Dark sector interaction and the supernova absolute magnitude tension

Rafael C. Nunes ${ }^{1, *}$ and Eleonora Di Valentino ${ }^{2, \dagger}$
${ }^{1}$ Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Avenida dos Astronautas 1758, São José dos Campos, 12227-010 São Paulo, Brazil
${ }^{2}$ Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom

(Received 19 July 2021; accepted 25 August 2021; published 15 September 2021)

Abstract

It has been intensively discussed if modifications in the dynamics of the Universe at late times are able or not able to solve the H_{0} tension. On the other hand, it has also been argued that the H_{0} tension is actually a tension on the supernova absolute magnitude M_{B}. In this work, we robustly constrain M_{B} using Pantheon supernovae Ia sample, baryon acoustic oscillations, and big bang nucleosynthesis data, and assess the M_{B} tension by comparing three theoretical models, namely the standard $\Lambda \mathrm{CDM}$, the $w \mathrm{CDM}$, and a nongravitational interaction between dark energy (IDE) and dark matter. We find that the IDE model can solve the M_{B} tension with a coupling different from zero at 95% CL, confirming the results obtained using a H_{0} prior.

DOI: 10.1103/PhysRevD.104.063529

I. INTRODUCTION

The standard Λ-cold dark matter (Λ CDM) scenario provides a wonderful fit to astronomical observations carried out over the past two decades. On the other hand, recently some tensions and anomalies became statistically significant while analyzing different data sets, placing the Λ CDM cosmology at a crossroads. The most discussed and statistically significant tension in the literature is in the estimation of the Hubble constant, H_{0}, between the cosmic microwave background (CMB) and the direct local distance ladder measurements. Assuming the Λ CDM scenario, Planck-CMB data analysis provides $H_{0}=67.4 \pm$ $0.5 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [1], which is in 4.4σ tension with the local measurement $H_{0}=74.03 \pm 1.42 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [2] by the SHOES team, or 4.2σ considering the latest one $H_{0}=73.2 \pm 1.3 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ [3]. Additionally, many other late time measurements are in agreement with a higher value for the Hubble constant (see the discussion in [4-6]) and in tension with the Planck-CMB estimate, as for example the Megamaser Cosmology Project [7] that gives $H_{0}=73.9 \pm 3.0 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, or using the surface brightness fluctuations [8] that find $H_{0}=73.3 \pm 0.7 \pm$ $2.4 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$. The lower value of H_{0} inferred from the Planck-CMB data is in very good agreement with baryon acoustic oscillations (BAO) + big bang nucleosynthesis (BBN) constraints [9], and other CMB experiments like ACTPol-DR4 [10] or SPT-3G [11]. Finally, there are measurements in the middle that can not discriminate

[^0]between the two values, such as the tip of the Red Giant branch [12] or the astrophysical model dependent measurements based on the strong lensing effect [13]. Motivated by these observational discrepancies (unlikely to disappear completely by introducing multiple and unrelated systematic errors) it has been widely discussed in the literature whether new physics beyond the standard cosmological model can solve the H_{0} tension (see Refs. [14-16] and references therein for a review).

The SHOES team measures the absolute peak magnitude, M_{B}, of type Ia supernovae (SN), assumed to be standard candles, by calibrating the distances of SN host galaxies to local geometric distance anchors via the Cepheid period luminosity relation. The magnitude M_{B} is then converted into a value of H_{0} via the magnitude-redshift relation of the Pantheon SN sample [17]. Therefore, it has been argued that the H_{0} tension is actually a tension on the supernova absolute magnitude M_{B} [18,19], because the SH0ES H_{0} measurement comes directly from M_{B} estimates. The CMB constraint on the sound horizon to the SN absolute magnitude M_{B} using the parametric-free inverse distance ladder predicts $M_{B}=-19.401 \pm 0.027 \mathrm{mag}$ [20], while the SN measurements from SH0ES corresponds to $M_{B}=$ $-19.244 \pm 0.037 \mathrm{mag}$ [19]. These measurements are at 3.4σ tension. Thus, as argued in $[18,19]$, rather than explaining the H_{0} tension one should instead focus on the supernova absolute magnitude tension, because this is what the Cepheid calibrations are designed to measure. For this reason, it has been shown that modifications of the expansion history at late times can not help with the H_{0} and/or M_{B} tension, motivating discussions and investigations in this direction [21-27]. On the other hand, other
possibilities, including early time solutions that introduce new physics prior to recombination, also have been considered as good alternatives to solve the H_{0} tension (see [28-47] and reference therein), even if they are not completely successful $[48,49]$.

In particular, alternative scenarios involving a nongravitational interaction between the two main dark species of our Universe, namely, dark matter (DM) and dark energy (DE), have been intensively studied as a possibility to resolve the current cosmological H_{0} tension (see for example [6,50-77] for a short list and references therein). This class of models has been listed as an example of a "not working" solution, i.e., able to solve the H_{0} tension, but unable to alleviate the M_{B} tension. Therefore, we aim with this paper to check if modifications to the late time evolution involving a nongravitational coupling different from zero in the dark sector, can bring the M_{B} measured from distant supernovae of the Pantheon sample and calibrated by $\mathrm{BAO}+\mathrm{BBN}$ into agreement with the value obtained calibrating the local SN with the Cepheid measurements. We are interested in the background only analysis, so we don't include CMB data in this paper. But, without loss of generality, using the mentioned data, we will get good accuracy in our constraints. Our main conclusion is that an Interacting DE-DM model (IDE) with a dark coupling different from zero is able to solve the $H_{0}-M_{B}$ tension, and it is in agreement with the Pantheon SN sample.

This paper is structured as follows. In Sec. II we introduce the interacting DE-DM model considered. In Sec. III we present the data sets and methodology used in this work. In Sec. IV we discuss the main results of our analysis. In Sec. V we outline our final considerations and perspectives.

II. THEORETICAL FRAMEWORK

In this section we introduce the interacting DE-DM model studied here. In a homogeneous and isotropic Universe, the dark interaction is quantified as

$$
\begin{equation*}
\nabla_{\mu} T_{i}^{\mu \nu}=Q_{i}^{\nu}, \quad \sum_{\mathrm{i}} Q_{i}^{\mu}=0 \tag{1}
\end{equation*}
$$

where the index i runs over DM and DE. The four-vector Q_{i}^{μ} governs the interaction. We can assume that Q_{i}^{μ} is given by

$$
\begin{equation*}
Q_{i}^{\mu}=\left(Q_{i}+\delta Q_{i}\right) u^{\mu}+a^{-1}\left(0, \partial^{\mu} f_{i}\right), \tag{2}
\end{equation*}
$$

where u^{μ} is the velocity four-vector and Q_{i} is the background energy transfer. Let us note that from now on we shall use the notation $Q_{i} \equiv Q$. The symbol f_{i} refers to the momentum transfer potential. In the Friedmann-Lemaître-Robertson-Walker (FLRW) background, one can write down the conservation equations of the DM and DE densities as

$$
\begin{gather*}
\dot{\rho}_{c}+3 H \rho_{c}=Q \tag{3}\\
\dot{\rho}_{x}+3 H(1+w) \rho_{x}=-Q, \tag{4}
\end{gather*}
$$

where $H=\dot{a} / a$ is the expansion rate of the Universe and w is the equation of state (EoS) of DE .

In the present work, we consider a very well-known parametric form of the interaction function Q, namely, $Q=\mathcal{H} \xi \rho_{x}$, where ξ is the coupling parameter between the dark components. From the sign of ξ, one can identify the direction of the energy flow between the dark sectors. The condition $\xi<0$ corresponds to the energy flow from DM to DE , and $\xi>0$ represents the opposite scenario. The functional form $Q=\mathcal{H} \xi \rho_{x}$ can avoid the instabilities in the perturbations at early times on the dark sector species, although it will not be necessary to consider the evolution of the perturbations in this work. It should be noted that the inclusion of the global factor \mathcal{H} into the interaction function Q was motivated to quantify a possible global interaction through cosmic history. Although, as already argued by the authors [78], the interaction in the dark sectors should depend on the local quantities too. Nevertheless, as the present interaction function is widely studied in the literature, we aim to revisit this model.

On the other hand, the choice of the interaction function is not unique and it is very difficult to provide a specific functional form since the nature/properties of both dark components is completely unknown at present. From the observational perspective, we do not find any strong signal which could reveal the nature of the dark components, and hence, we believe that the nature of the interaction function will probably remain unknown for the next decade(s). We can only approximate the interaction function Q through theoretical arguments and the consistency with observational data. However, it has been argued by many investigators that the interaction between the dark components may appear from some effective field theory [79], disformal coupling [80], axion monodromies [81], varying dark matter mass and fundamental constants [82], and Horndeski theories [83]. Thus, one can see that some viable formalism can be given for the interacting dark energy theory. Motivated to check the strength of this dark coupling and its observational viability, let us assume in the present work the simple parametric function $Q=\mathcal{H} \xi \rho_{x}$ to quantify such dark interaction.

III. DATASETS AND METHODOLOGY

In this section we present the data sets and methodology used to obtain the observational constraints on the model parameters by performing Bayesian Monte Carlo Markov Chain (MCMC) analysis. In order to constrain the parameters, we use the following data sets:
(a) Type Ia Supernovae distance moduli measurements from the Pantheon sample [17]. These measurements constrain the uncalibrated luminosity distance $H_{0} d_{L}(z)$,
or in other words the slope of the late-time expansion rate (which in turn constrains Ω_{m}). We refer to this dataset as Pantheon. For a SN at redshift z, the theoretical apparent magnitude m_{B} is given by

$$
\begin{equation*}
m_{B}=5 \log _{10}\left[\frac{d_{L}(z)}{1 \mathrm{Mpc}}\right]+25+M_{B} \tag{5}
\end{equation*}
$$

where M_{B} is the absolute magnitude. The distance modulus is then written as $\mu(z)=m_{B}-M_{B}$.
(b) Baryon acoustic oscillations (BAO) distance and expansion rate measurements from the 6dFGS [84], SDSS-DR7 MGS [85], BOSS DR12 [86] galaxy surveys, as well as from eBOSS DR14 Lyman- α ($\mathrm{Ly} \alpha$) absorption [87] and Ly α-quasars cross correlation [88]. These consist of isotropic BAO measurements of $D_{V}(z) / r_{d}$ (with $D_{V}(z)$ and r_{d} the spherically averaged volume distance, and sound horizon at baryon drag respectively) for 6dFGS and MGS, and anisotropic BAO measurements of $D_{M}(z) / r_{d}$ and $D_{H}(z) / r_{d}$ (with $D_{M}(z)$ the comoving angular diameter distance and $D_{H}(z)=c / H(z)$ the Hubble distance)for BOSS DR12, eBOSS DR14 Ly α, and eBOSS DR14 Ly α-quasars cross correlation.
(c) The state of the art assumptions on big bang nucleosynthesis (BBN). The BBN data consist of measurements of the primordial abundances of helium, Y_{P}, from [89], and the deuterium measurement, $y_{D P}=10^{5} n_{D} / n_{H}$, obtained in [90]. This BBN likelihood is sensitive to the constraints of the physical baryon density $\omega_{b} \equiv \Omega_{b} h^{2}$ and the effective number of neutrino species $N_{\text {eff }}$. Let us fix $N_{\text {eff }}=3.046$ in this present work. A Gaussian prior on $M_{B}=-19.244 \pm$ 0.037 mag [19], corresponding to the SN measurements from SH0ES.
We first consider the standard Λ CDM model, spanned by the following parameters: the Hubble constant H_{0}, the physical baryon density $\omega_{b} \equiv \Omega_{b} h^{2}$, the physical cold dark matter density $\omega_{c} \equiv \Omega_{c} h^{2}$, and the absolute peak magnitude, M_{B} of SN. The matter density parameter today Ω_{m} is given by $\Omega_{m}=\left(\omega_{b}+\omega_{c}\right) / h^{2}$. Then, we consider two oneparameter extensions of the previous model. Firstly, we introduce a dark energy equation of state free to vary w and we call this model w CDM. Secondly, we consider a dark coupling between DM and DE with a single free parameter
ξ, and we refer to this extended scenario as the IDE model.

It should be noticed here that in order to avoid the gravitational instabilities present when $w=-1$ [91,92], we fix the dark energy equation of state to $w=-0.999$, as previously done in [59,93,94], without affecting the results, as shown by using simulated data in [61]. Moreover, in order to avoid early-time instabilities [91,92,95-98], we also assume $\xi<0$.

We use the Metropolis-Hastings mode in CLASS + MontePython code [99-101] to derive the constraints on cosmological parameters from the data sets described above in this section, ensuring a Gelman-Rubin convergence criterion of $R-1<10^{-3}$ [102].

IV. RESULTS

In this work, we consider two different data combinations, namely, Pantheon $+\mathrm{BAO}+\mathrm{BBN}$ and Pantheon + $\mathrm{BAO}+\mathrm{BBN}+M_{B}$ applied on three different cosmological models, namely, Λ CDM, $w \mathrm{CDM}$, and IDE models.

The first joint analysis, shown in Table I, is chosen to break any possible degeneracy in the $H_{0}-\Omega_{m}$ plane, because we know that $\mathrm{BAO}+\mathrm{BBN}$ can constrain these parameters very well. Also, several authors have pointed out the ability of combined BAO and BBN data to probe the background cosmological history, independently of CMB data. As a second step for the analysis, we will add a M_{B} Gaussian prior corresponding to the SN measurements from SH 0 ES , and we will analyze Pantheon $+\mathrm{BAO}+\mathrm{BBN}+M_{B}$, showing the results in Table II. In this work, we will analyze our baseline regardless of Planck-CMB data and then discuss the potential of the model of solving and/or alleviating the M_{B} tension.

Figure 1 shows the 2D-joint posterior distributions at $68 \% \mathrm{CL}$ and $95 \% \mathrm{CL}$ in the $M_{B}-H_{0}$ plane, obtained from Pantheon $+\mathrm{BAO}+\mathrm{BBN}$ and Pantheon $+\mathrm{BAO}+$ $\mathrm{BBN}+M_{B}$ for the three scenarios considered in this work. In particular we compare Λ CDM in the top left panel of Fig. 1, the w CDM framework in the top right panel of Fig. 1, and the IDE scenario in the bottom panel of Fig. 1.

Once we have obtained constraints on the above cosmological parameters, we can quantify the level of concordance or discordance (if any) on M_{B} between different datasets i and j using a simple 1D tension metric as follows:

TABLE I. Constraints at 95% CL for the four models under consideration in this work for the Pantheon + $\mathrm{BAO}+\mathrm{BBN}$ joint analysis. The parameter H_{0} is measured in units of $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$ and M_{B} in units of mag. The last column represents the degree of tension with M_{B} from SHOES.

Model	M_{B}	H_{0}	Ω_{m}	w	ξ	Tension
Λ CDM	$-19.393_{-0.040}^{+0.042}$	$68.5_{-1.1}^{+1.2}$	$0.302_{-0.025}^{+0.025}$	-1	0	3.4σ
$w \mathrm{CDM}$	$-19.376_{-0.11}^{+0.095}$	$69.2_{-3.3}^{+3.7}$	$0.306_{-0.032}^{+0.034}$	$-1.02_{-0.11}^{+0.11}$	0	2.1σ
IDE	$-19.385_{-0.089}^{+0.094}$	$69.1_{-2.8}^{+3.1}$	$0.274_{-0.050}^{+0.044}$	-0.999	>-0.35	2.4σ

TABLE II. Constraints at 95% CL for the four models under consideration in this work for the Pantheon + $\mathrm{BAO}+\mathrm{BBN}+M_{B}$ joint analysis. The parameter H_{0} is measured in units of $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$ and M_{B} in units of mag. The last column represents the degree of tension with M_{B} from SHOES.

Model	M_{B}	H_{0}	Ω_{m}	w	ξ	Tension
Λ CDM	$-19.340_{-0.046}^{+0.047}$	$70.0_{-1.4}^{+1.4}$	$0.314_{-0.025}^{+0.024}$	-1	0	2.1σ
w CDM	$-19.285_{-0.009}^{+0.060}$	$72.4_{-2.9}^{+1.2}$	$0.323_{-0.025}^{+0.025}$	$-1.10_{-0.10}^{+0.09}$	0	1.0σ
IDE	$-19.288_{-0.063}^{+0.064}$	$72.3_{-2.3}^{+2.4}$	$0.256_{-0.065}^{+0.061}$	-0.999	$-0.31_{-0.28}^{+0.27}$	0.9σ

$$
\begin{equation*}
T_{M_{B}} \equiv \frac{M_{B, i}-M_{B, j}}{\sqrt{\sigma_{M_{B, i}}^{2}+\sigma_{M_{B, j}}^{2}}} \tag{6}
\end{equation*}
$$

where the value of $T_{M_{B}}$ can directly be interpreted as the level of tension in equivalent Gaussian σ.

The first thing to notice is that (taking as a reference the SN measurements from the SH0ES team obtained by Ref. [19], $M_{B}=-19.244 \pm 0.037$) our constraints on M_{B} are in tension above 3σ for the $\Lambda \mathrm{CDM}$ model.

FIG. 1. Two-dimensional joint posterior distributions in the $M_{B}-H_{0}$ plane, with the corresponding 68% CL and 95% CL contours, obtained for Pantheon $+\mathrm{BAO}+\mathrm{BBN}$ and Pantheon $+\mathrm{BAO}+\mathrm{BBN}+M_{B}$ joint analyses within the $\Lambda \mathrm{CDM}$ (top left panel), $w \mathrm{CDM}$ (top right panel), and IDE (bottom panel) models. The vertical gray band denotes the 68% CL interval of the SN absolute magnitude M_{B} based on the SH0ES measurements. The horizontal yellow band denotes the 68% CL interval of the H_{0} parameter based on the SH0ES measurements.

On the contrary, both the $w \mathrm{CDM}$ and IDE models can reduce the M_{B} tension below 3σ. This shows that a latetime modification such as a phantom dark energy equation of state can alleviated the M_{B} tension as suggested when a H_{0} prior is used.

Regarding the IDE scenario instead, the constraining power of the dataset combinations we are using is not enough to rule out the value of the coupling found from the works in the literature to alleviate the Hubble tension [6,50-75]. Actually, the dark-coupling estimate obtained in Table I has just a lower limit and it is in agreement with both zero and the large coupling needed to solve the H_{0} tension, within one standard deviation, because of the large error bars.

Considering the Pantheon $+\mathrm{BAO}+\mathrm{BBN}$ combination (Table I), we can see that the introduction of a non-null interaction between DM and DE shifts slightly both H_{0} towards higher values and M_{B} towards lower values, relaxing the error bars and reducing the tension with SH0ES below 3σ (see also Fig. 1, bottom panel).

If we now add a Gaussian prior M_{B} to the previous dataset combination, we obtain the results in Table II. Here we can see that, even if in disagreement with the Λ CDM model at more than 3σ, the addition of the M_{B} prior can shift its value reducing the tension below 3σ. On the contrary, for the $w \mathrm{CDM}$ model, the combination with the Gaussian M_{B} prior solves the tensions with the SH0ES measurement thanks to the evidence for a phantom dark energy at more than 95% CL. Moreover, for the IDE model the M_{B} prior can be included safely, restoring the complete agreement with the SH0ES data at the price of a negative coupling $\xi=-0.31_{-0.28}^{+0.27}$ at $95 \% \mathrm{CL}$. This result confirms the claim we find in the literature [6,50-75], i.e., that a flux of energy from the DM to the DE can solve the Hubble tension, and show that the use of a Gaussian prior on H_{0} or M_{B} is equivalent for this class of models.

To conclude the analysis, we plot the magnitude-redshift relation for the Pantheon sample in the redshift range $0<z<1$, together with the best fits obtained for Pantheon $+\mathrm{BAO}+\mathrm{BBN}+M_{B}$ for a $\Lambda \mathrm{CDM}$ model (blue line), the IDE model (orange line) and the w CDM scenario (green line) in the left panel of Fig. 2. We show instead the $100 \times\left(1-m_{B}^{i} / m_{B}^{\Lambda \mathrm{CDM}}\right)$, where i runs on the $w \mathrm{CDM}$ and IDE models from the difference of the best fit values between Λ CDM and w CDM scenarios (blue line), or Λ CDM and IDE models (orange line) in the right panel of Fig. 2, i.e., the percentage difference between the best fits of the models with respect to the Λ CDM case. We find that in the z range adopted in SH0ES SN data analysis, the difference between the IDE scenario and the Λ CDM one is $<1.4 \%$, decreasing up to $<0.6 \%$ at high z. For the w CDM model, we note practically the same difference at very low z ($<1.35 \%$), and $<0.5 \%$ at high z.

To better quantify the agreement (and/or disagreement) between the models and the Pantheon SN sample, we perform a statistical comparison of the IDE model with the Λ CDM scenario by using the well-known Akaike information criterion (AIC) [103].

The AIC is defined through the relation

$$
\begin{equation*}
\mathrm{AIC} \equiv-2 \ln \mathcal{L}_{\max }+2 N \tag{7}
\end{equation*}
$$

where $\mathcal{L}_{\text {max }}$ is the maximum likelihood function of the model, and N is the total number of free parameters in the model. For the statistical comparison, the AIC difference between the model under study and the reference model is calculated for the joint analysis Pantheon $+\mathrm{BAO}+$ $\mathrm{BBN}+M_{B}$. This difference in AIC values can be interpreted as the evidence in favor of the model under study over the reference model. It has been argued in [104] that one model can be preferred with respect to another if the AIC difference between the two models is greater than a threshold value $\Delta_{\text {threshold }}$. As a rule of thumb, $\Delta_{\text {threshold }}=5$

FIG. 2. Left panel: Best fit values for the $\Lambda \mathrm{CDM}, ~ w \mathrm{CDM}$ and IDE models obtained by Pantheon $+\mathrm{BAO}+\mathrm{BBN}+M_{B}$ compared against the magnitude-redshift relation of the Pantheon SN sample in the redshift range $0<z<1$. Right panel: $100 \times\left(1-m_{B}^{i} / m_{B}^{\Lambda C D M}\right)$, where i run on the $w \mathrm{CDM}$ and IDE models from the difference of the best fit values between $\Lambda \mathrm{CDM}$ and ω CDM or IDE of the left plot.
can be considered the minimum value to assert a strong support in favor of the model with a smaller AIC value, regardless of the properties of the models under comparison [105].

The result we obtain by computing $\mathrm{AIC}^{\Lambda \mathrm{CDM}}-\mathrm{AIC}^{\mathrm{IDE}}=$ $\Delta \mathrm{AIC}=1.54$, which shows that the IDE model can better fit the joint analysis than the Λ CDM model, but the Λ CDM framework cannot be ruled out with high statistical significance. Actually, a simple χ^{2} comparison also points in the same direction. We find for the fit of Pantheon + $\mathrm{BAO}+\mathrm{BBN}+M_{B}$ a $\chi_{\text {min }}^{2}=1046.74$ for the IDE model, and $\chi_{\text {min }}^{2}=1050.28$ for the $\Lambda \mathrm{CDM}$ model, considering the same joint analysis, corresponding to a $\Delta \chi_{\text {min }}^{2}=-3.57$ for one additional degree of freedom. This shows that the IDE model can fit these data better than the Λ CDM scenario.

A similar result is obtained for the $w \mathrm{CDM}$ models, that gives $\mathrm{AIC}^{\Lambda \mathrm{CDM}}-\mathrm{AIC}^{w \mathrm{CDM}}=\Delta \mathrm{AIC}=1.52$, improving the fit of the joint analysis with respect to the standard $\Lambda C D M$, even if not in a significant way. Moreover, the $\chi_{\text {min }}^{2}=1046.76$ for the $w \mathrm{CDM}$ model, with a $\Delta \chi_{\text {min }}^{2}=$ -3.52 and only one more degree of freedom.

Therefore, even if the Λ CDM model fits slightly better to the SN data, the best fit for the IDE case, which can solve the Hubble tension with a $95 \% \mathrm{CL}$ of evidence for a dark coupling different from zero, cannot be excluded by the Pantheon $+\mathrm{BAO}+\mathrm{BBN}+M_{B}$ combination of data. In other words, for this class of interacting models, solving the H_{0} or the M_{B} tension is equivalent, and using a Gaussian prior from SH0ES on the Hubble constant does not bias the results. Actually, the constraints obtained are completely in agreement with the magnitude-redshift relation of the Pantheon SN sample.

V. FINAL REMARKS

It has been intensively discussed in $[18,19]$ if modifications in the dynamics of the Universe at late times is able or not to solve the H_{0} tension once BAO and Pantheon data are taken into account. On the other hand, it has also been
argued that the H_{0} tension is actually a tension on the supernova absolute magnitude M_{B}.

We investigate this issue by analyzing three different models, namely the Λ CDM scenario and two possible latetime solutions to the Hubble tension, i.e., a $w \mathrm{CDM}$ model and an interacting DE-DM model. We analyze these scenarios making use of two possible dataset combinations, that are Pantheon $+\mathrm{BAO}+\mathrm{BBN}$ and Pantheon $+\mathrm{BAO}+$ $\mathrm{BBN}+M_{B}$. We find that the IDE model can alleviate the M_{B} tension, as well as the H_{0} disagreement, and a coupling different from zero at more than $95 \% \mathrm{CL}$ is actually preferred by the Pantheon $+\mathrm{BAO}+\mathrm{BBN}+M_{B}$ dataset combination. The same thing is also true for a phantom solution with $w<-1$, because it can solve the M_{B} tension, as it does for the H_{0} tension.

As a final step we investigate if the best fit from an interaction between the DM and the DE for the Pantheon + $\mathrm{BAO}+\mathrm{BBN}+M_{B}$ data, than can solve the Hubble tension, is in agreement with the Pantheon data and we find that this model is preferred against the Λ CDM case. This result allows us to conclude that applying a SH0ES H_{0} prior, instead of a M_{B} prior, does not bias the results for an IDE late time solution. On the contrary, if we repeat the same analysis for a phantom DE equation of state, we do not see an indication for this solution from Pantheon data only, that prefers in any case, a cosmological constant.

ACKNOWLEDGMENTS

We thank George Efstathiou, Sunny Vagnozzi, Valerio Marra, Stefano Gariazzo and Olga Mena for their useful comments on the draft. R. C. N. acknowledges financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo Research Foundation) under the Project No. 2018/18036-5. E. D. V. acknowledges the support of the AddisonWheeler Fellowship awarded by the Institute of Advanced Study at Durham University.
[1] N. Aghanim et al. (Planck Collaboration), Astron. Astrophys. 641, A6 (2020).
[2] A. G. Riess, S. Casertano, W. Yuan, L. M. Marri, and D. Scolnic, Astrophys. J. 876, 85 (2019).
[3] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, Astrophys. J. Lett. 908, L6 (2021).
[4] L. Verde, T. Treu, and A. G. Riess, Nat. Astron. 3, 891 (2019).
[5] A. G. Riess, Nat. Rev. Phys. 2, 10 (2020).
[6] E. Di Valentino, Mon. Not. R. Astron. Soc. 502, 2065 (2021).
[7] D. W. Pesce et al., Astrophys. J. Lett. 891, L1 (2020).
[8] J. P. Blakeslee, J. B. Jensen, C.-P. Ma, P. A. Milne, and J. E. Greene, Astrophys. J. 911, 65 (2021).
[9] S. Alam, M. Aubert, S. Avila, C. Balland, J. E. Bautista, M. A. Bershady, D. Bizyaev, M. R. Blanton, A. S. Bolton, J. Bovy et al., Phys. Rev. D 103, 083533 (2021).
[10] S. Aiola et al. (ACT Collaboration), J. Cosmol. Astropart. Phys. 12 (2020) 047.
[11] D. Dutcher et al. (SPT-3G Collaboration), Phys. Rev. D 104, 022003 (2021).
[12] W. L. Freedman, arXiv:2106.15656.
[13] S. Birrer et al., Astron. Astrophys. 643, A165 (2020).
[14] E. Di Valentino et al., Astropart. Phys. 131, 102605 (2021).
[15] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, Classical Quantum Gravity 38, 153001 (2021).
[16] L. Perivolaropoulos and F. Skara, arXiv:2105.05208.
[17] D. M. Scolnic et al., Astrophys. J. 859, 101 (2018).
[18] G. Efstathiou, Mon. Not. R. Astron. Soc. 505, 3866 (2021).
[19] D. Camarena and V. Marra, Mon. Not. R. Astron. Soc. 504, 5164 (2021).
[20] D. Camarena and V. Marra, Mon. Not. R. Astron. Soc. 495, 2630 (2020).
[21] V. Marra and L. Perivolaropoulos, Phys. Rev. D 104, L021303 (2021).
[22] G. Alestas, L. Kazantzidis, and L. Perivolaropoulos, Phys. Rev. D 103, 083517 (2021).
[23] G. Alestas and L. Perivolaropoulos, Mon. Not. R. Astron. Soc. 504, 3956 (2021).
[24] S. A. Adil, M. R. Gangopadhyay, M. Sami, and M. K. Sharma, arXiv:2106.03093.
[25] Z. Zhou, G. Liu, and L. Xu, arXiv:2105.04258.
[26] A. D. Felice, C.-Q. Geng, M. C. Pookkillath, and L. Yin, J. Cosmol. Astropart. Phys. 08 (2020) 038.
[27] A. De Felice, S. Mukohyama, and M. C. Pookkillath, Phys. Lett. B 816, 136201 (2021).
[28] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Phys. Rev. Lett. 122, 221301 (2019).
[29] E. Mörtsell and S. Dhawan, J. Cosmol. Astropart. Phys. 09 (2018) 025.
[30] F. Niedermann and M. S. Sloth, Phys. Rev. D 103, L041303 (2021).
[31] G. Ye and Y.-S. Piao, Phys. Rev. D 101, 083507 (2020).
[32] S. Vagnozzi, arXiv:2105.10425.
[33] A. Chudaykin, D. Gorbunov, and N. Nedelko, J. Cosmol. Astropart. Phys. 08(2020) 013.
[34] G. D'Amico, L. Senatore, P. Zhang, and H. Zheng, J. Cosmol. Astropart. Phys. 05 (2021) 072.
[35] O. Seto and Y. Toda, Phys. Rev. D 103, 123501 (2021).
[36] N. Blinov, C. Keith, and D. Hooper, J. Cosmol. Astropart. Phys. 06 (2020) 005.
[37] A. Hryczuk and K. Jodłowski, Phys. Rev. D 102, 043024 (2020).
[38] E. Di Valentino, C. Bøehm, E. Hivon, and F. R. Bouchet, Phys. Rev. D 97, 043513 (2018).
[39] M. Braglia, W. T. Emond, F. Finelli, A. E. Gumrukcuoglu, and K. Koyama, Phys. Rev. D 102, 083513 (2020).
[40] M.-X. Lin, W. Hu, and M. Raveri, Phys. Rev. D 102, 123523 (2020).
[41] T. L. Smith, V. Poulin, J. L. Bernal, K. K. Boddy, M. Kamionkowski, and R. Murgia, Phys. Rev. D 103, 123542 (2021).
[42] R. Murgia, G. F. Abellán, and V. Poulin, Phys. Rev. D 103, 063502 (2021).
[43] R. E. Keeley, A. Shafieloo, D. K. Hazra, and T. Souradeep, J. Cosmol. Astropart. Phys. 09 (2020) 055.
[44] H. Velten, I. Costa, and W. Zimdahl, arXiv:2104.05352.
[45] C. Krishnan, R. Mohayaee, E. O. Colgain, M. M. SheikhJabbari, and L. Yin, Classical Quantum Gravity 38, 184001 (2021).
[46] S. Vagnozzi, F. Pacucci, and A. Loeb, arXiv:2105.10421.
[47] A. de la Macorra, E. Almaraz, and J. Garrido, arXiv: 2106.12116.
[48] N. Arendse et al., Astron. Astrophys. 639, A57 (2020).
[49] W. Lin, X. Chen, and K. J. Mack, arXiv:2102.05701.
[50] S. Kumar and R. C. Nunes, Phys. Rev. D 94, 123511 (2016).
[51] S. Kumar and R. C. Nunes, Phys. Rev. D 96, 103511 (2017).
[52] E. Di Valentino, A. Melchiorri, and O. Mena, Phys. Rev. D 96, 043503 (2017).
[53] W. Yang, S. Pan, L. Xu, and D. F. Mota, Mon. Not. R. Astron. Soc. 482, 1858 (2019).
[54] W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S. Vagnozzi, and D. F. Mota, J. Cosmol. Astropart. Phys. 09 (2018) 019.
[55] W. Yang, O. Mena, S. Pan, and E. Di Valentino, Phys. Rev. D 100, 083509 (2019).
[56] S. Kumar, R. C. Nunes, and S. K. Yadav, Eur. Phys. J. C 79, 1 (2019).
[57] S. Pan, W. Yang, E. Di Valentino, E. N. Saridakis, and S. Chakraborty, Phys. Rev. D 100, 103520 (2019).
[58] S. Pan, W. Yang, C. Singha, and E. N. Saridakis, Phys. Rev. D 100, 083539 (2019).
[59] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, Phys. Dark Universe 30, 100666 (2020).
[60] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, Phys. Rev. D 101, 063502 (2020).
[61] E. Di Valentino and O. Mena, Mon. Not. R. Astron. Soc. 500, L22 (2020).
[62] E. Di Valentino, A. Melchiorri, O. Mena, S. Pan, and W. Yang, Mon. Not. R. Astron. Soc. 502, L23 (2021).
[63] A. Gómez-Valent, V. Pettorino, and L. Amendola, Phys. Rev. D 101, 123513 (2020).
[64] W. Yang, S. Pan, R. C. Nunes, and D. F. Mota, J. Cosmol. Astropart. Phys. 04 (2020) 008.
[65] M. Lucca and D. C. Hooper, Phys. Rev. D 102, 123502 (2020).
[66] M. Martinelli, N. B. Hogg, S. Peirone, M. Bruni, and D. Wands, Mon. Not. R. Astron. Soc. 488, 3423 (2019).
[67] W. Yang, E. Di Valentino, O. Mena, S. Pan, and R. C. Nunes, Phys. Rev. D 101, 083509 (2020).
[68] Y.-H. Yao and X.-H. Meng, Phys. Dark Universe 30, 100729 (2020).
[69] S. Pan, W. Yang, and A. Paliathanasis, Mon. Not. R. Astron. Soc. 493, 3114 (2020).
[70] Y. Yao and X. Meng, Phys. Dark Universe 33, 100852 (2021).
[71] H. Amirhashchi and A. K. Yadav, arXiv:2001.03775.
[72] W. Yang, S. Pan, E. D. Valentino, O. Mena, and A. Melchiorri, arXiv:2101.03129.
[73] L.-Y. Gao, Z.-W. Zhao, S.-S. Xue, and X. Zhang, J. Cosmol. Astropart. Phys. 07 (2021) 005.
[74] M. Lucca, arXiv:2105.09249.
[75] S. Kumar, Phys. Dark Universe 33, 100862 (2021).
[76] W. Yang, S. Pan, L. A.Saló, and J. de Haro, Phys. Rev. D 103, 083520 (2021).
[77] M. Lucca, arXiv:2106.15196.
[78] J. Väliviita, E. Majerotto, and R. Maartens, J. Cosmol. Astropart. Phys. 08 (2008) 020.
[79] J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi, J. Cosmol. Astropart. Phys. (2015) 054.
[80] C. v. de Bruck and J. Morrice, J. Cosmol. Astropart. Phys. (2015) 036.
[81] G. D'Amico, T. Hamill, and N. Kaloper, Phys. Rev. D 94, 103526 (2016).
[82] M. D. Marsh, Phys. Rev. Lett. 118, 011302 (2017).
[83] R. Kase and S. Tsujikawa, Phys. Rev. D 101, 063511 (2020).
[84] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. StaveleySmith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, Mon. Not. R. Astron. Soc. 416, 3017 (2011).
[85] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, Mon. Not. R. Astron. Soc. 449, 835 (2015).
[86] S. Alam et al. (BOSS Collaboration), Mon. Not. R. Astron. Soc. 470, 2617 (2017).
[87] V. de Sainte Agathe et al., Astron. Astrophys. 629, A85 (2019).
[88] M. Blomqvist et al., Astron. Astrophys. 629, A86 (2019).
[89] E. Aver, K. A. Olive, and E. D. Skillman, J. Cosmol. Astropart. Phys. 07 (2015) 011.
[90] R. J. Cooke, M. Pettini, and C. C. Steidel, Astrophys. J. 855, 102 (2018).
[91] J. Valiviita, E. Majerotto, and R. Maartens, J. Cosmol. Astropart. Phys. 07 (2008) 020.
[92] J.-H. He, B. Wang, and E. Abdalla, Phys. Lett. B 671, 139 (2009).
[93] V. Salvatelli, A. Marchini, L. Lopez-Honorez, and O. Mena, Phys. Rev. D 88, 023531 (2013).
[94] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, Phys. Rev. D 101, 063502 (2020).
[95] M. B. Gavela, D. Hernandez, L. Lopez Honorez, O. Mena, and S. Rigolin, J. Cosmol. Astropart. Phys. 07 (2009) 034; 05 (2010) E01.
[96] T. Clemson, K. Koyama, G.-B. Zhao, R. Maartens, and J. Valiviita, Phys. Rev. D 85, 043007 (2012).
[97] M. B. Gavela, L. Lopez Honorez, O. Mena, and S. Rigolin, J. Cosmol. Astropart. Phys. 11 (2010) 044.
[98] B. M. Jackson, A. Taylor, and A. Berera, Phys. Rev. D 79, 043526 (2009).
[99] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart. Phys. 07 (2011) 034.
[100] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, J. Cosmol. Astropart. Phys. 02 (2013) 001.
[101] T. Brinckmann and J. Lesgourgues, Phys. Dark Universe 24, 100260 (2019).
[102] A. Gelman and D. B. Rubin, Stat. Sci. 7, 457 (1992).
[103] H. Akaike, IEEE Trans. Autom. Control 19, 716 (1974).
[104] M. Y. J. Tan and R. Biswas, Mon. Not. R. Astron. Soc.: Lett. 419, 3292 (2012).
[105] A. R. Liddle, Mon. Not. R. Astron. Soc.: Lett. 377, L74 (2007).

[^0]: *rafadcnunes @ gmail.com
 †eleonora.di-valentino@durham.ac.uk

