CARBONO Influence of methane concentration on the structure and morphology of CVD Single Crystal Diamond

J. Sierra Gómez¹*; J. Vieira¹, E. José Corat¹, V. J. Trava-Airoldi¹ ¹Nacional Institute for Space Research - <u>LABAS</u> <u>*javiersierra25@gmail.com</u>

Introduction

In high-demand areas such as microelectronics, broad-spectrum transmission optics and beta-batteries, Single Crystal Diamond (SCD) is the most promising, because it has a wider band compared to other optical materials. Thus, motivating scientists to study optically active defects, three-dimensional defects (such as stacking faults and dislocations) and inherent defects of the cultivation method via CVD, such as: unepitaxial crystals (UCs), hillocks with flat top (FHs) and pyramidal hillocks (PHs). In order to study these defects, new deposition parameters are evaluated via the MWPACVD deposition technique as a function of CH_4 concentration from 2 to 12%, via Raman Spectroscopy and Scanning Electron Microscopy, indicating the presence or absence of Ucs, FHs and PHs as well as movie stress.

Conclusion

The concentration of CH_4 influences the morphology and quality of the film, therefore, the results indicated an excellent purity and morphology for SCD cultivated with 10% CH_4 . A predominant central region of low stress, a FWHM in the range of 5.01 to 4.31 cm⁻¹, was achieved without compromising the growth rate.

Links para outras formas de contato

A window for deeper study at the crystalline and structural level with 3D imaging of monocrystalline diamond films and substrates was opened for a more complete evaluation of defects such as: stacking failuresstacking faults and dislocations Highly influential on the optical properties of diamond, as well as the optical centers caused by the incorporation of nitrogen into the film.

