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Abstract
This work considers the development of a numerical-analytical procedure for computing optimal time-fixed low-thrust limited-
power transfers between arbitrary orbits. It is assumed that Earth’s gravitational field is described by the main three zonal harmonics 
J2, J3 and J4. The optimization problem is formulated as a Mayer problem of optimal control with the state variables defined by 
the Cartesian elements—components of the position vector and the velocity vector—and a consumption variable that describes 
the fuel spent during the maneuver. Pontryagin Maximum Principle is applied to determine the optimal thrust acceleration. A set 
of classical orbital elements is introduced as a new set of state variables by means of an intrinsic canonical transformation defined 
by the general solution of the canonical system described by the undisturbed part of the maximum Hamiltonian. The proposed 
procedure involves the development of a two-stage algorithm to solve the two-point boundary value problem that defines the transfer 
problem. In the first stage of the algorithm, a neighboring extremals method is applied to solve the “mean” two-point boundary 
value problem of going from an initial orbit to a final orbit at a prescribed final time. This boundary value problem is described by 
the mean canonical system that governs the secular behavior of the optimal trajectories. The maximum Hamiltonian function that 
governs the mean canonical system is computed by applying the classic concept of “mean Hamiltonian”. In the second stage, the 
well-known Newton–Raphson method is applied to adjust the initial values of adjoint variables when periodic terms of the first 
order are included. These periodic terms are recovered by computing the Poisson brackets in the transformation equations, which 
are defined between the original set of canonical variables and the new set of average canonical variables, as described in Hori 
method. Numerical results show the main effects on the optimal trajectories due to the zonal harmonics considered in this study.
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1  Introduction

In the last two decades, problems of optimizing low-thrust 
space trajectories have become relevant in mission analysis 
due to technological advances that allow the use of these 

systems in space exploration. The pioneer missions which 
employed such propulsion systems were NASA-JPL Deep 
Space 1, ESA SMART1 and the Japanese HAYABUSA 
mission. Deep Space 1, the first interplanetary spacecraft 
developed by NASA to use solar electric propulsion, was 
launched on October 24, 1998. Its mission ended on Decem-
ber 18, 2001, when its fuel supply exhausted. Smart-1, the 
first mission of ESA for advanced research in technology, 
was launched on September 27, 2003, and tested the solar 
electric propulsion and other deep-space technologies. The 
target of the mission was the Moon. Its mission ended on 
September 3, 2006, when the spacecraft impacted the lunar 
surface. The Japanese Hayabusa spacecraft was also origi-
nally designed as a technology demonstration mission that 
tested an efficient ion propulsion system. It was launched 
on May 9, 2003. On November 25, 2005, it touched down 
on the surface of asteroid Itokawa, and its mission ended on 
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June 13, 2010. Interesting details about these space missions 
can be found in [1–4].

Low-thrust electric propulsion systems have high spe-
cific impulse and low-thrust capability, in such way that 
they operate continuously during large time intervals (sev-
eral hours or even days). The main applications of these 
propulsion systems occur in interplanetary missions of high 
energy and in geocentric missions involving communica-
tion systems and GPS satellites. The high fuel efficiency 
of ion engines also enables microsatellite missions [5–7]. 
In the last six decades, several researchers have obtained 
numerical solutions, as well as analytical solutions, for sev-
eral maneuvers considering specific initial and final orbits, 
specific thrust profiles and relevant perturbations, such as J2 
perturbation [5, 8–19]. Techniques based on the concept of 
mean Hamiltonian are applied in the analytical studies, and 
solutions of the mean equations are obtained in such a way 
that only secular behavior of the optimal solutions is dis-
cussed. Few works consider the inclusion of periodic terms 
which are, in general, included only for transfers between 
close orbits and moderate time of flight.

Considering the geocentric missions, this work presents 
a study of the problem of optimal low-thrust limited-power 
transfers between arbitrary orbits. It is assumed that Earth´s 
gravitational field is described by the main three zonal har-
monics—J2, J3 and J4. A numerical-analytical procedure 
based on canonical transformations is proposed for com-
puting optimal low-thrust limited-power trajectories in such 
gravitational field. Firstly, the optimization problem of space 
trajectories is formulated as a Mayer problem of optimal 
control. Cartesian elements—components of the position 
vector and the velocity vector—and a consumption varia-
ble, which describes the fuel spent during the maneuver, are 
chosen as state variables. Pontryagin Maximum Principle 
is applied to determine the optimal thrust acceleration and, 
consequently, the maximum Hamiltonian that governs the 
optimal trajectories. Then, a set of orbital elements is intro-
duced as a new set of state variables by means of an intrinsic 
canonical transformation, defined by the general solution 
of the canonical system described by the undisturbed part 
of the maximum Hamiltonian. The study does not include 
orbits with small eccentricities and/or inclinations, such that 
well-known classical orbital elements are introduced. The 
proposed procedure involves the development of a two-stage 
algorithm: in the first stage, a neighboring extremals method 
is applied to solve the “mean” two-point boundary value 
problem of going from an initial orbit to a final orbit at a pre-
scribed final time. This boundary value problem is governed 
by the mean canonical system that describes the secular 
behavior of the optimal trajectories. In the second stage, the 
well-known Newton–Raphson method is applied to adjust 
the initial values of adjoint variables when the first-order 
periodic terms are included. The maximum Hamiltonian that 

governs the mean canonical system is computed by applying 
the classic concept of “mean Hamiltonian”, as described 
by Marec and Vinh [11]. Hori method [20] is applied to 
compute periodic terms. Periodic terms of the first order are 
recovered by computing the Poisson brackets in the trans-
formation equations, which are defined between the original 
set of canonical variables and the new set of mean canoni-
cal variables in Hori method. The main advantage of this 
numerical-analytical procedure is that the mean canonical 
system is much simpler than the complete canonical system 
with periodic terms. Similar technique has been applied with 
good results in a previous work [16]. Numerical results for 
some transfers show the effects on the optimal trajectories 
due to the inclusion of the zonal harmonics in the develop-
ment of Earth’s gravitational field.

The text is organized as follows. Section 2 has two sub-
sections: in the first one, a brief analysis of perturbing gravi-
tational potential of the Earth is presented. In the second 
subsection, the optimization problem for time-fixed low-
thrust limited-power propulsion systems is formulated as 
a Mayer problem of optimal control, and Pontryagin Maxi-
mum Principle is applied to derive the maximum Hamil-
tonian which governs the optimal trajectories. In Sect. 3, 
a set of classical orbits elements is introduced as new set 
of state variables by means an intrinsic canonical transfor-
mation defined by the undisturbed maximum Hamiltonian. 
In Sect. 4, the proposed numerical-analytical procedure for 
solving the two-point boundary value problem of going 
from an initial orbit to a final orbit is described. In Sect. 5, 
numerical results are presented for some transfers, and the 
effects of the main zonal harmonics of Earth’s gravitational 
field are discussed. Final remarks are presented in Sect. 6.

2 � Optimal space trajectories

2.1 � Analysis of perturbing gravitational potential

To build a semi-analytical solution for preliminary analysis 
of low-thrust limited-power time-fixed transfers, the first 
step is to define which perturbations must be considered in 
order to get a simplified model which retains the main part 
of the dynamics of the spacecraft. The main perturbations 
acting on the spacecraft are due to the Earth’s gravity field. 
The time of flight of a low-thrust maneuver is of the order of 
hours or even few days, in such way that perturbations like 
drag, radiation pressure, gravitational attraction of Moon 
and Sun, can be ignored in a preliminary mission analysis.

The perturbations due to the Earth’s gravity field can be 
described by the well-known expansion of the gravitational 
potential in spherical harmonics,
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where μ is the gravitational parameter of Earth, r is the dis-
tance from the center of Earth, ϕ is the latitude, λ is the 
longitude, ae denotes the mean equatorial radius of Earth 
( ae = 6378.145  km), Pl is Legendre polynomial, Plm is 
associated Legendre polynomial, �lm is a constant associ-
ated to tesseral or sectorial harmonic, Jl is the coefficient 
for the zonal harmonic, and Jlm is the coefficient for tesseral 
( l ≠ m ) or sectorial harmonic ( l = m ). The main coef-
ficients for Earth are presented in Table 1 [21], in which 
Clm = Jlm cos

(
m�lm

)
 and Slm = Jlm sin

(
m�lm

)
.

According to Kaula [22] and Osório [23], the gravita-
tional potential of the Earth can also be represented as a 
function of classical orbital elements (a, e, I, Ω, ω, M), 
where a is the semi-major axis, e is the eccentricity, I is the 
inclination of the orbital plane, Ω is the longitude of ascend-
ing node, ω is the argument of pericenter and M is the mean 
anomaly. The general term of the development proposed by 
Osório is given by

where Almj(I) is Kaula’s inclination function, H−(l+1),(l−2j)
p (e) 

is Hansen’s coefficient (function of the eccentricity), and the 
angle Ψlmjp is defined by

where θ is the sidereal time of Greenwich. For each selec-
tion of the integers l, m, j, p, we can define the short peri-
odic terms as those with p ≠ 0 (terms containing the mean 
anomaly M), medium period terms as those with p = 0 but 
m ≠ 0 (terms containing mθ) and long periodic terms as 
those with p = 0 and m = 0 . Resonant terms arise for satel-
lite with mean motion commensurable with angular velocity 
of Earth’s rotation. Such terms are related to the tesseral 
harmonics. Finally, the contribution of a specific harmonic 
decreases with the term 

(
ae
/
a
)l.

(1)
{

Φ = −
�

r

[
1 −

∞∑

l=2

Jl

(ae
r

)l

Pl(sin�) +

∞∑

l=2

l∑

m=1

Jlm

(ae
r

)l

Plm(sin�) cosm
(
� − �lm

)
]}

(2)Φlm = −
�

a

(ae
a

)l

Jlm

l∑

j=0

Almj(I)

∞∑

p=−∞

H−(l+1),(l−2j)
p

(e) cosΨlmjp(M,�, �,Ω)

(3)
Ψlmjp(M,�, �,Ω) = pM + (l − 2j)� + m

(
Ω − � − �lm

)
+ (l − m)

�

2

Taking into account the preceding discussion about the 
Earth’s gravitational potential and the values of the coef-
ficients in Table 1 (note that J2 is the dominant coefficient 
and the other coefficients have almost the same order of 
magnitude), it is assumed that a simplified model of the 
potential to be used in the preliminary analysis of optimal 
low-thrust limited-power trajectories involves only the three 
main zonal harmonics J2, J3 and J4. Although the first secto-
rial harmonics have almost the same order of magnitude as 
J3 and J4, their contributions will be ignored in this analysis, 
since usually the powered trajectory does not correspond to 
a resonant orbit.

2.2 � The maximum Hamiltonian

Low-thrust limited-power propulsion systems are charac-
terized by low-thrust acceleration level and high specific 
impulse. For such propulsion systems, the ratio between the 
maximum thrust acceleration and the gravity acceleration 

on the ground, �max

/
g0 , is between 10−4 and 10−2. Usually, 

these systems are simply referred as LP systems. The fuel 
consumption for LP systems is described by the variable J 
defined as

where γ is the magnitude of the thrust acceleration vector 
γ, which is taken as control variable. Since variable J is 
a decreasing monotonic function of the mass of the space 
vehicle, the minimization of the final value of the fuel con-
sumption Jf is equivalent to the maximization of mf (final 
mass of the vehicle) [24].

For LP systems, the optimization problem consists of 
transferring the space vehicle from the initial state (r0, v0, 0) 

(4)J =
1

2 ∫
t

t0

�2dt

Table 1   Main zonal and 
tesseral harmonics of Earth’s 
gravitational potential

Zonal harmonics Tesseral harmonics

J
2
= 1082.6300 × 10−6 C

22
= 1.5747419 × 10−6 S

22
= −9.0237594 × 10−7

J
3
= −2.5321531 × 10−6 C

31
= 2.9146736 × 10−6 S

31
= 2.7095717 × 10−7

J
4
= −1.6109876 × 10−6 C

32
= 3.0968373 × 10−7 S

32
= −2.1212017 × 10−7

C
33

= 1.0007879 × 10−7 S
33

= 1.9734562 × 10−7
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at the initial time t0 = 0 to the final state (rf , vf , Jf ) at the 
specified final time tf, such that the final consumption vari-
able Jf is a minimum. Taking into account that Earth’s gravi-
tational field is described by the main three zonal harmonics 
J2, J3 and J4, the state equations are

where U = U2 + U3 + U4 denotes the disturbing force func-
tion associated to Earth’s gravitational potential. From 
Eq. (1),

Note that in the text, the disturbing force function is used 
in the place of perturbing potential; accordingly, the sign 
minus is used in Eq. (6).

It is assumed that the control vector represented by the 
thrust acceleration � is unconstrained; that is, the thrust 
direction is free and the thrust magnitude is unbounded. For 
simple transfers (with no rendezvous), it is also assumed 
that the position of the space vehicle on the final orbit is 
unspecified.

Following the Pontryagin Maximum Principle [25], the 
optimal thrust acceleration �∗ must be selected from the 
admissible controls in such a way that the Hamiltonian func-
tion H reaches its maximum. The optimal thrust acceleration 
�
∗ and the maximum Hamiltonian function are then given by

and,

where

denotes the undisturbed Hamiltonian function, that describes 
the motion of the space vehicle in the two-body dynamics; 
pr and pv are the adjoint variables to r and v , respectively; 
dot denotes the dot product, and

dr

dt
= v

(5)
dv

dt
= −

�

r3
r + ∇U + �

dJ

dt
=

1

2
�2

(6)Ul = −
�

r
Jl

(ae
r

)l

Pl(sin�), l = 2, 3, 4

(7)�
∗
= pv

(8)H∗
= H0 + H∗

�
+ H∗

U

(9)H0 = pr ⋅ v − pv ⋅
�

r3
r

(10)H∗

�
+ H∗

U
=

1

2
p2
v
+ pv ⋅ ∇U

denotes the disturbing function related to the optimal thrust 
acceleration and the perturbations due to the zonal harmon-
ics of the geopotential. It will be assumed that the Hamilto-
nians H∗

�
 and H∗

U
 are of the same order in a small parameter 

closely related to the magnitude of the optimal thrust accel-
eration, as well as related to the second zonal harmonic J2. 
Note that the terms related to the zonal harmonics J3 and J4 
are taken as the second-order terms in the classical theories 
about motion of artificial satellites. In the present work, the 
mean parts of the disturbing force function U related to J3 
and J4 will be computed together with the mean part related 
to J2. These mean parts will be obtained by applying the 
classic concept of mean Hamiltonian, as it will be described 
in Sect. 4.

The general solution of the system of differential equa-
tions governed by the undisturbed Hamiltonian plays 
an important role in the numerical-analytical procedure 
described in this work. This solution defines a canonical 
transformation between the Cartesian and the orbital ele-
ments, including their respective adjoint variables, as dis-
cussed in the next section.

3 � Transformation from Cartesian elements 
to a set of orbital elements

To perform the transformation from Cartesian elements to a 
set of classical orbital elements, consider the system of dif-
ferential equations governed by the undisturbed Hamiltonian 
function H0 [24],

where er is the unit vector pointing radially outward of the 
moving frame of reference. This set of differential equations 
is solved in two steps: firstly, consider the state equations, 
whose general solution is well-known from the classical 
two-body problem [26, 27],

where f is the true anomaly, and es is the unit vector in 
the plane of the osculating orbit which extends along 

dr

dt
= v

dv

dt
= −

�

r3
r

(11)
dpr

dt
=

�

r3

(
pv − 3

(
pv ⋅ er

)
er
) dpv

dt
= −pr

(12)r =
a
(
1 − e2

)

1 + e cos f
er

(13)v =

√
�

a
(
1 − e2

)
[
(e sin f ) er + (1 + e cos f )es

]
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circumferential direction of the moving frame of reference. 
The unit vectors, er , es and ew = er × es , of the moving frame 
of reference, are written in the fixed frame of reference as 
[26, 27]

where i, j and k are the unit vectors of the fixed frame of 
reference, which extend along the x, y and z axes.

According to [28], a Lagrange point transformation 
between (r, v) and the set of classical orbital elements, 
(a, e, I,Ω,�, f ) is defined by Eqs. (12–16). In the second step 
of solving Eqs. (11), the general solution of the differential 
equations for the adjoint variables, pr and pv , is determined. 
This solution involves the inverse of the Jacobian matrix of 
this point transformation, which can be derived by comput-
ing the variations of the orbital elements induced by the 
variations in the Cartesian elements, in a similar way as 
described in [24]. Thus,

(14)er =(cosΩ cos (� + f ) − sinΩ sin (� + f ) cos I) i

+ (sinΩ cos (� + f ) + cosΩ sin (� + f ) cos I) j + sin (� + f ) sin I k

(15)es = − (cosΩ sin (� + f ) + sinΩ cos (� + f ) cos I) i

+ (− sinΩ sin (� + f ) + cosΩ cos (� + f ) cos I) j + cos (� + f ) sin I k

(16)ew = sinΩ sin I i − cosΩ sin I j + cos I k

(17)

pr =
a

r2

�
2apa +

�
(1 − e2) cosE

�
pe +

�
r

a

�
sin f

e

�
p� −

�
1 − e3 cosE

�
√
1 − e2

pM

��
er +

�
sin f

a
pe −

(e + cos f )

ae(1 − e2)
p�

+

√
1 − e2 cos f

ae
pM

�
es +

1

a
√
1 − e2

��
a

r

�
sinE

�
pI cos� +

� p
Ω

sin I
− p� cot I

�
sin�

�

+

√
1 − e2

�
a

r

�
cosE

�
pI sin� −

� p
Ω

sin I
− p� cot I

�
cos�

��
ew

(18)

pv =
1

na
√
1 − e2

��
2ae sin f pa +

��
1 − e2

�
sin f

�
pe −

�
1 − e2

�
cos f

e
p� +

�
1 − e2

�3∕2

e

�
cos f −

2e

1 + e cos f

�
pM

�
er

+

�
2a

�
1 − e2

��a
r

�
pa +

�
1 − e2

�
(cos f + cosE)pe +

�
1 − e2

�

e
sin f

�
1 +

1

1 + e cos f

��
p� −

√
1 − e2pM

��
es

+

��
r

a

�
cos (� + f )pI +

�
r

a

�
sin (� + f )

� p
Ω

sin I
− p� cot I

��
ew

Equations  (12–18) define a Mathieu transformation 
between the set of Cartesian elements and the set of orbital 
elements,(

r, v, p
r
, p

v

)MATHIEU

⟶

(
a, e, I,Ω,�,M, pa, pe, pI , pΩ, p�, pM

)
.

The general solution, defined by Eqs. (12–18), becomes 
singular for circular orbits and/or equatorial orbits. In order 
to eliminate such singularities, a set of non-singular orbital 
elements must be introduced. The study of such cases is not 
considered in this text.

The Hamiltonian function is invariant with respect to this 
canonical transformation. After some calculation, one finds

(19)H0 = npM
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The terms of the disturbing force function associated with 
the Earth´s gravitational potential related to the main zonal 
harmonics J2, J3 and J4 are, respectively, expressed in clas-
sical orbital elements as follows [29, 30]:

(20)

H∗

�
=

1

2n2a2
�
1 − e2

�
�
1

2
(1 − cos (2f ))

�
2aepa +

�
1 − e2

�
pe
�2

+ 2
�
1 − e2

�
sin (2f )

�
−apap� −

�
1 − e2

�

2e
pep�

�

+ 4
�
1 − e2

�3∕2
sin f

�
−2e

1 + e cos f
+ cos f

��
apapM +

�
1 − e2

�

2e
pepM

�

+

�
1 − e2

�2

2e2
(1 + cos (2f ))p2

�
−

2
�
1 − e2

�5∕2

e2

�
−2e

1 + e cos f
+ cos f

�
cos f p�pM

+

�
1 − e2

�3

e2

�
−2e

1 + e cos f
+ cos f

�2

p2
M
+ 4a2

�
1 − e2

�2�a
r

�2

p2
a
+ 4a

�
1 − e2

�2�a
r

�
(cosE + cos f )pape

+

�
1 − e2

�2
(cosE + cos f )2p2

e
+

4a
�
1 − e2

�2

e

�
a

r

�
sin f

�
1 +

1

1 + e cos f

��
pap� −

√
1 − e2papM

�

+

2
�
1 − e2

�2

e
(cosE + cos f )

�
1 +

1

1 + e cos f

�
sin f

�
pep� −

√
1 − e2pepM

�

+

��
1 − e2

�

e

�
1 +

1

1 + e cos f

�
sin f

�
p� −

√
1 − e2pM

��2

+
1

2

�
r

a

�2
�
p2
I
+

� p
Ω

sin I
− p� cot I

�2
�
+

1

2

�
r

a

�2

cos (2(� + f ))

�
p2
I
−

� p
Ω

sin I
− p� cot I

�2
�
+

�
r

a

�2

sin (2(� + f ))pI

� p
Ω

sin I
− p� cot I

��

(21)
H∗

U
=

2

na

�U

�M
pa +

√
1 − e2

na2e

�
−
�U

��
+

√
1 − e2

�U

�M

�
pe +

1

na2
√
1 − e2 sin I

�
−
�U

�Ω
+ cos I

�U

��

�
pI

+
1

na2
√
1 − e2 sin I

�U

�I
p
Ω
+

√
1 − e2

na2e

�
�U

�e
−

e cot I

(1 − e2)

�U

�I

�
p�+

1

na

�
−2

�U

�a
−

(1 − e2)

ae

�U

�e

�
pM

�

(22)U2 =
�

a
J2

(ae
a

)2
[(

1

2
−

3

4
sin

2 I
)(

a

r

)3

+
3

4
sin

2 I
(
a

r

)3

cos (2(� + f ))

]

(23)U3 = −
�

a
J3

(ae
a

)3

sin I

{(
15

8
sin

2 I −
3

2

)(
a

r

)4

sin (� + f ) −
5

8
sin

2 I
(
a

r

)4

sin (3(� + f ))

}

(24)
U4 = −

�

a
J4

(ae
a

)4
{(

3

8
−

15

8
sin

2 I +
105

64
sin

4 I
)(

a

r

)5

+

(
15

8
sin

2 I −
35

16
sin

4 I
)(

a

r

)5

cos (2(� + f )) +
35

64
sin

4 I
(
a

r

)5

cos (4(� + f ))

}

4 � A numerical‑analytical procedure

In this section, a numerical-analytical procedure is proposed 
to solve the two-point boundary value problem of going 
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from an initial orbit O0 , at time t0 = 0 , to a final orbit Of  , at 
time tf = T  . It is assumed that the transfer duration is pre-
scribed; that is, T is fixed.

Consider the two-point boundary value problem defined 
by the canonical system of differential equations governed 
by the maximum Hamiltonian H∗,

where x denotes the state vector defined by the classical 
orbital elements, that is, x = (a, e, I,Ω,�,M) , and p denotes 
the adjoint vector, p =

(
pa, pe, pI , pΩ, p�, pM

)
 . �H

∗

�x
 and �H

∗

�p
 are 

6 × 1 matrices of partial derivatives of the maximum Ham-
iltonian with respect to the state vector and with respect to 
the adjoint vector, respectively. The boundary conditions 
correspond to the orbital elements of the initial orbit O0 , at 
time t0 = 0 , and to the orbital elements of the final orbit Of  , 
at the prescribed final time tf = T  . For simple transfers 
maneuvers (no rendezvous), the mean anomaly is unspeci-
fied at the final time.

The explicit form of the canonical system defined by 
Eq. (25) is too large, mainly due to the short periodic terms 
in the maximum Hamiltonian. The partial derivatives of the 
maximum Hamiltonian function with respect to the eccentricity 
involve explicit terms in eccentricity and implicit terms related 
to the eccentric anomaly and the true anomaly. Moreover, the 
effects of the periodic terms can become negligible for trans-
fers with very large duration. The main effects on the trajec-
tory caused by the optimal thrust acceleration and by the zonal 
harmonics can be computed considering only the secular part 
of the maximum Hamiltonian, which is obtained by apply-
ing the classic concept of mean Hamiltonian, as described by 
Marec and Vinh [11]. All secular terms associated with the 
main zonal harmonics (J2, J3 and J4) and associated with the 
optimal thrust acceleration are computed together. Usually, in 
the classical theories about motion of artificial satellites, the 
terms concerning the zonal harmonics J3 and J4 are considered 
as terms of the second order. In turn, the effects of the short 
periodic terms, associated with the second zonal harmonic J2 
and with the optimal thrust acceleration, can be recovered by 
an infinitesimal canonical transformation built by means Hori 
method [20]. These terms can become relevant for transfers 

(25)
dx

dt
=

�H∗

�p

dp

dt
= −

�H∗

�x

with moderate duration. So, a numerical algorithm is proposed 
to solve the two-point boundary value problem of going from 
the initial orbit to the final orbit. This algorithm has two distinct 
stages: in the first stage, the two-point boundary value problem 
defined by the canonical system governed by the mean maxi-
mum Hamiltonian is solved by means of a neighboring extre-
mals algorithm [31, 32]. The mean maximum Hamiltonian is 
computed as previously described and includes terms related to 
the optimal thrust acceleration, as well as the terms related to 
the zonal harmonics J2, J3 and J4. The new mean canonical sys-
tem describes the secular behavior of the optimal trajectories. 
After solving this “mean” two-point boundary value problem, 
the short periodic terms of the first order can be included in the 
solution by computing the Poisson brackets of the generating 
function with respect to the state variables (orbital elements). 
However, when periodic terms are included in the solution of 
the “mean” two-point boundary value problem obtained in the 
first stage, small deviations from the prescribed final condi-
tions arise. Therefore, the initial values of the adjoint variables, 
computed in the first stage of the algorithm, must be adjusted. 
Then, in the second stage of the proposed algorithm, a classic 
Newton–Raphson method [33] is applied to adjust the initial 
values of the adjoint variables in order to satisfy the final con-
straints within a prescribed accuracy.

The proposed algorithm described in the preceding par-
agraph is an extension of the algorithm presented by the 
authors in a work about low-thrust limited-power transfers 
between coplanar orbits with small eccentricities in an 
inverse-square force field [16]. In [16], the Newton–Raph-
son method is applied in the both stages of the algorithm.

4.1 � The mean two‑point boundary value problem

As described in the previous section, the first stage of the 
proposed algorithm involves the solution of the two-point 
boundary value problem of going from the initial orbit to 
the final orbit, described by the mean part of the maximum 
Hamiltonian, which is derived by applying the classic con-
cept of mean Hamiltonian.

The mean maximum Hamiltonian is computed as follows 
[11]

⟨H∗⟩ = 1

2�
∫ 2�

0
H∗dM.

Computing the mean values in H∗

�
 , it follows that

(26)

�
H∗

�

�
=

a

2�

�
4a2p2

a
+

5

2

�
1 − e2

�
p2
e
+

1

2

p2
I�

1 − e2
�
��

1 +
3

2
e2
�
+

5

2
e2 cos (2�)

�

+
5

2
e2 sin (2�)

pI�
1 − e2

�
� p

Ω

sin I
− p� cot I

�
−

√
1 − e2

e2

�
5 + 2e2

�
p�pM +

1

2e2

�
5 + 11e2 + 4e4

�
p2
M

+

�
5 − 4e2

�

2e2
p2
�
+

1

2
�
1 − e2

�
� p

Ω

sin I
− p� cot I

�2��
1 +

3

2
e2
�
−

5

2
e2 cos (2�)

��
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Similarly, for Un , n = 2, 3, 4,

As mentioned before, the terms related to the zonal har-
monics J2, J3 and J4 are computed all together, regardless 
the difference between the orders of these terms. Thus, the 
mean maximum Hamiltonian for each one of the terms of 
the disturbing function associated with the zonal harmonics 
J2, J3 and J4, is expressed, respectively, as

The mean maximum Hamiltonian ⟨H∗⟩ is then computed 
from Eqs. (26), (30), (31) and (32),

Since the canonical system governed by the mean maxi-
mum Hamiltonian does not depend on the mean anomaly, it 
has the first integral

(27)⟨U2⟩ =
�

a
J2

�ae
a

�2�
1 − e2

�− 3

2

�
1

2
−

3

4
sin

2 I
�

(28)

⟨U3⟩ = −
3

8

�

a
J3

�ae
a

�3

e
�
1 − e2

�− 5

2

�
1 − 5 cos2 I

�
sin I sin�

(29)⟨U4⟩ = −
�

a
J4

�ae
a

�4�
1 − e2

�− 7

2

��
1 +

3

2
e2
��

3

8
−

15

8
sin

2 I +
105

64
sin

4 I
�
+

3

4
e2
�
15

8
sin

2 I −
35

16
sin

4 I
�
cos (2�)

�

(30)
�
H∗

J2

�
= −

3

4
nJ2

�ae
a

�2�
1 − e2

�−2�
2 cos I p

Ω
+

�
1 − 5 cos2 I

�
p� +

√
1 − e2

�
1 − 3 cos2 I

�
pM

�

(31)

�
H∗

J3

�
=

3

8
nJ3

�ae
a

�3�
1 − e2

�−3��
1 − 5 cos2 I

�
sin I cos�

��
1 − e2

�
pe − e cot I pI

�

+ e
�
11 − 15 cos2 I

�
cot I sin�

�
−p

Ω
+ cos I p�

�

+
1

e

�
1 − 5 cos2 I

�
sin I sin�

��
1 − 12e2

�√
1 − e2pM −

�
1 + 4e2

�
p�

��

(32)

�
H∗

J4

�
=

15

8
nJ4

�ae
a

�4�
1 − e2

�−4��
2 + 3e2

��
−1 +

7

4
sin

2 I
�
cos I

�
−p

Ω
+ cos I p�

�

−

�
1 − 5 sin

2 I +
35

8
sin

4 I
��

3

2
e2
√
1 − e2pM +

�
2 +

3

2
e2
�
p�

��

−
3

2
nJ4

�ae
a

�4�
1 − e2

�−4�
e sin (2�)

�
15

8
sin

2 I −
35

16
sin

4 I
���

1 − e2
�
pe − e cot I pI

�

+
5

8
e2
�
3 − 7 sin

2 I
�
cos I cos (2�)

�
p
Ω
− cos I p�

�

+

�
15

8
sin

2 I −
35

16
sin

4 I
�
cos (2�)

�
−

�
1 −

5

2
e2
�√

1 − e2pM +

�
1 +

5

2
e2
�
p�

��

(33)⟨H∗⟩ = npM +

�
H∗

�

�
+

�
H∗

J2

�
+

�
H∗

J3

�
+

�
H∗

J4

�

pM = pM0

For simple transfers, the final value of the mean anomaly 
is free. So, by applying the transversality conditions, it fol-
lows that

The number of final constraints in the “mean” two-point 
boundary value problem is reduced by one. Moreover, the 
system of differential equations is also reduced, and only 

the equations for the five orbital elements—a, e, I, Ω and 
ω—and for their respective adjoint variables—pa , pe,pI,pΩ
,p�—must be considered. The boundary conditions, which 
describe the initial orbit and the final orbit, are defined by 
specified values of the orbital elements at the initial time, 
t0 = 0 , and at the final time, tf = T .

The mean two-point boundary value problem, described 
in the previous paragraph, is solved by means of neighbor-
ing extremals algorithm [31, 32] in the first stage of the 
proposed algorithm. The neighboring extremals algorithm 
involves the numerical integration of state equations and 
adjoint equations, together with their linearized equations. 
So, the reduction in the number of canonical variables sim-
plifies the implementation of the algorithm. If the neighbor-
ing extremals algorithm is applied to the original two-point 
boundary values problem described by the maximum Ham-
iltonian H∗ , a system of 156 first-order differential equations 

(34)pM = 0
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must be solved. In turn, the mean two-point boundary value 
problem involves the solution of a system of 110 first-order 
differential equations. Moreover, linearized equations 
involve the partial derivatives with respect to the eccentricity 
that are easier to calculate for the mean two-point boundary 
value problem for the same reason previously mentioned.

4.2 � Correction due to periodic terms

As mentioned, the effects of the short periodic terms, asso-
ciated with the second zonal harmonic J2 and the optimal 

thrust acceleration, can be recovered by an infinitesimal 
canonical transformation built by Hori method [20],(

a, e, I,Ω,�,M, pa, pe, pI , pΩ, p�, pM
)

→

(
a�, e�, I�,Ω�

,��
,M�

, p�
a
, p�

e
, p�

I
, p�

Ω
, p�

�
, p�

M

)
..

The new variables are designated by the symbol (').
According to the algorithm of Hori method, the generat-

ing function is expressed as

with

and,

(35)S1 = SJ2 + S�

(36)

SJ2 = J2

(ae
a

)2
{{(

1 −
3

2
sin

2 I
)[(

a

r

)3

− (1 − e2)−3∕2
]
+

3

2
sin

2 I
(
a

r

)3

cos (2(� + f ))

}
apa

+

{
3

4

sin
2 I

e(1 − e2)

[
− cos (2(� + f )) − e

(
cos (2� + f ) +

1

3
cos (2� + 3f )

)]

+
(1 − e2)

e

[(
1

2
−

3

4
sin

2 I
)[(

a

r

)3

− (1 − e2)−3∕2
]
+

3

4
sin

2 I
(
a

r

)3

cos (2(� + f ))

]}
pe

+
3

8

sin 2I

(1 − e2)2

[
cos (2(� + f )) + e

(
cos (2� + f ) +

1

3
cos (2� + 3f )

)]
pI

+

{
3

2

cos I

(1 − e2)2

[
−(f −M + e sin f ) +

1

2
sin (2(� + f )) +

e

2

(
sin (2� + f ) +

1

3
sin (2� + 3f )

)]}
p
Ω

+

{
3

4

(5 cos2 I − 1)

(1 − e2)2
(f −M + e sin f ) +

1

4

(3 cos2 I − 1)

e(1 − e2)

[(
a

r

)2

(1 − e2) +
(
a

r

)
+ 1

]
sin f

+
3

8

sin
2 I

e(1 − e2)

[(
−

(
a

r

)2

(1 − e2) −

(
a

r

)
+ 1

)
sin (2� + f )+

((
a

r

)2

(1 − e2) +
(
a

r

)
+

1

3

)
sin (2� + 3f )

]

+
3

8

(3 − 5 cos2 I)

(1 − e2)2

[
sin (2(� + f )) + e

(
sin (2� + f ) +

1

3
sin (2� + 3f )

)]}
p�

}

(37)

S� =
1

2

�
a5

�3

�
8e sinE a2p2

a
+ 8a(1 − e2) sinE pape −

8a
√
1 − e2

e
cosE pap�

+ (1 − e2)
�
−
5

4
e sinE +

3

4
sin (2E) −

1

12
e sin (3E)

�
p2
e
+

√
1 − e2

e

�
5

2
e cosE

−
1

2
(3 − e2) cos (2E) +

1

6
e cos (3E)

�
pep� +

1

(1 − e2)

��
−e +

3

8
e3
�
sinE +

3

8
e2 sin (2E)

−
1

24
e3 sin (3E)

��
p2
I
+

� p
Ω

sin I
− p� cot I

�2
�
+

1

(1 − e2)

�
p2
I
cos (2�) + 2pI

� p
Ω

sin I

−p� cot I
�
sin (2�) −

� p
Ω

sin I
− p� cot I

�2

cos (2�)

��
5

8

�
−2e + e3

�
sinE +

1

4

�
1 +

1

2
e2
�
sin (2E)

+
−2e + e3

24
sin (3E)

�
+

1√
1 − e2

�
5

4
e cosE −

1 + e2

4
cos (2E) +

1

12
e cos (3E)

��
−p2

I
sin (2�)

+2pI

� p
Ω

sin I
− p� cot I

�
cos (2�) +

� p
Ω

sin I
− p� cot I

�2

sin (2�)

�

+

p2
�

e2

��
5

4
e − e3

�
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�
−
3

4
+

1

2
e2
�
sin (2E) +

1

12
e sin (3E)

��
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E denotes the eccentric anomaly. The symbol ('), which 
denotes the new set of canonical variables, is omitted in 
Eqs. (36) and (37). In view of Eq. (34), the generating func-
tion does not contain terms factored by pM . Note that the 

generating function is obtained in closed form, without any 
expansion in powers of eccentricity.

The periodic terms are included in the solution by com-
puting the Poisson brackets of the generating function with 
respect the state variables (orbital elements). From Eqs. 
(35–37), it follows that

(38)

a = a� + J2a
�

�ae
a�

�2

��
1 −

3

2
sin

2 I�
���
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�3

− (1 − e�2)−3∕2
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�
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+
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Table 2   Orbital elements for the 
first class of transfers

Orbital elements Maneuver 1 Maneuver 2 Maneuver 3

Initial orbit Final orbit Initial orbit Final orbit Initial orbit Final orbit

a (km) 7200.0 8500.0 7200.0 14,500.0 7200.0 7500.0
e 0.05 0.125 0.05 0.25 0.05 0.05
I (°) 20.0 30.0 20.0 30.0 90.0 95.0
Ω (°) 60.0 15.0 60.0 15.0 60.0 45.0
ω (°) 30.0 15.0 30.0 150.0 30.0 100.0
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�

+

�
p�
Ω

sin I�
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𝜔
cot I�

�
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�
2𝜔�

��
+

��
5

4
e� − e�3

�
sinE�

+

�
−
3
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+

1

2
e�2

�
sin

�
2E�

�
+

1

12
e� sin

�
3E�

��p�
𝜔

e�2

�

Table 3   Orbital elements for the 
second class of transfers

Orbital elements Maneuver 4 Maneuver 5 Maneuver 6

Initial orbit Final orbit Initial orbit Final orbit Initial orbit Final orbit

a (km) 7200.0 8500.0 7200.0 14,500.0 7200.0 7500.0
e 0.05 0.125 0.05 0.25 0.05 0.05
I (°) 20.0 30.0 20.0 30.0 90.0 95.0
Ω (°) 60.0 free 60.0 free 60.0 free
ω (°) 30.0 free 30.0 free 30.0 free
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The new set of canonical variables x =

(
a�, e�, I�,Ω�,��

)
 

and p =

(
pa� , pe� , pI� , pΩ� , p��

)
 is calculated by numerical 

integration of the system of differential equations governed 
by the mean maximum Hamiltonian ⟨H∗⟩ given by Eq. (33). 
Variables E′, f ′ and a

′

r′
 are calculated by using the well-known 

expressions of the two-body dynamics; that is,

with M′ obtained by numerical integration of the following 
differential equation

Equations (38–42) can be expressed in the following 
compact form

(43)tan

(
f �

2

)
=

√
1 + e�

1 − e�
tan

(
E�

2

)

(44)M�
= E�

− e� sinE�

(45)a�

r�
=

1 + e� cos f �

1 − e�2

(46)

dM�

dt
=n� −

a�

2�

√
1 − e�2

e�2

�
5 + 2e�2

�
p�
�
−

3

4
n�J2

�ae
a�

�2�
1 − e�2

�− 3

2

�
1 − 3 cos2 I�

�

+
3

8
n�J3

�ae
a�

�3�
1 − e�2

�− 5

2

�
1 − 12e�2

�

e�

�
1 − 5 cos2 I�

�
sin I� sin��

−
3

2
n�J4

�ae
a�

�4�
1 − e�2

�− 7

2

�
15

8
e�2

�
1 − 5 sin

2 I� +
35

8
sin

4 I�
�

−

�
1 −

5

2
e�2

��
15

8
sin

2 I� −
35

16
sin

4 I�
�
cos

�
2��

��

a = a� + �a e = e� + �e I = I� + �I

where �a,…,� � represent, respectively, the periodic terms 
in the right-hand side of Eqs. (38–42).

Applying the initial conditions, one finds that the time 
evolution of the state variables (orbital elements) can be 
written in a compact form as

where �a(t) , �e(t) , �I(t) , �Ω(t) and ��(t) are calcu-
lated at time t, by means of Eqs. (38–42) with the new 

(47)Ω = Ω
�
+ �Ω � = ��

+ � �

a(t) = a�(t) + �a(t) − �a
(
t0
)

e(t) = e�(t) + �e(t) − �e
(
t0
)

(48)I(t) = I�(t) + �I(t) − �I
(
t0
)

Ω(t) = Ω
�
(t) + �Ω(t) − �Ω

(
t0
)

�(t) = ��
(t) + ��(t) − ��

(
t0
)

Table 4   Final orbital elements 
computed in the first stage—
central field model

Orbital elements Maneuvers

1 2 3 4 5 6

a (km) 8510.452 14,547.030 7494.311 8507.908 14,677.592 7500.278
e 0.1243 0.2558 0.0503 0.1258 0.2604 0.0499
I (°) 30.0161 29.7310 95.0253 30.0247 29.7913 94.9973
Ω (°) 14.9425 14.9396 44.9577 60.3983 60.9788 60.0266
ω (°) 12.5411 145.7102 99.2494 17.5733 14.0884 27.7715

Table 5   Final orbital elements 
computed in the first stage—
harmonics model

Orbital elements Maneuvers

1 2 3 4 5 6

a (km) 8515.457 14,450.681 7505.437 8508.703 14,684.440 7497.589
e 0.1273 0.2509 0.0508 0.1267 0.2618 0.0501
I (°) 29.9191 30.3130 95.0398 30.0328 29.8309 95.0052
Ω (°) 14.9755 15.7616 45.0479 51.6546 56.4913 60.5363
ω (°) 14.1192 143.0977 99.1885 28.7812 18.6058 22.0921
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Fig. 1   Consumption variable J as function of transfer duration
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set of canonical variables, x =

(
a�, e�, I�,Ω�,��

)
 and 

p =

(
pa� , pe� , pI� , pΩ� , p��

)
 , computed by numerical integra-

tion, as described in Sect. 4.1. The initial conditions for 
numerical integration are defined by the values of orbital 
elements, which describe the initial orbit, and by the values 
of the adjoint variables computed by solving the mean two-
point boundary value problem. On the other hand, �a

(
t0
)
 , 

�e
(
t0
)
 , �I

(
t0
)
 , �Ω

(
t0
)
 and ��

(
t0
)
 are calculated as functions 

of the initial conditions at time t = t0 . Consequently, the 
mean solution and the complete solution with periodic terms 
satisfy the same initial conditions. But, it should be noted 
that when the periodic terms are included in the complete 
solution, small deviations arise in the final conditions at time 
tf = T ; in other words, the complete solution does not satisfy 
the conditions describing the final orbit. So, the initial values 
of the adjoint variables must be adjusted in order to satisfy 
the final conditions. This fine adjustment is performed by a 
classic Newton–Raphson method in the second stage of the 
proposed algorithm.

5 � Results

The numerical-analytical procedure described in the previ-
ous sections is applied in the analysis of some low-thrust 
transfers. Preliminary results using the proposed procedure 
were firstly presented in [34]. Two different classes of trans-
fers are considered: in the first class, variations are imposed 
on the five orbital elements: semi-major axis, eccentricity, 
inclination of the orbital plane, longitude of the ascend-
ing node and argument of pericenter; in the second class, 
variations are imposed on only three orbital elements: semi-
major axis, eccentricity and inclination of the orbital plane, 
without terminal constraints on longitude of the ascending 
node and on argument of pericenter (that is, these orbital ele-
ments vary freely). For the first class of transfers, the sets of 
orbital elements describing the initial orbit O0 and the final 
orbit Of  are defined in Table 2, in which the semi-major axis 
is given in kilometers and the angular orbital elements are 
given in degrees. For the second class of transfers, the same 
set of orbital elements defined in Table 2 is assumed, except 
for the longitude of the ascending node and the argument 
of pericenter of the final orbits that are free. The sets of 

Table 6   Consumption variable J 
(× 10−5 km2/s3) versus transfer 
duration (days)

Transfer 
duration

Maneuver 1 Maneuver 2 Maneuver 3

Central field Harmonics Central field Harmonics Central field Harmonics

2 3.9489 2.9680 4.2035 3.8499 2.3763 2.4928
3 2.6211 1.6647 2.8205 2.4304 1.5747 1.7024
4 1.9716 1.0430 2.1111 1.7611 1.1849 1.3049
5 1.5797 0.6915 1.6826 1.3335 0.9465 1.0649
6 1.3145 0.4913 1.4087 1.0534 0.7901 0.9041
7 1.1276 0.3686 1.2014 0.8594 0.6760 0.7885
8 0.9851 0.2925 1.0570 0.7182 0.5921 0.7011
9 0.8771 0.2458 0.9353 0.6115 0.5263 0.6321
10 0.7894 0.2164 0.8463 0.5275 0.4736 0.5763
11 0.7174 0.1985 0.7661 0.4627 0.4305 0.5300

Table 7   Consumption variable J 
(× 10−5 km2/s3) versus transfer 
duration (days)

Transfer 
duration

Maneuver 4 Maneuver 5 Maneuver 6

Central field Harmonics Central field Harmonics Central field Harmonics

2 0.9995 1.0058 2.2009 2.2115 0.2428 0.2431
3 0.6677 0.6733 1.4612 1.4696 0.1624 0.1620
4 0.4977 0.5059 1.0942 1.1015 0.1215 0.1216
5 0.3990 0.4065 0.8749 0.8818 0.0972 0.0970
6 0.3322 0.3387 0.7292 0.7360 0.0810 0.0810
7 0.2851 0.2910 0.6252 0.6322 0.0694 0.0693
8 0.2497 0.2555 0.5473 0.5545 0.0607 0.0606
9 0.2215 0.2852 0.4865 0.4941 0.0539 0.0539
10 0.1995 0.2049 0.4378 0.4470 0.0486 0.0485
11 0.1812 0.1863 0.3979 0.4067 0.0441 0.0441
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Fig. 2   Time evolution of state variables—Maneuver 1
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Fig. 3   Time evolution of state variables—Maneuver 2
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Fig. 4   Time evolution of state variables—Maneuver 3
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Fig. 5   Time evolution of state variables—Maneuver 4
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Fig. 6   Time evolution of state variables—Maneuver 5
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Fig. 7   Time evolution of state variables—Maneuver 6
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orbital elements for the second class of transfers are defined 
in Table 3. The transfer duration varies from two days to 
eleven days for all maneuvers. In order to compute the peri-
odic terms it is assumed that the maneuvers start from the 
pericenter of the initial orbit; that is, the mean anomaly is 
equal to zero degree at the initial time.

It should be noted that the proposed numerical-analytical 
procedure can be applied in the analysis of the two classes 
of maneuvers described above with only a slight modifi-
cation in the second stage performed by Newton–Raphson 
method. For the first class of transfers, the final constraints 
are defined by the specified values of the five orbital ele-
ments; on the other hand, for the second class of transfers, 
the specified values of the longitude of the ascending node 
and of the argument of pericenter are replaced by the trans-
versality conditions of their respective adjoint variables, 
whose values are zero at the prescribed final time. On the 
other hand, the neighboring extremals algorithm is applied 
to both classes of transfers without any modification.

5.1 � Effects of periodic terms

Firstly, the effects of the inclusion of periodic terms in the 
solution of the two-point boundary value problem are dis-
cussed. Tables 4 and 5 show the final values of the orbital 
elements calculated through the solution defined by Eqs. 
(48), considering the initial values of the adjoint variables 
computed in the first stage of the proposed algorithm. 
Table 4 refers to solution calculated using the central field 
model, that is, only periodic terms associated to the opti-
mal control are considered. Table 5 refers to solution cal-
culated using the zonal harmonics model; in this case, the 
periodic terms associated to the second zonal harmonic 
J2 are also included, as well as the secular terms. In these 
tables, the semi-major axis is given in kilometers and the 
angular orbital elements are given in degrees. All maneuvers 
described in Tables 2 and 3, with duration of two days, are 
considered. Similar results are obtained for the others dura-
tions of transfers. Note that deviations from the prescribed 
final conditions arise when the periodic terms are included. 
These deviations are then corrected in the second stage of 
the algorithm. For maneuvers 4, 5 and 6, the final values of 
the longitude of the ascending node and the argument of 
pericenter are free. These values are presented by complete-
ness. From Tables 4 and 5, the main comments are:

1.	 Deviations with significant amplitudes from the pre-
scribed final values arise for all orbital elements, when 
periodic terms are included, considering the two dynam-
ical models and both classes of transfers.

2.	 The inclusion of periodic terms causes greater devia-
tions mainly on the semi-major axis and the argument 
of pericenter. The greatest deviations on the semi-major 

axis arise for maneuvers 2 and 5, in which the imposed 
changes on the semi-major axis are greater. This result 
is valid for all maneuvers discussed in the manuscript. 
Different results can arise for different terminal orbits.

3.	 The solution to the transfer problem based on the zonal 
harmonics model provides greater deviations on the 
semi-major axis when compared to the solution based 
on the central field model. This result is valid for the two 
classes of maneuvers.

4.	 Deviations on the eccentricity can become significant 
according to the maneuver. For maneuver 5, the devia-
tions are greater than 0.01, for both dynamical models.

5.2 � Analysis of the effects of the main zonal 
harmonics

Figure 1 depicts the consumption variable J as a function 
of the transfer duration, considering the different gravita-
tional models: the black line represents the consumption 
variable J for optimal low-thrust trajectory in central grav-
ity field (classical model commonly found in the literature), 
and the blue line represents the consumption variable J for 
optimal low-thrust trajectory in a gravity field that includes 
the effects of the zonal harmonics, J2, J3 and J4. From the 
results presented in Tables 6 and 7 and in Fig. 1, the main 
comments are:

	 1.	 For the first class of transfers—transfers with varia-
tions imposed on the five orbital elements—there is a 
considerable difference on the consumption calculated 
through the proposed dynamical models. For maneu-
vers 1 and 2, the fuel consumption calculated by the 
central gravity field model is greater than the fuel con-
sumption calculated by the gravity field model that 
includes the main zonal harmonics. For maneuver 3, 
an opposite result occurs: the fuel consumption calcu-
lated by the gravity field model that includes the main 
zonal harmonics is greater than the fuel consumption 
calculated by the central field model.

	 2.	 For maneuvers 1 and 2, the disturbing effects due to 
the zonal harmonics on the longitude of the ascending 
node and on the argument of pericenter are favorable 
to the maneuvers. Part of the changes imposed on the 
longitude of the ascending node and on the argument 
of pericenter occurs naturally due to the gravitational 
perturbations, that cause the regression of the line of 
nodes and the advance of the line of apsis; mainly, for 
maneuver 2. For this last maneuver, a difference of 
120° is imposed on the argument of pericenter; part of 
this difference corresponds to the advance of the line 
of apsis and the other part is performed by the propul-
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sion system. For maneuver 3, an opposite result occurs: 
the disturbing effects due the zonal harmonics are not 
favorable to the maneuver and the propulsion system 
acts to counteract these disturbing effects.

	 3.	 For the second class of transfers—transfers with vari-
ations imposed on three orbital elements and without 
terminal constraints on the longitude of the ascending 
node and on the argument of pericenter—the fuel con-
sumption calculated through both dynamical models is 
almost the same one. The fuel consumption calculated 
by the gravity field model that includes the main zonal 
harmonics is slightly greater than the fuel computed 
by the central gravity field model. This very small dif-
ference is related to the perturbations due to the zonal 
harmonics on the semi-major axis, on the eccentricity 
and on the inclination of the orbital plane. In addition 
to the short periodic terms due to the second zonal 
harmonic J2, it should be noted that eccentricity and 
inclination of the orbital plane have secular changes 
and long periodic changes due the zonal harmonics J3 
and J4.

	 4.	 The difference between the fuel consumption cal-
culated for the maneuvers of the first class of trans-
fers—maneuvers 1, 2 and 3—and the fuel consumption 
calculated for the maneuvers of the second class of 
transfers—maneuvers 4, 5 and 6—is related to the per-
turbations caused by the zonal harmonics J2, J3 and J4. 
These perturbations affect mainly the longitude of the 
ascending node and the argument of pericenter (well-
known result of the literature on the motion of artificial 
satellites [30, 35, 36]).

	 5.	 For all maneuvers, regardless the class of transfers, the 
fuel consumption decreases with the duration of the 
transfer, as depicted in Fig. 1.

		    Figures 2, 3, 4, 5, 6 and 7 depict the time evolution 
of state variables—orbital elements and consumption 
variable J—considering the different gravitational 
models: the black line and the blue line have the same 
meaning described in the previous paragraphs. From 
the results presented in these figures, the main com-
ments are:

	 6.	 For the first class of transfers, the great difference 
between the results obtained by means of the two dif-
ferent gravitational models occurs mainly for the semi-
major axis and for the consumption variable J. Note 
that the largest differences occur for transfers with the 
smallest amplitude variations on the semi-major axis.

	 7.	 The amplitude of the short periodic terms on the time 
behavior of the orbital elements is more significant for 
the second gravitational model that includes the effects 
of the main zonal harmonics. Taking into account only 
the maneuvers analyzed in the text, the main contribu-

tions of the periodic terms arise mainly on the eccen-
tricity and on the argument of pericenter.

	 8.	 For the second class of transfers, the two gravitational 
models provide almost the same time behavior for 
the orbital elements with imposed variations—semi-
major axis, eccentricity and inclination of the orbital 
plane. On the other hand, the time behavior for the 
longitude of the ascending node and for the argument 
of pericenter is quite different. For the central grav-
ity field model, it should be noted that the longitude 
of the ascending node and the argument of pericenter 
vary due to the coupling with the variation imposed 
on the inclination of the orbital plane. These varia-
tions induced by this coupling are provided by terms 
factored by pIpΩ and by pIp� in the maximum Ham-
iltonian (Eq. (26)), and also by similar terms in the 
generating function (Eq. (37)), both related to the opti-
mal control. This coupling does not occur for orbital 
correction maneuvers [24]. For the second gravita-
tional model, the perturbative effects due the zonal 
harmonics magnify the variations on the longitude of 
the ascending node and on the argument of pericenter, 
as predicted by the classical theories on the motion of 
artificial satellites [30, 35, 36].

	 9.	 By comparing the time evolution of the orbital ele-
ments, it can be seen that the difference between the 
fuel consumption obtained for the two classes of trans-
fers is closely related to the gravitational model used 
in the computation of the optimal trajectory, as men-
tioned in Comment 4.

	10.	 The induced variations on the longitude of the ascend-
ing node and on the argument of pericenter, which are 
associated with the imposed variation on the inclina-
tion of the orbital plane, can be observed in Figs. 5 and 
6 that correspond to maneuvers 4 and 5, respectively, 
for both dynamical models. The results for the second 
gravitational model also include the changes related to 
the zonal harmonics: the regression of the line of nodes 
and the advance of the line of apsis. For the central 
gravity field model, only the optimal thrust accelera-
tion determines the time behavior of the longitude of 
ascending node and the argument of pericenter. Thus, 
the difference between the curves defined by each 
dynamical model in these figures represents the dis-
turbing effects due to the zonal harmonics.

	11.	 Different results are obtained for maneuver 6: the line 
of nodes advances, and the line of apsis regresses. The 
amplitude of the induced variations on the longitude 
of the ascending node and on the argument of peri-
center due to the imposed variation on the inclination 
of the orbital plane is small, when compared to the 
changes due to the effects of the main zonal harmon-
ics. It should be noted that the disturbing effects due to 
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the zonal harmonics in maneuvers 4, 5 and 6 are also 
closely related to the imposed values on the inclination 
of the orbital plane during the maneuver.

	12.	 According to the previous comments, the disturbing 
effects due to the zonal harmonics may or may not be 
favorable to the maneuver depending on the changes 
imposed on the longitude of the ascending node and on 
the argument of pericenter. This result reinforces the 
Comment 2.

	13.	 The time behavior of the consumption variable J is 
almost linear for all maneuvers, regardless the class of 
transfers and the gravitational model used to compute 
the optimal trajectory. This result is valid for all trans-
fers considered in this analysis. Thus, a value describ-
ing the mean value of the optimal thrust acceleration 
can be computed approximately from the final value of 
J and the final time. From de definition of the con-
sumption variable (Eq. (4)), this mean value of the 
optimal thrust acceleration is given by � =

√
2Jf

/
T  . 

By calculating �  for all maneuvers, it can be seen that 
the ratio between the mean magnitude of the thrust 
acceleration and the gravity acceleration on the ground 
varies within the range [0.0001, 0.0022] . This result is 
in agreement with the hypothesis described in the first 
paragraph of Sect.  2. Note that the upper limit is 
defined from maneuver 2 with transfer duration of two 
days, and the lower limit is defined from maneuver 6 
with transfer duration of eleven days.

6 � Final remarks

In this paper, a numerical-analytical procedure has been pro-
posed for computing optimal time-fixed low-thrust limited-
power transfers between arbitrary orbits, considering that 
the gravitational field includes the main zonal harmonics 
in the development of the Earth’s potential. This procedure 
involves a two-stage algorithm which combines a neigh-
boring extremals method and the classic Newton–Raphson 
method to solve the two-point boundary value problem of 
going from an initial orbit to a final orbit at the prescribed 
final time. The neighboring extremals method is applied to 
solve a “mean” two-point boundary value problem that is 
governed by a mean canonical system describing the secu-
lar behavior of the optimal trajectories. The classic New-
ton–Raphson method is applied to adjust the initial values 
of the adjoint variables when periodic terms are included 
in the solution. The short periodic terms are computed by 
Hori method.

The proposed algorithm was applied in the analysis of 
two different classes of transfers. The first class of transfers 
considers variations imposed on the five orbital elements—
semi-major axis, eccentricity, inclination of the orbital 
plane, longitude of the ascending node and argument of peri-
center—, and the second class considers variations imposed 
on three orbital elements—semi-major axis, eccentricity and 
inclination of the orbital plane—without terminal constraints 
on the longitude of the ascending node and on the argument 
of pericenter. Firstly, general results show that the disturbing 
effects due to the zonal harmonics may or may not be favora-
ble to the maneuvers, depending on the imposed changes on 
the longitude of the ascending node and on the argument of 
pericenter. Secondly, taking into account only the maneuvers 
analyzed in the paper, the main contributions of the periodic 
terms arise mainly on the eccentricity and on the argument 
of pericenter for both classes of transfers. Moreover, for the 
first class of transfers, the two gravitational models provide 
different time behavior for the five orbital elements, mainly 
for the semi-major axis. On the other hand, for the second 
class of transfers, the two models provide almost the same 
time behavior for orbital elements with imposed variations—
semi-major axis, eccentricity and inclination of the orbital 
plane.

Finally, it should be noted that the algorithm can be 
extended for transfers involving orbits with small inclina-
tions and/or eccentricities by introducing a set of non-sin-
gular orbital elements.
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