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Abstract: In this work, we used the MICE (Multivariate Imputation by Chained Equations) technique
to impute missing daily data from six meteorological variables (precipitation, temperature, relative
humidity, atmospheric pressure, wind speed and insolation) from 96 stations located in the northeast
region of Brazil (NEB) for the period from 1961 to 2014. We then applied tests with a quality control
system (QCS) developed for the detection, correction and possible replacement of suspicious data.
Both the applied gap filling technique and the QCS showed that it was possible to solve two of the
biggest problems found in time series of daily data measured in meteorological stations: the genera-
tion of plausible values for each variable of interest, in order to remedy the absence of observations,
and how to detect and allow proper correction of suspicious values arising from observations.

Keywords: time series; missing values; data quality control; verification; climate analysis

1. Introduction

Observational meteorological data are basic elements for climatological analyses [1].
In Brazil, despite the inherent relevance of such observations, the amount of data of this
kind has been suffering a significant reduction over the years [2], with several manual
weather stations (MWS) being permanently closed, becoming inoperative or functioning
precariously, compromising the quality and continuity of the meteorological records.

This situation poses a hindrance to a more detailed, observation-based climate analysis,
forcing the use of Reanalyses products, which constitute a synthetic database reconstructed
by calibrating a regional climate model to observed historical conditions, in a grid format,
with statistical properties, such as means and variances, that are very similar to those of
the observations [3]. However, although useful for analysing long-term climate trends
and studying future climate change scenarios [4], they are not reliable in terms of extreme
events [5].

To overcome such an issue, especially in the case of precipitation data, several methods
have been proposed to create gridded products that provide a standardization of the
properties of the variable across a spatial field, thus surmounting problems related to
sparse and non-uniform rainfall coverage. Some of those methods are based on exploring
the surface observations to the maximum [6–9]; others are based on combining observed
rainfall data with estimates from remote sensing [10–17].

In spite of all these efforts, a fine-grained surface observation database is essential,
whether to aid in composing such grids or to correct and validate the approaches derived
from remote sensing techniques. A surface database is not just about collecting and storing
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observations; in order to achieve a desirable level of confidence, it needs to undergo three
basic steps of processing: quality control checks, gap filling and homogenization. With
respect to the daily data, for which accessibility is still very restricted, particularly rigorous
Quality Control Systems (QCS) are essential [18,19].

A QCS must combine people and machines. Although QCS software is designed
to provide a list of suspicious data, the final decision regarding this should be made by
qualified personnel. A QCS should not be expected to detect a suspicious value and
automatically remove it from the series; this must be very carefully assessed in order to
avoid losses of real extreme values in the time series [20,21]. Therefore, the QCS needs to
be based on a variety of consistency tests and provide understandable graphical outputs,
as well as summaries containing the list of suspicious data, in order to facilitate decision-
making and prevent the rejection of good observations [22,23].

Another problem faced by those who work with time series of meteorological variables
is the amount of missing data. Studies on trends and extremes that are based on climate
indices recommended by the Expert Team on Climate Change Detection and Indices
(ETCCDI) of the World Meteorological Organization (WMO), developed by [24], require
flawless daily data [5,25]. In this regard, the aim of this study was to present the results
of the application of a QCS and a gap filling technique to time series of meteorological
variables collected by manual weather stations in the northeast region of Brazil (NEB) in
the period of 1961–2014, corresponding to 54 years of daily data, which were assessed here
based on this timescale, as well as on 10-day and monthly averages or accumulated values
(depending on the variable). The NEB, which is the most populated dryland region on
the planet [26], has a singular biome associated with its semi-arid climate, the Caatinga,
and is extremely vulnerable to climatic extremes, especially droughts [27,28]. To fill gaps
in the daily data, the technique known as Multivariate Imputation by Chained Equations
(MICE) was used, a multiple imputation method that has a number of advantages over
other methods for dealing with missing data in time series [29–32].

2. Materials and Methods
2.1. Area of Study and Data

The NEB encloses an area of approximately 1.56 million km2, which is equal to 18%
of the Brazilian territory, encompassing nine of its states (Figure 1): Alagoas (AL), Piauí
(PI), Maranhão (MA), Ceará (CE), Rio Grande do Norte (RN), Paraiba (PB), Pernambuco
(PE), Sergipe (SE) and Bahia (BA). The Caatinga, which covers more than 750,000 km2 of
the NEB, exhibits, primarily, xerophytic, arboreal, prickly and deciduous properties. The
east coast of the NEB, between RN and BA, hosts an exuberant tropical forest called the
Mata Atlântica. The transition zone, of mixed vegetation, between the Mata Atlântica and
the Caatinga, is called Agreste. In the westernmost portion, covering most of MA, the
predominant vegetation is the Amazon forest, whereas in southern MA and PI, as well as
in western BA, the Cerrado vegetation (the Brazilian Savannah) prevails [27,28].

The data come from 96 manual weather stations spatially spread over the NEB, repre-
senting part of the National Institute of Meteorology (INMET) station network (Figure 1,
blue dots). The period of each series spans from 1 January 1961 to 31 December 2014 [5].
Gap filling and QCS were applied to precipitation (mm), temperature (◦C), relative humid-
ity (%), wind speed (m/s), station-level atmospheric pressure (hPa) and insolation (hours).

2.2. Filling in Missing Data

The application of a methodology to fill the gaps in the daily data took place before
the evaluation performed by the QCS. The large number of observed gaps was addressed
using the MICE technique. There are several fields of the natural sciences in which the
MICE technique has been successfully applied [30], including, most notably, biostatistics.
In this research, it was adapted to missing data in the time series of meteorological variables
across the NEB, following the methodology of [33].
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Figure 1. Map of the NEB (left) with the delimitation of the semiarid region and its location relative to Brazil (top right)
and South America (bottom right). In the left panel, the blue points represent INMET’s weather stations. The climate
subregions that are referred to throughout this study are graphically presented in the left panel encompassed by rectangles
with the following colour associations: northern NEB, red; northwestern NEB, pink; northeastern NEB, yellow; eastern
NEB, blue; southern NEB, green; southwestern NEB, black. Extracted from [28].

For each variable, MICE creates multiple complete datasets based on a variety of
methods, which may include linear regressions, logistic regressions, multinomial log-linear
models or Poisson regressions. These models have in common the ability to impute the
missing data from the known observed values and their relationships with each dataset.
Several forecasts are thus created for each missing value, and the one that produces the least
uncertainty and fewest errors, when compared with the observed data, is adopted [34].

Of the two modern approaches for multivariate imputation, i.e., joint modelling and
fully conditional specification, the MICE technique is of the latter kind [30]. MICE is
developed in R language and is made available as a package. A basic description of its
approach is presented below.

Let Yj with (j = 1, . . . ,p) be a set of p incomplete variables, where Y = (Y1, . . . ,Yp). The
observed and missing sections of Yj are denoted as Yj

obs and Yj
missing, respectively, so that

Yobs = (Y1
obs, . . . ,Yp

obs) and Ymissing = (Y1
missing, . . . ,Yp

missing) represent the observed and
missing data of Y. The number of imputations must always be equal to m≥ 1. The imputed
dataset hth is given by Y(h), where h = 1, . . . ,m. Now, let Y-j = (Y1, . . . ,Yj−1, Yj+1, . . . ,Yp)
be the collection of variables p − 1 in Y with the exception of Yj. Let Q be the amount of
missing data to model. In practice, Q is often a multivariate vector representing any model
aimed at the imputation of missing data.
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Figure 2 illustrates the three main steps in multiple imputation: imputation, analysis
and clustering. The software stores the results of each step in specific classes, called mids,
mira and mipo, explained in detail below.

Figure 2. Main steps used in multiple imputation.

The leftmost side in Figure 2 indicates that the analysis starts with a set of observed
Yobs data. The problem is that it is not possible to estimate Q from Yobs without making
unrealistic assumptions about the unobserved data. Therefore, missing data are randomly
generated for the Yobs dataset, and several versions of multiple imputation are generated,
with plausible values, according to the nature of the variable, extracted from a distribution
specifically modelled for each imputed value for the respective missing value.

In MICE, this task is performed by the mice() function. Figure 2 depicts m = 3 im-
puted data, Y(1), . . . ,Y(3). The three imputed sets are identical to the non-missing input
datasets regarding their type of distribution. The magnitude of these differences reflects
the uncertainty about the values to be imputed.

The second step is to estimate Q in each imputed dataset, just as in a flawless dataset.
This becomes easy, since all the sets are complete. The model applied to Y(1), . . . ,Y(m) is
generally identical. The estimates Q′(1), . . . ,Q′(m) are different from each other.

The third and last step is to gather the m estimates Q′(1), . . . ,Q′(m) into a single Qmean
estimate and estimate its variance. For Q quantities that are normally distributed, it is
possible to calculate the average of Q′(1), . . . ,Q′(m) and then add it to the variance of Qmean,
according to the method described in [35]. The ideal is to apply this methodology to a
column of data containing gaps alongside columns of similar data that do not contain
missing values, called predictors, as the relationship established between the datasets will
tend to improve the estimates of the data to be imputed to the column that presents missing
data [33].

In the adaptation of the MICE technique to fill gaps in precipitation, the series of the
gridded precipitation analysis from the Climate Prediction Center of the National Oceanic
and Atmospheric Administration (CPC/NOAA) were used as sets of predictors [8,36],
based on [37] optimal interpolation method, with a spatial resolution of 0.5◦ × 0.5◦. For the
other variables, series of gridded analyses provided by the NCEP/NCAR (National Center
for Environmental Prediction/National Center for Atmospheric Research), with 1.0◦ × 1.0◦

resolution, were used as predictor variables [3]. In order to avoid the influence of dry
periods on rainy periods of the year, and vice versa, we applied MICE to independent files
organized month by month, that is, to 12 independent files, from January to December, for
each variable.

In time series that have missing data, these are characterised by “NA”, using the de-
fault number of multiple imputations (m = 5 iterations) of the MICE package, version 2.12,
of the free statistical software R. The imputations are generated according to the default
method, which is, for numerical data, the PMM (Predictive Mean Matching) method. Using
precipitation data to exemplify the procedure, the original faulty series of a weather station
is placed side by side with data from the four grid points closest to the location (Table 1).



Atmosphere 2021, 12, 1278 5 of 20

Table 1. Precipitation series with missing data, represented by NA, from the Ouricuri station (WMO code: 82753)—
Pernambuco (a) and after the gaps have been filled (imputed values in red; b). The original data of the station (Orig column)
are followed by the nearest gridded series, which constitute the set of predictors (G-01, G-02, G-03 and G-04).

(a) (b)

Year Month Day Orig G-01 G-02 G-03 G-04 Year Month Day Orig G-01 G-02 G-03 G-04

1980 12 15 0 3.2 3.8 2.7 7.9 1980 12 15 0 3.2 3.8 2.7 7.9
1980 12 16 0 1.9 0.7 3.2 0.4 1980 12 16 0 1.9 0.7 3.2 0.4
1980 12 17 NA 8.3 5.5 3.3 3.7 1980 12 17 5.2 8.3 5.5 3.3 3.7
1980 12 18 15.9 14.7 5.5 19.1 5.1 1980 12 18 15.9 14.7 5.5 19.1 5.1
1980 12 19 6.8 3.9 1.4 9.6 1.7 1980 12 19 6.8 3.9 1.4 9.6 1.7
1980 12 20 NA 12.3 4.4 14.1 5.8 1980 12 20 12.6 12.3 4.4 14.1 5.8
1980 12 21 0 0.1 0 0.2 0.2 1980 12 21 0 0.1 0 0.2 0.2
1980 12 22 0 6.2 3.1 4.9 0.8 1980 12 22 0 6.2 3.1 4.9 0.8

After imputing the missing data, at least 5 years without gaps were identified in the
original series of observed data. Gaps were then artificially generated for those years
and the method was used again, in order to compare the original observed data with
the imputed values that replaced them. This allowed us to assess the method’s ability.
Statistics such as correlations and root mean square error (RMSE) were calculated for these
verification periods to validate the methodology. These verification metrics were used for
three timescales, namely, daily, 10-day and monthly (the latter two consisted of averages or
accumulated values over the period, depending on the variable). The RMSE was selected
as the “MICE” dexterity estimation measure because it has, among other advantages, the
possibility of expressing the accuracy of the numerical results with error values in the same
dimensions as the analysed variables, that is, millimetres for precipitation, degrees Celsius
for temperature, percentage for relative humidity, hectoPascals for atmospheric pressure,
metres per second for average wind speed and hours for insolation. The daily scale is
important for analysing climate extreme indices [38–43]; the 10-day scale is important for
application in agrometeorological studies, as this is the time step used in many crop growth
simulation models [44–46], whereas the monthly scale is essential for studies that involve
analyses of the influence of modes of variability on climate dynamics and also for research
in the area of seasonal and subseasonal climate forecasts [47–51].

2.3. QCS

Some QCS techniques have a strong stochastic component that can lead to a high
probability of rejecting good observations [20,21,37]. The QCS used here is based on a
series of consistency tests, in order to reduce the stochastic dependence and allow the
decision-maker to accept or reject data considered doubtful, based on easy-to-understand
graphical outputs and reports containing the list of suspicious data.

Consistency tests are an important set of checks for possible errors, as they are expected
to explore the temporal and spatial interrelationship of climatological data. The three main
kinds of consistency checks are internal, temporal and spatial:

• Internal consistency tests express the physical relationships among different climato-
logical elements. In some cases, they are logical tests based on the following premise:
if a certain element exists in a given interval, another must also be contained in another
interval [52].

• Temporal consistency tests are based on the persistence over time of climatological
elements. Certain selected change thresholds depend on the variable in question, the
period of the year and the climatic region to which the elements of the time series
belong [53].

• Spatial consistency tests explore the smooth spatial variation of climatological vari-
ables. Generally, this type of test involves the estimation of a certain element based
on neighbouring observations in the same climatic region [54]. The accepted limit of
differences will depend on the type of variable, the climatic region and the distance
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between the seasons. Therefore, the effectiveness of this type of test will depend on
the availability of neighbouring stations [55].

The QCS used in this study is based on a series of tests, called Test Groups. The
flowchart shown in Figure 3 details the step-by-step procedure through which all the
datasets were analysed. Every column with information was carefully studied, from the
column that contains the station’s WMO identification code, to the columns that contain
the data collection dates and the respective values of the meteorological variables.

Figure 3. Description of the QCS evaluation routine, from extracting a series from the database to
applying the tests and then checking for doubtful data and correcting them.

An important step is the creation of a file called metadata, which contains the station’s
basic information: the WMO identification code; the station’s name; its longitude, latitude
and altitude; the country and state to which it belongs; the start and end dates of its
operations; the institution to which it belongs and the type of station, whether manual or
automatic. In the QCS pre-processing step, this information contained in the metadata was
read and served as the basis for some of the general tests shown in Figure 3.

In the final step of verifying and correcting doubtful data, in order to abbreviate the
verification process, a routine identified cases of doubtful data that occurred in more than
one test. If a given value was classified as suspicious in more than one of the QCS tests,
then it was considered as incorrect data and did not need to be evaluated by the specialist,
being summarily sent to a correction process.

3. Results and Discussion
3.1. Gap Filling

A high percentage of missing data was observed for the analysed variables. In
individual terms, the station with the highest number of gaps had 54% missing data, and
the lowest percentage found among the stations was 17%. In relation to a specific variable,
the highest prevalence of gaps was found to be 62% and the lowest was 13%. Overall, the
average percentage of missing data across all stations was 38%.

Gaps can occur in any segment of the series, so the imputation algorithm assigns
“plausible” synthetic values according to the reference data, the predictors. In this way,
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MICE keeps the original data in the series, only filling the gaps. The filling is processed
on the daily scale, then 5 years of observed data are randomly chosen and have their data
removed, and then MICE is applied again, imputing values that are later compared with
real observations; this is the validation process. For the filling performed on the daily scale,
the correlations ranged from 0.4 to 0.8 for temperature and the RMSE ranged from 0.9 to
1.9 ◦C; relative humidity showed correlations from 0.5 to 0.8 and a RMSE from 6.7 to 14.6%;
atmospheric pressure exhibited correlations from 0.3 to 0.8 and a RMSE from 1 to 5 hPa; the
average daily wind speed showed correlations between 0.2 and 0.7 and a RMSE between
0.8 and 1.9 m/s; for precipitation, correlations ranged from 0.5 to 0.9 and the RMSE ranged
from 4 to 12 mm; insolation presented correlations from 0.1 to 0.7 and the RMSE ranged
from 3 to 5 h.

Figure 4, in its upper panel, shows the daily (4a), 10-day (4b) and monthly (4c)
correlations between the observed and imputed rainfall with respect to the aforementioned
validation process. Correlations tended to increase with the accumulation interval [56]. The
lower panel exhibits the RMSE, which also increased gradually for precipitation, ranging
from 4 to 17 mm for daily values, from 12 to 37 mm for 10-day accumulated precipitation
and from 22 to 72 mm for the monthly accumulated values. This behaviour is expected
for precipitation, due to its accumulative nature, with similar results being observed in [4].
For all analysed variables, correlations increased with larger accumulation intervals, with
the opposite being expected for RMSE [57]. This was observed for all variables whose
10-day and monthly values are the averages of these periods, the only exception being
precipitation, for which the 10-day and monthly values are the result of the sum of the daily
precipitations over these intervals. In this specific case, the RMSE rose in a proportional
fashion, building from the highest observed values of the daily rainfall accumulation.

The results of the application of the same statistical techniques (correlation and RMSE)
for the temperature variable are shown in Figure 5. Correlations gradually increased
from the daily to the monthly timescales, exceeding 0.9 in some areas in central-south BA.
Unlike precipitation, for which it was expected that errors would grow proportionally
to the period of accumulation, for temperature, a reduction in the errors was expected,
which is noticeable here in Figure 5d–f, in which there are areas with a maximum RMSE
of almost 2 ◦C on the daily scale, dropping to 1.2 and 1.4 ◦C on the 10-day and monthly
scales, with a minimum RMSE around 0.5 ◦C. For relative humidity (Figure 6), a similar
behaviour to that of temperature was observed for both the correlations (Figure 6a–c) and
the RMSE (Figure 6d–f). The area exhibiting the highest correlations is mostly located in
the northern NEB, associated with the lowest RMSE values. In the centre-south of BA,
the lowest correlations were observed and, in the west of BA, the highest RMSE values
occurred, reaching up to 15% for the daily scale. For atmospheric pressure (Figure 7),
moderate correlations were observed on the daily scale (Figure 7a), whereas the 10-day
(Figure 7b) and monthly (Figure 7c) scales presented considerably higher values. The
highest RMSE numbers were found in the west and south of BA, up to 5 hPa for the daily
scale and up to 3.5 hPa for the monthly scale. The central north NEB showed the lowest
values of RMSE, ranging from 1.5 to 3.5 hPa on the daily scale (Figure 7d), and from 0.5 to
2 hPa on the monthly scale (Figure 7f).

Wind speed (Figure 8) presented weak to moderate correlations on the daily scale,
from 0.2 to 0.75 (Figure 8a), which gradually increased for the 10-day (Figure 8b) and
monthly (Figure 8c) scales, with emphasis on the central portion of the NEB, where it
exceeded 0.85 for some stations. Errors were greater on the daily scale (Figure 8d), being
almost 2 m/s at some points, gradually decreasing, in an inversely proportional manner to
the extent of the timescale, reaching minimum RMSE values of the order of 0.4 to 0.6 m/s
in the areas of central south MA, eastern PI and mid-west BA. The northern NEB, between
CE and RN, is where the highest RMSE values were observed. It should be noted that these
are the areas of the NEB where the wind speeds are higher and several wind power plants
have been installed.
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Figure 6. Correlation maps for relative humidity between imputed and observed data on the daily (a),
10-day (b) and monthly (c) timescales; and RMSE (%) on the daily (d), 10-day (e) and monthly (f) time-scales.
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Figure 8. Correlation maps for wind speed between imputed and observed data on the daily
(a), 10-day (b) and monthly (c) timescales; and RMSE (m/s) on the daily (d), 10-day (e) and monthly
(f) time-scales.

In Figure 9, we show the results of the validation procedure applied to daily insolation
data (Figure 9a) and the average over periods of 10 days (Figure 9b) and a month (Figure 9c).
For the daily scale, the correlations are as low as 0.3 in most of the NEB, with values
exceeding 0.6 in central south MA. However, on the 10-day and monthly scales, the
correlations are quite high, especially in the northern and western NEB. The highest
associated errors were found on the daily scale (Figure 9d), with a RMSE of up to 5 h in
central south BA. The RMSE decreased for the 10-day (Figure 9e) and monthly (Figure 9f)
scales, with the lowest values seen for the latter, in the order of 0.5 to 1.5 h, which were
observed in central north NEB, up to 2 to 2.5 h in the south of BA.

A flawless and reliable observed database is essential for assessing the accuracy of
climate change scenario model estimates, such as verifying monthly average temperature
estimates [58], allowing for more accurate regionalized data using different methods
of calibration [59]. The successful results obtained here in validation tests corroborate
previous findings that regarded MICE as a robust gap filling technique with potential
for application to different climatic variables. In recent years, the use of MICE as an
efficient alternative for imputing missing data has been growing: [60] used the technique
to impute missing solar radiation data under different atmospheric conditions, and [61]
used the MICE for multivariate imputation and prediction of missing wind speed data on
the decadal scale, whereas [32] showed that filling gaps in daily precipitation data from
homogeneous climatic regions in Brazil with MICE was superior to kriging and ordinary
cokriging methods [62]. The technique is widely used by healthcare professionals and
researchers; in this context, [31] demonstrated its relevance and evolution in terms of
available programs and software, which have facilitated its use, for example, by researchers
in the field of psychiatry. At a time of continuous worldwide interest in past, present and
future climatic conditions, our results, demonstrating the effectiveness of the technique,
provide significant assistance in its popularization of its use in climate science.
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Figure 9. Correlation maps for insolation between imputed and observed data on the daily (a), 10-day
(b) and monthly (c) timescales; and RMSE (h) on the daily (d), 10-day (e) and monthly (f) time-scales.

Figure 10 shows an example of filling gaps in daily rainfall data for a station located
in the interior of the state of CE. The time series is divided into five 10-year groups, from
1961 to 2010. The original data distribution is shown on the left, with the missing values
highlighted in red along the horizontal axis, whereas the right-hand panel exhibits the
entire series composed of the preserved original data with the addition of imputed values
from the filling technique. This is a good example that shows one of the main types of
problems that arise during the analysis of a time series: long periods without any kind
of information, as in the first 2 years of the series, 1961 and 1962, as well as between 1971
and 1972, and the large period with no observations from 1985 to 1994. Sparse short gaps
are observed in other segments of the series. Obtaining complete series, after a reliable
and validated filling scheme, is essential for, among other kinds of research, analysing
the temporal evolution of extreme indices. The study of [5] used these complete series to
verify the trends and tipping points associated with extreme precipitation and temperature
indices in the NEB in order to fill gaps in studies that, due to an excessive occurrence of
this issue, had to resort to fewer time series for analysing extremes in the NEB or were
limited to the study of specific areas across the region [33,39–41,43,63,64].

3.2. QCS

After filling in the gaps, we present examples of results concerning the implementation
of a QCS, in order to provide, for the NEB, daily data that are reliable and unburdened by
missing information. The QCS is based on a series of tests, or Test Groups, following the
flowchart presented in Figure 3. The examples are for a station bearing the WMO code
of 82979, located in a municipality in the state of BA called Remanso, with the following
geographic coordinates: −9.63◦ latitude, −42.10◦ longitude and an altitude of 400.5 m. The
average percentage of filled gaps for this station was 30%.
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Figure 10. The original series from a station for every 10 years from 1961 to 2010, showing the gaps (left) and after these
gaps had been filled (right). The code and name of the station, the subperiods and the variables are indicated in the graph.
Originally missing data are indicated by the red colour, while blue implies observed data and violet indicates imputed data.

The first test, belonging to the group of general tests, checks if all the data from a
station are associated with a single identification code (WMO code), that is, it certifies that
there was no contamination by data from another station. The second group of tests, called
fixed limit tests, is applied to precipitation, temperature, relative humidity and insolation.
This test establishes the lower and upper limits for reasonable values, generally chosen
according to historical records relative to a reference climate normal. In this case, we used
the climate normals of Brazil for the period of 1961–1990 [65,66]. For this station, the limits
for temperature were 10 ◦C and 41 ◦C (the minimum historical value recorded for daily
minimum temperature and the maximum recorded value for daily maximum temperature,
respectively). For this test, some errors were detected (Table 2) for atmospheric pressure
(fixed limits of 955–975 hPa) and for insolation (fixed limits of 0–12 h).

Variable limit tests, which are part of the third group of tests, identify “extreme”
residuals relative to a seasonal cycle, adjusted for the considered variable. Two percentile
thresholds are defined (lower and higher), for example, 0.01 (i.e., the 1% percentile) and
0.99 (i.e., the 99% percentile). Extreme percentiles can be calculated with respect to each
month or to the whole time series. Residuals less than the lower percentile and greater
than the upper percentile are considered extremes. Taking the maximum temperature
data from the Remanso station as an example, we found that, for the month of January,
the 1% and 99% percentiles are, respectively, the values 25.7 ◦C and 36.6 ◦C. If we take
all the values of the series, with no monthly distinction, the values of the 1% and 99%
percentiles correspond, respectively, to 26.3 ◦C and 37.2 ◦C. Therefore, values that exceed
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these thresholds will be considered extreme and doubtful, and will be reported in a printed
output to be analysed manually, as shown in Table 3.

Table 2. Doubtful values found by the QCS through the fixed limit test for atmospheric pressure
(in hPa) and insolation (in hours/day).

Year Month Day Atmospheric Pressure (hPa)

1996 1 28 953.8
1996 8 7 977.7
1996 7 27 997.7
1996 3 20 1002.1
1996 3 21 982.5
1996 6 4 322.8
1996 6 5 0
1996 6 6 646.1
1996 6 14 975.8
2002 3 4 953.7

Year Month Day Insolation (hours)

1998 8 25 25

Table 3. An excerpt of the time series of maximum temperature (in degrees Celsius), corresponding
to the first 10 days of April 1961, with the doubtful values found by the QCS through the variable
limits test highlighted in red. For April, the values of the 1% and 99% percentiles are, respectively,
26.6 ◦C and 36.4 ◦C.

Year Month Day Maximum Temperature (◦C)

1961 4 1 34.4
1961 4 2 30.6
1961 4 3 36.4
1961 4 4 37.0
1961 4 5 34.8
1961 4 6 37.2
1961 4 7 36.6
1961 4 8 36.0
1961 4 9 35.8
1961 4 10 33.6

The result of this test is also graphically presented in a box-plot graph. Figure 11
shows these results for relative humidity, maximum temperature, average temperature
and minimum temperature, where the red dots refer to values that exceeded these variable
limits based on the 1% and 99% percentiles. For precipitation, it was estimated that, for each
month, the 95%, 97.5% and 99% percentiles would be used as limits to identify potential
extremes of daily rainfall. These percentiles were calculated using the parameters of the
gamma distribution adjusted for each month of the year.

The fourth group of tests, called temporal continuity tests, investigates two very
common problems in daily datasets from manual weather stations: sequences of repeated
values, and unjustified extremely high day-to-day discrepancies or “jumps” that occur
in the data. The function of detecting sequences of repeated values is intended to find
sequences from a defined limit, for example, from 3 days. To detect jumps or extreme
discontinuities between values of a variable for consecutive days, a series was assembled
with all the daily differences: the difference between 2 January 1961 and 1 January 1961,
then the difference between 3 January 1961 and 2 January 1961, and so on. With these
series of differences, the percentiles (e.g., 95%, 99% and 99.5%) of the absolute values of
the differences were calculated, which were used as limits to define extreme jumps. If the
absolute value (that is, a positive or negative difference) was greater than the percentile
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used as a threshold, this jump was identified as extreme. In this study, the 99.5% percentile
was used as the threshold.

Figure 11. Variable limits test results for the 1% and 99% percentiles for the variables that are identified on the top of each
graph. Red dots indicate the values that exceeded these thresholds.

The output of this test is printed and plotted, comprising the day, the variable and the
doubtful value. Figure 12 shows these results, in two graphical forms, for relative humidity,
maximum temperature, average temperature and minimum temperature, where the dots
and/or red lines correspond to values that did not respect the limit of the 99.5% percentile
of the differences and were therefore characterized as suspicious data.

In the fifth group of tests, the one concerning consistency tests between variables,
the consistency is checked relative to the minimum, average and maximum temperatures.
This test starts with the condition that the minimum temperatures must not be higher
than the maximum temperatures, and that the average temperatures must lie between
the daily minimum and maximum temperatures. Both printed and graphical outputs are
generated. Suspicious data are analysed and then corrected, when the database has already
incorporated the proper correction or rejected it, in which case the test is rerun until the
imputed values satisfy the test conditions. Figure 13 shows the expected ideal condition:
the left panel shows that all the maximum temperature values were higher than the average
temperature, and the right panel shows that all average temperature values in the series
were higher than the minimum temperature values.
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Figure 12. Results of the moving limits test for the 1% and 99% percentiles for relative humidity, and maximum, average
and minimum temperatures. Red dots indicate values that exceeded these thresholds.

Figure 13. Results of the first consistency test between variables. The figure on the left shows that no average temperature
value was higher than the daily maximum temperature, and the figure on the right shows that no average temperature
value was lower than the daily minimum temperature. If any of the conditions failed due to suspicious data, these values
would be identified as red dots to the left or to the right of the diagonal lines in the graphs.
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The daily average temperature obtained for a weather station is called the compen-
sated average temperature, as estimated by the following equation:

TM = [T(12 h) + 2 × T(24 h) + TMX + TN]/5

where TM is the average daily compensated temperature, T(12 h) is the temperature
observed at 12 h UTC, T(24 h) is the temperature observed at 24 h UTC, TX is the daily
maximum temperature and TN is the daily minimum temperature.

Therefore, after checking with the first test, another way to identify any problems in the
daily data relative to average temperatures is to compare the daily value directly with the
daily average between the maximum temperature and the minimum temperature. For the
execution of this test, a series of differences between the station’s daily average temperature
and the average obtained between the daily maximum and minimum temperatures is
assembled. From this series of differences, the 99% percentile is calculated, which is the
maximum tolerance threshold for the difference between the daily average temperature
and the daily average between the maximum and minimum temperatures. The output of
this test is both in printed and graphical forms. Figure 14 shows the results of this test.

Figure 14. Result of the consistency test for the average daily temperature. The red dots represent
values for which the difference between the daily average temperature and the average between
maximum and minimum temperatures exceeded the 99% percentile.

4. Conclusions

In this study, the potential of the MICE technique to fill gaps in daily data from
time series of meteorological variables collected from multiple MWS over the NEB was
presented. The completed data were validated against observations, through correlations
and RMSE, on three timescales: daily, 10-day and monthly. For all the variables, correlations
increased with the number of days over which the accumulated values (of precipitation) or
the average (for the other variables) were calculated.

Precipitation, followed by temperature, relative humidity and atmospheric pressure,
were the variables for which the highest correlations were observed among all the compared
temporal scales. On the daily scale, wind speed presented moderate correlations, and
insolation showed weak correlations. However, the increase in correlations was significant,
for all variables, in the 10-day and monthly comparisons. As expected for an accumulative
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variable, the errors increased with the period of accumulated precipitation, whereas, for
the other variables, the errors become gradually smaller on the 10-day and monthly scales.

The QCS is composed of strict criteria (specific tests) for identifying, in an automated
manner, doubtful imputed data, although it allows adjustments by expert users, according
to their knowledge of the local climate. Suspicious data can be kept if other tests and
verifications allow them, such as in the case of spatial consistency tests that facilitate
the comparison of similar suspicious occurrences at nearby stations. Otherwise, if more
than one test indicates data inconsistency and the spatial analysis does not indicate close
similarities, the doubtful value can be eliminated from the series, which will undergo as
many filling procedures as necessary until a plausible synthetic value can occupy the place
of the rejected data.

These results showed the efficiency of the technique for filling time series of meteoro-
logical variables, as well as that of the QCS. In the case of precipitation and temperature,
both the filled and control/comparison datasets from this research were successfully used
in studies of analyses of climatic extremes indices [5], and for statistical downscaling
of regionalized climate change scenarios [4,45,59]. In the field of seasonal and subsea-
sonal climate forecasting, these series will compose a database of surface observations for
the calibration and verification of the Brazilian Global Atmospheric Model (BAM) [67],
which is the atmospheric module of the Brazilian Earth System Model (BESM), aiming to
achieve a hybrid dynamic–statistic coupling for the observed surface data and to perform
adjustments in the BAM’s seasonal forecasting for the NEB.
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