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Abstract: Using data collected by the GNSS dual-frequency receivers network, de-trended TEC maps
were generated to identify and characterize the medium-scale traveling ionospheric disturbances
(MSTIDs) over the South American equatorial region (latitude: 0◦ to 15◦ S and longitude: 30◦ to
55◦ W) during solar cycle 24 (from January 2014 to December 2019). A total of 712 MSTIDs were
observed during quiet geomagnetic conditions. The Frequency of occurrence of MSTID is high during
the solar maximum and low in the minimum phase. This might be due to the solar cycle dependence
of gravity wave activity in the lower atmosphere and gravity wave propagation conditions in the
thermosphere. The predominant daytime MSTIDs, representing 80% of the total observations,
occurred in winter (June-August season in the southern hemisphere) with the secondary peak in
the equinox; while the evening time MSTIDs, representing 18% of the entire events, occurred in
summer (December to February season) and equinox (March to May and September to November),
and the remaining 2% of the MSTIDs were observed during nighttime. The seasonal variation of
the MSTID events was attributed to the source mechanisms generating them, the wind filtering and
dissipation effects, and the local time dependency. The horizontal wavelengths of the MSTIDs were
mostly concentrated between 500 and 800 km, with the mean value of 667 ± 131 km. The observed
periods ranged from 30 to 45 min with the mean value of 36 ± 7 min. The observed horizontal phase
speeds were distributed around 200 to 400 m/s, with the corresponding mean of 301 ± 75 m/s. The
MSTIDs in the winter solstice and equinoctial months preferentially propagated northeastward and
northwestward. Meanwhile, during the summer solstice, they propagated in all directions. The
anisotropy of the propagation direction might be due to several reasons: the wind and dissipative
filtering effects, ion drag effects, the primary source region, and the presence of the secondary or
tertiary gravity waves in the thermosphere. Atmospheric gravity waves from strong convective
sources might be the primary precursor for the observed equatorial MSTIDs. In all seasons, we
noted that the MSTIDs propagating southeastward were probably excited by the likely gravity waves
generated by the intertropical convergence zone (ITCZ).
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1. Introduction

The existence of disturbances in the ionosphere is very crucial to the electrodynamics
of the equatorial ionosphere. Among others, medium-scale traveling ionospheric dis-
turbances (MSTIDs) are known to be the plasma density fluctuations that propagate as
waves through the ionosphere at a wide range of velocities and frequencies [1–3]. These
wave-like perturbations of the ionospheric plasma have horizontal phase velocities of
hundreds of meters per second (m/s), periods of less than 1 h, and wavelengths of several
hundred to a few thousand kilometers [4–6]. They vary with latitude, longitude, local
time, season, and solar activities [3,7,8]. They were first postulated to be the ionospheric
manifestation of gravity waves from the neutral atmosphere by [9]. However, the advent
of two-dimension Global Navigation Satellite System (GNSS) receivers and all-sky imagers,
ionosondes, incoherent scatter radars, and HF Doppler systems and models, among others,
have revealed that MSTIDs are generated by different mechanisms between daytime and
nighttime [10–12], due to the variation in their propagation direction between daytime and
nighttime. Thus, in midlatitudes, the Perkins instabilities [13] are considered to be the
precursor of the nighttime MSTIDs. The interlink between the E region and F region, with
regard to MSTID propagation direction, has also been reported by [14].

MSTIDs constitute a specific type of space weather and geophysical phenomenon that
can be solar-driven or driven by other processes from auroral sources at the high latitude
thermosphere to the solar terminator and storms, tropospheric convection, hurricanes, and
tornadoes in the troposphere [11,15]. Independently of the MSTIDs sources, the effects
introduce irregularities in the ionospheric plasma that provoke and eventually affect the
radio wave propagations. The main concern of the scientific community is to be able to
have direct and timely information of MSTID events and hence, are able to mitigate the
effects in the affected operations. Meanwhile, due to the high occurrence rate of MSTIDs
on a daily basis, and the variety of their characteristics regarding the velocity, wavelength,
period, propagation direction, and amplitude, their identification and tracking are very
complicated and have not yet been fully achieved in operational service mode.

The long-term characteristics of MSTIDs in the South American equatorial region are
not well known. Meanwhile, there is a need to better understand their morphology and
climatology and ultimately predict their behavior more accurately in the future. Before such
improvements are achieved, more measurements are needed in all regions. However, there
are not enough useful F-region climatology studies on MSTID over the South American
equatorial region that could be the fundamental result as far as the subject matter is
concerned. Therefore, any operational requirement for MSTID information means that
their characteristics have to be known at various locations. Due to the variability of MSTIDs,
their occurrence, even on a statistical basis, are unable to be predicted. This variability
arises from the multiple sources of gravity waves in both the troposphere and thermosphere
and the variability of the medium (background winds and temperature) through which
they propagate.

The equatorial ionosphere possesses distinguishing features from the other latitudes
due to the low inclination of the geomagnetic field lines and the relatively larger fraction of
the incident solar ionizing radiation that characterizes the region. The region in question
can be characterized by the highest values of the peak-electron density with the most
pronounced amplitude and phase scintillation effects. The combined effects of the higher
solar flux entrance, and electric and magnetic fields of the earth result in a rising of the
plasma along the magnetic field lines. This leads to a phenomenon known as Equatorial
Ionization Anomaly (EIA), when the rising plasma loses its momentum and energy, and
the gravity and pressure gradient act upon it. AThe South American equatorial ionosphere
is among the regions where high spatial variations of the ionospheric plasma density can
be found. There is a particular interest in MSTIDs in this region because of their implied
role [10] in triggering plasma bubbles and associated strong Spread F irregularities, which,
in turn. can cause dropouts and scintillations of the GNSS-based systems [16]. Some works
have already reported that MSTIDs [17,18] are a possible candidate to generate equatorial
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plasma bubbles or irregularities, especially whenever the Rayleigh–Taylor instability is
active [19].

Nighttime MSTIDs have been extensively observed over the low and equatorial
latitudes of South America [20–26], mid-latitude [5,6,27,28] at the atomic oxygen red line
airglow emission (OI 630.0 nm) by all-sky-imagers, and equatorial region over Asia [29,30].
Ref. [31] used two-dimensional maps of TEC obtained from a dense GPS-receiver network
in Japan to study daytime MSTIDs for the first time. Ref. [11] also studied the local time and
seasonal variations of MSTIDs over southern California, while [7] analyzed the GPS-TEC
data to show seasonal and local time variations of MSTIDs and later studied the same
phenomena over Europe [6]. In China, [32] clarified MSTID statistically. So far, the only
study on the daytime MSTID characteristics in the South American equatorial region was
conducted by [33], using one-year measurement made at three positions by ionosonde over
northeast Brazil. Ref. [12] recently reported the influence of solar activities on the MSTIDs.
So far, no detailed statistical analysis has been done on the daytime MSTIDs in the South
American equatorial region.

Ref. [34] reported the characteristics of geomagnetic conjugate MSTIDs but was limited
to daytime summer MSTIDs that were generated at the conjugate hemispheres. Ref. [35]
investigated MSTID characteristics in the low to middle latitude (15–30◦ S) region of
South America during the period 2012–2016. They reported variations in the frequency of
occurrence of MSTID, day to night, and seasonally. In our present study, we focus on the
latitudinal coverage from the equator to low latitudes (0–15◦ S) and long-term coverings
from the high to low solar activity period (2012–2019) covering solar cycle 24.

For that matter, the overarching objectives of this work were to study the long-term
statistical analysis and characteristics of MSTIDs over the South American equatorial region
during Solar Cycle 24.

2. Materials and Methods

Approximately 236 dual-frequency GNSS receivers are installed in the South American
region. Among them, 83 are located in the equatorial region where the present work was
conducted. Figure 1 shows the distribution of the GNSS ground-based receivers network
of South America operated by RMBC, RAMSAC, LISN, and IGS (represented in red, blue,
violet, and green, respectively) which show their latitudinal and longitudinal positions.
The area of the present study is indicated by a red rectangle, covering the latitudes 0◦

to 15◦ S and longitudes 30◦ to 55◦ west, equivalent to a distance 1667 km by 2778.0 km,
respectively, and a total area of 4,630,926 km2. This area selected was located mainly
below the magnetic equator to investigate the possible source regions of the MSTIDs that
propagate over the region. The western part of the continent is above the magnetic equator,
as it Amazon Rainforest, which could be investigated in the future.

The carrier phase delays and group delays are the two basic observables that are
provided by the dual-frequency GNSS signals in every 30 s for each day. The slant TEC
(STEC), which is the line integral of electron density along the signal path between the
receiver and a satellite given in the TEC units (1 TECU = 1016 m−2 ), are expressed by
Mannucci et al. [36] as:

TEC =
1

40.3

f 2
i f 2

j

( f 2
i − f 2

j )
[(Li − Lj)− (λi Ni − λjNj) + br + bs] (1)

where Li and Lj are the carrier phase signal (converted to distance units). λi Ni and λjNj
are integer cycle ambiguities, and br and bs are satellite and receiver instrumental biases.
The fi and f j correspond to the frequencies of GPS and GLONASS (in the latter, every
two satellites have the same dual frequencies). Due to the ambiguity in the carrier phase
measurements, the level of the TEC is unknown. Meanwhile, the level is adjusted to the
slant TEC derived from the pseudoranges for each satellite-receiver pair. The TEC obtained
by the above procedure still contains biases inherent in satellite and receiver hardware.
Moreover, the ambiguities, as well as the biases, of both the satellite and receiver ought to
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be estimated to obtain the absolute value of TEC [5,8]. However, this study is not interested
in the absolute TEC, but instead focusing on the perturbation components of TEC caused
by MSTIDs.

Figure 1. Distribution of the GNSS ground receivers network. RMBC, RAMSAC, LISN, and IGS are
represented by red, blue, violet, and green, respectively.

The Vertical TEC (VTEC) can be obtained by the product of the slant TEC (STEC) and
cosine of the zenith angle (ψ):

VTEC = TEC× cos(ψ) (2)

where the ψ of the signal path through the ionospheric piercing point (IPP) in the F2 region
can be estimated as:

ψ =
π

2
− El − arcsin(Re/(Re + 300)× cos(El)) (3)

where Re is the radius of the Earth, El is the elevation angle, which can be estimated from
the ephemeris file, called Sp3 (Standard parameter 3), that gives the final orbital position
(XYZ coordinates) of the satellite for both GPS and GLONASS in every 30 min. In this
case, interpolation is necessary to synchronize the time of the XYZ coordinates with that of
the TEC. The GPS broadcast ephemeris are linked to the position of the satellite antenna
phase center in the World Geodetic Service-84 (WGS-84) reference frame. WGS-84 is a
unified terrestrial reference system for the position and vector referencing of GPS. Whereas,
GLONASS broadcast ephemeris are given in the Parametry Zemli 1990 (Parameters of the
Earth 1990) (PZ-90) reference frame. Therefore, we transformed the XYZ coordinates from
PZ-90 to the WGS-84 [37–39].

The detrending TEC (dTEC) is calculated by subtracting one hourly moving average
(VTEC(t± 30 min) from the corresponding time sequence of VTEC(t) [5,6,8,31,35]:

dTEC(t) = VTEC(t)− < VTEC(t± 30 min) > (4)

Figure 2 shows the TEC with its running average (upper panel) and the dTEC (lower
panel) GPS PRN 32. TEC values of elevation angles greater than 30◦ are used in the present
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work in order to minimize errors due to cycle slips and slant factors [5]. The upper panel
shows the VTEC profile (black) and the corresponding one hour running average (±30 min)
TEC (red), while the lower panel is the TEC perturbation cause by MSTIDs which can be
seen at the amplitude greater than 0.2 TECU [5,6,11,35]. The maximum MSTID oscillations
are seen between 9:00 UT and 12:05 UT, and 13:00 and 15:00 UT.
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Figure 2. Vertical TEC (upper panel) with elevation greater than 30◦ and the corresponding dTEC
(lower panel).

Method of Generating the Two-Dimensional dTEC Maps

Generating dTEC maps requires the corresponding longitude and latitude of iono-
spheric piercing point (IPP) position, which are estimated in [40–42]; where λr and φr are
longitude and latitude of the receiver respectively.

φipp = sin−1[sin(φr)cos(ψ) + cos(φr)sin(ψ)cos(Az)] (5)

λipp = λr + sin−1

[
sin(ψ)sin(Az)

cos(φipp)

]
(6)

The two-dimensional maps of the dTEC, within the area of 30–55◦ W and 0–15◦ S,
were generated with a temporal resolution of 1 min and a spatial resolution of 0.25◦ × 0.25◦

and 5◦5◦ smoothing in longitude and latitude, which results in 1 degree in latitude and
longitude, i.e., 1 in 300 km altitude corresponds to approximately 116 km. The color table
used has a range of 0.2 to −0.4 TECU. Figure 3 shows an example of dTEC maps over
South America on 30 June 2015 at 16:45:00 Universal time (UT = 13:45:00 local time (LT)).
The concentric MSTID oscillations can be identified with the red and blue denoting crest
(black dashes on top of each) and trough, respectively. On this day, MSTIDs oscillations
with wavefront elongated from the northwest to the southeast were observed propagating
northeastward between 15:00 UT and 18:00 UT (12:00 LT to 15:00 LT).

The series of dTEC maps were generated at 16:45:00 UT (13:45:00 LT) to observe the
propagation of the MSTIDs in the South American region on June 30 2015. For example,
Figure 4 shows the dTEC maps from 16:50:00 UT (13:50:00 LT) to 17:05:00 UT (14:05:00
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LT) in every 5 min time interval. The animation of Figure 4 is available through the
supplementary information related to this manuscript (see Movie_MSTID01).

Figure 3. Detrending TEC (dTEC) maps with 1 min resolution over South America equatorial region
30 June 2014 at 16:45:00 UT (13:45:00 LT).
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Figure 4. The series of dTEC maps on 30 June 2015 from 16:50:00 UT (13:50:00 LT) to 17:05:00 UT
(14:05:00 LT) in every 5 min time interval.

In order to characterize the MSTIDs into wavelength, propagation direction, period,
and phase speed, keograms were created from a series of dTEC maps [35] by taking
latitudinal and longitudinal cuts of each dTEC map. For example, a cut was made at
latitude 12.5◦ S and longitude 45.0◦ W in every 1 min of the series of dTEC maps generated
from 30 June 2015. This technique helps in identifying the oscillations of MSTIDs and their
behaviors over 24 h in one single frame. This analytical method has been used in many
research works [35,43–48]. Figure 5 presents a keogram of the dTECmap; the abscissa is the
interval of time and the ordinate is the corresponding distance in geographic coordinates.
From the keogram, the MSTID oscillations can be identified with positive (red) and negative
(blue) dTEC lines denoting the crest and trough respectively. The black dashed lines
indicate the dawn and dusk solar terminator at 300 km altitude.
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Figure 5. The keograms created from dTEC maps on 30 June 2015; longitudinal (top) and latitudinal
(bottom). The black dashed lines indicate the dawn and dusk solar terminator.

In order to calculate the wavelength, period, direction of propagation, and phase
velocity, we employed a spectral analysis, using discrete Fourier transforms as shown in
the appendix of [35] to characterized the MSTIDs. This was done by selecting the area
of interest between longitude 40–55◦ W and latitude 7–14◦ N against 15:00 to 19:00 UT,
as indicated by the white box shown in Figure 5.

The following criteria were considered when analyzing the MSTID characteristics:

• The direction of propagation was determined by the tilt of the MSTID in the latitudinal
and longitudinal components.

• The propagation direction must be perpendicular to the front of the TID, and the
variation azimuth starts from the geographic North (0◦) and continues clockwise.

• The wave phases selected in a particular component should be moving in the same
direction.

• The horizontal wavelength should not exceed 1500 km [6,35].
• The amplitude of the dTEC oscillation should be more than 0.2 TECU [6].
• It is requested that the areas to be analyzed are equal and exist in the same time

domain in both longitudinal and latitudinal components of the keogram.
• The time interval for the oscillation(s) should be at least 30 min.
• The oscillation should have at least two wavefront and propagates on the maps, as-

suming that the propagation direction is perpendicular to the wavefront of the MSTID.
• The Wavefront should be greater than 3◦ in latitude and longitude on the keograms.

3. Results
3.1. Occurrence of MSTIDs during Solar Cycle 24

After analyzing the dTEC maps obtained by the GPS and GLONASS receivers in the
South American equatorial region from January 2014 to December 2019, we estimated the
horizontal wavelength, period, and phase speed of 712 MSTIDs, as well as their local time
of occurrence during geomagnetically quiet conditions.

The present study covers half a period of the solar cycle 24 epoch. In order to in-
vestigate the possible effects of solar activity on the occurrence rate of MSTID events, we
present the climatology of the six-year MSTIDs as shown in Table 1. There is a clear annual
variation in the statistical analysis of the MSTID events from the maximum solar phase
through the descending phase to the minimum solar phase activity. The MSTID occurrence
was the maximum (162 events) in 2014 (solar maximum) and reduced to the half (83 events)
in 2019 (solar minimum). It indicates the solar cycle dependency of the events.
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Table 1. The annual occurrence rate of MSTIDs during geomagnetically quiet conditions from 2014
to 2019.

Year Solar Cycle Phase MSTID events

2014 Maximum 162
2015 Maximum 146
2016 Descending 139
2017 Descending 96
2018 Minimum 86
2019 Minimum 83

To investigate the monthly/seasonal variations of the occurance rate of MSTIDs dur-
ing the maximum, descending, and minimum solar phases in solar cycle 24, the 6-year
dataset was divided into three seasons, equinox (March-May and September-November),
summer (December–February), and winter (June–August). The solar flux F10.7 cm and
the total MSTID events are plotted as a function of month and year, as shown in Figure 6.
The monthly occurrence rate of MSTIDs during geomagnetically quiet conditions is indi-
cated with the red histogram, while the green represents the solar flux (F10.7), and the blue
line is the respective eighty-one day running average.

The seasonal variation peaks were around the winter solstice months in all years, with
the exception of the minimum solar phase, where the usual winter preferences are not clear.
On the other hand, the summer solstice events seem to increase from the solar maximum
to minimum. The low-level MSTID activity during the summer months, especially during
the maximum solar phase, is a potential interest to study. The occurrence pattern during
the equinoxes from 2014–2016 are quite similar, as well as 2017–2019. From Figure 6, it
is clear that the strong semiannual variation, winter maximum, and summer minimum
during the solar maximum disappeared during the solar minimum phase. We attest to
the fact that the present equatorial MSTIDs show a strong positive correlation with the
solar activity.

Figure 6. Solar cycle 24 dependence on occurrence. The monthly occurrence rate of the MSTIDs
are indicated by the red histogram; the green represents the solar flux (F10.7), while the blue is the
respective eigthy-one day average.

3.2. Horizontal Wavelength of the MSTIDs

In order to investigate the horizontal wavelength of the present work, the number
of events is plotted against the horizontal wavelength. Figure 7 shows the horizontal
wavelength of the MSTIDs observed over the South American equatorial region for (a)
all seasons, (b) equinoxes, (c) summer, and (d) winter, respectively. The horizontal wave-
lengths are divided into 100 km bins and the solid black line represent the Gaussian fit of
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the distribution. Most of the horizontal wavelengths in (a), (b), and (d) are between 500 and
800 km and occurred during daytime and evening time, although there are few nighttime
events during equinox. In summer, the majority of the events are distributed between 500
and 900 km and occurred during dusk and nighttime with few daytime events, while the
winter distribution peaks between 500 and 700 km. The mean values of all, equinoxes,
summer, and winter are 667± 131, 705± 120, 719± 163, and 628± 114 km for (a), (b), (c),
and (d) respectively. The difference of the wavelength between summer and winter is
significant, which will be discussed in the next section.
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Figure 7. The horizontal wavelength distribution of the MSTIDs observed between January 2014 and
December 2019 for (a) all seasons, (b) equinoxes, (c) summer, and (d) winter.

3.3. Period of MSTIDs

The number of event is plotted against the corresponding period of the MSTIDs
observed over the South American Equatorial region in Figure 8 for (a) all seasons, (b)
equinoxes, (c) summer, and (d) winter. The periods are binned into 10 min intervals.
Most of the periods for (a), (b), (c), and (d) range from 20 to 60 min with mean values of
36± 7, 37± 7, 39± 7, and 34± 6 min, respectively. In equinoxes, the maximum period is
concentrated around 30 to 45 min, while summer and winter are 35 to 45 min and 30 to
40 min, respectively. There is no significant difference of the period between the seasons.
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Figure 8. Distribution of the observed period of the MSTIDs observed between January 2014 and
December 2019 for (a) all seasons, (b) equinoxes, (c) summer, and (d) winter.

3.4. Horizontal Phase Velocity of the MSTIDs

Figure 9 presents the phase velocities of the MSTIDs observed for (a) all seasons, (b)
equinoxes, (c) summer, and (d) winter. The phase velocities are divided into 100 m/s bin.
Most of the phase velocities are distributed between 200 and 400 m/s. The (a), (b), and
(c) range from 100 to 600 m/s, while the winter is between 100 and 500 m/s. The number
of events is highest between 300–400 m/s during summer, while during the winter it is
200–300 m/s. The mean distribution of the horizontal phase velocity for (a), (b), (c), and (d)
are 301± 60, 309± 78, 317± 85, and 291± 66 m/s, respectively.
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Figure 9. The horizontal phase velocity distribution of the observed medium-scale traveling iono-
spheric disturbances for (a) all seasons, (b) equinoxes, (c) summer, and (d) winter.

3.5. Propagation Direction of the MSTIDs

Figure 10 shows the propagation direction of the MSTIDs observed as a function of
phase velocity from January 2014 to December 2019 for (a) all seasons, (b) equinoxes, (c)
summer, and (d) winter. The data was classified into 30◦ bins and the propagation direction
was defined as the angles clockwise from geographical North. As shown in the figure,
the red arrows denote the nighttime MSTID events, while the blue arrows are daytime
and evening time. We did not find the azimuthal variation of the ocurrence rate of the
MSTIDs between daytime and evening events. In the equinoxes, the MSTID activities
propagated predominantly in thr north-northeast, north-northwest, and south-southeast
directions. In summer, the propagation directions are preferentially south-southeast and
a few westward, while in winter they predominantly propagated to the north-northeast
and north-northwest directions with few southeastward. There is a significant difference
between summer and winter events in their propagation directions. The few nighttime
events captured did not show any preferential propagation direction.
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Figure 10. The propagation direction of the observed medium-scale traveling ionospheric distur-
bances for (a) all seasons, (b) equinoxes, (c) summer, and (d) winter. The red arrows indicate the
nighttime MSTID events while that of the blue are daytime and dusk.

3.6. Local Time Dependence of the Equatorial MSTID

Figure 11 show the local time and seasonal variations of the MSTID occurrence rate
in monthly and hourly bins. The months are represented by their initials, while the dawn
and dusk solar terminator are shown at the altitude of 100 km and 300 km as dotted
and broken lines, respectively. The occurrence rate is defined as the ratio of the time of
the MSTID to the monthly and hourly observation intervals. It should be noted in the
present work that the MSTID occurrence in the South American equatorial region strongly
depends on the local time. The occurrence rates are classified into daytime (7:00–17:00 LT),
evening time (17:00–20:00 LT), and nighttime (21:00–4:00). A high occurrence rate can be
seen during the daytime, which mostly occurs in winter months with a secondary peak
in the equinoctial months. The evening events are seen in winter and summer months
with minor peak in equinoctial months. There is no clear seasonality in the nighttime
events. The occurrence rate in daytime is ∼80% of the total number of MSTIDs observed,
while the evening MSTID is ∼18%, and the nighttime accounted for only ∼2% of the total
MSTIDs observed. The occurrence of MSTIDs near the dawn terminator side in the present
work was rare.
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Figure 11. Time dependence and seasonal variation of the occurrence of MSTIDs observed over the
South American equatorial region from January 2014 to December 2019. The months are represented
by their initials and the dawn and dusk solar terminator are shown at the altitude of 100 km (dotted
lines) and 300 km (broken line).

4. Discussion

Using GPS and GLONASS data obtained over the South American equatorial region
from January 2014–December 2019, we developed TEC perturbation maps that identify the
presence of MSTIDs. A total of 712 MSTIDs were detected during geomagnetically quiet
time, and their aforementioned characteristics were calculated. The statistical analysis of
the equatorial MSTIDs is presented with respect to the solar minimum, descending, and
maximum phases.

4.1. Characteristics of the Equatorial MSTIDs

The horizontal wavelengths observed in the present work were concentrated between
500 and 800 km with a mean value of 667± 131 km; the periods peaked around 30 to
45 min with a mean value of 37± 7 min; and the majority of the horizontal phase velocities
had values between 200 and 400 m/s with a mean of 301± 75 m/s. The main difference
between the present work and previous works by [35] among others, is the fact that the
present horizontal wavelengths are much higher, although, they were conducted using the
same GNSS dTEC map and 1 h running average technique. Furthermore, the phase speeds
of the present equatorial MSTIDs and those observed by [35] in the southeast of Brazil are
similar but faster than those observed by [7,11,49]. Ref. [34] reported MSTIDs with periods
of 20–35 min and opposite directions of propagation, depending on the hemisphere in the
South American equatorial region; however, the focus was on only magneto-conjugated
TIDs of the equatorial region.

In the midlatitude, ref. [11] reported MSTIDs with horizontal wavelength, period,
and phase velocity ranging between 100 and 450 km, 20 to 60 min, and 50 to 200 m/s,
respectively, using dTEC maps; while [7] used dTEC maps to observe the Japanese sector
and reported MSTIDs with horizontal wavelength, period, and phase velocity ranging from
100 to 600 km, 15 to 60 min, and 50 to 300 m/s, respectively. In the low-latitude region over
China, ref. [49] used the Hong Kong Continuously Operating Reference Stations network
to record MSTIDs with the horizontal wavelength, phase speed, and period in the spring,
autumn, and winter daytime (from 10:00 to 17:00 LT) between 250 and 450 km, 140 and
240 m/s, and 20 and 50 min, while these data and between 200 and 450 km, and 220 m/s,
and 30 and 45 min in the spring and summer nighttime (from 22:00 to 03:00 LT), respectively.
Ref. [33] also used ionosonde to observe the MSTIDs horizontal phase velocities between
150 and 300 m/s. In the southeast of Brazil (15◦ to 30◦ S), ref. [35] used GPS dTEC maps to
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study MSTIDs and observed the horizontal wavelength, period, and phase speed between
200 and 1000 km, 15 and 35 min, 100 and 600 m/s with the mean values of 445± 106 km,
23± 3 min, and 322± 80 m/s, respectively.

The seasonal propagation direction of summer and winter suggests a consistent cyclic
picture with predominantly northward propagation during the winter months and transi-
tioning to south-southeastward during the summer periods. In winter, the propagation
direction of [35] is only northwards, while that of the present work was northward and
south-southeastward. However, in summer, the propagation direction of MSTIDs observed
by [35], propagated in all directions, while that of the present work is predominantly
southeastward. Meanwhile, the propagation directions in the equinox of the two works are
similar. The winter and summer propagation direction demonstrates a strong link between
the MSTIDs observed in the southeast of Brazil by [35] and the present work. For example,
it is possible that most of the observed equatorial MSTIDs propagated northward in the
present work during winter have their sources in the low latitude. Similarly, the dominant
southeastward MSTIDs during summer might have been triggered by the gravity waves
that were generated by intertropical convergence zone (ITCZ) [33,50], which lies with the
study area during summer, and migrates to the north in winter.

These equatorial MSTIDs were likely induced by the secondary or tertiary gravity
waves created in the thermosphere from the dissipation of primary gravity waves that
were excited from deep convection in the troposphere [51,52]. The present characteristics
are consistent with the TIDs. Ref. [52] studied at the bottomside of the F layer (230–290 km)
observed by the TIDDBIT ionospheric sounder with periods between 15 and 90 min,
horizontal wavelengths of 100 and 3000 km, and horizontal phase speeds of 140 to 650 m/s.
In the case of the South American continent, ref. [53] used a gravity wave resolving
the global circulation model (GCM) to investigate the effects on the mesosphere and
thermosphere from a strong mountain wave (MW) event over the Southern Andes during
the winter. They reported that those gravity waves broke and attenuated at an altitude of
50–80 km, thereby creating local body forces that generated large-scale secondary gravity
waves having concentric ring structure with horizontal wavelengths between 500 and
2000 km, horizontal phase speeds from 70 to 100 m/s, and periods of 3 to 10 h, and can
consequently break and generate tertiary gravity waves, which then propagated to the
northeast of Brazil.

4.2. Seasonal Variation of Equatorial MSTIDs

As presented in the previous section, we observed a strong seasonal variation in
the frequency of occurrence, summer minimum, and winter maximum. This tendency is
much stronger in the period of the solar maximum (2014–2016). Concerning this, there
were two factors to be considered, one is seasonal variation of gravity wave activity in
the middle atmosphere, and the other is the gravity wave filtering mechanism in the
lower thermosphere.

The MSTIDs predominantly occur during daytime in winter and nighttime in summer
with a secondary peak in the equinoxes. From the present statistical analysis, we realized
that the number of observed equatorial MSTIDs were 286, 97, and 329 for equinoxes,
summer, and winter, respectively. Our present results are consistent with [35,49] and
mid latitudes [5–7,11]. Atmospheric gravity waves and their propagation characteristics
in relation to the mean flow, such as background wind, might be crucial to the seasonal
variation of the present equatorial MSTIDs. The earliest observations of the traveling
ionospheric disturbances conducted by [54–56] led [9] to hypothesize that TIDs were
the manifestations of neutral internal gravity waves in the ionospheric plasma; this has
been generally accepted today. The medium-scale gravity waves are known to transport
energy and momentum throughout the atmospheric layers, resulting in a coupling between
them [45,48,57].

To explain the influence of background wind in the current seasonal variation of the
equatorial MSTIDs, we adopted the dispersion relation of gravity waves equation with
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negligible dissipation, ion drag, and wave-induced diffusion [58], as shown Equation (7).
This equation also allows for the ray tracing of gravity waves from the lower atmosphere
into the thermosphere and ionosphere [52]. Where m is the vertical wave number, N is the
Brunt Väisälä frequency, c horizontal phase speed of the gravity waves, u is the neutral
wind velocity, and k is the horizontal wave number.

m2 =
N2

(c− u)2 − k2 − 1
4H2 (7)

In the work of [59] on the thermospheric winds and temperatures in the northeast of
Brazil, it was reported that while the temperature climatology shows the expected solar
cycle dependence, the neutral winds are most heavily dominated by seasonal change.
During summer, the velocity of the neutral wind, u, is higher than in winter. Hence, |c− u|
will be smaller, resulting in a larger vertical wave number, m. From the dispersion-relation
equation for gravity waves, the vertical wave number will be larger in summer than in
winter, and eventually the vertical wavelength could be larger in winter than in summer.
Gravity waves with larger vertical wave numbers are dissipated due to the high viscosity
and thermal conductivity in the thermosphere [12,60].

In this regard, the gravity waves could be filtered out by the critical level or dissipated
in the thermosphere due to high viscosity [48,52]. As a result, a few gravity waves with
longer wavelength and higher phase speed are likely to propagate into the ionospheric level
as MSTIDs in summer, which consequently minimizes the number of MSTIDs activities
in the season. On the other hand, in winter, the neutral wind velocity u is slow and lesser
than any of the phase velocities of the MSTID in the present work. Hence, |c− u| will be
larger, resulting in a small vertical wave number m. In this case, the gravity waves could
propagate into the thermosphere/ionosphere without critical level effect or dissipation
caused by high thermospheric viscosity [52].

Ref. [61] reported that the energy of the gravity waves at 120 km altitude was slightly
high but much higher at 300 km altitude during winter; however, in summer, the gravity
waves lacked the ability to propagate vertically upward. They further reported that the
zonal wind filtering effect between 100 and 200 km altitude is the mechanism that normally
blocks the vertical propagation of the gravity waves. This implies that the high frequency
gravity waves with high energy generated in the troposphere are capable of propagating
into the thermosphere to induce wave structures in the ionosphere during winter or were
excited by secondary and tertiary gravity waves in the thermosphere from the likely
dissipated primary gravity waves triggered by deep convection sources in the troposphere.

The source mechanism that generated gravity waves in the troposphere could con-
tribute to the seasonal variations of the present equatorial MSTIDs statistics. For example,
ref. [35] reported that in winter there is a strong cold front emanating from the mid and
high latitudes, which extends to the low latitudes. Ref. [53] also reported that medium-
and large-scale daytime secondary and tertiary gravity waves, which were likely Mountain
waves with concentric ring structures from the Southern Andes, are possible to excite
MSTIDs that propagate north-northeastward over the Brazilian region. Ref. [48] observed
medium-scale gravity waves propagating northeastward, which were likely generated
by the deep convective source over the Amazon region that are capable of propagating
to the ionospheric level. These sources are the possible proxy for the gravity waves that
likely excited the north-northeastward and north-northwestward MSTIDs observed over
the South American equatorial region. The penetrative cumulus convection in the ITCZ
was the most likely generation mechanism of the gravity waves that excited the summer
MSTIDs, which predominantly propagated southeastward [33,50].

4.3. Long Term Variability of Equatorial MSTIDs

The percentage occurrence rate of equatorial MSTIDs for the 6-year study were 43.3%,
33.7%, and 23.0% for the maximum (2014–2015), descending (2016–2017), and minimum
(2018–2019) solar phases, respectively. The daytime climatology of the equatorial MSTIDs
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show their dependence on solar activities; hence, for the first time we report the positive
trend of the equatorial MSTID occurrence and solar activities in the South American
equatorial region. Once again, the annual variation of the present work is more applicable
to the daytime MSTID, since∼70% were observed during the daytime. Ref. [8] first studied
MSTIDs across the globe during the solar descending (1998) and maximum (2000 and 2001)
phase, and reported that the nighttime MSTID activity at the Japanese and Australian
longitudinal sectors show negative correlation with the solar activity; whereas, solar activity
dependence was not seen in the daytime MSTID activity. Ref. [62] also studied MSTIDs
over California, New Zealand, Alaska, and Hawaii during solar maximum conditions and
reported that most of the MSTID climatological trends were modulated by the solar cycle
intensity. The inverse dependence of the occurrence of nighttime MSTIDs in relation to
solar activity has previously been reported by [20,21,63–65] in the mid and low latitudes.

Ref. [57] report a strong solar cycle effect on gravity wave propagation into the thermo-
sphere, and that they can propagate to higher altitudes during high sunspot activity relative
to minimum conditions. Ref. [3] further reported that gravity waves can propagate to
higher altitudes during high sunspot activity conditions, more than during solar minimum
conditions. This implies that there is a strong solar cycle effect on gravity wave propa-
gation into the thermosphere. Therefore, solar cycle effects on gravity wave propagation
might have caused the decreasing rate of MSTIDs from January 2014 (solar maximum) to
December 2019 (solar minimum).

Another factor that could be a possible contributor is the gravity wave propagation
characteristics in relation to the thermospheric temperature and viscosity. The thermo-
spheric temperature determines the viscosity of the medium and is highly dense during the
solar minimum and consequent increase in the dissipative gravity waves, hence impeding
their propagation into the thermosphere/ionosphere. According to [66], the dissipation
rates due to thermospheric viscosity and thermal conduction are inversely proportional
to the neutral gas density. This dissipation rate depends on the temperature structure of
the thermosphere, which consequently affects the wave group velocity. That is, a hotter
thermosphere refracts the wave energy at more oblique angles and hence, increases the
dissipation rate. Therefore, the gravity wave dissipation depends strongly on local time
and solar activity [66].

From the dispersion relation Equation (7) of the gravity waves, ref. [52] reported that
in the absence of dissipation, the vertical wavelength of gravity wave increases by

√
T̄/T̄0

or greater if its intrinsic frequency is close to the smaller thermospheric buoyancy frequency
N =

√
T̄/T̄0N0, where T̄ and T̄0 are the asymptotic temperatures in the thermosphere and

lower atmosphere, respectively. They, however, mention that in the presence of dissipation,
vertical wavelength increases in the thermosphere during active solar conditions, which is
more applicable during the solar maximum. However, during the extreme solar minimum,
there is negligible forcing above an altitude of 230 km, and this forcing extends up to
360 km altitude during active solar conditions. Ref. [67] also reported that medium-scale
gravity waves in the thermosphere with high frequency and long vertical wavelength
components penetrate into the highest altitudes.

In order to investigate the thermospheric temperature in relation to the dissipation of
gravity waves in the thermosphere, we plotted altitude as a function of temperature using
values from the NRLMSIS-00 model as shown in Figure 12. Each line represents the profiles
of average neutral temperature for a particular year as indicated in the plot. While the
thermospheric temperature during solar minimum is∼650 K, that of the maximum phase is
∼950 K. It is clear that the temperature variation between the solar maximum and minimum
in the thermosphere is wide enough to influence the dissipative difference between the
solar phases. Ref. [68] reported that the basic structure of thermospheric neutral winds
above about 150 km altitude is formed by atmospheric expansion due to solar heating on
the dayside, creating a pressure bulge with a temperature maximum developing near 14:00
LT. This establishes the fact that there is high viscosity in the thermosphere, which leads to
high dissipation of gravity waves during low solar activity.
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Figure 12. Thermospheric neutral temperature profiles from 2014 to 2019 by the NRLMSIS-00
model atmosphere.

Ref. [69] reported that the increase in temperatures associated with the increase in solar
flux was seen in the progression of temperature from 2009 through 2012, which is consistent
with the results of [59] in the same equatorial region over Brazil. From the thermospheric
viscosity analogy they discussed using modelled and observational temperature data,
gravity waves could dissipate due to high viscosity in the thermosphere, which is frequent
during the solar minimum. This implies that during the solar minimum, only gravity
waves with longer vertical wavelength and higher phase velocity can exist or survive to
induced MSTIDs in the thermposphere [12]. With respect to the thermospheric temperature
data during the solar maximum and minimum phases observed by [59,69], we could
establish the connection between the solar activities and the gravity wave dissipation due
to thermospheric viscosity as the precursor of the wide variation of the occurrence rate of
the present MSTIDs.

Although, some of the values of the MSTIDs are above the supersonic speed, it’s still
possible that the high viscosity condition in the thermosphere during the solar descending
and minimum phase filtered out most of the gravity wave events with low speed. Ref. [70]
reported that the gravity wave vertical wavelength (m) in the thermosphere is larger than
in the lower atmosphere, and this increase is much larger when the sun is active than when
the sun is quiet. This, of course, can minimizes the dissipation rate of gravity waves in
the thermosphere during high solar activities, thereby, propagating into the ionospheres
as TIDs. This could also be the possible reason for the positive correlation of the MSTID
occurrence rate in solar cycle 24.

5. Conclusions

We have analyzed data collected by the GNSS dual frequency receivers network to
develope detrended TEC maps that identify and characterize the medium-scale traveling
ionospheric disturbances (MSTIDs) over the South American equatorial region (latitude: 0◦

to 15◦ S and longitude: 30◦ to 55◦ W ). Statistical analysis of the occurrence rate of MSTIDs
during the solar maximum phase, descending phase, and minimum phase has been carried
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out over the South American region. Furthermore, the seasonal variability of occurrence
of the MSTIDs, their horizontal wavelengths, periods, phase velocities, and propagation
direction were calculated. We found out that:

• A total of 712 MSTIDs were observed during geomagnetic quiet conditions and the
statistical analysis was done during the solar cycle 24 (from January 2014 to December
2019). The number of MSTIDs observed increases with the solar activity; that is,
most of the them were observed during the solar maximum phase and decrease
in the minimum phase. This might have been caused by gravity wave dissipation
due to high viscosity in the thermosphere as a result of low and high thermospheric
temperature during solar minimum and maximum, respectively.

• The predominant daytime MSTIDs representing 80% of the total observation occurred
in winter with the secondary peak in the equinox, while the evening time MSTID,
which is 18% of the entire events, occurred in summer and equinox, and the remaining
2% of the MSTIDs were observed during nighttime. The seasonal variation of the
MSTID events was attributed to the source mechanisms generating them, the wind
filtering and dissipation effect, and the local time dependency.

• The horizontal wavelengths of the MSTIDs were mostly concentrated between 500
and 800 km, with a mean value of 667 ± 131 km. The observed periods ranged from
30 to 45 min, with a mean value of 36 ± 7 min. The observed horizontal phase speeds
were distributed around 200 to 400 m/s, with coarresponding mean of 301 ± 75 m/s.

• The MSTIDs in the winter solstice and equinoctial months preferentially propagated
northeastward and northwestward. Meanwhile, during the summer solstice they
propagated in all directions. The anisotropy of the propagation direction might be
due to several reasons: the wind and dissipative filtering effects, ion drag effects,
primary source region, and the presence of the secondary or tertiary gravity waves
in the thermosphere. The atmospheric gravity waves from strong convective sources
originated from the equatorial and Amazon region might be the primary precursor
of the northeastward and northwestward propagating MSTIDs during the summer
solstice and autumn equinox. Nevertheless, the strong cold front emanating from
the low latitude might have been the primary source for the northeastward and
northwestward MSTIDs during the winter solstice and spring equinox. In all seasons,
we noted that the MSTIDs propagating southeastward were probably excited by the
likely gravity waves generated by the ITCZ.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12111409/s1, Video S1: Movie_MSTID01.
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