lx −U/Ly. Since Ly ≫ Lx and V ≫ U ,
then the estimate of the vorticity can be written as Ω = V/Lx, which reveals the
dependence of the vorticity on the problem parameters Ω = Pe3/5(∆/Fr)7/5(S +
1)2/5.

11.4 Influence of the ambient-atmosphere temperature on the strain
rate

In Appendix A.1, an estimate of the strain rate in the forward part of the Tsuji
flame is obtained as a function of the Froude number Fr, temperatures of burner,
ambient-atmosphere and flame along with the position of the flame, according to
Equation A.7. Writing it in dimensional form, one finds

dv̂

dŷ

∣∣∣∣∣
y−

f

∼ ∆2

vf

ĝ

ûb

(11.5)

The expression for the estimate of the strain rate echoes the main idea of the present
work, i.e., diminishing the strain rate by increasing the ambient-atmosphere tem-
perature, such that ∆2 decreases while the velocity vf increases.
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As presented in Appendix A.1, for the ambient-atmosphere temperature T̂∞,c =
(T̂f − T̂b)/ln(T̂f/T̂b), the velocity at the flame is vf = 1, then the strain rate is
estimated as

dv̂

dŷ

∣∣∣∣∣
y−

f

∼ ĝ

ûb

T̂f − T̂∞,c

T̂f

For the cases in which T̂∞ > T̂∞,c, the velocity vf > 1, then strain rate decreases

dv̂

dŷ

∣∣∣∣∣
y−

f

<
ĝ

ûb

T̂f − T̂∞,c

T̂f

For instance, for Fr = 1, S = 9.5, T̂b = 300K and T̂∞ = 1200K, the flame tem-
perature is T̂f = 2050K, the flame position is y−

f = −7.4 (numerical), the velocity
at the flame v(y−

f ) is (0.12, 1.74) (numerical and Equation A.6, respectively), the
stagnation point yst is (−6.72, −4.29) (numerical and Equation A.4 , respectively)
and the dimensionless strain-rate is (0.1125, 0.2383) (numerical and Equation A.7,
respectively).

Figure 11.9 - (a) Strain rate at the flame y−
f and at the stagnation point

yst on the negative y axis as a function of several ambient-
atmosphere temperatures: T̂∞ = (2, 2.5, 3, 3.5, 4, 4.5, 5, 5.2)T̂b,
for which Pe = 7.83, 5.93, 5.2, 3.6, 3, 2.22, 2.1 and ∆ =
0.84, 0.79, 0.74, 0.68, 0.63, 0.58, 0.52, 0.5, respectively. (b) Strain rate
at the flame y−

f as a function of Péclet number. For all cases, T̂∞ = 4.5T̂b,
Fr = 1 and S = 9.5 are considered.
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Figure 11.10 - (a) flame tip y+
f and (b) flame bottom y−

f as a function of the ration of
ambient-atmosphere temperature to burner temperature T̂∞/T̂b (Fr = 1,
S = 9.5).
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The strain rate of the lower stagnation flow around the symmetry axis is influ-
enced by the buoyancy-driven flow. With the increase of the ambient-atmosphere
temperature, the positive buoyancy decreases and the buoyancy-driven flow has a
lower y-component of the velocity, which results in counterflow flames with a low
strain rate. Increasing the ambient temperature from 2 to 5.2 times the burner
temperature, the strain rate on the lower counterflow diffusion flame reduces from
16 s−1 to 3.5 s−1 (see Figure 11.9a). As indicated by Equation 11.5, choosing an
ambient temperature of T̂∞ = 4.5T̂b and changing the Péclet number by an increase
of ûb, further reduction on the strain rate is achieved, with a minimum value of
2.8 s−1, as shown in Figure 11.9b.

11.5 Dependence of the steady solution on the initial condition

As shown in Figures 11.7d and 11.7e, with changes of the ambient-atmosphere tem-
perature, the flow field changes drastically. Moreover, as shown in Figure 11.10, with
changes of the initial conditions, the flow field becomes unexpectedly sensitive to the
initial conditions in a certain range of ambient-atmosphere temperature. The two
limits of the flame on the y coordinate (flame tip y+

f and bottom y−
f ) are used to

quantify the effects of the ambient-atmosphere temperature as well as of the initial-
conditions on the steady solution, as seen in plots 11.10a and 11.10b, respectively.
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Two configurations of initial conditions are considered. The first one is a cylindrical
flame starting close to the burner with a uniform flow field, named as zero condition.
The second one is a known solution for a different ambient-atmosphere temperature,
named as restart condition. If the ambient-atmosphere temperature of the known
solution, used as initial condition, is close to the one of the searched new solution,
the simulations can be seen as a continuous change on the far field conditions. Using
these two types of initial conditions, a jump on the steady solution is identified, but
not in the same ambient-atmosphere temperature, according to Figure 11.10. The
jump in the solutions shows the strong nonlinearity of the problem and jumps for
different ambient-atmosphere temperatures for different initial conditions reveal a
hysteresis of the steady solutions.

The results show no initial-conditions dependency in the ranges 2.5 ≤ T̂∞/T̂b ≤ 3.89
and 4.6 < T̂∞/T̂b ≤ 5.2. In the first range, the positive buoyancy overwhelms the
negative one everywhere and the presence of the burner imposes the establishment of
a vortex in the wake of the burner, as discussed previously. In the second range, the
negative buoyancy overwhelms the positive one below the burner and a second vortex
is established in this region, as discussed previously. However, the balance between
the positive and negative buoyancy below the burner for 3.8925 ≤ T̂∞/T̂b ≤ 4.6
and the geometric factor imposed by the burner as an immersed body lead to the
dependency of the solution on the type of the initial conditions, as exhibited in plots
11.10a and 11.10b.

The drastic change on the solutions at the ambient-atmosphere temperature
T̂∞/T̂b = 4.6 occurs when the negative buoyancy overwhelms the positive one and
vice-versa at the ambient-atmosphere temperatures T̂∞/T̂b = 3.8925. For the former
case, the cold flow pushes further away the flame from the burner. The descending
cold gases flow from the burner and the ascending hot gases flow around the flame
create a second recirculation zone (vortex) forward the burner. Once the flow field
with two vortices is established, a large decrease of the negative buoyancy is neces-
sary for the flow to return to its previous state (i.e., for flame close to the burner,
only one vortex is found and its location is in the burner wake). The condition to
the return is found in the latter case, i.e., T̂∞/T̂b = 3.8925. The different behavior
of the steady solutions for the two used initial conditions in the analyzed range of
ambient-atmosphere temperature 2.5 ≤ T̂∞/T̂b ≤ 5.2 shows the hysteresis of the
buoyancy-driven Tsuji diffusion flame.
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12 CASE C: PUFFING TSUJI FLAME

It is evident that the essence of the flickering flame lies in the dynamics of the
toroidal vortices (XIA; P.ZHANG, 2018). Several experimental works have reported
flickering frequencies that presents the toroidal structures and remain independent
of the Reynolds number, the burner geometry and of the fuel considered, at least
while the flow remains laminar (SATO et al., 2000). This means that the Strouhal-
Froude number correlation, St ∝ Fr−1, viewed as a scaling law for the frequency
of the puffing flames must be valid for different geometries, such as jet diffusion
flames or pool flames. This scaling law is equivalent to the Frequency-fuel injection
diameter correlation, f ∝ (g/D)1/2. The lack of dependency of frequency from the
fuel injection geometry is valid mainly for the cases in which buoyancy dominates
over the jet flow.

The Tsuji geometry, has some main features that greatly differs of the geometries
cited above. One of them is the formation of a tubular vortices array, instead of
toroidal vortices structures found in the axisymmetrical geometries cited above.
From the rectangular symmetry employed in the present numerical study, the tubu-
lar vortices has infinite length, then the vortical structure in the Tsuji burner has
a two-dimensional configuration. Another feature is the existence of a counterflow
diffusion flame in the upstream region of the burner when the envelope flame configu-
ration is found. The envelope flame regime is found by the analysis of two properties,
k̂s and −fw, the flame stretch rate and fuel-ejection rate, respectively (TSA; CHEN,
2003). The flame stretch rate is defined as k̂s = 2û∞/R̂ by Tsuji and Yamaoka (1967)
and the fuel-ejection rate −fw is defined in Section 8.4 as introduced by Chen and
WENG (1990). The parameter û∞ is the oxidiser velocity approaching the cylinder
from upstream.

For preventing the blow-off and changing the regime from envelope flame to wake
flame, the pair Re-Fr must be sufficiently low. This constrain rises a disparity of
length scales at the problem, e.g., when the counterflow region is well described
by the characteristics parameters, the flame tip and/or puffing formation region far
downstream is not well described. This multi-scale problem is dealt in part by the
non-uniform computational mesh showed in Figure 12.1.

In terms of the grid, Case C is considered the most critical of the three by its dynamic
and interactions in multiple scales. Then for the grid independence study, different
mesh sizes have been tested as shown in Figure 12.1. For all considered meshes, the
refinement parameters retain the same pattern of distribution of the grid points.
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Figure 12.1 - Non-uniform structured coarse and fine meshes for the puffing Tsuji flame
case with the burner located at (x, y) = (0, 0), not shown here.
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SOURCE: The Author.

The variations of temperature along the symmetry line and the flame position (Z =
1) for four different mesh sizes are shown in Figure 12.2. As is seen from the figure,
there is very little difference between the results of the coarser grid and the finest
one. This confirms the small dependence of the results on the mesh size, so an
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intermediate size was selected.

Figure 12.2 - (a) flame position and (b) temperature distribution at the symmetry axis
for time t = 0.1s and burner size d = 5mm.
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For Case C, the burner is composed by a circular cylinder with different diameters
and fuel injection, L̂c ≡ d̂b = (0.40, 0.45, 0.50, 0.55, 0.60) × 10−2m and v̂b =
(0.159, 0.141, 0.127, 0.116, 0.100) × 10−2m/s, respectively. The fuel is methane
diluted by 20%, YFc ≡ YFb

= 0.2 to prevent long flames as observed in Cases A
and B. The resulted Reynolds number, Péclet number and Froude number for this
case are Re = 40, Pe = 28.4, and Fr = (0.8, 0.67, 0.57, 0.5, 0.43). Also, Figure 8.13
shows the following boundary conditions: on the top (y = ŷ/r̂ = 40) and right
(x = x̂/r̂ = 10) boundaries, free-slip condition is imposed for velocities along with
zero fluxes for the temperature, mixture fraction and excess enthalpy. At the inlet
section located at (y = ŷ/r̂ = 0), a prescribed velocity streamwise component for
fuel and air, v(x ≤ 1) = v̂F /v̂c = 0.66 and v(x < 1) = vair/vc = 1, respectively.

12.1 Vorticity generation

The results obtained using the constant density code are illustrated by Figure 12.3
which displays the mass fraction isocontours and vorticity contours. Starting from
the initial conditions, the flow field is experiencing:
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• A transient phase ( 0 ≤ t ≤ 30) characterized by the generation of a
finite number of vortical tubular structures which are growing while being
convected upwards (See in Figure 12.3b to Figure 12.3j, the bulged and
rolled contour regions). These vortices are generated by buoyancy-driven
shear flow, close to the burner, when the flame is progressively adapting
its shape from the initial condition. The instability stops as soon as the
last generated vortex structures leaves the computational domain (Figure
12.3j).

• A (non-physical) steady state ( t > 30 ) characterized by the absence of
any puffing and related vortical structures.

Figure 12.3 - CONSTANT DENSITY CASE: Mass fraction contours of several times
with Re = 40 and Fr = 0.8. (a) t = 3, (b) t = 6, (c) t = 9, (d) t = 12,
(e) t = 15, (f) t = 18, (g) t = 21, (h) t = 24, (i) t = 27, (j) t = 30, (l)
t = 33 and (m) t = 43. Lines represent 10 contours between YF b(dashed
line) and YO∞(continuous line). The contours represent the dimensionless
vorticity defined as ω = ∂xv − ∂yu. The gray area represents the cylindrical
burner.

SOURCE: The Author.
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Here, it can be guessed that due to the absence of density gradient related vor-
ticity sources (constant density hypothesis) and vortex stretching mechanism (two-
dimensional flow), the dynamics of the flow leading to the puffing regime cannot be
sustained beyond the observed transient period.

An in-depth analysis of the vorticity governing equation, one can find the key role
of each term:

Dω

Dt
= (ω · ∇)u − ω(∇ · u) + 1

ρ2 (∇ρ × ∇p) + ∇ × 1
ρFr2 (1 − ρ)ey + 1

ρRe
∇2ω (12.1)

where ω is the vorticity vector and is defined as ω = ∂xv − ∂yu.

The term on the left-hand side describes the rate of change of vorticity of the moving
fluid particle and is characterized by the material derivative D/Dt. The definitions
of right-hand side terms are:

• The first term is responsible for the vortex tilting or stretching and vanishes
for either two-dimensional flows or axisymmetric flows without swirling.

• The second term is referenced as a dilatation term. This term is responsible
for the stretching of vorticity due to flow compressibility and vanishes for
incompressible flows.

• The third and fourth terms are defined as the baroclinic and gravitational
terms, respectively. Both terms are responsible for the vorticity generation
and require the presence of variable density.

• The fifth term is the diffusion term and is responsible for the redistribution
of vorticity due to viscous effects.

Then, the third and fourth terms on the right-hand side of Equation 12.1, are respon-
sible for sustaining the puffing phenomenon. To prove the importance of the variable
density, the same case showed in Figure 12.3 was redone with the Zero-Mach Com-
pressibility Method Code. The same nondimensional times are analyzed in Figure
12.4 and confirmed that the steady-state phase that appears in an incompressible
framework was a non-physical one.
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Figure 12.4 - VARIABLE DENSITY CASE: Mass fraction contours of several times
with Re = 40 and Fr = 0.8. (a) t = 3, (b) t = 6, (c) t = 9, (d) t = 12,
(e) t = 15, (f) t = 18, (g) t = 21, (h) t = 24, (i) t = 27, (j) t = 30, (l)
t = 33 and (m) t = 43. Lines represent 10 contours between YF b(dashed
line) and YO∞(continuous line). The contours represent the dimensionless
vorticity defined as ω = ∂xv − ∂yu. The gray area represents the cylindrical
burner.

SOURCE: The Author.

Some key differences between the constant and variable density cases, Figures 12.3
and 12.4, respectively, can be spotted by analysing the distribution of vorticity. First,
the vorticity magnitude outside the flame (oxidant part) for the constant density
case remains constant (ω ∼ 1.2) for the most part of the flow, while in the variable
density case the vorticity magnitude in this region varies between ω ≈ 1 and 6. This
is consequence of the relation of the detachment of the puffing and the entrainment.
By the mass conservation, each time the pocket of hot gas leaves the domain, a
fresh oxidant stream is being carried from the sides. This mechanism obligates the
entrainment velocity generated by the suction of ambient oxidant to varies on time,
i.e. the entrainment variation is periodic and the frequency following that of the
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puffing.

12.2 Puffing frequency

The frequencies of the Tsuji puffing flame was analysed by the case with a lower
Froude number Fr than the previous case, changing from Fr = 0.80 to 0.43. This
parameter was achieved by varying the diameter of the burner from d = 4 to 6 ×
10−3m, while varying ûb to achieve the same Re and Pe of 40 and 28.4, respectively.
The flame evolution between t = 1.3s and t = 1.52s is illustrated by Figure 12.5
which displays the temperatures isocontours and dimensional vorticity contours.

Qualitative comparison with coflow jet flame for the case shown in Figure 12.5,
highlights:

• Contrarily to coflow in which the generated vortex is in confined domain,
in an unconfined one the vortex grows as is convected;

• Smaller structures for the coflow jet flame case with small fingers and/or
mushrooms tips;

• In both cases, the red isoline that represents the flame (Z = Zst) shows the
break of the stoichiometric surface in two regions. The first one establishes
the main flame and remains attached to the cylindrical burner. The second
region is composed of a pocket of hot gas surrounded by a flame that moves
downstream and disappears when the fuel inside the pocket is consumed.
This event is exhibited in Figure 12.5.

Figure 12.6 shows in more detail the contribution of each source term in the vorticity
equation for a snapshot at t̂ = 1.505s. The vorticity source term contours that
represents the gravitational contribution to the generation of vorticity is shown in
Figure 12.6b. By the 2D nature of the problem, the gravitational/buoyant source
term becomes dependent on the gradient of density in the x-direction only. So, as
shown in Figure 12.6b, the maximum/minimum value of this term is around the
flame sheet and mainly when it is parallel to the y-direction.
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Figure 12.5 - (a) t̂ = 1.443s, (b) t̂ = 1.464s, (c) t̂ = 1.484s, (d) t̂ = 1.505s, (e) t̂ = 1.525s,
(f) t̂ = 1.546s. The red isoline represents the flame sheet (Z = 1).
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Figure 12.6 - (a) Is the vorticity, (b) is the vorticity source term ∇ × 1/(ρFr2)(1 − ρ)e
and (c) is the source term ∇ρ × ∇p for the snapshot (d) in Figure 12.5,
t = 1.505s. The results are at the axis x mirrored for better visualization
only. And the continuous line represents the flame, is the isoline Z(x, y) = 1.
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The contours of the so-called baroclinic source term is presented in Figure 12.6c. As
this source term depends on the pressure field and not only the density gradient, its
maximum/minimum values does not correspond to the gravitational source term,
Figure 12.6b. Then the distribution of the baroclinic term is not restricted to the
surrounding of the flame sheet, but is encountered also at the vortex structure. An-
other key difference from the gravitational term, is that the baroclinic term presents
an intermittent value in the y-direction around the flame, showing the presence of
perturbations with a higher wavenumber. It is important to notice that the level of
contribution of the gravitational term to the generation of vorticity is one order of
magnitude higher than the contribution of the baroclinic term.

Figure 12.7 shows the temperature contours and flame sheet for the snapshot (d) in
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Figure 12.5. The black line represents the y-plane at x = 0.8, the red × marker rep-
resents the location of the probe to analyse the time history of a certain variable, and
the yellow rectangles represent the different regions of interest in the wavenumber
analysis.

Figure 12.7 - Temperature contours with the y-plane located at x = 0.8 and the regions
of interest.
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Figure 12.8 shows the baroclinic source term distribution along the (0.8, y) plane.
This distribution is divided by two regions of interest. The first, Region I, is close
to the burner and presents the small wavelengths section, the second, Region II, is
far downstream the burner and presents the large wavelengths section.
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Figure 12.8 - Baroclinic source term distribution at a y-plane located at x = 0.8 for the
snapshot (c) in Figure 12.6, t̂ = 1.505s.
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Figure 12.9a presents the spatial behaviour of the baroclinic term for the Region
I repeated eight times to enable the Fast Fourier Transform - FFT of the data.
Defining the wavelength, λ, as the reciprocal of the wavenumber, kc, from the power
spectrum, Figure 12.9, one can find the wavelength of λ̂ = 0.119 × 10−2m for the
Region I from the dominant wavenumber. The other picks at the power spectrum
represent the frequency of repetition of Region I, then is not a valuable result for
the analysis of the perturbation frequency in the source terms. That is, they are
frequencies that issue from the choice of analysis. This wavelength for the Region
I indicates a high-frequency perturbation around the cylinder, initiated mainly by
the interaction of the fuel injection and the inertial flow generated by the positive
buoyancy of the flame.

In the same way, Figure 12.9c presents the spatial evolution of the baroclinic term
for the Region II repeated eight times. As in the analysis of Region I, here, the first
wavenumber at the power spectrum was not chosen to represent the perturbation
of the source term. Again, from the power spectrum, Figure 12.9d, the resulting
wavelength from the second wavenumber is λ̂ = 3.94 × 10−2m. This wavelength
indicates a low frequency regime at the Region II. This is mainly generated by the
interaction of the buoyant flow generated along the flame and the low temperature
far-wake.
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Figure 12.9 - (a) The baroclinic vorticity source term repeated spatial history (RE-
GION I) at x = 0.8, (b) power spectrum for the term value fluctuation,
λ̂I = 0.119cm, (c) The baroclinic vorticity source term repeated spatial his-
tory (REGION II) at x = 0.8, and (d) power spectrum for the term value
fluctuation, λ̂II = 3.95cm.
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The spatial analysis at a snapshot showed the wavenumber in different regions and
gave a hint about the transient behaviour that arises from these fluctuations on the
source terms of vorticity. The transient history of the source terms of Equation 12.1
are presented in Figure 12.10 and 12.11. The probe location is represented by the
red × markers in Figure 12.7.

The unsteady behaviour of the vorticity source terms at different regions of the do-
main is compared in Figures 12.10 and 12.11. The unsteady frequency was obtained
by performing a Fast Fourier Transform (FFT) of the signals in Figure 12.10a and
c, that showed the time history for the baroclinic source term. Coherently with the
above results of the wavelength, Region I presented a higher frequency than the one
observed in Region II. The probe at Region I does not show a regular pattern of
the fluctuations. The frequency extracted from the power spectrum, Figure12.10b,
presented a dominant value at f̂ = 9.25Hz. This frequency is related to an instabil-
ity of the Kelvin-Helmholtz type that arises from the flow field with inflection point
resulting of the interaction from the cylinder fuel injection and the oxidant stream
created by the buoyant forces.
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At Region II, the dominant frequency value from Figure 12.10d is f̂ = 4.89Hz. In
contrast to Region I, this frequency is related to a Rayleigh-Taylor type instability
that arises from the interaction of the interface of different densities created at the
large flame bulge. At Region II, fingers are found to grow from the flame interface
and mushroom patterns are formed, in line with the structures formed in a Rayleigh-
Taylor instability, as seen in Figure 12.5.

Figure 12.10 - (a) The baroclinic vorticity source term time history at (x, y) = (0.8, 0.15),
(b) power spectrum for the term value fluctuation, f̂ = 9.25Hz, (c) The
baroclinic vorticity source term time history at (x, y) = (0.8, 21.16), and
(d) power spectrum for the term value fluctuation, f̂ = 4.89Hz.
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Another feature that can be emphasised by the two regions is the difference in phase
velocity vλ. This velocity represents the rate at which a wave propagates through
space, and is related to the wavelength λ and the frequency f̂ or even the Strouhal
number St for a non-dimensional analysis. Thus, with the information about the
wavelength and frequency, it is possible to obtain the wave phase velocity in the two
regions previously studied, leading to vλI

and vλII
. The results of the spatial and

temporal analysis shows that the wave phase velocity is vλI = λI × fI = 1.1 and
vλII = λII × fII = 19.31. The cusp velocity at the flame surface in region I and the
puffing vortex velocity in region II can be related to the perturbation of the source
terms of the vorticity equation.
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Figure 12.11 - (a) The density vorticity source term history at (x, y) = (0.80, 0.15), (b)
power spectrum for the term value fluctuation, f̂ = 9.25Hz, (c) The density
vorticity source term history at (x, y) = (0.8, 21.16), (d) power spectrum
for the term value fluctuation, f̂ = 4.89Hz.
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Figure 12.12 indicates the source of the “merging” process of the flame bulge. This
process is observed when a flame bulge moves up and outward (as seen in plot (a)
and (b)) and its displacement velocity slows down (as seen in plots (c) and (d),
allowing the next flame bulge to catch up. As a result, the preceding flame bulge
interacts with the trailing one. The process occurred at every other flame bulge
established near the Tsuji burner and when the entrainment becomes weak.
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Figure 12.12 - (a) and (b) is the vortex’s core positions xλ and yλ between the times
t̂ = 0.68s and 0.92s, (c) is the vortex’s core velocity vλ and (c) is the vortex’s
core acceleration aλ, both from minimum and maximum yλ position.

12 14 16
t

2.0

2.2

2.4

2.6

2.8

3.0

x λ

(a)

12 14 16
t

5

10

15

20

25

30

y λ

(b)

10 20 30
y

2

4

6

8

v λ

(c)

10 20 30
y

0.5

1.0

1.5

2.0

2.5

a λ

(d)

SOURCE: The Author.

12.3 Tsuji flame vs. jet and pool flames

Puffing frequencies which were analysed by FFT at various buoyancy levels were
summarized using a relation between the Strouhal number, St, and the Froude
number, Fr. As defined in Section 4.2, these dimensionless numbers are

St = f̂ L̂c

v̂c

, F r = v̂c√
ĝL̂c

The range of the Froude numbers in the numerical experiment was 0.4 < Fr < 0.8.
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The selection of this narrow range prevents the transition from one type of puffing
to another. The parameters of these cases are chosen so that Fr changes while Re

and Pe remain constant.

The probe for (x, y) = (0.80, 0.15) shows the same St ≈ 0.6687. This behaviour
indicates that the instability at Region I is closely linked with the Inertial effect by
the Reynolds number. Keeping the Re number constant prevented the change in the
shear stream generated between the fuel injection and the oxidant, and with that,
the change in the instability frequency.

Figure 12.13 shows the change on Strouhal number at the probe located in (x, y) =
(0.8, 21.16). As stated before, the frequency of the oscillation is relatively insensitive
to fuel velocity, fuel type, and diameter of the burner for a jet or pool flame. However,
the magnitude of the flame puffing does depend on geometrical parameters. In the
present case, the vortex does not present a toroidal geometry like jet flames, but an
infinite tubular geometry. The geometry changes the frequency level, but keeps the
dependence of Strouhal number by the Froude number. This consideration seems to
be reasonable since the present result of St = 0.1Fr−1.12 was close to the relation
St ∝ Fr−1 reportedly by Sato et al. (2000).

Figure 12.13 - Comparison between the empirical equation from Sato et al. (2000) and the
numerical results.
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13 CONCLUSIONS AND PERSPECTIVES

This work investigates the Tsuji Burner along with the implementation of the un-
steady artificial compressibility approach in the limit of a zero Mach number. The
resulting numerical code has been used to simulate the Tsuji Burner in three main
cases: steady Tsuji flame with forced convection, namely Classical Tsuji flame (Case
A), steady Tsuji flame with natural convection with heated ambient atmosphere,
namely Buoyant Tsuji Flame (Case B), and finally the unsteady Tsuji flame with
natural convection at low Froude number, namely Puffing Tsuji Flame (Case C).

Case A: Classical Tsuji Flame

In this case, the whole (forward and backward) Tsuji flame under forced convection
is analysed. Due to the very large flame height, the flame shape in the upper part
is slightly dependent on the lower part of the flame, close to the burner. Then, an
asymptotic analysis of the flame far from the burner provides a good description
of the flame shape and the characteristic length scales of the problem. The flame
width is directly proportional to the stoichiometric coefficient and reciprocal of free
stream velocity the 3/4 power and Peclet number the 1/4 power. The flame height
is proportional to the square of the stoichiometric coefficient and to the square
root of the ratio of Peclet number to free stream velocity. The numerical results
from potential flow as well as the Navier-Stokes flow confirm those dependence on
the problem parameters. Also, it is seen that the description of the lower part of
the flame, despite its small influence, as done by Navier-Stokes flow, is essential to
determine the flame height. Because of the fuel convective transport to the flame in
that region, the consumption is higher, which imposes the flame height.

Case B: Buoyant Tsuji Flame

The aim of the present case was to investigate the possibility of reduction of the
strain rate in Tsuji flames by varying the temperature of the ambient atmosphere.
The model of this case considers the thermal expansion only in the buoyant force
term of the Navier-Stokes equations. The variation of the ambient-atmosphere tem-
perature modifies simultaneously the positive buoyancy of the hot gases and the
negative one of the cold gases. Then, the reduction of the effects of the buoyancy
on the whole flame established around the horizontal cylindrical porous burner is
achieved by a proper combination of those two forces. For the cases in which the
positive buoyancy overwhelms the negative one, the lower part of the Tsuji flame is
close to the burner, the length of the upper part of the flame is about two order of
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magnitude of the burner radius. In the flow field, there is one vortex in the wake of
the burner. For the cases in which the negative buoyancy overwhelms the positive
one, the lower part of the flame is farther from the burner, and the length of the
upper part of the flame is reduced considerably. The flow field changes drastically
because, besides the vortex in the burner wake, a second vortex is established below
the burner. The systematic increase in the ambient-atmosphere temperature modi-
fies not only the intensity of the buoyant forces, but also the domain in which each
of them is found. Because of the change in these two properties with the ambient-
atmosphere temperature, the transition of the negative buoyancy overwhelming the
positive one and vice-versa are discontinuous. Moreover, since the flow fields for these
two conditions are very different, then the ambient-atmosphere temperatures for the
transitions are not the same. This behaviour causes a hysteresis on the buoyancy-
driven Tsuji diffusion flame. The numerical results point out that the strategy of
increasing the ambient-atmosphere temperature leads to low-strain-rate Tsuji diffu-
sion flames.

Case C: Puffing Tsuji Flame

This case explores the buoyant Tsuji flame with low Froude number, a configuration
that in some cases enables the appearance of puffing flames. Also, this case investi-
gates the influence of the hypothesis of constant-density flow in the formation of an
unsteady flame. The results showed that the low-frequency instability generated by
the displacement of the flame’s initial condition was damped and led ultimately to
a non-physical stationary diffusion flame with constant density. This is attributed
to the absence of vorticity source terms related to the underlying constant density
assumption.

The mechanisms leading to the formation and transport of vortical structures in
buoyant reactive flows were investigated by examining the vorticity transport equa-
tion. It was found that combustion-induced buoyancy generates large vortical struc-
tures in the plume near field mainly because of the gravitational term, which is due
to the interaction between the gravity and the transverse density gradients. This
generates a low-frequency puffing that is related to the Rayleigh-Taylor instability.
Then, a transverse density inhomogeneity subjected to gravity is essential to the
development of buoyancy instability in reactive flows. By the inspection of the tem-
poral behaviour of the source terms of vorticity equation, another frequency was
found. This frequency is related to the Kelvin-Helmholtz instability and was estab-
lished in the region near the cylindrical burner. Finally, a parametric study varying

106



the Froude number showed that the puffing regime for Tsuji flames follows the same
relationship as for jet flames, St ∝ Fr−1. However, it was found that the frequency
level of the puffing Tsuji flames is not the same as reported in the literature for jet
and pool flames.
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APPENDIX A - BUOYANT TSUJI

A.1 Stagnation point and strain rate estimation

Considering a fluid particle, determined by yp, leaving the downside surface of the
burner and displacing downwards on the symmetry axis, the force balance equation
for determining its trajectory is given by

d2yp

dt2 = 1
Fr2

(
1 − 1

T

)
(A.1)

Diffusion flames established in a counterflow configuration are known to sit in the
oxidant side of a distance from the stagnation plane which scales as Pe−1/2, thus,
the flame position can be estimated by y−

f ∼ yst − Pe−1/2.

In this analysis, a linear temperature profile from the burner up to the flame is
imposed, i.e., T ∼ Tb + ∆T (yp + 1), with ∆T = (Tf − Tb)/(y−

f + 1).

Multiplying Equation (A.1) by 2dyp/dt and integrating analytically, the fluid velocity
on the symmetry axis below the burner is determined, by

(Fr2)
(

d

dt
(yp + 1)

)2

= 2(yp + 1) − 2
∆T

ln

(
1 + ∆T (yp + 1)

Tb

)
+ (Fr2) (A.2)

in which the boundary condition at the burner surface was applied, i.e., v = y′
p = −1

at yp = −1. The position of the stagnation point yp = yst is found with the zero
velocity condition y′

p = 0,

(yst + 1)
(y−

f + 1) + (Fr)2

2(y−
f + 1) = 1

(Tf − Tb)
ln

(
1 + (Tf − Tb)

Tb

(yst + 1)
(y−

f + 1)

)
(A.3)

A way to find the solution of Equation (A.3) is made in two steps. First, the position
ytan at which the functions of the left and right hand sides have the same tangent
is calculated. Second, the condition for (Fr)2/2(y−

f + 1) that makes the two func-
tions to meet at ytan is determined. Following this strategy, the stagnation point is
determined by

(yst + 1) = 1 − Tb

Tf − Tb

(y−
f + 1) (A.4)

and the Froude number is

(Fr)2

2(y−
f + 1) = ln(1/Tb) + Tb − 1

Tf − Tb

(A.5)
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Imposing the flame position yp = y−
f into Equation (A.2), the velocity vf = v(y−

f )
can be estimated by

(vf − 1)(vf + 1) =
|y−

f + 1|
(Fr)2

(
ln(Tf/Tb)
Tf − Tb

− 1
)

(A.6)

From Equation (A.6), the velocity of the gases at the flame is independent on the
flame position for the particular ambient-atmosphere temperature T̂∞,c = (T̂f −
T̂b)/ln(T̂f/T̂b) and its value is vf = 1. The velocity is positive because the flame is
in the oxidant side of the counterflow. For the addressed conditions T̂b = 300K and
S = 9.5, which leads to T̂f = 2050K and T̂∞,c is 910K. For T̂∞ > 910K, the velocity
is vf > 1.

The strain rate at the flame y−
f is estimated by the derivative in y direction of

Equation (A.6), according to

dv

dyp

∣∣∣∣∣
y−

f

= ∆2

(Fr)2 vf

(A.7)

which reveals its dependence on the Froude number and on the temperature of the
flame, the fuel injected and the ambient atmosphere. For instance,

dv

dyp

∣∣∣∣∣
y−

f


>

=
<


( ∆

Fr

)2
, for


T̂∞ < T̂∞,c (vf < 1)
T̂∞ = T̂∞,c (vf = 1)
T̂∞ > T̂∞,c (vf > 1)
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APPENDIX B - NUMERICAL EQUATIONS

B.1 Continuity

In constructing the staggered grid arrangement, the additional nodes are set up
surrounding the physical boundary, as illustrated in Figure B.1. The calculations
are performed at internal nodes only (I = 2 to NI − 1 and J = 2 to NJ − 1).
Two notable features of the arrangement are (i) the physical boundaries coincide
with scalar control volume boundaries and (ii) the nodes just outside the inlet of
the domain (along I = 1 in Figure B.1) are available to store the inlet conditions.
This enables the introduction of boundary conditions to be achieved with small
modifications to the discretised equations for near-boundary internal nodes.

Figure B.1 - Pressure Scalar cell at a boundary.

SOURCE: The Author.

∂ρ

∂t
+ 1

β

∂p

∂τ
+ 1

xη

∂(xηρu)
∂x

+ ∂(ρv)
∂y

= 0 (B.1)

∫ ∂ρ

∂t
xηdxdy = xη

P

∂ρP

∂t
∆Ω (B.2)

Defining ∆Ω = ∆x∆y.

The third therm:
∫ 1

xη

∂(xηρu)
∂x

xηdxdy = (xηρu)|ew∆y =
[
xη

e

ρE + ρP

2 ue − xη
w

ρW + ρP

2 uw

]
∆y (B.3)
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The fourth term:
∫ ∂(ρv)

∂y
xηdxdy = xη

P (ρv)|ns ∆x = xη
P

[
ρN + ρP

2 vn − ρS + ρP

2 vs

]
∆x (B.4)

xη
P ∆Ω∂ρP

∂t
+ (xηρu)|ew∆y + xη

P (ρv)|ns ∆x = 0 (B.5)

xη
P ∆Ω∂ρP

∂t
+
[
xη

e

ρE + ρP

2 ue − xη
w

ρW + ρP

2 uw

]
∆y + xη

P

[
ρN + ρP

2 vn − ρS + ρP

2 vs

]
∆x = 0

(B.6)

B.2 u-Momentum

Figure B.2 - u-Momentum cell at a boundary.

SOURCE: The Author.

∫ ∂ρu

∂t
xηdxdy +

∫ 1
xη

∂xηρuu

∂x
xηdxdy +

∫ ∂ρvu

∂y
xηdxdy = R(u, v, p) (B.7)

∫ 1
xη

∂xηρuu

∂x
xηdxdy = xηρuu|ew∆y (B.8)

∫ ∂ρvu

∂y
xηdxdy = ρvu|ns xη

P ∆x (B.9)

xη
P

(
ρ

∂u

∂t
+ u

∂ρ

∂t

)
P

∆x∆y + xηρuu|ew∆y + ρvu|ns xη
P ∆x = R(u, v, p) (B.10)
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xη
P ρP

∂u

∂t

∣∣∣∣∣
P

∆Ω + xη
P uP

∂ρ

∂t

∣∣∣∣∣
P

∆Ω + xηρuu|ew∆y + ρvu|ns xη
P ∆x = R(u, v, p) (B.11)

xη
P ρP

∂u

∂t

∣∣∣∣∣
P

∆Ω−uP [(xηρu)|ew∆y + xη
P (ρv)|ns ∆x]+xηρuu|ew∆y+ρvu|ns xη

P ∆x = R(u, v, p)

(B.12)

xη
P ρP

∂u

∂t
|P ∆Ω + xηρuu|ew∆y − uP (xηρu)|ew∆y + ρvu|ns xη

P ∆x − uP xη
P (ρv)|ns ∆x = R(u, v, p)(B.13)

xη
P ρP

∂u

∂t

∣∣∣∣∣
P

∆Ω + [(xηρu)eue − (xηρu)wuw] ∆y

− [(xηρu)e − (xηρu)w] uP ∆y + [(ρv)nun − (ρv)sus] xη
P ∆x

− [(ρv)n − (ρv)s] xη
P uP ∆x = R(u, v, p) (B.14)

Defining the fluxes:

Fi = (xηρu)i∆y

Fj = (ρv)jx
η
P ∆x

where i = [w, e] and j = [s, n]:

xη
P ρP

∂u

∂t

∣∣∣∣∣
P

∆Ω + Feue − Fwuw − (Fe − Fw) uP + Fnun − Fsus

− (Fn − Fs) uP = R(u, v, p) (B.15)

Defining FP = (Fw − Fe + Fs − Fn), then:
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xη
P ρP

∂u

∂t

∣∣∣∣∣
P

∆Ω + Feue − Fwuw + Fnun − Fsus + FP uP = R(u, v, p) (B.16)

Discrization of the right-hand-side without the source terms:

R(u, v, p) = ∂p

∂r
+ 1

xη

∂

∂x

(
xηµ

∂u

∂x

)
+ ∂

∂y

(
µ

∂u

∂y

)
(B.17)

∫
R(u, v, p)xηdxdy = xη

P

∂p

∂x

∣∣∣∣∣
e

w

∆Ω +
(

xηµ
∂u

∂x

)∣∣∣∣∣
e

w

∆y +
(

µ
∂u

∂y

)∣∣∣∣∣
n

s

xη
P ∆x (B.18)

∫
R(u, v, p)rdxdy = xη

P

pe − pw

∆x
∆Ω +

[
xη

eµe
uE − uP

δxe

− xη
wµw

uP − uW

δrw

]
∆y

+
[
µn

uN − uP

δzn

− µs
uP − uS

δzs

]
xη

P ∆x (B.19)

Di = xη
i µi

δri

∆y

Dj = µj

δzj

xη
P ∆x

∫
R(u, v, p)rdxdy = xη

P

pe − pw

∆x
∆Ω + De(uE − uP ) − Dw(uP − uW )

+Dn(uN − uP ) − Ds(uP − uS) (B.20)

xη
P ρP

∂u

∂t

∣∣∣∣∣
P

∆Ω + Feue − Fwuw + Fnun − Fsus + FP uP

= xη
P

pe − pw

∆x
∆Ω + De(uE − uP ) − Dw(uP − uW )

+Dn(uN − uP ) − Ds(uP − uS) (B.21)
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B.3 v-Momentum

Figure B.3 - v-Momentum cell at a boundary.

SOURCE: The Author.

∫ ∂ρv

∂t
xηdxdy +

∫ 1
xη

∂xηρuv

∂x
xηdxdy +

∫ ∂ρvv

∂y
xηdxdy = R(u, v, p) (B.22)

∫ 1
xη

∂xρuv

∂x
xdxdy = xηρuv|ew∆y (B.23)

∫ ∂ρvv

∂y
xdxdy = ρvv|ns xη

P ∆x (B.24)

xη
P

(
ρ

∂v

∂t
+ v

∂ρ

∂t

)
P

∆x∆y + xηρuv|ew∆y + ρvv|ns xη
P ∆x = R(u, v, p) (B.25)

xη
P ρP

∂v

∂t

∣∣∣∣∣
P

∆Ω + xη
P vP

∂ρ

∂t

∣∣∣∣∣
P

∆Ω + xηρuv|ew∆y + ρvv|ns xη
P ∆x = R(u, v, p) (B.26)

xη
P ρP

∂v

∂t

∣∣∣∣∣
P

∆Ω−vP [(xηρu)|ew∆y + xη
P (ρv)|ns ∆x]+xηρuv|ew∆y+ρvv|ns xη

P ∆x = R(u, v, p)

(B.27)

xη
P ρP

∂v

∂t
|P ∆Ω + xηρuv|ew∆y − vP (xηρu)|ew∆y + ρvv|ns xη

P ∆x − vP xη
P (ρv)|ns ∆x = R(u, v, p)(B.28)
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xη
P ρP

∂v

∂t

∣∣∣∣∣
P

∆Ω + [(xηρu)eve − (xηρu)wvw] ∆y

− [(xηρu)e − (xηρu)w] vP ∆y + [(ρv)nvn − (ρv)svs] xη
P ∆x

− [(ρv)n − (ρv)s] xη
P vP ∆x = R(u, v, p) (B.29)

Defining the fluxes:

Fi(e,w) = (xηρu)i∆y

Fi(n,s) = (ρv)ix
η
P ∆x

xη
P ρP

∂v

∂t

∣∣∣∣∣
P

∆Ω + Feve − Fwvw − (Fe − Fw) vP + Fnvn − Fsvs

− (Fn − Fs) vP = R(u, v, p) (B.30)

Defining FP = (Fw − Fe + Fs − Fn), then:

xη
P ρP

∂v

∂t

∣∣∣∣∣
P

∆Ω + Feve − Fwvw + Fnvn − Fsvs + FP vP = R(u, v, p) (B.31)

B.4 Enthalpy excess equation

∫ ∂ρH

∂t
xηdxdy +

∫ 1
xη

∂xηρuH

∂x
xηdxdy +

∫ ∂ρvH

∂y
xηdxdy = R(H) (B.32)

∫ 1
xη

∂xηρuH

∂x
xηdxdy = xηρuH|ew∆y (B.33)

∫ ∂ρvH

∂y
xdxdy = ρvH|ns xη

P ∆x (B.34)
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Figure B.4 - Enthalpy excess scalar cell at a boundary.

SOURCE: The Author.

xη
P

(
ρ

∂H

∂t
+ H

∂ρ

∂t

)
P

∆x∆y + xηρuH|ew∆y + ρvH|ns xη
P ∆x = R(H) (B.35)

xη
P ρP

∂H

∂t

∣∣∣∣∣
P

∆Ω + xη
P HP

∂ρ

∂t

∣∣∣∣∣
P

∆Ω + xηρuH|ew∆y + ρvH|ns xη
P ∆x = R(H) (B.36)

xη
P ρP

∂H

∂t

∣∣∣∣∣
P

∆Ω−HP [(xηρu)|ew∆y + xη
P (ρv)|ns ∆x]+xηρuH|ew∆y+ρvH|ns xη

P ∆x = R(H)

(B.37)

xη
P ρP

∂H

∂t

∣∣∣∣∣
P

∆Ω + xηρuH|ew∆y − HP (xηρu)|ew∆y + ρvH|ns xη
P ∆x − HP xη

P (ρv)|ns ∆x = R(H)(B.38)

xη
P ρP

∂H

∂t

∣∣∣∣∣
P

∆Ω + [(xηρu)eHe − (xηρu)wHw] ∆y

− [(xηρu)e − (xηρu)w] HP ∆y + [(ρv)nHn − (ρv)sHs] xη
P ∆x

− [(ρv)n − (ρv)s] xη
P HP ∆x = R(H) (B.39)

Defining the fluxes:

125



Fi = (xηρu)i∆y

Fj = (ρv)jx
η
P ∆x

where i = [w, e] and j = [s, n]:

xη
P ρP

∂H

∂t

∣∣∣∣∣
P

∆Ω + FeHe − FwHw − (Fe − Fw) HP + FnHn − FsHs

− (Fn − Fs) HP = R(H) (B.40)

Defining FP = (Fw − Fe + Fs − Fn), then:

ρP
∂H

∂t

∣∣∣∣∣
P

∆Ω + FeHe − FwHw + FnHn − FsHs + FP HP = R(H) (B.41)

R(H) = 1
xη

∂

∂x

(
xηρDT

∂H

∂x

)
+ ∂

∂y

(
ρDT

∂H

∂y

)
(B.42)

∫
R(H)xηdxdy =

(
xηρDT

∂H

∂x

)∣∣∣∣∣
e

w

∆y +
(

ρDT
∂H

∂y

)∣∣∣∣∣
n

s

xη
P ∆x (B.43)

∫
R(H)xηdxdy =

[
xη

eρeDT e

HE − HP

δxe

− xη
wρwDT w

HP − HW

δxw

]
∆y

+
[
ρnDT n

HN − HP

δyn

− ρsDT s

HP − HS

δys

]
xη

P ∆x (B.44)

Di = xη
i ρiDT i

δxi

∆y

Dj = ρjDT j

δyj

xη
P ∆x
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∫
R(H)xηdxdy = De(HE − HP ) − Dw(HP − HW )

+Dn(HN − HP ) − Ds(HP − HS) (B.45)

xη
P ρP

∂H

∂t

∣∣∣∣∣
P

∆Ω + FeHe − FwHw + FnHn − FsHs + FP HP

= De(HE − HP ) − Dw(HP − HW )

+Dn(HN − HP ) − Ds(HP − HS) (B.46)

Defining Dp = (Dw + De + Ds + Dn), then:

xη
P ρP

∂H

∂t

∣∣∣∣∣
P

∆Ω + FeHe − FwHw + FnHn − FsHs + FP HP

= −DpHP + DeHE + DwHW + DnHN + DsHS (B.47)

B.5 QUICK scheme

From QUICK scheme, for momentum in x direction:

When uw > 0:
uw = 6

8uW + 3
8uP − 1

8uW W (B.48)

When ue > 0:
ue = 6

8uP + 3
8uE − 1

8uW (B.49)

When us > 0:
us = 6

8uS + 3
8uP − 1

8uSS (B.50)

When un > 0:
un = 6

8uP + 3
8uN − 1

8uS (B.51)
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xη
P ρP

∂u

∂t

∣∣∣∣∣
P

∆Ω + Fe

(6
8uP + 3

8uE − 1
8uW

)
− Fw

(6
8uW + 3

8uP − 1
8uW W

)

+ Fn

(6
8uP + 3

8uN − 1
8uS

)
− Fs

(6
8uS + 3

8uP − 1
8uSS

)
+ FP uP =

SMu + De(uE − uP ) − Dw(uP − uW ) + Dn(uN − uP ) − Ds(uP − uS) (B.52)

xη
P ρP

∂u

∂t

∣∣∣∣∣
P

∆Ω+
(

De + 6
8Fe + Dw − 3

8Fw + Dn + 6
8Fn + Ds − 3

8Fs

)
uP +FP uP =

+ SMu +
(

Dw + 1
8Fe + 6

8Fw

)
uW +

(
De − 3

8Fe

)
uE+(

Ds + 1
8Fn + 6

8Fs

)
uS +

(
Dn − 3

8Fn

)
uN+(

−1
8Fw

)
uW W +

(
−1

8Fs

)
uSS (B.53)

The standard form for discretised equations

xη
P ρP

∂u

∂t

∣∣∣∣∣
P

∆Ω+aP uP +FP uP = c+aW uW +aEuE+aSuS+aNuN+aW W uW W +aSSuSS

(B.54)

Where

aP = De + 6
8Fe + Dw − 3

8Fw + Dn + 6
8Fn + Ds − 3

8Fs (B.55)

aW = Dw + 1
8Fe + 6

8Fw (B.56)

aE = De − 3
8Fe (B.57)

aS = Ds + 1
8Fn + 6

8Fs (B.58)
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aN = Dn − 3
8Fn (B.59)

aW W = −1
8Fw (B.60)

aSS = −1
8Fe (B.61)

c = SMu (B.62)

Repeating for other velocities directions and signals:

xη
P ρP

∂u

∂t

∣∣∣∣∣
P

∆Ω + aP uP + FP uP = c + aW uW + aEuE + aSuS + aNuN+

aW W uW W + aSSuSS + aEEuEE + aNNuNN (B.63)

aP = aW + aE + aS + aN + aW W + aEE + aSS + aNN + Fe − Fw + Fn − Fs (B.64)

aW = Dw + 6
8αwFw + 1

8αeFe + 3
8(1 − αw)Fw (B.65)

aE = De − 3
8αeFe − 6

8(1 − αe)Fe − 1
8(1 − αw)Fw (B.66)

aS = Ds − 6
8αsFs + 1

8αnFn − 3
8(1 − αs)Fs (B.67)

aN = Dn − 3
8αnFn − 6

8(1 − αn)Fn − 1
8(1 − αs)Fs (B.68)
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aW W = −1
8Fw (B.69)

aEE = 1
8(1 − αe)Fe (B.70)

aSS = −1
8Fs (B.71)

aNN = 1
8(1 − αn)Fn (B.72)

c = SMu (B.73)

where

αw = 1 for Fw > 0 and αe = 1 Fe > 0

αw = 0 for Fw < 0 and αe = 0 Fe < 0

αs = 1 for Fs > 0 and αn = 1 Fn > 0

αs = 0 for Fs < 0 and αn = 0 Fn < 0
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