
sid.inpe.br/mtc-m21d/2021/08.12.23.51-TDI

MULTISENSOR OPTICAL-SAR APPROACH TO LAND
USE AND LAND COVER CHARACTERIZATION IN

RORAIMA

Victor Hugo Rohden Prudente

Doctorate Thesis of the Graduate
Course in remote Sensing, guided
by Drs. Ieda Del’Arco Sanches, and
Marcos Adami, approved in August
18, 2021.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34T/458TDR2>

INPE
São José dos Campos

2021

http://urlib.net/8JMKD3MGP3W34T/458TDR2


PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Coordenação de Ensino, Pesquisa e Extensão (COEPE)
Divisão de Biblioteca (DIBIB)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Coordenação-Geral de Ciências da Terra
(CGCT)
Members:
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação (CPG)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia, Tecnologia e
Ciência Espaciais (CGCE)
Dr. Rafael Duarte Coelho dos Santos - Coordenação-Geral de Infraestrutura e
Pesquisas Aplicadas (CGIP)
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Divisão de Biblioteca (DIBIB)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)
ELECTRONIC EDITING:
Ivone Martins - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)



sid.inpe.br/mtc-m21d/2021/08.12.23.51-TDI

MULTISENSOR OPTICAL-SAR APPROACH TO LAND
USE AND LAND COVER CHARACTERIZATION IN

RORAIMA

Victor Hugo Rohden Prudente

Doctorate Thesis of the Graduate
Course in remote Sensing, guided
by Drs. Ieda Del’Arco Sanches, and
Marcos Adami, approved in August
18, 2021.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34T/458TDR2>

INPE
São José dos Campos

2021

http://urlib.net/8JMKD3MGP3W34T/458TDR2


Cataloging in Publication Data

Prudente, Victor Hugo Rohden.
P951m Multisensor optical-sar approach to land use and land cover

characterization in Roraima / Victor Hugo Rohden Prudente. –
São José dos Campos : INPE, 2021.

xxv + 144 p. ; (sid.inpe.br/mtc-m21d/2021/08.12.23.51-TDI)

Thesis (Doctorate in Remote Sensing) – Instituto Nacional de
Pesquisas Espaciais, São José dos Campos, 2021.

Guiding : Drs. Ieda Del’Arco Sanches, and Marcos Adami.

1. Microwave. 2. Cloud cover. 3. Sampling. 4. Tropical areas.
I.Title.

CDU 528.8:551.576(811.4)

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/


30/08/2021 SEI/MCTI - 7976863 - Ata de Reunião

https://sei.mctic.gov.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=8814001&infra_sist… 1/2

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS
Serviço de Pós-Graduação - SEPGR

DEFESA FINAL DE TESE DE VICTOR HUGO ROHDEN PRUDENTE 
BANCA Nº 211/2021, REG 142417/2017

No dia 18 de agosto de 2021, as 09h00min, por teleconferência, o(a) aluno(a) mencionado(a) acima defendeu
seu trabalho final (apresentação oral seguida de arguição) perante uma Banca Examinadora, cujos membros
estão listados abaixo. O(A) aluno(a) foi APROVADO(A) pela Banca Examinadora, por unanimidade, em
cumprimento ao requisito exigido para obtenção do Título de Doutor em Sensoriamento Remoto. O trabalho
precisa da incorporação das correções sugeridas pela Banca Examinadora e revisão final pelo(s)
orientador(es).

Título: “MULTISENSOR OPTICAL-SAR APPROACH TO LAND USE AND LAND COVER
CHARACTERIZATION IN RORAIMA”

 

Observações da banca: As modificações sugeridas pela banca serão implementadas sob a supervisão dos
orientadores.

 

Membros da banca:

Dr. Lênio Galvão - Presidente - INPE 
Dra. Ieda Del’Arco Sanches - Orientadora - INPE 
Dr. Marcos Adami - Orientador - INPE 
Dr. Edson Eyji Sano - Membro Externo - Embrapa Cerrado 
Dr. Maristela Ramalho Xaud - Membro Externo - Embrapa 

 

Documento assinado eletronicamente por Marcos Adami, Pesquisador, em 19/08/2021, às 14:43
(horário oficial de Brasília), com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13 de
novembro de 2020.

Documento assinado eletronicamente por Ieda Del Arco Sanches, Pesquisadora, em 19/08/2021, às
14:53 (horário oficial de Brasília), com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13 de
novembro de 2020.

Documento assinado eletronicamente por EDSON EYJI SANO (E), Usuário Externo, em 19/08/2021,
às 15:08 (horário oficial de Brasília), com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13
de novembro de 2020.

Documento assinado eletronicamente por Lênio Soares Galvão, Pesquisador, em 22/08/2021, às
21:46 (horário oficial de Brasília), com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13 de
novembro de 2020.

Documento assinado eletronicamente por maristela ramalho xaud (E), Usuário Externo, em



30/08/2021 SEI/MCTI - 7976863 - Ata de Reunião

https://sei.mctic.gov.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=8814001&infra_sist… 2/2

27/08/2021, às 09:41 (horário oficial de Brasília), com fundamento no § 3º do art. 4º do Decreto nº
10.543, de 13 de novembro de 2020.

A auten�cidade deste documento pode ser conferida no site h�p://sei.mc�c.gov.br/verifica.html,
informando o código verificador 7976863 e o código CRC D62DD422.

Referência: Processo nº 01340.005225/2021-05 SEI nº 7976863



v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If I have seen further, it is by standing on the shoulders of Giants. 

Isaac Newton 



vi 
 

 

  



vii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents,  

Marilene and José Adelmo,  

  



viii 
 

 

 

 

  



ix 
 

ACKNOWLEDGMENTS 

 

 

First, to God for my life. To my family for all the support and incentive 

during my doctorate. To my parents, Marilene Prudente and José Adelmo 

Rohden, for incentive me to study all these years. To my sisters, Eulalia and 

Gilene, and niece Milena, for all the talks and love. To my girlfriend, Eloisa, for all 

the talks, supports, patience, and help during this doctorate time.  

To Dr. Erivelto Mercante, Dr. Jerry Johann, and Dr. Suzana Costa 

Wrublack, for supervising me in my first steps in this journey. To all GeoLab team 

(many of them I cannot name all of you here), from the seven years of fellowship, 

ideas, and talks. To my friends, Jows, for all the support, in special to Willyan 

Becker. 

To Dr. Ieda Sanches, for accepting me in this Doctorate and for all the 

advices, orientation, support, and help during the period. To Dr. Marcos Adami, 

for the ideas, the study area proposal, advice, help with the methodology, and all 

orientation and support. To Dr. Sergii Skakun (the University of Maryland – UMD), 

for accepting me for the internship program and for all the support and advice 

during my stay in the USA. 

To Embrapa Roraima researchers, in especial to Dr. Haron Xaud and Dr. 

Maristela Xaud, for the help, and support through TERRAMZ (Conhecimento 

Compartilhado para Gestão Territorial Local na Amazônia) project, during the 

field mission. Dr. Haron and Dr. Maristela, thank you for teaching me all the about 

Roraima.  

To the Services Coordinated Interface (SCI) team from the European 

Spatial Agency (ESA) Copernicus, for helping with the Sentinel-1B orbit change, 

starting to cover the entire Roraima state since September 2018. 

This study was financed in part by the Coordenação de Aperfeiçoamento 

de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and by the 

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the 



x 
 

scholarship, Financial Code 140175/2018-0. Also, to CAPES – PrInt for financed 

the internship at UMD/USA for one year. 

To the National Institute for Space Research (INPE) for the great support. 

In special, to the Remote Sensing Division staff, for all teachings, talks, coffees, 

and help. I cannot forget the cleaning ladies, thank you for all your efforts during 

this time.  

To the Department of Geographical Science, from the University of 

Maryland in the United State of America, for all the support and help during my 

internship there. 

To all my friends at INPE and UMD/USA, for the friendship, laughing, 

ideas, talks, and adventures. In special, to all my colleges from 2017, friends of 

room 04/SERE II, and Lucas, Denis, Andeise, and Nildson. Special thanks to 

Sally, Mohammed, André, and Juliana, from the USA. To all roommates from 

Beth's house in the USA, thank you very much. 

And thanks to many other friends and colleagues that would be impossible 

to mention here.  



xi 
 

ABSTRACT 

 

 

Earth Observation data has an important role in the worldwide Land Use and 
Land Cover (LULC) mapping process. However, update LULC maps are not fully 
available to large areas, as in Brazil. The monitoring and mapping of LULC with 
Optical Remote Sensing (ORS) data, especially in agricultural areas, is highly 
affected by cloud cover frequency (CCF), mainly in the rainy season. Our first 
goal was to evaluate the effects of clouds interference in ORS data for agricultural 
areas in South America, highlighting Roraima state which was selected as the 
study area for LULC analyses. During the quarter from September to November 
(P1) and December and February (P2), South America croplands have the higher 
CCF concentration. These patterns make summer crop monitoring via ORS data 
very challenging. In Roraima state the cloud-cover is frequent over the entire 
year, with some increase during May to August, corresponding to the state 
agriculture period. Few ORS clear observations, limit even the LULC 
classification process. Besides, existing LULC programs do not cover the entire 
state yet or do not provide a separation among important classes. For this reason, 
in our second study, we investigate the possible improvements when SAR 
(Synthetic Aperture Radar) data is incorporated into the LULC classification 
process along with ORS data for 2019 in Roraima state. Twenty-nine scenarios, 
involving a combination of optical (MSI/Sentinel-2) and SAR (SAR/Sentinel-1) 
based features, as well as times of data acquisition, were considered in this study. 
Our results show that optical or SAR data used individually are not enough to 
provide accurate LULC mapping. The best results in terms of overall accuracy 
(OA) were achieved using metrics of multi-temporal surface reflectance and 
vegetation index (VI) for optical imagery, and values of backscatter coefficient in 
different polarizations and their ratios, yielding an OA of 86.41±1.74%. Analysis 
of three periods of data (January to April, May to August, and September to 
December) used for classification allowed us to identify the optimal period for 
distinguishing specific classes. Comparing our LULC map with that of 
MapBiomas, the only LULC map available for 2019 for the whole state, we 
observed that our method performed better to map annual and perennial crops 
and water classes. Our methodology provided a more accurate LULC for the 
Roraima state, and the technique, with some adjusts, was applied to the entire 
state. In this sense, our last study focuses on comparing different approaches to 
classify the LULC for Roraima in 2017, 2018, and 2019. We used a two-stage 
sampling approach, along with temporal metrics, as an alternative to decreasing 
the data volume and the time-consuming from the traditional roadside LULC 
classification process. Two-stage sampling process shown potential to be used 
in LULC area estimation, with similar accuracies to the roadside approach. 
Analyzing the LULC changes (LULCC), we observed a few changes between 
2017 and 2019. The more traditional change was from Forest or Savannas to 
Pasture, and from Acacias to Annual crops. In general, our study showed that 
using SAR with ORS data it is possible improvement the LULC classification 
process to Roraima, bringing information about where and when is happening the 
changes. 
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ABORDAGEM MULTISENSOR SAR-ÓPTICA PARA CARACTERIZAR O 
USO E COBERTURA DA TERRA EM RORAIMA 

 

 

RESUMO 

 

Os dados de observação da Terra têm um papel importante no processo de 

mapeamento mundial do uso e cobertura da terra (LULC). No entanto, os mapas 

atualizados de LULC não estão totalmente disponíveis em grandes escalas, 

como no Brasil. O monitoramento e mapeamento de LULC com dados de 

sensoriamento remoto óptico, especialmente em áreas agrícolas, é altamente 

afetado pela frequência de cobertura de nuvens, principalmente na estação 

chuvosa. Nosso primeiro objetivo foi avaliar os efeitos da interferência de nuvens 

em dados ópticos para áreas agrícolas na América do Sul, em especial, para o 

estado de Roraima. Nos trimestres de setembro a novembro e de dezembro a 

fevereiro, as áreas agrícolas da América do Sul têm as maiores concentrações 

de cobertura de nuvens, tornando desafiador o monitoramento da safra de verão 

por meio de dados ópticos. Em Roraima, a cobertura de nuvens é frequente 

durante todo o ano, com maior intensidade durante os meses de maio a agosto 

que corresponde ao período agrícola do estado. Poucas observações ópticas 

livres de nuvens limitam o processo de classificação de LULC neste estado. Além 

disso, os programas de mapeamento e monitoramento de LULC existentes ainda 

não cobrem todo o estado ou não fornecem uma separação entre classes 

importantes. Por esse motivo, em nosso segundo estudo, investigamos as 

possíveis melhorias ao incorporar dados de radar de abertura sintética (SAR) 

aos dados ópticos no processo de classificação de LULC em Roraima. Foram 

criados 29 cenários envolvendo dados ópticos do satélite Sentinel-2 MSI e de 

radar do satélite Sentinel-1 SAR. Nossos resultados mostraram que os dados 

ópticos e SAR usados individualmente não são suficientes para fornecer um 

mapeamento preciso de LULC. Os melhores resultados em termos de exatidão 

global foram alcançados usando métricas de reflectância de superfície 

multitemporal e índice de vegetação para imagens ópticas e valores de 

coeficiente de retroespalhamento em diferentes polarizações e razões, 

resultando em uma exatidão global de 86,41 ± 1,74%. A análise de três períodos 

de dados (janeiro a abril, maio a agosto e setembro a dezembro) permitiu 

identificar o período ideal para distinguir classes específicas. Comparando nosso 

mapa de LULC com o do MapBiomas, o único projeto com dados de LULC 

disponíveis para 2019 para todo o estado, observamos que nosso método teve 

melhor desempenho para mapear culturas anuais e perenes e classes de água. 

Nossa metodologia apresentou resultados melhores para o mapeamento de 

LULC para Roraima. Posteriormente, com alguns ajustes, essa técnica foi 

aplicada para todo o estado. Nesse sentido, nosso último estudo se concentrou 

na comparação de diferentes abordagens para classificar classes de LULC de 
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Roraima em 2017, 2018 e 2019. Usamos uma abordagem de amostragem em 

dois estágios, juntamente com métricas temporais, como alternativa para 

diminuir o volume de dados e a demora do processo de classificação tradicional 

de LULC, que considera o estado como um todo. O processo de amostragem de 

dois estágios mostrou potencial para ser usado na estimativa de área ocupada 

por diferentes classes de LULC, com precisões semelhantes à abordagem 

tradicional. Entre 2017 e 2019, as mudanças mais importantes foram de floresta 

ou savanas para pastagem, e de formações de Acácias para culturas anuais. De 

maneira geral, nosso estudo mostrou que, combinando dados SAR com dados 

ópticos, é possível aprimorar o processo de classificação de LULC para Roraima, 

trazendo informações sobre, onde e quando estão ocorrendo as mudanças de 

LULC. 

Palavras-chave: micro-ondas, cobertura de nuvens, amostragem, áreas 

tropicais.  
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1. INTRODUCTION 

Land use and land cover (LULC) data are important to mitigate 

environmental impacts associated with food production. The use of optical remote 

sensing to characterize LULC in tropical regions is challenging since tropical 

areas have frequent cloud cover  (ASNER, 2001; WULDER et al., 2015; 

MARTINS et al., 2018a) and fragmented landscape types (LU et al., 2012; 

LAURIN et al., 2013). This difficulty is even more serious for detecting targets 

with high spatial and temporal dynamics, which is the case of agriculture. 

Mapping and monitoring LULC changes (LULCC) have economic, social, and 

environmental interests. Cropland monitoring is important for food security and 

for environmental impact reduction. Thus, proper agriculture monitoring systems 

are demanded. 

The Roraima state, located under the Intertropical Convergence Zone 

(ITCZ) influence, has a frequent cloud cover, limiting the use of optical data. 

Moreover, agriculture is expanding in this state (IBGE, 2018a), mainly over 

savanna-dominated vegetation called “lavrados”, threatening the environment. 

This activity needs to be monitored and regulated; otherwise, it can affect the 

availability of natural resources (e.g., water and soil) and other environmental 

resources. However, there is a lack of detailed information about LULC and 

LULCC over the whole state. 

One way to overcome this problem is the combined use of multisource 

remote sensing data, including the Synthetic Aperture Radar (SAR) data which 

are less affected by atmospheric conditions and cloud coverage than optical data 

(MOREIRA et al., 2013; WULDER et al., 2015). The optical-SAR approach takes 

advantage of both well-known interpretation experience of optical data and cloud-

free SAR data (MCNAIRN; BRISCO, 2004; ORYNBAIKYZY; GESSNER; 

CONRAD, 2019; TAVARES et al., 2019; SOARES et al., 2020). The use of two-

stage sampling approach can reduce computational demands and cloud 

limitations. 

In this context, this research will test if the combination of SAR and optical 

in a multisensor timeseries data allows the proper LULC mapping in tropical 
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regions with frequent cloud cover. Moreover, the use of a two-stage sampling 

approach is a way to overcome the big data limitations, and analyze the LULC 

and LUCC, to quantify the possible environmental impacts, in different stages. 

This research exemplified the difficulty of using only RS optical data for specifics 

periods to provide LULC mapping in a region with high cloud cover conditions 

throughout the year. 

1.1 Objectives 

The overall objective of this research is to develop a multisensor and 

multitemporal approach to map the LULC classes of the Roraima state, Brazil. 

The specific objectives are: 

1.1.1 Specific objectives 

• To evaluate the cloud cover frequency of South America territory 

and the implications of the use of optical data for cropland 

monitoring, and the use of the result of this evaluation to justify the 

addition of SAR data in areas with frequent cloud cover, as 

Roraima. 

• To provide a robust methodology to classify the LULC classes of 

the Roraima state, investigating the benefits of combining SAR and 

optical data in the LULC mapping process in different periods. 

• To evaluate the two-stage sampling to estimate the LULC classes 

of the Roraima state in 2017, 2018 and 2019, by using multi-

sensors data collected along the roadside. 
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2. THEORETICAL BACKGROUND 

This chapter brings a brief theoretical background about LULC monitoring 

(2.1), multisensor approach with SAR and optical data (2.2), LULC classification 

process (0). The idea is to provide a general overview of state-of-art that will be 

further explored in the next chapters.  

2.1 LULC monitoring  

Mitigating climate change, meanwhile, population growth, and biodiversity 

loss, is one of the most tricky topics for crop production at the national scale 

(NELSON et al., 2009; FOLEY et al., 2011). Nowadays, environmentally 

sustainable food production meanwhile minimizing the environmental impacts is 

one of the biggest challenges to be faced by the agriculture sector, government, 

and researchers (SEARCHINGER et al., 2015; ESTES et al., 2016). Part of this 

food demand is met by the agriculture expansion, resulting in severe 

environmental impacts (LAMBIN; GEIST; LEPERS, 2003), and contributing to 

global climatic changes (DENG; ZHAO; YAN, 2013). In this sense, continuous 

Land Use and Land Cover (LULC) mapping is fundamental to land use 

management and to understand the environmental effects at local, regional, and 

global scales (ADAMI et al., 2018; PAVANELLI et al., 2018). Thus, Remote 

Sensing (RS) technology is widely utilized for synoptic and continuous LULC 

monitoring, allowing identification of the LULC Changes (LULCC) (WULDER et 

al., 2015; VELOSO et al., 2017).  

RS data is essential for agricultural monitoring since they can provide 

accurate and timely information about crop development (WHITCRAFT; 

BECKER-RESHEF; JUSTICE, 2015b; VELOSO et al., 2017). Brazil and 

Argentina Brazil and Argentina are the leaders of agricultural production in South 

America (ZHONG et al., 2017). Consequently, monitoring this large-scale 

agriculture is relevant to better understand the relation between food production 

and its environmental impacts. Due to the large extension and dynamics of 

cropland areas, satellite-derived information has been used to monitoring 

croplands at a global scale (FRITZ et al., 2015, 2019), such as the Group on 
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Earth Observation (GEO) and the Global Agricultural Monitoring Community 

(GEOGLAM) (WHITCRAFT et al., 2015a; WHITCRAFT; BECKER-RESHEF; 

JUSTICE, 2015a) and the Joint Experiment for Crop Assessment and Monitoring 

(JECAM, 2019). To increase the efficiency of the remotely sensed cropland 

monitoring, a suite of satellite systems is used to understand the spectral 

response of the croplands during their growing season. Some examples are the 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the 

Terra and Aqua platforms (JUSTICE et al., 2002), the Operational Land Imager 

(OLI) sensor onboard the Landsat-8 satellite (MARKHAM; STOREY; MORFITT, 

2015), the Multispectral Imager (MSI) sensor onboard the Sentinel-2A and 

Sentinel-2B satellites (DRUSCH et al., 2012) and the Multispectral Camera 

(MUX) onboard the CBERS-4 satellite (INPE, 2013; MARTINS et al., 2018b). The 

GEOGLAM group developed a moderate spatial resolution, orbital data 

integration system for crop monitoring and yield estimation of the most important 

crops on a global scale (BECKER-RESHEF et al., 2010). 

Despite their wide use and importance, the use of optical remote sensing 

data for crop monitoring is complex and challenging in tropical areas such as in 

South America (SANCHES et al., 2018b). Climate, socio-economics, and 

infrastructure are some of the factors that interfere for the crop dynamics in 

tropical croplands (SANCHES et al., 2018a). Moreover, the cloud cover in South 

America is influenced by different factors, such as the South Atlantic 

Convergence Zone (SACZ) (CARVALHO; JONES; LIEBMANN, 2004; SILVA; 

KOUSKY, 2012), seasonal migration of intertropical convergence zone (COOK, 

2009), and the South America low-level jet east from the Andes (VERA et al., 

2006). These factors make the acquisition of cloud-free, optical images in tropical 

regions a big challenge (WHITCRAFT et al., 2015b). 

Following the wet season, frequent cloud cover is typically observed in the 

austral summer. This is because the convergence zone and intense convection 

oriented from the northwest to southeast in the subtropics near the southeastern 

coast of Brazil protrudes into the adjoining South Atlantic ocean as SACZ (ZHOU; 

LAU, 1998). 
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Optical remote sensing data are traditionally used to identify and 

characterize LULC. Thus, the cloud-cover limitation affects the LULC mapping 

and characterization in South America (ASNER, 2001; WULDER et al., 2015; 

MARTINS et al., 2018a), along with the rapid LULCC (WHITCRAFT et al., 2015b; 

EBERHARDT et al., 2016). Agriculture are dynamic targets, in which the crop 

growing phase coincides with the rainy season, are more affected by cloud cover 

frequency. These difficulties, along with tropical landscapes fragmentations and 

transitions among vegetation types (LU et al., 2012; LAURIN et al., 2013), make 

the use of optical data to map LULC classes challenging (SANO et al., 2007; 

SUGAWARA; RUDORFF; ADAMI, 2008; WHITCRAFT et al., 2015b; 

EBERHARDT et al., 2016). 

2.2 Multisensor approach to overcome the limitations of optical remote 

sensing 

LULC mapping is fundamental to understand the environment effects at 

local, regional, and global scales (ADAMI et al., 2018; PAVANELLI et al., 2018). 

In this sense, SAR data, are an option to overcome the limitations of optical 

remote sensing (WHITCRAFT et al., 2016). SAR sensors are less influenced by 

cloud cover frequency when compared with optical data (MOREIRA et al., 2013; 

WULDER et al., 2015). However, SAR signals interact with the surface differently 

compared with optical data. It depends on surface factors such as the dielectric 

constant, geometry, topography, and surface roughness. It also depends on the 

radar image acquisition mode, such as polarization, frequency, and incident 

angle (STEELE-DUNNE et al., 2017; HARFENMEISTER; SPENGLER; 

WELTZIEN, 2019). As SAR interpretation is complex, identifying vegetation types 

is not an easy task (TAVARES et al., 2019). In this sense, SAR use is more 

common only to overcome cloud limitations in specific tasks, such as in LULC 

classification. It has been less widespread than optical data (SOARES et al., 

2020). 

Thus, methods that integrate optical and SAR data have been explored in 

LULC studies (INGLADA et al., 2016; CLERICI; VALBUENA CALDERÓN; 
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POSADA, 2017; TORBICK et al., 2017a; REICHE et al., 2018; VAN TRICHT et 

al., 2018). Multisensor data overcome SAR interpretation with optical data and 

the cloud limitation with SAR data (MCNAIRN; BRISCO, 2004; ORYNBAIKYZY; 

GESSNER; CONRAD, 2019; TAVARES et al., 2019; SOARES et al., 2020). 

Sentinel-1 and Sentinel-2 data from the European Space Agency (ESA) are two 

of the most useful satellite data to provide LULC data (CHATZIANTONIOU; 

PSOMIADIS; PETROPOULOS, 2017; STEINHAUSEN et al., 2018; IENCO et al., 

2019; TAVARES et al., 2019). Sentinel-2 has a constellation of two satellites 

(Sentinel-2A and Sentinel-2B). Sentinel-2A was launched in November, 2015 

while the Sentinel-2B was launched in June, 2017, operating in the optical 

spectral region (DRUSCH et al., 2012). Sentinel-1A was launched in April, 2014 

and Sentinel-1B was launched in April, 2016 (TORRES et al., 2012; ESA, 2017). 

They are SAR sensors that operate in the C-band (wavelength of ~5.6 cm; 

frequency of 5250–5570 MHz). The main image acquisition mode is the 

Interferometric Wide (IW) swath with dual-polarization (VV and VH polarizations) 

(TORRES et al., 2012). However, the methods to integrate the optical and SAR 

multisensor data are specific and complex (WULDER et al., 2015). The 

multisensor SAR-optical approach provides a high dimensionality dataset, 

demanding more computational power in the LULC classification process. 

2.3 LULC classification process 

LULC classification process using a multisensor SAR-Optical data is time 

and computational consuming. Handling the high dimensionality data in the SAR-

optical approach is challenging. Techniques to reduce data collection and to 

visualize class separation are useful to reduce the dimensionality problem. Cloud 

processing, which has higher computational power and does not demand 

downloading the remote sensing data, is an advance to the multisensor data 

processing capability (GORELICK et al., 2017; PALAZZO et al., 2018; ZHANG et 

al., 2018a).  
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2.3.1 Classifiers 

To the LULC classification process in these large datasets, traditional 

parametric classifiers do not produce good results (CLERICI; VALBUENA 

CALDERÓN; POSADA, 2017). Thus, it is necessary to use non-parametric 

classifiers (LU et al., 2012). On SAR-optical approach, Random Forest (RF) 

(RODRIGUEZ-GALIANO et al., 2012; INGLADA et al., 2016; TORBICK et al., 

2016, 2017a, 2017b; CLERICI; VALBUENA CALDERÓN; POSADA, 2017; 

ZHOU et al., 2017; PAVANELLI et al., 2018) and Multilayer Perceptron (MLP) 

(SKAKUN et al., 2016; CAMARGO et al., 2019) are two of the most commonly 

non-parametric classifiers used to produce LULC classification (LU et al., 2012; 

CLERICI; VALBUENA CALDERÓN; POSADA, 2017).  

The RF classifier provides robustness and capability of holding a high 

number of variables (JHONNERIE et al., 2015; DINIZ; GAMA; ADAMI, 2020) and 

high data dimensionality (TORBICK et al., 2017b). The MLP is a feed-forward 

artificial neural network trained by the backpropagation method and designed to 

map a set of input vectors to a set of output vectors (SKAKUN et al., 2016; 

CAMARGO et al., 2019).  

2.3.2 Data reducers 

The t-distributed Stochastic Neighbor Embedding (t-SNE), unsupervised 

technique, uses a heavy-tailed t-distribution to describe data similarity in two or 

three-dimensional maps (VAN DER MAATEN; HINTON, 2008; SONG et al., 

2019). t-SNE converts the high-dimensional Euclidean distances between 

datapoints into a conditional probability, to keep close into a low-dimensional 

space the points that are near high-dimensional space (VIOLANTE, 2018; SONG 

et al., 2019). Different from a Principal Component Analysis (PCA), where seeks 

to maximize the variance and preserve large pairwise distance, t-SNE preserve 

only small pairwise distances, keeping the very similar data points close together 

in a lower-dimensional space (local similarities) (VIOLANTE, 2018; DEY et al., 

2020; KHANDELWAL, 2020).  
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The t-SNE measures the distance among each single point, transformed 

into a probability by fitting a normal distribution over the current point (Figure 2.1). 

The results for each point are stored as a matrix of values (Figure 2.2). Converting 

distances in the lower dimensional representation into probabilities, t-SNE fits a 

Student’s t distribution over the current case (Figure 2.3). Th t-Sne job now is to 

“suffle” the data points around these new axes (one example in Figure 2.4). The 

probability matrix is computed for this axis, and the cases are shuffled around to 

make this matrix resemble the original, high-dimensional matrix. During shuffling, 

cases are attracted toward cases that are similar to them (lines with circles) and 

repulsed away from cases that are dissimilar (lines with triangles) (RHYS, 2020). 

The t-SNE approach helps to understand if the highly dimensional dataset 

can or cannot provide visual separability among the classes (VAN DER MAATEN; 

HINTON, 2008; MAATEN, 2014; SONG et al., 2019). However, the t-SNE 

technique is not commonly used for data to visualize the data in the remote 

sensing field. Dey et al. (2020) used t-SNE to visualize the separation among 

different crop classes using polarimetric SAR data. Martins et al. (2020) also used 

t-SNE to visualize the features learned by deep neural network in each hidden 

layer. 

 

Figure 2.1 – Distance from each case to every to every case, converted into a probability 
by fitting a normal distribution over the current case.  

 

These probabilities are scaled by dividing them by their sum, so that they add to 1. 

Source: Rhys (2020). 
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Figure 2.2 – The scaled probabilities for each case are stored as a matrix of values. 

 

This is visualized here as heat map: the closer two cases are, the darker the box is that 
represents their distance in the heatmap. 

Source: Rhys (2020). 

 

 

Figure 2.3 – t-SNE Student’s t distribution fit over the current point instead of a normal 
distribution.  

 

The Student’s t distribution has a longer tail, meaning dissimilar cases are pushed further 
away to achieve the same probability as in the high-dimensional representation. 

Source: Rhys (2020). 
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Figure 2.4 – Cases are randomly initialized over the new axes (one axis is shown here). 

 

Source: Rhys (2020). 

 

The use of different metrics to explore the temporal variation from remote 

sensing data is a way to decrease the data dimensionality. This statical 

transformation of time-series images is called multi-temporal metrics (SONG et 

al., 2017), which is useful for LULC characterization (BECKER et al., 2021). 

Metrics, as standard derivation, median, mean, minimum, maximum, and 

variance, among others, are a statical derivate of a time series imagery (ZALLES 

et al., 2021), representing key characterize of LULC classes in time for each pixel 

(KING et al., 2017; SONG et al., 2017; BECKER et al., 2021). 

2.3.3 Two-stage sampling 

Even using metrics and cloud processing techniques, classifying large 

areas based on moderate spatial resolution data (i.e., 30 m) could be a hard task, 

and sometimes, inviable. Stratified block processing can save time to provide 

accurate information with less computational effort (KING et al., 2017; SONG et 

al., 2017). This approach consists in partitioned the area of interest in blocks to 

randomly select some blocks in a two-stage sample approach (SONG et al., 

2017; KRYLOV et al., 2019). Inside each block is randomly sample points to 

represent the internal block variation. In this way, it is possible the integration of 

map-making and sample-based process (SONG et al., 2017).  
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As it is visited only the selected blocks, this reduces the travel time and 

cost to field sample location (KRYLOV et al., 2019). The use of two-stage 

sampling methods allows the area to be estimated and it is a cost-effective way 

to obtain LULC information. This approach is used for crop classification 

estimation (KING et al., 2017; SONG et al., 2017, 2021a, 2021b), and tree cover 

loss (KRYLOV et al., 2019). 

Using cloud processing (GORELICK et al., 2017) along metrics to explore 

the temporal variation from the remote sensing data (SONG et al., 2017), and 

sample-based methods (KING et al., 2017; SONG et al., 2017) are a viable way 

to provide LULC information as quick as possible. 
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3. RORAIMA STATE  

Roraima state is localized in the North region of Brazil, near the states of 

Amazonas and Pará, Venezuela, and Guiana (Figure 3.1). It is the Brazilian state 

with the lowest number of inhabitants: around 606,000 inhabitants, 332,000 living 

in Boa Vista, the capital of the state. This state occupies an area of 224,300 km2 

and has 15 municipalities (IBGE, 2018b).  

 

Figure 3.1 – Location of Roraima study state and its 15 municipalities. 

 

Source: Author's production. 

 

There are three groups of natural vegetation formations in Roraima: 

rainforest, campina-campinarana, and savannas, also called “lavrados” 

(BARBOSA; KEIZER; PINTO, 2010), as shown in Figure 3.1 (IBGE, 2012). 

Rainforest covers the main part of the center-southern part of the state. It is 

divided in Seasonal Semideciduous Forest, Seasonal Forest, Open, and Dense 

Ombrophilous Forest. Campina-campinarana is formed by campinas (small 

shrubs) and campinarana, which are mostly found in the center-southern part of 
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the state, surrounded by the rainforest. Savannas are formed by savanna and 

steppe savanna and are present mostly in the northeast part of the state. This 

class is predominated by grasslands with few shrubs (BARBOSA; KEIZER; 

PINTO, 2010; PAVANELLI et al., 2018). Some regions show ecologic tension, 

where the transition between two or more types of vegetation occurs, as 

Savannas and Forest, and Campinarana and Forest (BARBOSA; BACELAR-

LIMA, 2008; BARBOSA; KEIZER; PINTO, 2010; IBGE, 2012). 

 

Figure 3.2 – Roraima natural formations according to IBGE. 

 

Source: Adapted from Barcelar-Lima  (2008) and IBGE (2012). 

 

The elevation (Figure 3.3) ranges from 30 meters in the Negro River to 

2000 meters in the Roraima mountain (BARBOSA; BACELAR-LIMA, 2008). This 

altitude range act as a natural barrier in the north of the Roraima, blocking the 

moisture brought by the ocean winds along the ITCZ. This generates a 

precipitation gradient and a persistent cloud coverage in the state, which greatly 

limits the use of optical satellite images. Barni et al. (2020a) describe that 

Roraima has two well-defined climatic seasons, but it is different in the areas of 
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the state located in the north from the areas in the southern hemisphere. Most of 

Roraima territory has rainy seasons concentrated between April to September, 

with a peak in June. The dry period starts in October and go until March 

(MORAIS; CARVALHO, 2015). In the lavrados, the small lakes fill and connect in 

the rainy period. The mean annual temperature is 28°C (PAVANELLI et al., 

2018). 

 

Figure 3.3  – Roraima elevation data according to SRTM data. 

 

Source: Author's production. 

 

Roraima soils are formed mainly by Argisols (33%), Latosols (22%) and 

Plinthosoils (14%) groups (MELO et al., 2010). At the center-southern part of 

Roraima, we mostly find the dystrophic Red-Yellow Latosols and the dystrophic 

Red-Yellow Argisols under the rainforests and savannas. Dystropheric Litolic 

Neossols is present in the northern and center of Roraima, with mountains and 

outcrops from the Escudo das Guianas. Hydromophic Ferrihumiluvic Spodossols 

and Yellow Dystrophic Oxisols are present in the campinarana region in the 
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center-southern part of Roraima (BARBOSA; BACELAR-LIMA, 2008; SANTOS 

et al., 2011).  

 

Figure 3.4 – Roraima’s soil map. 

 

Source: Adapted from Santos et al. (2011). 

The combination of precipitations and altitude gradients allowed the 

formations of a mosaic of open field and forest system in the lavrados. Moreover, 

differences between altitudes and precipitation, located between the Orinoco and 

Essequibo Amazonas watersheds, and geologic basalt residue and depressions 

in the land, allowed in low and middle altitude (< 600 m), the emergence of a 

system of perennial and seasonal lakes. These are connected in the rainy 

season, characterizing the importance of these regions to the biodiversity and 

water resource conservations (BARBOSA et al., 2007). 
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3.1 Agriculture expansion 

The combination among adequate climatic, altitude, and water availability 

factors, low land prices and government subsidies, has encouraged agriculture 

and livestock in Roraima (CARVALHO; MUSTIN, 2017). The crop calendar, with 

harvest during the off-season for the other Brazilian states (April-September), 

favors better prices and facilitates production chain logistics. As a consequence, 

agriculture in Roraima is expanding, mainly over the lavrados, where the adoption 

of drainage channels to use water from the lakes is frequent. The conversion of 

areas with Acacia formation in soybean plantations is also common in lavrados. 

However, crop areas are not significant in Roraima yet, representing less than 

1% of the territory, not being mapped by other LULC studies (SONG et al., 

2021a). This activity needs to be monitored and regulated; otherwise, it can affect 

the availability of natural resources (e.g. water and soil) (CARVALHO; MUSTIN, 

2017). 

According to the Municipal Agricultural Production (PAM) data, from the 

Brazilian Institute of Geography and Statistics (IBGE, 2018a), agriculture 

expansion was intensified after 2010, mainly related to the soybean crop 

expansion. Other annual crops present in Roraima are corn and cassava, 

cultivated mainly in small areas, and beans. The area cultivated with rice 

decreased during this time due to the demarcation of the Raposa Serra do Sol 

indigenous land. In the southern part of Roraima, we find cultivations of banana, 

orange, and palm oil. Cattle ranching is the main economic activity in this region. 
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Figure 3.5 – Area of Annual crops (upper) sowed and Perennial crops (lower) harvested 
in Roraima state, from 1988 to 2019, in thousands (K) of hectares. 

 

 

Source: IBGE (2018a). 

 

3.2 Existing LULC mapping programs 

Regardless of the importance and recent expansion of agriculture in 

Roraima, there are few LULC maps available, often outdated or needing 

improvements. In Brazil, there are three LULC programs/projects at the state 

level: IBGE LULC (Figure 3.6), TerraClass (ALMEIDA et al., 2016) (Figure 3.7), 

and MapBiomas (SOUZA et al., 2020) (Figure 3.8). The last LULC map from 

IBGE (2020) is referent from 2018. They focused more on natural vegetation 

classes rather than providing a detailed land use classification. It was made by 

visual interpretation of optical images and used ancillary data, mainly crop 

statistics data obtained by the TerraClass (see Figure 3.7) and Deforestation 
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Monitoring in the Brazilian Legal Amazon (PRODES) (PRODES, 2018) projects. 

The product is available on the scale of 1:250,000, considering a grid of 1km². 

 

Figure 3.6 – Roraima´s land use and land cover (LULC) mosaic based on the IBGE 
initiative of 2018. 

 

Source: Adapted from IBGE (2020). 

 

TerraClass started as a complement of the PRODES program, to 

characterize the LULC classes in the deforested areas of the Amazon Rainforest 

(ALMEIDA et al., 2016), that is, to identify the land uses in previously deforested 

areas. More recently, TerraClass was expanded for the Cerrado biome 

(TERRACLASS CERRADO, 2018). Campinaranas and Savannas areas are not 

monitored by the TerraClass Amazon, since they are not rainforests. TerraClass 

Cerrado also does not monitor these classes in Roraima, because they are 

outside of the Cerrado biome. Campinarana and Savannas are not monitored by 

the TerraClass initiative yet (see Figure 3.7), but future versions will do it. 
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Figure 3.7 – Roraima LULC map, Terraclass Amazonia for 2014. 

 

Source: Almeida et al. (2016). 

 

MapBiomas is the most recent initiative of LULC mapping in Brazil 

(SOUZA et al., 2020). It provides annual LULC maps for the entire country, 

between 1985 and 2019 (v.5), with a spatial resolution of 30 meters. Although 

MapBiomas project maps the whole state of Roraima (Figure 3.8), it needs 

improvements to reach better results, for example, separation between savannas 

and campinaranas, classification of the Acacias formations, and improvement of 

the annual crop classes. 
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Figure 3.8  – MapBiomas v.5 LULC map for Roraima region for 2019. 

 

Source: Author's production. 
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4. MATERIAL AND METHODS 

In this chapter, we present a general description of the material and 

methods used in this research. First, we describe about the thesis organization 

and show a general flowchart (4.1). We also describe the field work (4.2) 

conducted to collect data for the LULC classification process. In the last section 

of this chapter, we describe the Remote Sensing data (4.3) used in our analyses. 

4. 1 Thesis organization 

This thesis is structured into a brief theoretical background, methods, three 

articles (Figure 4.1), general discussion, and general conclusion. First, we 

present our main study area (Roraima state), showing the LULC characteristics 

of the area and the limitations of using remote sensing data. In the same section, 

we presented a brief theoretical background to introduce the thesis topic. After, 

we describe our field campaign and the methodological steps. In our first paper, 

we present the study about the limitation of using optical data in South America 

and the implications for agriculture monitoring. The cloud cover assessment was 

useful to select the Roraima state as the study area for the analysis of the 

performance of optical-SAR-based LULC mapping. To define the methodology 

for LULC mapping in Roraima, we created scenarios and tested different 

classifiers, which are presented in Paper 2. In Paper 3, we show the probabilistic 

two-stage sampling approach to estimate the LULC, as well as the classification 

using roadside data. Next, we discuss the main findings of our research and 

highlight the main conclusions. 
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Figure 4.1  – Flowchart with the steps of data processing and papers division of this 
research. 

 

Source: Author's production. 

 

4.2 Field data 

Accurate and representative field information is essential for LULC and 

LULCC classifications so that it is crucial to choose proper periods for field data 

collection. We performed fieldwork in Roraima in August-September, 2019, which 

correspond to the crop season and the end of the rainy season, allowing us to 

collect field data from all representative LULC classes, including rainfed crops. 

We collected the LULC data (Figure 4.2) for classification training 

purposes, along the roadsides (WALDNER et al., 2019), using the Locus Map 

Pro applications. We collected a total of approximately 7000 points which was 

converted into polygons based on the QGIS software and Sentinel-2 MSI true 

color composites with 10 m spatial resolution. The polygons were drawn carefully 

to not include mixed pixels in the edges using Python routines and the QGIS 
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Earth Engine plug-in (GEE COMMUNITY, 2020) to access the MSI optical 

images from GEE to QGIS. In this step, we used images converted into 

reflectance at the top of the atmosphere (TOA), with 10 m (RGB true color) and 

20 m (RGB Normalized Difference Vegetation Index -SWIR-RED) spatial 

resolutions. We used TOA data to draw the polygons because atmospherically 

corrected images became available only after December 2018 in the GEE 

platform. We incorporated the median images from each month to avoid cloud 

cover effects. Besides, we used Normalized Difference Vegetation Index (NDVI) 

images to better discriminate agriculture and pasture from natural fields. With this 

approach we certificate, looking for images from each month, that the classes 

identified in the field, indeed were on the images. 

 

Figure 4.2  – Field data polygons are drawn after collecting roadside data in August and 
September of 2019 in Roraima.  

 

Source: Author's production. 
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During the fieldwork, we obtained georeferenced photos using a Nikon 

Coolpix S9700 digital camera as well as some videos with a SJ7CAM 

(ActionCam) onboard. In Figure 4.2 and Figure 4.3 we show some details about 

our field work. 

In total, we draw 5,300 polygons to training our models (Figure 4.2). These 

polygons were used to define the LULC classes for 2017 and 2018, using the 

visual interpretation of Sentinel-2 MSI images. It is important to mention that it 

was not possible to determine the crop species from the past years, thus we 

defined the class of this species as agriculture (other annuals) in general. 

4.2.1 LULC classes 

Based on previous literature and LULC programs (ALMEIDA et al., 2016; 

PAVANELLI et al., 2018; SOUZA et al., 2020) we divided into 39 LULC classes 

(Figure 3.3). After, we grouped these classes into three classification levels 

according to similarities. The more detailed level is the third one, with the 39 

classes that we identified in the field. After we grouped some classes according 

to the similarities and got the second level, which is more similar to the LULC 

programs legends (see Section 3.2). We decided to identify Conversion and 

Sand/rock areas, even that classes are less representative in terms of area. 

Sand/rock has some confusion with annual crop in MapBiomas (Section 6) and 

identify areas that are being convert from natural formations to anthropic use is 

an important information for the local governments and researchers. Finally, we 

provide a macro group, the first level, which was divided only into Natural or Non-

natural classes.  

In Figure 4.3 we provide the details about our LULC classes and some 

examples/pictures from some classes. 



 
 

25 
 

Figure 4.3  – Panoramic field photos of land use and land cover classes in the Roraima State obtained during the field campaign in 2019. 

   

Forest: Natural tree formations. This class has 
Forest, Buriti, and parkland cerrado. 

Savanna: include clean, dirty, and cerrado 
fields. 

Campinarana: Campinas and Campinarana 
together. 

   

Water: All the water formations, lakes, rivers, and 
dams. 

Sand/rocks: Sandbank, common in rivers, 
and outcrop. 

Annual Crops: Areas that are used to 
cultivate temporary crops. It was identified 

soybean, corn, beans, rice, follow lands, and 
other annuals crops. 

continue 
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Figure 4.3  – Conclusion. 

   

Perennial Crops: Perennial crops and silviculture. 
We identified acacia, papaya, cashew, dende, and 

mango. 
Pasture: Cultivated pasture. 

Conversion: Areas in conversion in the 
analyzed year. Areas that were being 
converted from natural formations to 

something else. 

 

Impermeable: Urban areas, roads, and other buildings. 

Source: Author's production. 
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4.3 Remote sensing data 

The orbit files for Sentinel-1 and Sentinel-2 satellites over the Roraima 

state are presented in Figure 4.4. To cover the entire state, it is necessary 47 

MSI-Sentinel-2 MSI and 7 Sentinel-1 orbits.  

 

Figure 4.4  – Sentinel-1 (considering 2018 and 2019) and Sentinel-2 (2019) orbits over 
the Roraima state. 

 

Source: Author's production. 

 

4.3.1 Sentinel-2 

With both Sentinel-2A and Sentinel-2B satellites operating after June, 

2017, the revisiting time over Roraima became five days. Onboard this 

constellation, there is the MSI sensor with 13 bands in the visible, near infrared 

(NIR) and shortwave infrared (SWIR) spectral bands (Figure 4.5 These sensors 

operate with 10 m of spatial resolution for bands in the visible (B2-Blue, B3-

Green, and B4-Red) and in the NIR (B8-NIR) and 20 m spatial resolution for the 

red-edge bands (B5-Red Edge 1, B6-Red Edge 2, B7-Red Edge 3), NIR (B8A-
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NIRA) and SWIR regions (B11-SWIR1, B12-SWIR2). Aerosols (B1), water-

vapour (B9) and cirrus (B10) bands have spatial resolution of 60 m (ESA, 2015). 

 

Figure 4.5 – Spectral and spatial resolutions of the Multispectral Instrument (MSI) sensor 
on board of the Sentinel-2 satellite.  

 

Source: ESA (2015). 

 

For vegetation studies, the bands, Red-edge 1, Red-edge 2, Red-edge 3, 

Near-Infrared (NIR), NIR-A, Shortwave Infrared 1 (SWIR 1), and Shortwave 

infrared 2 (SWIR 2) are the most used. Vegetation Indexes (VIs), as the NDVI 

(ROUSE et al., 1973), and the Land Surface Water Index (LSWI) (XIAO et al., 

2002, 2004), brought important information to the vegetation studies. The NDVI 

is one of the most know VI and is associated with vegetative vigor. LSWI is 

sensitive to the water presence and dry matter and is used for flood mapping 

(DONG et al., 2013; TORBICK et al., 2016). NDVI (4.1) and LSWI (4.2) Equations 

are presented in the following: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 4.1 
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𝐿𝑆𝑊𝐼 =
𝑁𝐼𝑅 −  𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 4.2 

 

where NIR is the near-infrared region (MSI/band 8 - 842 nm), Red (visible region, 

MSI/band 4 - 665 nm), and SWIR is the shortwave infrared region (MSI/band 11 

- 1610 nm), are surface reflectance in each spectra. 

4.3.2 Sentinel-1 

Sentinel-1 SAR has dense timeseries data with 12 days of temporal 

resolution for each satellite (Sentinel-1A and Sentinel-1B). Before September-

2018, Sentinel-1B does not cover the entire Roraima state (Figure 4.4). Sentinel-

1B started to cover the entire Roraima state after September 2018, after a 

demand to the ESA and configuring a temporal resolution of 4 and 8 days. 

Sentinel-1 most common polarization are VH (vertical transmitted and Horizontal 

received) and VV (vertical transmitted and vertical received). Moreover, IW mode, 

and Ground Range Detected (GRD) data types are the most utilized. 

These data can be used to improve and/or develop new methods for 

mapping and monitoring LULC (TAMM et al., 2016). The ratio between the VH 

and VV polarizations (4.3), is also frequently used for LULC monitoring and/or 

classification. The ratio is less affected by environmental factors or image 

acquisition mode: thus it might have more stability than single polarizations VH 

or VV images (VELOSO et al., 2017; HARFENMEISTER; SPENGLER; 

WELTZIEN, 2019). 

 

𝑅𝑎𝑡𝑖𝑜 =
𝑉𝐻

𝑉𝑉
 4.3 
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5. IMPACTS OF CLOUD COVER OVER SOUTH AMERICA OPTICAL REMOTE 

SENSING MONITORING – CROPLANDS AND RORAIMA CASE1 

Our first paper is about a cloud-cover study for the South America region. 

With this approach, it was possible to understand where and when Optical 

Remote sensing has more limitations due to the cloud-cover. The findings from 

this paper, together with agricultural expansion and data available from LULC 

programs data, helped us to choose the Roraima state, where a multisensor 

approach would be useful. 

5.1 Introduction 

Population growth, biodiversity loss, and climate change are leading to an 

unparalleled challenge for global crop production (NELSON et al., 2009; FOLEY 

et al., 2011). Consequently, large-scale agricultural monitoring becomes a 

relevant research area for a better understanding of food production and its 

environmental impacts. South America (SA) is one of the world leaders in 

agricultural production, with approximately 8% of the worldwide croplands (1.5 

million km²), especially Brazil and Argentina (ZHONG et al., 2017). Due to the 

large extension and dynamics of cropland areas, satellite remote sensing (RS) 

has proved to be a powerful tool for agricultural monitoring. Advances in Optical 

Remote Sensing (ORS) contribute to the development and improvement of 

operational systems focusing on cropland monitoring (ATZBERGER, 2013). 

ORS data have been considered essential for agricultural monitoring, 

providing precise and in time information about crop development (WHITCRAFT; 

BECKER-RESHEF; JUSTICE, 2015b; VELOSO et al., 2017). However, tropical 

croplands have high crop dynamics, caused by climatic, socio-economic, and 

infrastructure factors (SANCHES et al., 2018a). Hence, the use of RS for crop 

monitoring is more complex and challenging in these areas (SANCHES et al., 

2018b). Moreover, the acquisition of ORS cloud-free images is one of the biggest 

 
1 Most part of this chapter was published in the article in . Remote Sensesing Applications: Society 

and Environment, 20, Prudente, V.H.R., Martins, V.S., Vieira, D.C., Silva, N.R. de F. e, Adami, M., Sanches, 
I.D, Limitations of cloud cover for optical remote sensing of agricultural areas across South America, Page 
Nos, Copyright Elsevier (2020) https://doi.org/10.1016/j.rsase.2020.100414 

https://doi.org/10.1016/j.rsase.2020.100414
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challenges for tropical regions (WHITCRAFT et al., 2015b). In SA, cloud cover is 

influenced by tropical climate features and atmospheric circulation, such as the 

South Atlantic Convergence Zone (SACZ) (CARVALHO; JONES; LIEBMANN, 

2004; SILVA; KOUSKY, 2012), SA low-level jet east of the Andes (VERA et al., 

2006), and seasonal migration of intertropical convergence zone (COOK, 2009). 

Following the rainfall season, frequent cloud cover is typically observed in the 

austral summer. This is because the convergence zone and intense convection 

oriented northwest to southeast in the subtropics near the southeastern coast of 

Brazil protrudes into the adjoining South Atlantic ocean as SACZ (ZHOU; LAU, 

1998). 

The SA rainy season helps to provide plant water demands to summer 

crops. However, this is the worst scenario to obtain cloud-free images (ASNER, 

2001; MCNAIRN et al., 2009; WHITCRAFT et al., 2015b; EBERHARDT et al., 

2016). Some studies demonstrated that cloud frequency could affect the potential 

of earth observations at regional (ASNER, 2001; SANO et al., 2007; 

SUGAWARA; RUDORFF; ADAMI, 2008; EBERHARDT et al., 2016) and global 

scales (WHITCRAFT et al., 2015b; WULDER et al., 2015). Specifically for 

cropland monitoring during the growing season, Whitcraft et al. (2015a; 2015a, 

2015b) showed a global cloud cover pattern and reported that there are few 

opportunities for cloud-free ORS data during the vegetative cycle, especially at 

the end of the flowering season and at the beginning of plant senescence. 

However, these studies do not consider how crop types are distributed in 

cropland areas. This difficult analysis focused on the cloud cover impact on 

specific crop monitoring, mainly in tropical regions.  

Roraima has potential to be a new Brazilian agriculture frontier. 

Agricultural exploration has been encouraged by combining the climatic, altitude, 

and water availability factors, as well as affordable land prices and government 

subsidies (agriculture and livestock) (CARVALHO; MUSTIN, 2017). Moreover, 

the crop calendar, with harvest during the off-season for the other Brazilian states 

(April-September), favors better prices and facilitates production chain logistics. 

Thus, it is necessary to monitor and regulates this activity; otherwise, it can affect 

the availability of natural resources (e.g. water, soil) (CARVALHO; MUSTIN, 
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2017). However, Roraima altitudes range between the Negro River to the 

Roraima Mountain  (BARBOSA; BACELAR-LIMA, 2008), act as a natural barrier, 

blocking the moisture brought by the trade winds along the Intertropical 

Convergence Zone (ITCZ). The results are a precipitation gradient and a frequent 

cloud cover frequency in the state, which greatly limits the use of satellite optical 

images  (BARBOSA et al., 2007). 

The understanding of the limitations imposed by cloud cover is essential 

for planning ORS applications. This cloud limitation can affect the LULC mapping 

process in some regions. Besides, few studies have focused on this subject for 

SA cropland. In this context, this study evaluates the cloud cover frequency of SA 

to identify the challenges of using ORS. Our goals were to identify regions where 

clouds limit the use of ORS in general and focused on its implications for SA 

croplands. For the proposed analysis, long-term monthly cloud cover was 

computed from the MODIS MCD19A2 product (2000 – 2015) over SA. The 

Sentinel-2 bitmask band QA60 was used to analyze the impact of cloudiness over 

the Roraima state, a region with frequent cloud cover. The discussion highlights 

the influence of cloud cover on the RS of the main crops in different seasons. 

This continental-scale analysis for agriculture is the first evaluation that combines 

crop type and seasonality with cloud cover variability. Also, this study was the 

base to analyze how clouds interfere in the use of ORS data in LULC approach 

in the Roraima state, a possible new agriculture frontier. 

5.2 Material and methods 

Cloud cover is primary information for the assessment of the potential of 

optical remote sensing (ORS) for Earth observation applications. To assess the 

impact extent of cloudiness, the cloud cover information was extracted from the 

MODIS MCD19A2 for the entire South America (SA) and Sentinel-2 Quality band 

(QA60) for Roraima state. MODIS MCD19A2 was combined with the agricultural 

calendar of the main SA crops (e.g. maize, soybean, and cotton) and QA60 was 

analyzed for Roraima state. We divided the methodology into four sections 

(Figure 5.1). In Section 5.2.1 we described our study area, South America (SA) 

and Roraima. In Section 5.2.2 we showed the cloud cover products obtained from 
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the MODIS-MCD19A2 product and bitmask QA60. In Section 5.2.3 we presented 

the crop type and spatial and temporal cropland distribution over SA. In Section 

5.2.5 we created the cloud cover frequency (CCF) of SA, using MODIS-

MCD19A2, and analyzed it for the croplands. Finally, in Section 5.2.5 we create 

a CCF-QA for Roraima state and analyzed it for the entire state. 

 

Figure 5.1  – Flowchart showing the four methodological steps: process to create the 
cloud cover frequency (CCF) for South America (SA). 

 

(a), the process to understand the crop distribution over SA (b), cloud cover frequency 
over croplands, and the impact in the ORS monitoring (c), and detailed approach to 
understand the cloud cover impact for Roraima (d). 

Source: Author's production. 

 

5.2.1 Study area 

SA has a territorial extension of 17.8 million km² between latitudes 11° N 

and 55° S, and longitudes between 34° W and 82° W. The continent includes 12 

countries, with 242 internal territorial divisions (states, provinces, departments, or 

regions) (Figure 5.2). Regarding altitude, SA can be divided into three parts. In 

the east, there are low altitude plateaus with the basins of the main Brazilian 

rivers. In the west, the Andes Mountain range presents high altitudes with peaks 
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achieving, approximately, 7,000 meters. In the middle region, there is the Central 

South American Depression, formed by plains with excerpts flooded as the 

Orinoco River in Venezuela, the Mamoré-Beni in Bolivia, and Paraguay river in 

Brazil, Paraguay, and Argentina (OLSON et al., 2001; GRIMM; PAL; GIORGI, 

2007; ROSS, 2016; ADAMI et al., 2018). According to Koppen-Geiger 

classification, there is a large variability of climate patterns across SA, where the 

central northern region has tropical monsoon phenomena and the southern 

region shows humid subtropical climate (MECHOSO et al., 2004; VERA et al., 

2006; PEEL; FINLAYSON; MCMAHON, 2007; SILVA; KOUSKY, 2012; VUILLE 

et al., 2012; ALVARES et al., 2013). Such differences allow the development of 

intensive agriculture, rendering the continent one of the largest agricultural 

producers in the world (FAOSTAT, 2018). 

The Roraima state, located in the northern part of Brazil (Figure 5.3), is not 

one of the large Brazilian agriculture producers. However, this state shows large 

potential to crop expansion, mainly in the savanna’s region. A detailed description 

of Roraima can be found in Chapter 3.  
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Figure 5.2  – Study area. The colored states represent states/provinces/departments 
with more than1% of the South American cropland in 2015 (FAOSTAT, 
2018). 

 

Source: Author’s production. 
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Figure 5.3  – Location of Roraima state locations in SA, including the Sentinel-2 MSI tiles 
over the state.  

 

Source: Author's production. 

 

5.2.2 Cloud cover 

MODIS sensors were launched aboard two NASA satellites: Terra, in 

December 1999 (10:30 LT descending node), and Aqua, in May 2002 (13:30 LT 

ascending node) (JUSTICE et al., 1998, 2002). MODIS provides near-daily global 

observations in 36 channels (0.415 – 14.235 µm), wide swaths (2230 km), and 

three spatial resolutions (250, 500, and 1,000 m). The suite of spectral bands has 

been used for the retrieval of several biophysical parameters and atmospheric 

properties. Recently, the MCD19A2 product derived from the Multi-Angle 

Implementation for Atmospheric Correction (MAIAC) algorithm has been 

released as part of the MODIS collection 6 product. It combined MODIS Terra 

and Aqua products containing atmospheric parameters at 1 km resolution, such 

as aerosol optical depth, columnar water vapor, and cloud cover. The MAIAC 

cloud mask implements a dynamic detection algorithm with a series of spectral 

thresholds, including thermal and cirrus bands. The time series and block-pixel 

analysis in MAIAC improve cloud screening. Several results have emphasized 
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the accuracy of the MAIAC cloud mask, especially in the Amazon region (HILKER 

et al., 2012; MARTINS et al., 2018a). A detailed description of the MAIAC cloud 

mask is found in Lyapustin et al. (2012, 2018). In this study, we used a daily 

MCD19A2 product, between 2000 and 2015, to obtain cloud cover across SA. 

The product was acquired in Level-1 and downloaded from the Atmosphere 

Archive & Distribution System (LAADS) Distributed Active Archive Center 

(DAAC) (https://ladsweb.modaps.eosdis.nasa.gov) and delivered as Hierarchical 

Data Format-Earth Observing System (HDF-EOS) file. The cloud mask was 

derived from the Quality Assurance (QA) layer of the MODIS Terra dataset for 

each tile (1200 x 1200 km) (see tiles in Lyapustin et al., 2018). Based on the daily 

files, we computed the monthly cloud cover fraction using 15-year MODIS 

products (Figure 5.4).  

Sentinel-2 MSI has a bitmask quality band (QA60) that enables the 

identification of cloudy and cloud-free pixels with 60 m spatial resolution. QA band 

was used to analyze the cloud cover limitation over Roraima state during 2019. 

Bit 10 if for opaque clouds (0: no opaque clouds, 1: presence of opaque clouds), 

and Bit 11 is for cirrus clouds (9: No cirrus clouds are present, 1: cirrus clouds is 

present) (ESA, 2021).  
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Figure 5.4 – Cloud cover frequency considering MAIAC and MODIS. 

 

Source: Author's production. 

 

5.2.3 Cropland information 

Cropland distribution and crop types across SA are shown in Figure 5.5. 

We obtained this information from the Worldwide Croplands project (ZHONG et 

al., 2017), in which global agricultural areas were mapped between 2000 and 

2015 using Landsat 30-m data (THENKABAIL et al., 2012; TELUGUNTLA et al., 

2015; ZHONG et al., 2017). In the Worldwide Croplands project, croplands are 

represented by cultivated and fallow areas. Cultivated areas are the lands with 

plants harvested for food, feed, and fiber, including both seasonal crops (e.g., 



 
 

39 
 

wheat, rice, maize, soybeans, cotton) and continuous plantations (e.g., coffee, 

tea, rubber, cocoa, palm oil). Fallow-lands are defined as uncultivated lands 

during a season or a year but they remain farmlands and are equipped for 

cultivation, including plantations (e.g., orchards, vineyards, coffee, tea, rubber) 

(ZHONG et al., 2017; TELUGUNTLA et al., 2018). In the present study, we 

resampled the cropland product with the nearest method to the spatial resolution 

of 1km², to match the spatial resolution of the cloud cover MCD19A2 product). In 

SA, Brazil presents approximately 42.1% of the croplands, followed by Argentina 

(25.3%), Uruguay (7.7%), Paraguay (6.1%), and Venezuela (5.0%) (ZHONG et 

al., 2017). Among the 242 SA states, six Argentinian states (Buenos Aires, 

Cordoba, Entre Rios, La Pampa, Santa Fe, and Santiago del Estero) and eleven 

Brazilian states (Mato Grosso, Mato Grosso do Sul, Minas Gerais, Goias, Sao 

Paulo, Rio Grande do Sul, Bahia, and Parana) stand out for having large, 

cultivated areas. Buenos Aires (27 Mha) in Argentina and Mato Grosso (23 Mha) 

in Brazil has the largest cropland extensions in SA (ZHONG et al., 2017). 

According to the Food and Agriculture Organization (FAO), in 2015, the 

main crops cultivated in SA were soybeans, maize, sugarcane, wheat, rice, 

beans, coffee, cassava, sorghum, sunflower, cotton, barley, cocoa, and potatoes 

(FAOSTAT, 2018). These crops are differently distributed along the continent, as 

illustrated in Figure 5.5. South American cropland calendars, when existent, lack 

subnational growing season characterization and are not spatially explicit. 

Besides, they might be unreliable, due to unclear, out-of-date, and poorly 

documented data sources (WHITCRAFT; BECKER-RESHEF; JUSTICE, 2015b). 

Therefore, we used supplementary documents from different source levels 

(continent, national, and state) and created a summary of the agricultural 

calendar for the main crops cultivated in SA (Figure 5.6) (EMATER, 1983; SILVA 

NETO et al., 2001; OTSUBO; LORENZI, 2004; CARDOZO, 2009; FIALHO; 

ANDRADE; VIEIRA, 2013; INIA, 2014; MESQUITA, 2016; SILVA et al., 2017; 

SODRÉ, 2017; CONAB, 2017; OLIVEIRA NETO, 2017; AMIS, 2019; INTA, 

2019). Based on the crop phenological plant cycle, sowing, and harvesting dates, 

we divided the year into four different intervals (periods). 
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Period 1 – P1 (September-November): represents the spring season in 

the southern hemisphere when there is the occurrence of soybean, maize, rice, 

and beans seeding; and also, the main wheat harvest and cotton seeding. 

Period 2 – P2 (December-February): represents the summer season in 

the southern hemisphere when there is the occurrence of soybean, maize, rice, 

and beans harvest in the main croplands; and cotton seeding for some regions; 

Period 3 – P3 (March-May): represents the autumn season in the 

southern hemisphere. It corresponds to the end of soybean and maize harvest 

over most South American croplands, and it is the period when the wheat sowing 

is concentrated; 

Period 4 – P4 (June - August): represents the winter season in the 

southern hemisphere. It is when the wheat senescence and the beginning of 

harvest occur. For some regions, it corresponds to the beginning of the maize 

seeding. 

For the analysis of perennial (cocoa and coffee) and semi-perennial 

(sugarcane and cassava) crops, we studied the four periods together. We did 

likewise for potato, an annual cycle crop that is planted and harvested year-round. 

For these crops, harvest happens in different quarters. Moreover, it is important 

to mention that the crop calendar in Roraima has harvest occurring during the off-

season of the other Brazilian states (April-September). Thus, for Roraima, the 

periods are different (see Section 5.2.5 for details). 
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Figure 5.5  – Crop types distribution based on USGS and FAOSTAT data. Symbols: 
adapted from GEOGLAM. 

 

USGS: United States Geological Survey 

Source: Author's production. 
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Figure 5.6  – Crop Calendar for the main crops cultivated in SA. Symbols: adapted from 
GEOGLAM. 

Source: Author's production. 

 

5.2.4 MODIS cloud cover frequency 

Using the monthly cloud cover over the entire SA territory (MCD19A2 

product), we calculated the cloud cover mean (CCM) for each period (P1, P2, P3, 

and P4 – Section 5.2.3). Afterwards we sliced all CCM in percentiles (class 1: 0-

10%; class 2: 10-20%; class 3: 20-30%; class 4: 30-40%; class 5: 40-50%; class 

6: 50-60%; class 7: 60-70%; class 8: 70-80%; class 9: 80-90%; and class 10: 90-

100%), creating a cloud cover frequency (CCF) over SA. The lower the CCF in 

one area, the bigger the chances of obtaining cloud-free ORS data for the area. 

To better understand the cloud cover pattern, we first analyzed the CCF over the 

entire SA Figure 5.2, and afterward, we focused on the cropland CCF areas 

Figure 5.5. To evaluate the most appropriate periods for monitoring each crop 

using ORS, we analyzed the CCF data together with the crop calendar data 
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(Figure 5.6) and the spatial distribution of crop areas (Figure 5.5). Therefore, for 

this step, we used the cropland areas to extract the CCF classes for each period. 

As Brazil and Argentina have the largest cropland extensions (67%) in SA, we 

analyzed the croplands CCF for each one of the 17 main agricultural 

state/province producers of these countries (Figure 5.2). Therefore, for these 

countries, we sliced the CCF into three interference classes:  

• Low: CCF between 0% and 30%. In this class the CCF may have a 

low impact when using the ORS data to monitor the croplands; 

• Medium: CCF between 30% and 70%. In this class, the cropland 

monitoring with ORS data could be more impacted, but its use may 

not be entirely restrictive; 

• High: CCF between 70% and 100%. This is the worst class for crop 

monitoring with ORS data. There will possibly be just a few 

observations and monitoring with optical data may be restricted. 

5.2.5 QA60 cloud cover frequency 

Considering the Roraima state (Figure 5.3), we calculate two cloud cover 

frequency products. First, we used the CCF from MODIS (Section 5.2.4) for a 

general approach. After, we created the QA60 Cloud Cover Frequency 

(QA60CCF) for 2019 and 2017. Using the bitmask QA60, inside the Google 

Engine platform (GORELICK et al., 2017), QA60CCF was calculated three 

different times. The first period (QP1) represents the months from January to 

April. The second period (QP2) represents the months from May to August. QP2 

represents the annual crop season in Roraima state (for more information see 

Chapter 3). Finally, QP3 represents the months from September to December. 

Like CCM, QA60CCF was sliced in percentiles (class 1: 0-10%; class 2: 10-20%; 

class 3: 20-30%; class 4: 30-40%; class 5: 40-50%; class 6: 50-60%; class 7: 60-

70%; class 8: 70-80%; class 9: 80-90%; and class 10: 90-100%).  
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5.3 Results 

5.3.1 Cloud cover frequency – South America 

CCF across SA depends on geographic location and periods (Figure 5.7). 

In P1, 73.5% of SA extension has CCF between class 5 and 9. For the austral 

summer (DJF), approximately 47% of SA territory presents CCF class 9 or 10, 

which highly limits the use of ORS data. In P3, there are fewer areas with CCF 

class 9 or 10 and more areas (32% of SA) with CCF between classes 5 and 6. 

The austral winter (JJA), compared to the other periods, is the one with the 

smallest area (23% of SA) with CCF above class 9, and with the largest area 

(29% of SA) with CCF under class 4. Considering the entire year, frequent cloud 

cover is observed on the eastern Brazilian coast, northern (as Roraima state), 

and extreme southwestern coast of SA. That means these regions have less 

chance of acquiring cloud-free ORS data. Moreover, the SA central region in P4 

is one of the most favorable periods for the use of ORS data. 
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Figure 5.7 – CCF classes over the entire SA for four different periods. 

 

Source: Author's production. 
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5.3.2 Cloud cover frequency – South America croplands 

Spatial distribution and CCF class concentration over SA croplands, for 

each period are presented in Figure 5.8. Details about cropland CCF over some 

of the main agricultural regions are shown in Figure 5.9 and Figure 5.10. In P1, 

almost 68% of the South American croplands have CCF classes 5 and 6. 

Argentinian croplands (Figure 5.9d) are concentrated (59%) in class 5, while 

approximately 52% of Brazilian (Figure 5.9a-c) and 60% of Bolivian (Figure 5.9c) 

croplands are in class 6. Uruguay and Paraguay have more than 75% of their 

croplands (Figure 5.9c) in class 6, and Chile has 40% of their croplands in the 

same CCF class 6 (Figure 5.9d). Venezuela and Colombia have more than 90% 

and 78%, respectively, of their croplands between CCF classes 8 and 9 (Figure 

5.10). For P2, South American croplands are distributed among five CCF classes. 

The higher concentrations correspond to class 5 (21%) and 8 (20%). In this 

period, most Argentinian croplands (67%) correspond to class 5. Brazilian 

croplands are concentrated in classes 7 (27%) and 8 (32%), and Bolivian 

croplands in class 8 (36%) and 9 (44%). CCF remains between classes 4 and 6 

in more than 90% of the Uruguayan croplands. Meanwhile, 73% of Paraguayan 

croplands have class 6. Chile is the only one with more croplands (54%) under 

CCF class 3. Venezuelan croplands are concentrated in class 5 (21%) and 8 

(20%). Colombian croplands are concentrated in class 6 (24%) and 7 (25%). 

In P3, Argentinian (71%), Brazilian (36%), Paraguayan (69%), and Chilean 

(41%) croplands are concentrated in CCF class 5, representing 42% of SA 

croplands. On the other hand, Bolivia has more croplands in class 7 (70%), 

Uruguay in class 6 (77%), and Venezuela between classes 7 (32%) and 8 (37%). 

For P4, SA croplands are concentrated between classes 4 and 6 (41% of 

croplands). However, in this period there is a higher cropland concentration (27%) 

between classes 1 and 3. Argentina and Paraguay have more croplands in class 

7, with 67% and 62%, respectively. Brazilian croplands are concentrated in class 

2 (25%) and 3 (21%). Croplands from Bolivia, Chile, Uruguay, and Venezuela are 

concentrated in classes 5 (45%), 8 (46%), 7 (58%) and 9 (69%), respectively. 
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Figure 5.8 – Spatial and temporal CCF for croplands in each period. 

  

 

  

  

  

Source: Author's production. 
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Figure 5.9 – Detail about the spatial and temporal CCF distribution over the Brazilian 
states croplands. 

 

a) (13) Rondônia, (7) Mato Grosso, (10) Para, b) (1) Bahia, (9) Minas Gerais, (5) Goias, 
(17) Tocantins, c) (8) Mato Grosso do Sul, (16) São Paulo, (11) Parana and (12) Rio 
Grande do Sul; and Argentina states croplands of d) (2) Buenos Aires, (6) La Pampa, 
(3) Cordoba, (15) Santiago del Estero, (14) Santa Fe, and (4) Entre Rios. 

Source: Author's production. 

 

Summer crops comprise P1 and P2 in almost all SA croplands. During P1, 

CCF is between 40% and 60% for almost all croplands, not an ideal situation but 
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cloud-free images can still be obtained for some regions. In P2, the CCF occurs 

from class 5 to class 9 in the croplands. Winter crops comprise P3 and P4 in 

almost all SA croplands. For P3, CCF concentration over croplands is between 

classes 5 and 6, with a higher percentage in class 5. In P4, CCF decreases in 

the central region of SA, corresponding mainly to croplands located in the central 

-west parts of Brazil and of Bolivia. 

 

Figure 5.10 – Detail about the spatial and temporal CCF distribution over Ecuador, 
Colombia, and Venezuela croplands. 

 

Source: Author's production. 

 

We used CCF to create a CCF interference (Figure 5.11) to apply ORS 

data to cropland monitoring for each one of the 17 main Argentinian and Brazilian 

provinces/states. In P1, the Brazilian and Argentinian states have a 

predominance of CCF classes 5, 6, and 7, configuring medium CCF interference 

to cropland monitoring with ORS data. For the Brazilian states, medium CCF 

interference in class 6 is predominant in the Tocantins (62%), Goias (94%), Mato 

Grosso do Sul (94%), Parana (72%), and Sao Paulo (78%) croplands. Bahia state 
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has predominantly medium CCF interference in the western part, class 5 (24%), 

and high CCF interference in the eastern part, class 9 (30%). Mato Grosso state 

presents croplands in classes 6 (56%) and 7 (44%), configuring as medium CCF 

interference. Croplands in Rondonia states have the predominance of class 7 

(82%), medium CCF interference. For Para croplands, we found that CCF 

interference is medium, class 7 (20%), for the southern region and high, for the 

rest of the state, classes 8 (34%), and 9 (28%). In Minas Gerais and Rio Grande 

do Sul croplands, the predominant classes are 6 (51% and 48%, respectively) 

and 7 (20% and 50%, respectively), defined as medium cloud cover interference. 

Moreover, for Argentinian provinces, we defined CCF interference as medium for 

all provinces, where Córdoba, Entre Rios, La Pampa, Santa Fe, and Santiago del 

Estero have most croplands classified as CCF class 5, with 96%, 75%, 84% and 

97% of croplands, respectively. Only in Buenos Aires are croplands predominant 

(82%) in class 6. In P2, medium (CCF classes 5, 7) and high CCF interference 

(class 8) are predominant in Brazilian states and Argentinian provinces 

croplands. At the Brazilian state level, we found that a high CCF interference 

(class 8), predominates in Goias (87%), Tocantins (67%), and Minas Gerais 

(61%) croplands. Bahia has high CCF interference and its croplands are divided 

between CCF classes 8 (29%) and 9 (33%). For Mato Grosso croplands class 9 

(68%) are predominant and for Para and Rondonia class 10 (61% and 70%, 

respectively), both with high CCF interference for the use of ORS data. We found 

medium CCF interference predominantly in class 7 for Mato Grosso do Sul (70%), 

Parana (66%), and Sao Paulo (81%) states, and in classes 6 (51%) and 7 (28%) 

for Rio Grande do Sul croplands. Similar to P1, we found medium CCF 

interference for all Argentina provinces, with CCF class 5. In Buenos Aires (65%), 

Cordoba (86%), Entre Rios (99%), Santa Fe (99%) and Santiago del Estero 

(79%) croplands class 5 predominates, while, in La Pampa croplands, class 4 is 

predominant (96%). Therefore, there are limitations to using ORS data for crop 

monitoring in these areas, mainly for P2, in the Brazilian central-west croplands. 
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Figure 5.11 – CCF interference for cropland monitoring with ORS data for each period, 
for Argentina provinces. 

 

(2) Buenos Aires, (3) Cordoba,(4) Entre Rios (6) La Pampa, , (14) Santa Fe and (15) 
Santiago del Estero, and Brazilian states of (1) Bahia, (5) Goias, (7) Mato Grosso, (8) 
Mato Grosso do Sul, (9) Minas Gerais, (10) Para, (11) Parana, (12) Rio Grande do 
Sul,(13) Rondonia, (16) Sao Paulo and(17) Tocantins 

Source: Author's production. 

 

In P3, there is an overall predominance of CCF class 5 among Brazilian 

and Argentinian states croplands, with medium CCF interference. Goias, Mato 

Grosso do Sul, Parana, and Sao Paulo have most of their croplands with CCF 

class 5, with 72%, 93%, 59%, and 84% respectively. Croplands inside Bahia state 

are predominant in classes 8 (25%) and 9 (29%), and Para and Rondonia have 

a predominance of classes 9 (54%) and 8 (67%), configuring high CCF 
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interference. On the other hand, we found medium interference for Minas Gerais, 

classes 5 (37%) and 6 (33%), Mato Grosso, classes 6 (34%) and 7 (39%), 

Tocantins, class 6 (41%), and Rio Grande do Sul, class 6 (59%). Buenos Aires, 

Cordoba, Entre Rios, La Pampa, and Santa Fe Argentinian provinces have 

croplands with a predominance of class 5, with 70%, 70%, 95%, 99%, and 98% 

respectively. Only Santiago del Estero shows most croplands (85%) in class 6. 

Hence, we configured the Argentinian provinces as medium CCF interference. In 

P4, the majority of Brazilian states have low CCF interference. Goias (76%) and 

Mato Grosso (72%) croplands have class 2 of CCF. Similarly, in Minas Gerais 

and Tocantins class 3 predominates, with 59% and 89% respectively. For 

croplands in western Bahia, we found low CCF interference, class 2 (27%), 

however, for the eastern part, we found high CCF interference, class 9 (31%). 

Para croplands are divided among several classes, mainly class 2 (20%) and 3 

(18%). Class 4 predominates in Rondonia croplands (71%), defined as high CCF 

interference. For part of Sao Paulo, class 3 (34%), Mato Grosso do Sul, class 3 

(42%), we found low CCF interference. However, for Parana, class 5 (63%), and 

other parts of Sao Paulo, class 4 (52%), and Mato Grosso do Sul, class 5 (33%), 

we found medium CCF interference. Rio Grande do Sul is more similar to 

Argentina, with a cropland concentration in classes 6 (56%) and 7 (44%), 

characterizing a medium CCF interference. In Argentinian states, Buenos Aires 

(80%), Entre Rios (98%), and Santa Fe (99%) have the most croplands in class 

6. Santiago del Estero has croplands predominantly (99%) in class 5. Cordoba 

has its croplands divided between classes 5 (42%) and 6 (58%). Thus, it is 

possible to see that in almost all Brazilian croplands the limitation to use ORS 

data for crop monitoring is lower than that of previous periods. Argentinian 

croplands remain in a similar condition. 

In almost all Brazilian states, where soybean and maize are grown 

(considering only the first-crop – summer crop), the monitoring using ORS data 

is hindered by the medium to high CCF interference. During the seeding period 

of these crops in P1, concentrated at the end of September and October, a 

medium CCF interference is predominant in the Brazilian and Argentinian 

croplands. For the maximum vegetative development and harvest periods, 
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encompassing P2, which goes until March (beginning of P3), we found high CCF 

interference in the Brazilian central -western states. This cloud pattern decreases 

the chance of obtaining cloud-free ORS data during summer (P2), corresponding 

to the maximum development of these crops. However, Brazilian state Rio 

Grande do Sul and Argentinian provinces have a medium cloud interference for 

monitoring crops, owing to the fact that cloud frequency values are almost 

constant between classes 5 and 6. It is important to emphasize that even with a 

high CCF interference some “windows” might occur when crops may be identified 

(i.e., mapped).  

Wheat is cultivated mainly in P2, it is sown between March and June (P2 

and beginning of P3) and harvested from July to December (P3 and beginning of 

P4). Rio Grande do Sul and Parana Brazilian states and Argentinian provinces 

are the greatest wheat producers in SA. These regions have medium CCF 

interference; therefore, ORS data might be used to provide wheat monitoring in 

part of the cycle. Rice seeding season occurs between September to December 

(P1 and the beginning of P2), and its maximum development is near P2. We 

found medium CCF interference for the biggest rice producers, Argentinian 

provinces and Rio Grande do Sul state. Bean production is concentrated in Minas 

Gerais and Paraná states in Brazil. When cultivated during the first-crop, its 

maximum development occurs in November and December (end of P1 and 

beginning of P2). We found medium CCF interference during P1, and high CCF 

interference during P2, for the bean cropland locations in both states. Thus, in 

general, there is medium to high CCF interference for the monitoring of beans 

with ORS data.  

The use of RS data to monitor crops with perennial and/or semi-perennial 

cycles is more feasible because these crops remain in the field for a longer period, 

increasing the probability of obtaining cloud-free ORS data during plant 

development. The fact that these crops remain in the field for a long time allows 

the acquisition of cloud-free images at different times. However, in some South 

American croplands, there is a high CCF interference throughout the year, 

affecting even the perennial and/or semi-perennial crop monitoring. In general, 

we found medium CCF interference in the monitoring of sugarcane (semi-
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perennial) and coffee (perennial) crops in Brazil using ORS data. However, for 

specific regions, such as the eastern part of Bahia state, the persistent cloud 

frequency throughout the year, caused probably due to sea breeze (SILVA; 

KOUSKY, 2012), resulted in a high CCF interference when using ORS data. 

5.3.3 Cloud cover frequency – Roraima case 

SA northern region, near Equator line, has a frequent CCF. Roraima state 

(Figure 5.12), located in this region, show monthly CCF of over 70% for the entire 

year. From April to July, inside the QP2, this limitation is higher. During this 

period, it is almost impossible to obtain cloud-free data. On the other hand, the 

months of September and October have the lower CCF, which means more 

probability to obtain ORS cloud-free images. Regions with high elevation (Figure 

5.3), as the Roraima Mountain on the northern part, have the higher CCF.  

According to the QA60CCF (Figure 5.13), for the QP2 there are a few 

cloud-free observations for the Sentinel-2 MSI data, with 56% of Roraima territory 

with more than 60% of QA60CCF. QP1, on the other hand, has de lower 

QA60CCF, showing a better scenario of using ORS data with more than 64% of 

Roraima with less than 50% of QA60CCF. During the QP3, 63% of Roraima 

territory presented QA60CCF between 40% to 60%. For 2017 (Figure 5.15), QP1 

presented the worst scenario, with more than 60% of Roraima with QA60CCF 

higher than 70%. 
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Figure 5.12 – Cloud cover frequency considering MAIAC and MODIS for Roraima state. 

 

Source: Author's production. 
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Figure 5.13  – QA60 Cloud cover frequency considering Sentinel-2 MSI optical data over 
three different periods of 2019 (QP1 – Jan-Apr, QP2 – May-Aug, QP3 – 
Sep-Dec).  

a) 

 

b) 

 

Source: Author's production. 
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Figure 5.14  – QA60 Cloud cover frequency considering Sentinel-2 MSI optical data over 
three different periods of 2017 (QP1 – Jan-Apr, QP2 – May-Aug, QP3 – 
Sep-Dec).  

a) 

 

b) 

 

Source: Author's production. 

 

The year 2017 has less free-cloud observation than 2019 (Figure 5.16) 
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observation manly in QP1 for 2017 (Figure 5.15). When combining Sentinel-1 

and Sentinel-2 MSI it is possible to improve the probability to obtain useful data 

for 2017 (Figure 5.17). For 2019, the combination of Sentinel-1 and Sentinel-2 

(Figure 5.17), produces a dense time series.  

 

Figure 5.15  – Sentinel-2/MSI optical cloud-free cover observation data for 2017 (left 
map) and 2019 (right map).  

 

Source: Author's production. 
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Figure 5.16  – Sentinel-2/MSI optical cloud-free (top images) and Sentinel-1 (bottom 
images) data observations over 2017 (left images) and 2019(right 
images).  

 

Source: Author's production. 

5.4 Discussion 

Our results have shown that the use of ORS data for earth observation is 

a challenge in some parts of SA, due to frequent cloud cover. We found a frequent 

CCF over the Amazon and Brazilian coastal regions, making it very difficult to 

obtain ORS cloud-free data (Figure 5.7). This limitation is aggravated in the 

Equatorial zones (between 15º N and 14 ºS), where there is a higher CCF when 

compared to that of regions with latitudes between 15ºN and 40º N. This is due 

to the South Atlantic Convergence Zone – SACZ and Intertropical Convergence 

Zone – ITCZ (WHITCRAFT et al., 2015b), which reflect in the distribution of 

clouds and precipitation throughout the year (GRIMM; BARROS; DOYLE, 2000; 

GRIMM, 2003). In this sense, Asner (2001), Wulder et al. (2015), and Martins et 

al. (2018a) demonstrated this difficulty in obtaining cloudless Landsat data 
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available for tropical regions. We found that it is challenging to use optical sensors 

even in the months with lower cloud frequency, P4, which represents medium 

CCF interference (CCF near 40-50%) in most of SA, as we showed in Figure 

5.11. Similar to our results, Sano et al. (2007) observed that it is less likely to 

obtain cloud-free Landsat images over Brazilian tropical Savannas (e.g. Brazilian 

central part), from October to March, corresponding to our P1 and P2. In contrast, 

it is more likely to obtain cloud-free Landsat images in July and August, our P4.  

Agricultural monitoring, temporally dynamic targets, via ORS is 

challenging. This is because most croplands are cultivated in the rainy season, 

with an annual crop vegetation cycle and a higher cloud frequency. Whitcraft et 

al. (2015b) discussed the challenges for worldwide cropland monitoring. 

According to these authors, for annual crops, the major limitations are also from 

the beginning to the middle of the crop cycles. To overcome it and provide an 8-

day image with 95% of the cloud-free sky of the croplands, Whitcraft et al., 

(2015a) defined that the global revisit frequency required is 1.7 – 2.6 days. The 

spatial distribution of South American croplands is heterogeneous. Brazil, 

Argentina, Uruguay, Paraguay, and Venezuela, concentrated 86.2% of the 

cropland areas (ZHONG et al., 2017). Moreover, the annual crops in these 

countries are cultivated in different periods. In general, to provide an 8-day revisit 

with more than 70% of cloud-free observation in South American croplands, 

Whitcraft et al. (2015b) mentioned that a 2-day temporal resolution is required.  

In our results we noted that the low CCF interference occurs at the end of 

crop cultivation, end of P2, or out of the crop cycle, P3, in the Brazilian central-

western cropland regions. In this region, during the P2 the high CCF interference 

is predominant. Therefore, is unlikely to have proper soybean and corn 

monitoring with ORS data for this region. Sano et al. (2008) also mentioned that 

due to less cloud-free ORS data between October and March (corresponding to 

ours P1 and P2), it is more difficult to provide an appropriate summer crop 

monitoring in the Brazilian central-western regions (Mato Grosso, Mato Grosso 

do Sul, Goias, Minas Gerais, Tocantins and west of Bahia states).  
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According to our study, Argentinian and southern Brazilian croplands have 

medium CCF interference during the entire year and represent a possible 

limitation for the annual crop monitoring system using ORS sensors. For the 

summer crops, we found that Parana and Sao Paulo as higher CCF interference 

than the Rio Grande do Sul and Argentina. Consequently, use ORS data to crop 

monitoring (mainly soybean, corn, and sugarcane) is more challenge in these 

states.  However, for the winter crops (mainly wheat) Argentinian and southern 

Brazilian croplands have similar CCF patterns. In this context, is likely the winter 

crop monitoring in these areas. Eberhardt et al. (2016) described the difficulties 

for agricultural monitoring with ORS data in some Brazilian states (Parana, Rio 

Grande do Sul, and Sao Paulo). Likewise, these authors found limitations due to 

CCF interference for crop monitoring, such as soybean, and maize, during the 

quarter DJF, our P2, which corresponds to the main crop growing period. In 

contrast, these authors mentioned that the monitoring of winter crops, our P3 and 

P4, in the Parana state are more likely to be successful when compared to that 

of the summer crops in these same areas. Moreover, Eberhardt et al. (2016) 

reported that in Sao Paulo and Parana states, cloud coverage increased from 

September to March (our P1 and P2), corresponding to the spring and summer 

crops. Besides, for these authors, Rio Grande do Sul state had a stable and high 

cloud cover throughout the year. These patterns are like those found in our 

research. Sugawara et al. (2008) mentioned that it was even impossible to map 

the soybean crop in the whole Parana state between the years 2000 and 2007. 

This occurred even when using Landsat-5 Thematic Mapper (TM) and Landsat-

7 Enhanced Thematic Mapper Plus (ETM+) data, with an 8-day temporal 

resolution. The authors found fewer cloud-free images from December to 

February, the main quarter for summer crops. King et al. (2017) using a stratified 

approach, found limitations to the estimated soybean in Argentina in 2013/2014. 

However, these authors cited that cloud cover remains a limiting factor in tracking 

crop phenology, and even mapping, rainfed crop types with time-series ORS 

data. They missed the soybean greenup and senescence monitoring in some 

areas, due to the cloud cover presence in Landsat 7 and 8 data, January 22nd, 

and February 15th, and after March 10th.  
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Sugarcane cropland monitoring in the Brazilian coastal region using only 

ORS data is rather complex. These areas have high CCF interference and are 

unlikely to obtain cloud-free data. However, for the areas with sugarcane in Sao 

Paulo and northern Parana, the CCF interference is medium and has lower CCF 

for the P3 and P4. According to Aguiar et al. (2011), sugarcane crop cultivation 

in Sao Paulo state tends to reach its maximum vegetative development in April, 

when the harvest season starts and continues until December. Rudorff et al. 

(2010) mentioned that the images from January to April better provide the spatial 

distribution of sugarcane in Sao Paulo state. According to these authors, images 

from January and February (our P2) have more probability to have clouds than 

images from March to April (our P3), as observed in our study for Sao Paulo 

croplands. Aguiar et al. (2011) mentioned that images over the entire harvest 

period (April to February) are necessary to define the harvest type. These authors 

analyzed the sugarcane harvest type for Sao Paulo state between the years 2006 

and 2011, using ORS data from satellite Landsat-5 TM. They found that TM 

images often presented clouds that precluded image classification, even when 

most of the sugarcane harvesting is performed during the dry season with lower 

cloud frequency and is relatively favorable for acquiring cloud-free ORS data.  

Considering the CCF interference over each crop in each state, we created 

a table to summarize the feasibility of ORS data use. It is important to highlight 

that this summary is to provide accurate crop monitoring and does not reflect the 

crop mapping likelihood. We defined three situations: 

• Very likely: low CCF interference during almost the entire vegetative crop 

cycle; 

• Likely: medium CCF interference in most of the vegetative crop cycle; 

• Unlikely: high CCF interference in most of the vegetative crop cycle. 
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Table 5.1.  Summary of ORS data use feasibility: very likely (+), likely (±), and unlikely  
(-) considering the main crops in the main producer states of Brazil and 
Argentina: Regions, where the crop is inexpressive, are blank. 

  Soybean Maize Wheat Rice Beans Sugarcane Coffee 

B
ra

z
il 

MT - -      

MS ± ±      

MG ± ±   ± + + 

GO - -    +  

SP - -    + + 

RS ± ± ± ±    

BA1 - -    -  

PR - - ±  ± +  

PA - -      

RO - -     + 

TO - -      

A
rg

e
n

ti
n

a
 

BA2 ± ± ± ±    

CO ± ± ± ±    

SF ± ± ± ±    

ER ± ± ± ±    

LP ± ± ± ±    

SE ± ± ± ±    

Legend 

+ Very 
likely 

+- Likely - Unlikely 

MT: Mato Grosso; MS: Mato Grosso do Sul; MG: Minas Gerais; GO: Goias; SP: Sao 
Paulo; RS: Rio Grande do Sul; BA1: Bahia; PR: Parana; PA: Para; RO: Rondonia; TO: 
Tocantins; BA2: Buenos Aires; CO: Córdoba; SF: Santa Fe; Entre Rios; La Pampa; 
Santiago del Estero. 

Source: Author's production. 
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Roraima state has more frequent cloud-cover during the QP2 period, 

impacting the use of Sentinel-2-MSI for crop season. Pavanelli et al. (2018) 

mentioned that due to the frequent cloud cover, mainly during the crop seasons, 

it is almost impossible to obtain clear sky observations with optical data in this 

region. The study of Martins et al. (2018a) also illustrated how difficult is to have 

cloud-free data in this Amazon region. Thus, for the LULC mapping process, ORS 

data from QP1 and QP3 could be not enough, because the Annual crops will be 

not well representing. Besides, the Roraima QA60CCF could be characterized as 

medium interference for ORS optical data use during the entire 2019. Also, it is 

important to highlight that during 2019 there are Sentinel-2A and 2B, but before 

June 2017, data from 2B was not available, resulting in a temporal resolution of 

10 days and consequently less data available. That increase the proportion of 

cloudy pixel and restricting more the ORS cloud-free data for 2017. 

One possible way to overcome the cloud limitation in areas with medium 

cloud cover interferences is to combine different optical sensors, creating a 

hypothetical constellation (WHITCRAFT et al., 2015a; WULDER et al., 2015), to 

improve ORS temporal resolution during agricultural seasons. However, in 

regions with high cloud frequency during the phenological crop cycle, it is difficult 

to create an agricultural monitoring system based entirely on optical sensor data. 

Even with a better temporal resolution, there could be gaps without ORS data. 

Thus, one alternative for these areas is to use microwave Synthetic Aperture 

Radar (SAR) (WHITCRAFT et al., 2015a) which is less affected by cloud cover. 

SAR data could be used alone or combined with ORS. For Roraima state, the 

use of SAR data, combining with an optical sensor, help to improve the time-

series data that can be used in the Land Use and Land Cover (LULC) 

classification. 

5.5 Conclusion 

We evaluated the implications of CCF for monitoring agriculture in SA and 

LULC in Roraima state using ORS. SA presents limitations for the use of 

continuous ORS data due to high cloud frequency. This is more evident in 

equatorial zones (Amazon), as Roraima example, and Brazilian coastal regions, 
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where the frequent cloud cover limits the use of ORS data even for LULC 

mapping. Agricultural monitoring with ORS data, during the rainy season, QP2 

for Roraima, and P1 and P2 (September-February) for others Brazilian states, 

becomes difficult in practically the entire territory. In P4 (June-August), we 

observed a greater probability of obtaining cloud-free ORS data from the middle 

to the end of the crop cycle, in the central part of SA. Soybean and maize are the 

crops with the highest CCF interference for ORS monitoring. Wheat, rice, and 

beans have in general medium CCF interference for the use of ORS data, thus 

making it possible to monitor part of the crop cycle. For perennial and semi-

perennial crops, like sugarcane and coffee, that remain in the field throughout the 

whole year, there is a better chance of obtaining some cloud-free images for 

cropland monitoring. However, for the croplands on the Brazilian coast, the 

monitoring of sugarcane and coffee crops with ORS data has high CCF 

interference. In Roraima, the frequent cloud cover limits the use of ORS, even to 

monitor small parts of the crops cycle. The few cloud-free observations in 

Roraima are a big challenge to provide the LULC mapping or monitoring.  The 

development of sensors with a better temporal resolution, the use of microwave 

sensors, and the combination of optical and microwave sensors are presented as 

methods to overcome the limitations of data availability for the LULC monitoring 

in Roraima state and the monitoring of the agricultural croplands highlighted in 

this study. 
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6. MULTISENSOR APPROACH TO LAND USE AND LAND COVER MAPPING 

IN NORTHERN AMAZON, BRAZIL2 

This chapter described how we choose the approach to provide the LULC 

maps. It was used in a small area to test the methodology and verify the 

importance of the use of SAR data. 

6.1 Introduction 

Nowadays, combining food production with minimizing the environmental 

impact is one of the biggest challenges to be faced by the agriculture sector, 

government, and researchers (SEARCHINGER et al., 2015; ESTES et al., 2016). 

Part of this food demand is met by agriculture expansion, resulting in severe 

environmental impacts (LAMBIN; GEIST; LEPERS, 2003), and contributing to 

global climatic changes (DENG; ZHAO; YAN, 2013). In this sense, Land Use and 

Land Cover (LULC) mapping is fundamental to land use management and to 

understand the environmental effects at local, regional, and global scales (ADAMI 

et al., 2018; PAVANELLI et al., 2018). Thus, Remote Sensing (RS) technology is 

widely utilized for synoptic and continuous LULC monitoring, allowing 

identification of the LULCC (WULDER et al., 2015; VELOSO et al., 2017).  

Traditionally, ORS data is used to map and characterize LULC, but it 

suffers limitations due to cloud cover (ASNER, 2001; WULDER et al., 2015; 

MARTINS et al., 2018a). High cloud frequency is a persistent difficulty found in 

the Amazon region, which highly compromises LULC mapping based on ORS 

data (MARTINS et al., 2018a; PRUDENTE et al., 2020a), especially in agricultural 

areas whose growth occurs during the rainy season  (PRUDENTE et al., 2020a). 

Cloud cover, along with landscapes fragmentations and transitions among 

vegetation types (LU et al., 2012; LAURIN et al., 2013), and quick LULCC 

(WHITCRAFT et al., 2015b; EBERHARDT et al., 2016) make the use of ORS 

data challenging to map LULC in Amazon regions (SANO et al., 2007; 

 
2 A paper based on this chapter is currently under review at the ISPRS Journal of 

Photogrammetry and Remote Sensing journal 
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WHITCRAFT et al., 2015b; EBERHARDT et al., 2016; ZHANG; SKAKUN; 

PRUDENTE, 2020).  

In this sense, one option to overcome the cloud cover limitation is the use 

of Synthetic Aperture Radar (SAR) (WHITCRAFT et al., 2016). SAR sensors work 

in almost all-weather conditions, independently of sunlight illumination, been less 

influenced by cloud cover frequency than optical data (LIU et al., 2013; MOREIRA 

et al., 2013; WULDER et al., 2015). The Sentinel-1 SAR, which is free, has dense 

time-series data, can be used to improve and/or develop new methods for 

mapping and monitoring LULC (TAMM et al., 2016).  However, since SAR data 

interpretation is complex, its use is not widespread as ORS data (OLDONI et al., 

2020). Thus, approaches that integrated both optical and SAR data have been 

explored in LULC studies, allowing to take advantage of each sensor (INGLADA 

et al., 2016; CLERICI; VALBUENA CALDERÓN; POSADA, 2017; TORBICK et 

al., 2017a; REICHE et al., 2018; VAN TRICHT et al., 2018).  

On SAR-Optical approach, Random Forest (RF) (RODRIGUEZ-GALIANO 

et al., 2012; INGLADA et al., 2016; TORBICK et al., 2016, 2017a, 2017b; 

CLERICI; VALBUENA CALDERÓN; POSADA, 2017; ZHOU et al., 2017; 

PAVANELLI et al., 2018) and Multilayer Perceptron (MLP) (SKAKUN et al., 2016; 

CAMARGO et al., 2019) are two of the most commonly non-parametric classifiers 

used to provide LULC classification (LU et al., 2012; CLERICI; VALBUENA 

CALDERÓN; POSADA, 2017). The RF classifier is highlighted due to the 

robustness and capability to hold a high number of variables (JHONNERIE et al., 

2015; DINIZ; GAMA; ADAMI, 2020) and high data dimensionality (TORBICK et 

al., 2017b).  Meanwhile, the MLP is a feed-forward artificial neural network (NN) 

trained by the backpropagation method, designed to map a set of input vectors 

to a set of output vectors (SKAKUN et al., 2016; CAMARGO et al., 2019).  

Even though LULC map information is highly important for the 

management of tropical areas, there is a lack of information for some regions in 

the Brazilian Amazon. Savannas and Campinarana areas are not considered in 

programs designed for forest monitoring despite their ecological importance 

(CARVALHO; MUSTIN, 2017). In this context, this study aims to classify the 
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LULC in a tropical area in Roraima state, in the Brazilian Amazon region, 

providing a robust methodology to fill this gap of information. We have 

investigated the benefits of combining SAR with optical data in the LULC mapping 

process. In our study, we used RF and the MLP classifiers and Sentinel-1 SAR 

and Sentinel-2 MSI (Multispectral Instrument) optical images acquired in different 

periods along the year 2019.  

6.2 Material and methods 

This section is divided into four sub-sections. In Section 6.2.1 we describe 

the study area and the fieldwork to collect ground truth data. In Section 6.2.2, we 

describe remote sensing data and pre-processing steps. In Section 6.2.3 is 

described an experimental setup with multiple scenarios tested. Finally, in 

Sections 6.2.4 and 6.2.5, we focus on multi-dimension feature visualization using 

the t-Distributed Stochastic Neighbor Embedding (t-SNE) approach, and LULC 

classification, respectively. Figure 6.1 shows an overall flowchart describing 

various steps. 

 

Figure 6.1 - Flowchart showing the processing steps. 

 

Source: Author's production. 
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6.2.1 Study area 

To test our approach, we selected a test area located near the ecologic 

tension between Savannas and Forest (see Chapter 3 for a full description of 

Roraima).  This area is among the coordinates 61° 5' 44.9" W, 2° 20' 20.5" N; 60° 

39' 17.43" W, 2° 57' 43.14" N, with 3,381.7 km² (Figure 6.1). We selected this 

study area due to the LULC heterogeneity, ecologic tension, and presence of 

agricultural and pasture lands. To provide accurate information about the LULC 

classes, we used data from our fieldwork (see more details in 4.1). In total, we 

used 719 polygons (Figure 6.2), representing 10 LULC classes: forest, savanna, 

Campinarana, water, sand/rock, annual crops, perennial crops, pasture, 

conversion, impermeable (see Figure 6.3 to see pictures and description for each 

class). 
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Figure 6.2 – Roraima study area, with natural formations (upper-left) and fieldwork detail 
(down-left). 

 

Source: Adapted of Barcelar-Lima  (2008) and IBGE (2012). 

 

6.2.2 Remote sensing data 

We used images from Sentinel-2 MSI optical and Sentinel-1 SAR sensors, 

obtained from the Copernicus Open Access Hub (also known as the Sentinels 

Scientific Data Hub) (https://scihub.copernicus.eu/), with an open-source toolbox 

in a python routine, named SentinelSat 

(https://github.com/sentinelsat/sentinelsat) (HU; GHAMISI; ZHU, 2018).  

https://github.com/sentinelsat/sentinelsat
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Due to the frequent cloud cover, mainly during the crop seasons, it is 

almost impossible to obtain cloud-free optical data in this region (PAVANELLI et 

al., 2018; PRUDENTE et al., 2020a). We considered images with less than 70% 

of cloud cover, totaling 23 Sentinel-2 images (Figure 6.3). The optical data was 

download at Level-1C, without atmospheric correction. We used the bands Blue, 

Green, Red, Red-edge 1, Red-edge 2, Red-edge 3, Near-Infrared (NIR), NIR-A, 

Short Infrared 1 (SWIR 1), and Short infrared 2 (SWIR 2) (ESA, 2020). In the 

optical preprocessing, we provided images atmospheric correction, clouds mask 

and coregister. The atmospheric correction was processed with the Sen2Cor 

algorithm, using sen2cor v2.8 (available in the SNAP software). In parallel to the 

atmospheric correction, it proceeded with the cloud mask using the Fmask v4.0 

software (QIU; ZHU; HE, 2019).  

After the atmospheric correction and cloud cover mask, we resampled the 

data from 20 meters to 10 meters. With all the data at 10 meters of spatial 

resolution, we co-registered images (SKAKUN et al., 2017), using the image from 

2019 April 1st, which presented a less percentage of cloud cover, as our 

reference. We also calculated two VIs, NDVI (ROUSE et al., 1973), and LSWI 

(XIAO et al., 2002, 2004). The NDVI is one of the most know VI and is associated 

with vegetative vigor. LSWI is sensitive to the water presence and is used to flood 

mapping (DONG et al., 2013; TORBICK et al., 2016). NDVI (Equation 4.1) and 

LSWI (Equation 4.2) equations are presented in Section 4.3. 
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Figure 6.3  – Cloud cover frequency map (a) and graph (b) over the study area for MSI 
data, using quality data from google earth engine considering three 
periods of 2019 (January to April, May to August, and September to 
December). 

a) 

 

b) 

 

Source: Author's production. 

 

For SAR data, we used Sentinel 1A and 1B (TORRES et al., 2012) data, 

acquired at VH and VV polarization in the IW and GRD image acquisition mode. 

Sentinel-1 has a temporal resolution of 12 days for each satellite, and 4 and 8 

days considering both satellites. In total, we used 59 Sentinel-1 images. The 

preprocessing was performed using the Sentinel Application Platform-SNAP 

applications and python routines. For defined the preprocessing, we ran several 
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tests and adapted the methods proposed by Dey et al., (2020). Our preprocessing 

included: apply orbit file; thermal noise removal without re-introduction; 

calibration: gamma enough; multi look with ground square pixel; speckle filter: 

Refined Lee; terrain correction: bilinear resample method, 10 meters of spatial 

resolution; and convert the results to decibels (dB). We also calculated the ratio 

between the polarizations VH and VV (Equation 4.3). The ratio is less affected by 

environmental factors or acquisition systems, thus might has more stability than 

single polarizations VH or VV (VELOSO et al., 2017; HARFENMEISTER; 

SPENGLER; WELTZIEN, 2019). 

We calculated average, median, mean, standard deviation, variance, 

range, and percentiles (25%, and 75%) metrics for optical (bands and VIs) and 

SAR (polarization and ratio) data. For this step, we used the panda library in the 

python routine. Due the different angles from Sentinel-1A and Sentinel-1B 

interfere in the backscattering values, we proceed with metrics separately. 

To process the data, we used two different machines. It was used a 

precision 5280 tower computer with processor Intel (R) Xeon(R) W-2145 CPU 

@3.70GHz, 64 GB internal memory, Windows 10 Enterprise – 64 Bits, 5 TB of 

Hard Drive (MegaRAID 9460-16i). Also, it was used a laptop Dell intel i7 8th, 32GB 

RAM, 6GB NVIDIA, 1 TB SSD, 1TB HDD in this process. 

6.2.3 Scenarios 

To verify the SAR data influence on the LULC classification process, we 

split our data into six different dataset combinations, during five different time 

intervals (Table 6.1). As datasets, we used only optical data (D1 and D2), optical 

plus SAR data (D3 and D4), and only SAR data (D5 and D6). For optical data, 

we used metrics instead of single optical images to minimize cloud influence. We 

performed the integration between SAR and optical data at feature levels 

(INGLADA et al., 2016; SKAKUN et al., 2016; GÓMEZ, 2017; PAVANELLI et al., 

2018; ZHANG et al., 2018b). We assumed that there is no consistent shift 

between the SAR and the optical images. 
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We divided the year in three different periods: Period 1 – P1 (January to 

April), Period 2 – P2 (May to August), Period 3 – P3 (September to December), 

Period 4 – P4 (data for the whole year), and Period 5 – P5 (the periods P1, P2, 

and P3 combined). P1 and P3 represents the dry periods. P2 represents the rain 

season when Annual crops are presents in Roraima. We combine P1, P2, and 

P3 into the P5 to represent the seasonal variation from each period. P4, represent 

the data for the whole year (January to December), without consider the variation 

inside each period. 

Combining the different periods with the datasets, we created 29 different 

scenarios (Table 6.1). For D6, with Sentinel-1 data without metrics (average, 

median, mean, standard deviation, variance, range, and percentiles (25%, and 

75%)), the P5 and P4 are the same. 

 

Table 6.1. Details about the 29 scenarios formed with different datasets and periods. 

Datasets Descriptions Periods 

Dataset 1 (D1) Metrics for bands optical data P1, P2, P3, P4, P5 

Dataset 2 (D2) Metrics for optical bands and VI P1, P2, P3, P4, P5 

Dataset 3 (D3) 
Metrics for optical bands and VI plus 
polarization and ratio for SAR data 

P1, P2, P3, P4, P5 

Dataset 4 (D4) 
Metrics for optical bands and VI, plus 

polarizations, ratio, and metrics for SAR data 
P1, P2, P3, P4, P5 

Dataset 5 (D5) Polarizations, ratio, and metrics for SAR data P1, P2, P3, P4, P5 

Dataset 6 (D6) SAR polarization and ratio P1, P2, P3, P4 

P1: period 1 (January to April), P2: period 2 (May to August), P3: period 3 (September 
to December), P4: period 4 (the whole year), P5: period 5 (the periods P1, P2, and P3 
combined). 

Source: Author's production. 

 

6.2.4 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

We used the t-SNE technique to reduce our high dimensionality data and 

to help understand the possibility of class separation before the classification 
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process). We used t-SNE from the scikit-learn library (PEDREGOSA et al., 2011), 

with interactions equal to 300, perplexity equal to 30.  

6.2.5 LULC classification scenarios 

We used two machine learning classifiers, Random Forest (RF), and Multi-

Layer Perception (MLP), using a python routine with the scikit-learn library 

(PEDREGOSA et al., 2011). After testing different parameters (PRUDENTE et 

al., 2020b), we used numbers of trees equal to 30 for the RF classifier, and layers 

size equal to 50, alpha equal to 0.01, and learning rate values of 0.005 for the 

MLP classifier. The field data (polygons) were randomly separated into 75% for 

training and 25% for the validation process. For the validation and to find the best 

LULC classification, we analyzed the confusion matrix, the overall accuracy (OA), 

user’s accuracy (UA), and producer’s accuracy (PA) (OLOFSSON et al., 2014). 

An independent validation was used for the best classification result 

(scenario and classifier), we used Stratified Random Points (SRP). The goal of 

SRP is to have a practical design that satisfies the accuracy assessment 

objectives and most of the desirable design criteria. SRP affords the option to 

increase the sample size in classes that occupy a small proportion of the area, to 

reduce the standard errors of the class-specific accuracy estimates for these rare 

classes (OLOFSSON et al., 2014). We randomly sampled 1,158 points, stratified 

according in Forest: 262, Savannas: 272, Campinarana: 75, Water: 75, Pasture: 

99, Sand/rocks: 75, Annual Crops: 75, Perennial Crops: 75, Conversion: 75, and 

Impermeable: 75. This guarantees that the sample size in a small class will be 

large enough to represent that class. This approach allows us to estimate the 

errors in terms of the area along with uncertainties. 

6.3 Results 

In this section, we present the results of inputs feature visualization using 

the t-SNE algorithm (Section 6.3.1). In Section 6.3.2, we analyze classification 

results for the 29 different scenarios and independent validation of the final map. 
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6.3.1 Visualization of input features using t-SNE 

The t-SNE graphs show the differences between the classes for each 

database in each period (Figure 6.4). Optical data, visualize give better 

separation of the classes Forest, Savanna, and Pasture. For SAR, we could not 

verify the same separation as in the optical data. Classes with similar geometrical 

structures are closer or even mixed. We found that Forest and Perennial Crops 

are mixed, meanwhile, Savannas and Pasture represent two other groups, where 

has mix with Annual Crops, Conversion areas. Considering the periods and 

datasets, we found that the t-SNE technique showed better results (Figure 6.4) 

for P4 and P5, with data from the entire year, and when combining data from 

optical and SAR sensors (D3 and D4). Scenario D3P5 (Figure 6.5) has the best 

visual results, with better separation to Forest, Savanna, Pasture, and Annual 

Crops classes. Perennial Crops class has confusion with Forest, Savanna, and 

Pasture classes. Besides, Pasture has overlapped with Savannas and Annual 

Crops classes, and Campinarana was confused with Pasture. Impermeable class 

is concentrated on the left-middle (x=-8; y=-4) of the graph (Figure 6.5). 

Sand/rock has two small groups, one with Impermeable class and the other in the 

middle-bottom (x=-1; y=-4) of the graph. 
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Figure 6.4 – t-SNE results for each one of the 29 scenarios. 1 
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Figure 6.4- Conclusion. 2 
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Figure 6.5 – t-SNE graph for the scenario with the best separation (D3P5). 

 

Source: Author's production. 

6.3.2 Classification 

The Overall Accuracy (OA) of all scenarios for MLP and RF classifiers is 

shown in Figure 6.6. In general, we verified that the MLP classifier shown slightly 

higher OA than RF. Moreover, when using data from a single sensor, we found 

better results using optical data (D1 and D2) than SAR data (D5 and D6) for P1 

and P3. For the periods analyzed, when we used data for the whole year (P4 and 

P5) we had higher accuracies than when using only data for P1 and P2. 

Considering the different periods of the year, the P2 has the lower and P3 has 

the higher OA values for optical data (D1 and D2). Meanwhile, for SAR datasets 

(D5 and D6) the higher value is for P2 and the lower for the P1. Finally, 

considering the multisensory SAR-Optical approach (D3 and D4), we found that 

the OA values increased in almost all periods. Overall, the best result was 

achieved for the dataset D3, using data for the whole year P5, using MLP.  
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Figure 6.6 – Overall Accuracy (OA) of Random Forest (RF) and Multi-layer Perceptron 
(MLP) classifiers. 

 

Source: Author's production. 

 

In Figure 6.7 and Figure 6.8, we show the Users (UA) and Producers (PA) 

Accuracies for MLP and RF classifiers, respectively. Considering that the MLP 

approach has better overall accuracies, we showed the UA and the PA of this 

analysis in detail. SAR dataset shows higher UA and PA for Savanna, Pasture, 

and Annual Crops, but has lower UA and PA for Campinarana and Conversion 

classes. In general, optical data has better results than SAR. However, the UA 

for Sand/rocks and Campinarana, and the PA for Conversion classes remain low. 

For the datasets with multisensor data (D3 and D4) from the entire year (P4 and 

P5), we verified an increase in the UA and PA values. We also highlighted the 

better UA and PA values for P3 compared to P2 and P1. 
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Figure 6.7 – Users (UA) and Producers (PA) accuracies for each class in each scenario 
considering the MLP classifier. 

 

Source: Author's production. 

 

MLP and RF maps are shown in Figure 6.9 and Figure 6.10, respectively. 

In general, maps based only on SAR data shown more salt-pepper effects, 

meanwhile maps based only on optical data presented cloud interference. The 

problems were reduced when using the multisensor approach. Our best 

classification (Figure 6.11) was obtained using optical metrics and SAR data (D3) 

combining data from the different periods (P5). The predominant class is 
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Savannas (119,936ha ~ 34.17%), followed by Forest (115,155ha ~ 32.81%) and 

Pasture (43,309ha ~ 12.34%). Perennial Crops (17,859ha ~ 5.09%), Water 

(17,658ha ~ 5.03%), and Annual crops (14,215ha ~ 4.05%) are the following 

classes in terms of area. The classes with less area are Sand/rocks (1,700ha ~ 

0.48%), Conversion (2,347ha ~ 0.67%), Impermeable (8,724ha ~ 2.49%), and 

Campinarana (10,115ha ~ 2.88%). 

 

Figure 6.8 – Users (UA) and Producers (PA) accuracies for each class in each scenario 
considering the RF classifier. 

 

Source: Author's production. 
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To further evaluate the LULC classification accuracy, we performed the 

accuracy assessment using an independent set of points. The OA accuracy, 

using SRP was OA= 86.41±1.74%, reaching almost the same value from the field 

points (OA = 88.15%). To compare the accuracies for each class, we provide the 

confusion matrixes (Figure 6.12 and Figure 6.13)  along with estimated UA and 

PA (Figure 6.14). For Forest and Savannas classes, we observed an 

improvement in the UA (81% to 95.10±1.3%, and 91% to 96.30±1.1%, 

respectively) and a decrease in the PA (99% to 89.3%±1.3%, 90% to 86.8±1.4%, 

respectively) when using SRP. For Annual Crops and Impermeable classes, 

similar UA value (92% to 93.30±2.9%, and 83% to 86±4%, respectively) and 

decreased PA (99% to 90.2 ±4.7%, and 91% to 75±5.9%, respectively) are 

observed. For the Water class, similar values from UA (93% to 90.7±3.4%) and 

PA (100% to 100±0%). For Campinarana, UA = 71% and PA = 80% from field 

data, decrease to UA = 36% (±5.6%) and PA= 42.8% (±7.3%) with SRP. 

Considering the Pasture class, UA decreased 88% (field data) to 73.7±4.4% 

(SRP), however, PA stayed with similar values (85% to 82.1±2.9%) using SRP. 

For the Sand/rock class, UA value increased by 24%, with field data, to UA 

77.3±4.9% with SRP, and PA values increase by 79% with field data to 

84.8±12.9% with SRP, but with the higher error value among the classes. UA 

values decreased from 74% to 21.3±4.8% and PA keeps similar values (79% to 

80.2±10.5%), considering the Perennial Crop class. For the Conversion class, 

UA increase by 24% to 33.3±5.5%, and PA had the higher increase values (3% 

to 89.6±4.6%). 
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Figure 6.9 – Classification results over the 30 scenarios using MLP classifiers for 2019. 

 

Source: Author's production. 
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Figure 6.10 – Classification results over the 30 scenarios using RF classifier. 

 

Source: Author's production. 
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Figure 6.11 – Best LULC classification scenario (D3P5) map, using the MLP classifier 
(left), and a 2019 Sentinel-2 RGB True color image, using mean of the 
band values over the year (right). 

 

Source: Author's production. 

We compared our results with maps from the MapBiomas initiative 

(SOUZA et al., 2020). MapBiomas provides annual LULC maps for the entire 

Brazilian territory between 1985 and 2019, with a spatial resolution of 30 meters. 

MapBiomas is the only updated LULC program that maps the whole state. For 

our study area, MapBiomas LULC is classified as Forest Formation (116,875ha 

~ 32.95%), Forest Plantation (40ha ~ 0.01%), Grassland Formation (166,925ha 

~ 47.06%), Pasture (43,086ha ~ 12.15%), Urban Infrastructure (10,570ha ~ 

2.98%), River, Lake, and Ocean (7,336ha ~ 2.07%), Soybean (7,522ha ~ 2.12%) 

and Others Temporary Crops (2,388ha ~ 0.67%) (Figure 6.15). We grouped 

Soybeans and Others Temporary Crops as Temporary Crops (9,910ha ~ 2.79%).  
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Figure 6.12 – Confusion matrix in terms of validation pixels from polygons derived 
through field campaign for the best LULC classification scenario (D3P5 – 
MLP), using field data.  

 

Values are in reference percentage. 1: Forest, 2: Savannas, 3: Campinarana, 4: Water, 
5: Pasture, 6: Sand/rocks, 7: Annual Crops, 8: Perennial Crops, 9: Conversion areas, 
10: Impermeable areas. 

Source: Author's production. 
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Figure 6.13 – Confusion matrix in terms of area percentage (OLOFSSON et al., 2014) 

for the best LULC classification scenario (D3P5 – MLP), using Stratified 

Random Points.  

 

1: Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas 

Source: Author's production. 

 

Figure 6.14 – Comparison among accuracies from field data and sampling approach. 

 

Source: Author's production. 
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Figure 6.15 – Land Use and Land Cover mapping provided by the MapBiomas v5.0 – 
2019.  

 

Source: Souza et al. (2020). 

 

The difference map between our approach and the MapBiomas initiative 

is sown in Figure 6.16. The equal area, considering Grassland formation equal to 

Savannas and Campinarana, is 277,083ha and the differences are 73,937ha. We 

can highlight that part of Grassland formation in MapBiomas LULC program is 

classified as Pasture (10,678ha), Perennial crops (8,690ha), Water (8,468ha), 

Annual crops (5,091ha), and Forest (4,719ha) classes in our approach. Besides, 

part of our Forest (5,813ha) classifications is shown as Pasture in MapBiomas. 
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Figure 6.16 – Map of the differences between our LULC mapping and the LULC provide 
for MapBiomas v5.0 – 2019 (SOUZA et al., 2020). 

 

Source:  Author's production. 

6.4 Discussion 

The Roraima state in Brazil is prone to periods of frequent cloud cover 

during the April-September rainy season, which severely limited the exploitation 

of optical satellite imagery. Thus, it is extremely difficult to accurately map Land 

Use and Land Cover (LULC) with optical data only (PRUDENTE et al., 2020a). 

Moreover, there is no accurate LULC map for the whole state. In this context, 

SAR data can be an alternative to improve the LULC classification. Therefore, 

the optical-SAR multisensor approach is a viable way out to provide LULC 

classification in regions with frequent cloud cover. To validate this, we used two 
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different classifiers algorithms in 29 scenarios, with optical, SAR, and SAR-optical 

datasets, in five different periods of the year 2019. 

According to the t-SNE (t-Distributed Stochastic Neighbor Embedding), 

SAR-optical data (D3), combining the three different periods (P5) provided the 

best visual separation among the classes. Moreover, optical in general showed 

better visual separation than SAR datasets. In this sense, our study shows that t-

SNE provides a good way to visualize high dimensionality RS data than classic 

technique, as scatter plots (PAVANELLI et al., 2018) and boxplots (TORBICK et 

al., 2016, 2017a). However, only a few studies have used this technique in the 

RS field (DEY et al., 2020; MARTINS et al., 2020), and we did not find any 

research that applied the t-SNE in a multisensor dataset. 

RF is commonly used in a multisensor SAR-Optical approach to map 

LULC (TORBICK et al., 2016, 2017a; CLERICI; VALBUENA CALDERÓN; 

POSADA, 2017; ZHOU et al., 2017; PAVANELLI et al., 2018). Using Sentinel-1 

SAR data for LULC mapping over a test area in the Brazilian Amazon forest, Diniz 

et al. (2020) had a better result using RF than Support Vector Machine. We found 

slightly higher OA values (1% or 2% in general) using MLP classifiers compared 

to RF. Besides, LULC classifications from MLP were visually better, with less salt-

pepper effect when compared with RF classifier.  

Considering the datasets analyzed, classification based exclusively on 

SAR data had lower accuracy than when using only optical data. We identified 

that aggregating VI metrics (D2) improves the results than using only MSI band 

metrics (D1). Also, the use of metrics for SAR data (D6) did not improve the OA 

when compared with only SAR data (D5). For SAR-optical data-based 

classifications, we found better overall accuracies than when analyzing the SAR 

and optical data separately. Besides, the LULC maps were visually better with 

the multisensor approach. Clerici et al. (2017) also found better results using 

optical (MSI/Sentinel-2) and SAR (Sentinel-1) data to map LULC in Colombia. 

They found that SVM (Support Vector Machine) had better accuracy than the RF 

classifier, achieving OA=88.75%. However, compared to our study, their study 

area was more homogeneous, with six LULC classes. Zhou et al. (2017), using 
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data from Landsat-8 OLI and Sentinel-1 SAR provided in-season winter wheat 

classification in China, achieving the best results with the multisensor approach. 

Torbick et al. (2016) integrated data from Landsat-8 OLI, Sentinel-1 SAR, and 

PALSAR-2 images to mapping forest plantations in Myanmar and Indonesia. 

They obtained the best accuracy when integrating the data from the three 

sensors. In the following work, Torbick et al. (2017a) used data from the same 

sensors to classify/update the LULC in Myanmar, and also found the best 

accuracy using data from optical and SAR data combined.  

Considering the periods analyzed, the classifications performed to P3 had 

better results than P1 and P2. That could be because during P2 we had less 

optical data available, resulting in a poor classification. Also, the fieldwork was 

realized at the end of P2 and the beginning of P3, helping to better identify some 

classes in the field. Pavanelli et al. (2018) and Lu et al. (2011), who worked with 

LULC classification in the Amazon regions, described the difficulty to get cloud-

free data during the rainy season. However, they used only one optical and one 

SAR image from the dry season. We achieved better accuracy (OA = 88.16%) 

with the data from the P5, aggregating the data from P1 (January to April), P2 

(May to August), and P3 (September to December). That is because with this 

approach it was considered the seasonality existent in the classes. Pavanelli et 

al. (2018) mentioned that using only data from the dry season is not enough to 

discriminate all LULC classes. In our study, the Sand/rocks class was better 

identified in the dry period (P1), because the sandbanks appear inside the Rio 

Branco River in this period. The Water class, in general, had a better performance 

for P3, due to the end of the rainy season in P2, formed the small lakes in the 

lavrados regions, favoring the identification in the P3. During the P3, the 

Conversion class also had better discrimination, mainly due to fieldwork in this 

period. We expected that because conversion is a dynamic class, occurring 

during part of the year, thus some of these areas were Savannas or Pasture in 

the past, in a different period of the year. It is important highlight that this 

conversion class covers only the change from natural to anthropic class, what 

was assured by field work and temporal image interpretation. Besides, during the 
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Conversion process occur the soil turning, creating confusion with the Sand/rocks 

class.  

Due to the frequent cloud cover in the P2, in this period, the Annual Crops 

class is better discriminated with SAR than optical data. Besides, Pasture is 

present during this time, beginning a source of confusion between these classes. 

Forest, Savanna, Pasture, and Annual Crops classes were better discriminated 

when we used data from P4 and P5. That happens because it is used data for 

the entire year, registering the vegetation variability and mitigating the cloud cover 

frequency interference (PRUDENTE et al., 2020a). Perennial Crops is a 

heterogeneous class, formed by Acacias, Carswell, Eucalyptus, etc. Therefore, 

this class is confused with Forests and Savanna classes, due to the similar 

structure.  

Overall, our best LULC classification accuracy was obtained using the 

MLP classifier applied to the data from optical and SAR data combined (D3), 

considering the three periods together (P5). We used the benefits of optical and 

SAR data associate with the seasonality from different periods. We assessed the 

accuracy of this classification by performing Stratified Random Points (SRP). The 

approach with field data and SRP were similar in respect of overall accuracy, 

however, UA and PA had different values for Campinarana, Pasture, and 

Conversion classes. These classes with small areas were better represented with 

SRP. Waldner et al. (2019), mapping the croplands, describe that the overall 

accuracy is similar using roadside and random sampling points. However, they 

explained that SRP better represents the classes than roadside sampling. 

We compared our best result with the MapBiomas maps initiative (SOUZA 

et al., 2020). MapBiomas provide an annual LULC map, using a Google Earth 

Engine (GEE) platform (GORELICK et al., 2017), and Landsat-8 OLI, Landsat-7 

Enhanced Thematic Mapper Plus (ETM+), and Landsat-5 Thematic Mapper (TM) 

Landsat optical images at 30 meters of spatial resolution. They do a hierarchical 

classification scheme, using a RF classifier and combined different classification 

methods (date range, input data, etc.) (SOUZA et al., 2020). It is classified each 
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LULC class separately and joins them, generating three different LULC map 

levels. 

For our study area, our map has more detailed classes than MapBiomas 

Level 3 (Figure 6.17). Grassland Formations in the MapBiomas class represents 

our Savannas and Campinarana classes. Also, we identified areas with Acacia 

and Cashew (Perennial Crops) that were not present inside the Forest Plantation 

class in MapBiomas LULC map. Acacia is a common Forest plantation in 

Roraima’s Lavrados, and now it has been converted into agricultural areas. Also, 

we have the Conversion class, and this is an important class to identify where 

and when is occurring the changes in the Roraima state. Sand/rocks and 

Conversion classes do not exist. Moreover, Sandbanks inside of the Rio Branco 

River are identified as Temporary Crops in the MapBiomas map. Additionally, our 

results showed the Lakes formations in the Savannas regions. Therefore, our 

results provided a better overview of the natural resources, conversion areas, 

and land use, classifying all in a single step. This information is important to 

monitor and regulate anthropic activity; otherwise, it can affect the availability of 

natural resources (e.g., water, soil) (CARVALHO; MUSTIN, 2017) and carbon 

stocks (BARNI et al., 2016).  
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Figure 6.17  – Comparison between our result and the MapBiomas v.5 LULC map. 

 

Source: Author's production. 

 

However, it is important to highlight MapBiomas is a nationwide initiative, 

which annual LULC maps that are improving each version. In this sense, we 

believe that our results could be helpful to improve the next MapBiomas LULC 

version, meanly to better discriminate Annual Crops, Perennial Crops, and the 

Lakes formations. Besides, we did not compare our results with other wide LULC 

programs as TerraClass Amazon (ALMEIDA et al., 2016) and IBGE (2017). do 

not cover the Savannas and Campinarana regions (BARNI et al., 2020b), it is not 
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observed in the TerraClass and is classified as Grassland and Wetlands in IBGE, 

and are not updated, 2014 for both maps. 

Pavanelli et al. (2018) provided LULC classification in a small area in this 

region. They considered 17 LULC classes for 2015 and used one Landsat-8 OLI 

optical image and one ALOS/PALSAR-2 (Phased Array L-band Synthetic 

Aperture Radar-2) SAR image. They found OA of 83% using RF classifier, slightly 

lower value than ours. However, our results with MLP show a higher OA and a 

better visual map with 10 meters of resolution. Also, in our study we used free 

data, that was not fully available in the area for 2015. Lu et al. (2011), using a 

Maximum Likelihood classifier, found a better LULC map accuracy (OA = 

81.13%) using only optical data than SAR data or integrating SAR and Optical 

data. However, they studied a different tropical region in Brazil Amazon and used 

only one image peer sensor, ALOS PALSAR, RADARSAT-2, and Landsat-5 TM, 

during the dry season. Moreover, these authors utilized fusion approaches to 

integrating the data (principal component analysis, normalized multiplication, 

high-pass filter resolution-merging, and Wavelet) and considered six classes 

(Forest, Pasture, Water, Wetland, Urban and Succession Vegetation).  

6.5 Conclusion 

Our approach represents an advance for heterogenous LULC mapping in 

tropical regions with Earth remote sensing data. Optical and SAR multisensor 

data had better OA than only optical or SAR data. Besides, SAR data is an import 

source of data, mainly during the rainy season (P2), when cloud cover frequency 

limits the availability of the optical imagery. The use of different periods allowed 

us to identify when could be a concentrated effort to map specific classes. SAR-

optical data for the P5, combining P1 (January to April), P2 (May to August), and 

P3 (September to December), show better LULC maps results. Moreover, the 

MLP classifier performed higher OA than RF and better-smoothed maps. Minor 

and similar classes are difficult to estimate, even with SAR and optical data. For 

validation, data from fieldwork can hide patterns that will be better represented 

with random sample points. As suggestion for future works, red-edge vegetation 
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indexes and coherence could be tested. For future processes, this approach will 

be applied to the whole state in different years to analyze the LULC changes. 
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7. GOOGLE EARTH ENGINE IN A TWO-STAGE SAMPLING MULTISENSOR 

APPROACH TO ESTIMATE THE LAND USE AND LAND COVER CLASSES 

OVER RORAIMA STATE 

7.1 Introduction 

Update and continuous Land Use and Land Cover (LULC) information help 

to understand and measure LULCC environmental effects at local, regional, and 

global scales (ADAMI et al., 2018; PAVANELLI et al., 2018). Anthropic 

expansion, like agriculture areas, if not well planned and can generate severe 

environmental impacts (LAMBIN; GEIST; LEPERS, 2003), and contributes to the 

global climatic changes (DENG; ZHAO; YAN, 2013).  

ORS data are traditionally used to identify and characterize LULC 

(CHAVES; PICOLI; SANCHES, 2020). However, high cloud cover frequency 

(ASNER, 2001; WULDER et al., 2015; MARTINS et al., 2018a), along with quick 

land-use changes (WHITCRAFT et al., 2015b; EBERHARDT et al., 2016), 

hampers the use of ORS (see more in Chapter 5). On top of that, tropical 

landscapes fragmentations and transitions among vegetation types (LU et al., 

2012; LAURIN et al., 2013), make the scenario even worst for LULC mapping 

based on optical sensors data (SANO et al., 2007; SUGAWARA; RUDORFF; 

ADAMI, 2008; WHITCRAFT et al., 2015b; EBERHARDT et al., 2016). As result, 

such products for tropical areas, as South America, are not available or need 

improvements (SONG et al., 2021a). 

Microwave data collection, as provided by Synthetic Aperture Radar (SAR) 

sensors, has a significant potential to be utilized for mapping and monitoring 

LULC (STEELE-DUNNE et al., 2017). SAR are active sensors and can provide 

useful data under almost all-weather conditions, independently of light conditions, 

been less affected by atmospheric and cloud conditions (LIU et al., 2013). 

Approaches that integrated ORS and SAR data, denominate multisensor 

approach, allow us to use the well know ORS knowledge with the SAR climate 

limitations alternative solution. However, the quantity of data generated demands 
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high computation power and large space for storage. A way to overcome this is 

by using cloud processing platforms (GORELICK et al., 2017; PALAZZO et al., 

2018; ZHANG et al., 2018a). To decrease data volume, it is possible to use 

different metrics to explore the temporal variation from the remote sensing data. 

This statical transformation of an image time-series is called multi-temporal 

metrics (SONG et al., 2017), which can be very useful for LULC characterization 

(BECKER et al., 2021). Moreover, sampling approaches can be helpful to 

mitigate cloud cover (EBERHARDT et al., 2016; KING et al., 2017b). 

Combining cloud processing (GORELICK et al., 2017) with metrics to 

explore the temporal variation from remote sensing data (SONG et al., 2017), 

and sample-based methods (SONG et al., 2017) can be a viable way to provide 

LULC in less time than traditional LULC classification approaches. In this sense, 

this research has as objective to characterize the LULC for Roraima state in three 

years (2017, 2018, and 2019). For that, we propose two different LULC 

classification methods. First, we provide a more classical design, training, and 

classifying the entire state at once, using field roadside data. Second, we used a 

sampling approach to estimate and classify the LULC.  

7.2 Material and methods 

To show the procedure adopted to map LULC for Roraima, we divided this 

section into four parts. i) An overview of the study area. ii) The data used. iii) The 

roadside classification and the survey approach. iv) The LULC changes. 

7.2.1 Study area 

Our study area is Roraima, located in the north of Brazil (see more details 

in Chapter 3).  

7.2.2 Data 

We used images from the satellites Sentinel-2 MSI optical sensor, and 

Sentinel-1 SAR microwave sensor. In total, it was used 47 tiles from the MSI 

sensor and seven orbits from Sentinel-1 SAR. Sentinel-2 has a temporal 
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resolution of 5 days over Roraima, considering the sensors onboard of Sentinel-

2A and Sentinel-2B. We used data without atmospheric correction (L1C) because 

data with atmospheric correction (L2A) are only available after December 2018 

in the GEE platform. Also, we used NDVI (Normalized Difference Vegetation 

Index (Equation 4.1), proposed by Rouse et al. (1973), and LSWI (Land Surface 

Water Index) (XIAO et al., 2002, 2004) (Equation 4.2). For SAR data, the 

temporal resolution is 12 days for each satellite and 4 and 8 days when combining 

Sentinel-1A and Sentinel-1B. We used the IWD swath, GR data, and VV and VH 

polarizations. The ratio between the polarizations VH and VV (Equation 4.3) was 

used because it might have more stability than single polarizations VH or VV, 

being less affected by environmental factors or acquisition systems, as reported 

in the literature (VELOSO et al., 2017; HARFENMEISTER; SPENGLER; 

WELTZIEN, 2019). 

A field mission was conducted to collect road-side data and validation 

points (see Section 4.1 for details), during August and September 2019. With the 

QGIS software and Sentinel-2 images, we draw the polygons and labels the 

classes for 2017 and 2018. In total, we got 5,3 thousand polygons, distributed in 

10 different classes (forest, savanna, Campinarana, water, sand/rock, annual 

crops, perennial crops, pasture, conversion, impermeable). 

7.2.3 LULC classification 

GEE platform (GORELICK et al., 2017) was used for our two LULC 

classification approaches. We adapted the methodology used in our test are 

(Chapter 6). Although MLP had slightly better results, we use the classifier RF 

since MLP is not available in the GEE platform. RF is commonly used in a 

multisensor SAR-Optical approach to map LULC (TORBICK et al., 2016, 2017a; 

CLERICI; VALBUENA CALDERÓN; POSADA, 2017; ZHOU et al., 2017; 

PAVANELLI et al., 2018). The classification results were generated with 30 

meters instead of 10 meters (Chapter 6) of pixel size. Inside GEE, we filtered all 

Sentinel-2 and Sentinel-1 images available from Roraima. Also, we used all 

images with less than 50% of cloud cover. To remove the clouds and shadows, 
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we filter using the Bits and Sentinel-2 cloud probabilistic (GOOGLE, [s.d.]), with 

a threshold of 65%. 

To summarize the images collections, we used standard deviation, 

minimum, maximum, and median metrics for Sentinel-1 and Sentinel-2 data. For 

Sentinel-1, we used the three different periods; P1: January to April; P2: May to 

August; and P3: September to December, for each year (2017, 2018, and 2019). 

P2 represent the rain season and P1 and P3 represent the dry season in 

Roraima. Due to the low number of cloud-free pixels (see Section 5.3.3), mainly 

for 2017, we adopted to use Sentinel-2 data for the entire year and not only of 

each period. For Sentinel-1, the metrics were calculated separately for each 

satellite (Sentienl-1A and Sentinel-1B). As post-classification, we used a mode 

filter (kernel in circle and radius equal to 1) in a post-classification step to smooth 

the results and avoid isolate misclassified pixels. Finally, the results were 

exported in GeoTiff format. 

In our first approach to classifying LULC, we split our roadside data 

samples (Figure 7.1) into 75% for training and 25% for validation, for each year. 

We used a number of trees equal to 100. The metrics from both sensors were 

combined in a stack and then the RF models were trained using this stack.  

For our second approach, to determine the Roraima LULC maps for 2017, 

2018, and 2019, we adapted a two-stage sampling design used for soybean area 

estimate (KING et al., 2017a; SONG et al., 2017). For that, we provided blocks 

and samples, in two stages. Different from previous studies in the literature, we 

did not use a different stratum. In the first stage, blocks of 20 km x 20 km were 

randomly sampled. According to King et al. (2017) and Song et al. (2017), this 

block size allows a second-stage sample to be completed in one day. Roraima 

state was divided into a regular grid with 437 blocks. After, we randomly select 

20 blocks to visit in situ and analyzed the possibility of accessing these areas in 

the field. Because Roraima state has few roads, and several times it was not 

possible to reach the blocks selected. In these cases, more blocks were randomly 

sampled. In total 48 blocks were previously selected and among them, 17 blocks 

were visited during one field campaign. 
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In the second sampling stage, we used a random sampling of 20 points in 

each block, to quantify the LULC. In total, 940 points were randomly sampled. To 

make the field work easier and faster, we delineated the field polygon around 

each point to visit in situ. and (see Section 4.1) we drawn routes connecting the 

points and the blocks. A total of 198 LULC valid points were collected. When it 

was not possible to identify the LULC class (impossible to reach the point or see 

the area with binoculars), we classified the LULC class using satellite data (NDVI 

time series from MSI and MODIS and visual interpretation of RGB image 

compositions). 

 

Figure 7.1  – Details about the field data mission using a two-stage sampling approach. 

 

Source: Author's production. 

 

In our study, we used one stratum to sample the blocks. To estimate the 

area for each class (j), we calculated the class area in each block i (𝑌𝑖,𝑗). Thus, 
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𝑌𝑖,𝑗 is given by the relationship between the area of block i (Aj,i) and the proportion 

of the samples in the class (j) among the samples inside block i  (7.1). The total 

area, for each class (𝑌�̂�), is given by the sum of the areas 𝑌𝑖,𝑗 of the class j in each 

block i, where nj is the sample and Nj is the population size for the class j  (7.2). 

Finally, it was calculated the variance from each class using 7.3.   

𝑌𝑗,�̂� = 𝐴𝑗,𝑖�̂�𝑗,𝑖 7.1 

𝑌�̂� =
𝑁𝑗

𝑛𝑛
∑ 𝑌𝑗,�̂�

𝑛𝑗

𝑖=1

 7.2 

𝑉(𝑌𝑗)̂ = 𝑁𝑗
2(1 − (

𝑛𝑗

𝑁𝑗
) (

𝑠𝑗
2

𝑛𝑗
) 7.3 

 𝑠𝑗
2 represent the sample variance for each class j. The Standard Error (SE) is the 

root square of the variance 𝑉(𝑌𝑗)̂. 

After, we classified the LULC inside each block using the same 

methodology mentioned for the roadside classification. This step is useful to 

correct the areas estimations of the first step. For last, LULC classification was 

performed at once to the entire state. Accuracy verification was performed in 

these two last steps using the validated points. It was used the Overall Accuracy 

(OA), Users (UA), and Producers (PA) Accuracies, derived from the confusion 

matrix. These metrics were computed in python routine, using the sklearn 

package. 

7.2.4 Determination of LULC changes 

LULCC classifications avoid carrying on misclassification over each LULC 

process, generating better results than analysis of the changes between LULC 

classifications (ZALLES et al., 2019). Thus, we classified the LULCC between 

2017 and 2019. To classify such changes, we follow the same procedure that 

was used for the roadside classification in the previous section. The only 
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difference was that we used Sentinel-1 and Sentinel-2 data from 2017 to 2019, 

and not for different periods.  

7.3 Results 

We present this section divided into three parts. i) Results from the 

roadside approach. ii)  Results for the approach using the two-stage sampling 

process. iii) Results of the LULCC from 2017 to 2019.  

7.3.1 Roadside LULC classification 

We used part of our roadside data to train the RF classifier.  Forest (Table 

7.1) is the predominant class, meanwhile, Pasture is the main anthropic class. 

The OA of the classifications were 85.20%, 89.26%, and 89.94%, for 2017 

(Figure 7.2), 2018 (Figure 7.3), and 2019 (Figure 7.4), respectively. As Sentinel-

1A does not cover the entire state, there are a spot without data in the 

northwestern part. Using the validation dataset, the Users (UA) and Producers 

(PA) Accuracies were computed for each year (Figure 7.5). 

 

Table 7.1. Area (in km2) for each Roraima LULC class, for 2017, 2018, and 2019, using 
the roadside data. 

  2017 2018 2019 

Id Class Area (km2) % Area (km2) % Area (km2) % 

1 Forest 156163 70.0 157590 70.6 154030 69.0 
2 Savannas 32539 14.6 33026 14.8 33121 14.8 
3 Campinaranas 10800 4.8 14185 6.4 17207 7.7 
4 Water 3094 1.4 2981 1.3 1860 0.8 
5 Pasture 17844 8.0 12662 5.7 15826 7.1 
6 Sand/rocks 62 0.0 98 0.0 1 0.0 
7 Annual Crops 390 0.2 703 0.3 556 0.2 

8 
Perennial 

Crops 
2125 1.0 1801 0.8 440 0.2 

9 Conversion 47.4894 0.0 53 0.0 42 0.0 
10 Impermeable 0.5985 0.0 10 0.0 26 0.0 

Source: Author's production. 
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Figure 7.2 – LULC classification map (a) and confusion matrix (b) for 2017 using 
Sentinel-1 and Sentinel-2 data in GEE platform with RF classifier.  

a) 

 

b) 

 

1: Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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Figure 7.3 – LULC classification map (a) and confusion matrix (b) for 2018 using 
Sentinel-1 and Sentinel-2 data in GEE platform with RF classifier. 

a) 

 

b) 

 

Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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Figure 7.4 – LULC classification map (a) and confusion matrix (b) for 2019 using 
Sentinel-1 and Sentinel-2 data in GEE platform with RF classifier.  

a) 

 

b) 

 

Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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Figure 7.5 – Users (UA) and Producers (PA) Accuracies for 2017 (a), 2018 (b), and 2019 
(c) LULC classification, using testing and multisensor Sentinel-1 and 
Sentinel-2 data in GEE platform with RF classifier.  

a) 

 

b) 

 

c) 

 

Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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7.3.2 Sample-based LULC classification 

In the first stage of the two-stage sampling approach, it was possible to 

estimate the area of the LULC classes found on the blocks (Table 7.2). The 

predominant class in Roraima is Forest, followed by Savannas and 

Campinarana. Annual Crops represent near 1% of Roraima territory in 2019, 

meanwhile, Pasture represents around 6%. Sand/rocks does not contain any 

validate points and is not present in this first estimation. 

 

Table 7.2. Estimate area (in km2) for each LULC class for 2017 and 2019 considering 
the points from the block approach. SE: Standard Error. 

  2017 2018 2019 

Id Class Area SE % Area SE % Area SE % 

1 Forest 128497 7546 73.5 128125 7585 73.3 127195 7682 72.8 
2 Savannas 19526 6516 11.2 19526 6516 11.2 19526 6516 11.2 
3 Campinaranas 12459 3929 7.1 12459 3929 7.1 12459 3929 7.1 
4 Water 744 340 0.4 744 340 0.4 744 340 0.4 
5 Pasture 10600 2960 6.1 10971 3060 6.3 11901 3288 6.8 
7 Annual Crops 1488 881 0.9 1860 1121 1.1 1860 1121 1.1 

8 
Perennial 

Crops 
1116 892 0.6 1116 892 0.6 1116 892 0.6 

9 Conversion 372 351 0.2 0 0 0.0 0 0 0.0 

Source: Author's production. 

 

From the 47 sampled blocks, six have only one LULC class inside. Thus, 

we used 41 blocks for the LULC classification process each year. After, using the 

validation points we generated the accuracies from these maps for each block. 

The OA values were 89.15% for 2017, 91.34% for 2018, and 90.24% for 2019. 

Some classes that were in our training data, were not in the validation set. Using 

the area for each class, in each block, we corrected the LULC estimate (Table 

7.3). 
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Figure 7.6 – LULC classification (a) and Users (UA) and Producers (PA) Accuracies (b) 
for the area of the blocks, for 2017, based on multisensor Sentinel-1 and 
Sentinel-2 data processed in GEE platform using RF classifier.  

a) 

 

b) 

 

Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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Figure 7.7 – LULC classification (a) and Users (UA) and Producers (PA) Accuracies (b) 
result from blocks to 2018 with multisensor Sentinel-1 and Sentinel-2 data 
in GEE platform with RF classifier. 

a) 

 

b) 

 

Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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Figure 7.8 – LULC classification (a) and Users (UA) and Producers (PA) Accuracies (b) 
result from blocks to 2019 with multisensor Sentinel-1 and Sentinel-2 data 
in GEE platform with RF classifier.  

a) 

 

c) 

 

Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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Table 7.3 – Estimate area (in km2) for each LULC class for 2017, 2018, and 2019, after 
the classification of each block. SE: Standard Error.  

  2017 2018 2019 

Id Class Area SE % Area SE % Area SE % 

1 Forest 127104 7606 72.7 127848 7424 73.1 126841 7577 72.6 
2 Savannas 19010 6402 10.9 18767 6287 10.7 18572 6238 10.6 
3 Campinaranas 9014 3234 5.2 8986 3213 5.1 9032 3286 5.2 
4 Water 1098 368 0.6 1134 370 0.6 1067 364 0.6 
5 Pasture 13869 3381 7.9 13588 3198 7.8 14515 3395 8.3 
6 Sand/rocks 61 37 0.0 32 17 0.0 42 17 0.0 
7 Annual Crops 1167 750 0.7 1564 944 0.9 1373 893 0.8 

8 
Perennial 

Crops 
3055 1718 1.7 2587 1525 1.5 3013 1697 1.7 

9 Conversion 424 249 0.2 295 164 0.2 344 110 0.2 

Source: Author's production. 

 

The last step consisted in the LULC classification, at once, for Roraima 

state. The LULC maps and confusion matrixes are present in Figure 7.9 to Figure 

7.11. Figure 7.12 The PA and UA values of each one of these maps can be 

observed in Figure 7.12. The OA was 88.15%, 89.13%, and 89.12% for 2017, 

2018, and 2019, respectively. Areas of each class in each classification are 

presented in Table 7.4. 

 

Table 7.4. Area (in km2) for each LULC class for 2017, 2018, and 2019 after the 
classification in each block. 

  2017 2018 2019 

Id Class Area % Area % Area % 

1 Forest 159457 71.5 158801 71.2 160729 72.0 
2 Savannas 32447 14.5 31317 14.0 31547 14.1 
3 Campinaranas 9993 4.5 10767 4.8 9525 4.3 
4 Water 2613 1.2 2751 1.2 2609 1.2 
5 Pasture 13035 5.8 15094 6.8 13548 6.1 
6 Sand/rocks 109 0.0 165 0.1 127 0.1 
7 Annual Crops 641 0.3 621 0.3 671 0.3 

8 
Perennial 

Crops 
4767 2.1 3560 1.6 4153 1.9 

9 Conversion 2 0.0 32 0.0 200 0.1 

Source: Author's production. 
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Figure 7.9 – Sample approach LULC classification map (a) and confusion matrix (b) for 
2017 using Sentinel-1 and Sentinel-2 data in GEE platform with RF 
classifier.  

a) 

 

b) 

 

Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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Figure 7.10 – Sample approach LULC classification map (a) and confusion matrix (b) for 
2018 using Sentinel-1 and Sentinel-2 data in GEE platform with RF 
classifier.  

a) 

 

b) 

 

Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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Figure 7.11 – Sample approach LULC classification map (a) and confusion matrix (b) for 
2019 using Sentinel-1 and Sentinel-2 data in GEE platform with RF 
classifier. 

a) 

 

b) 

 

Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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Figure 7.12 – Users (UA) and Producers (PA) Accuracies for 2017 (a), 2018 (b), and 
2019 (c) considering the blocks to the LULC classification, using testing 
and multisensor Sentinel-1 and Sentinel-2 data in GEE platform with RF 
classifier.  

a) 

 

b) 

 

c) 

 

Forest, 2: Savannas, 3: Campinarana, 4: Water, 5: Pasture, 6: Sand/rocks, 7: Annual 
Crops, 8: Perennial Crops, 9: Conversion areas, 10: Impermeable areas. 

Source: Author's production. 
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7.3.3 LULC changes 

To better understanding the LULC changes, we used the Sankey diagram 

(SCHMIDT, 2008). Analyzing our roadside dataset, it is possible to identify that 

Savannas and Forest are the natural predominant classes (Figure 7.13). On the 

other hand, Pasture, Annual and Perennial Crops are the non-natural 

predominant classes. Besides, with the field data we can see some of the 

changes as Forest to conversion areas or Pasture, Savannas to Pasture or 

Annual Crops, and Perennial Crops to Annual Crops.  

 

Figure 7.13 – Sankey graph to represent the LULCC based on the roadside field data. 

 

Source: Author's production. 
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The LULCC classification based on the roadside data, for the whole state, 

using the GEE platform, is presented in Figure 7.14. In general, the stable class 

predominates (99.7%) over the change class. The changes detected are mainly 

from Forest to Pasture, Savannas to Pasture or Agriculture, and Perennial Crops 

(manly Acacias) to Annual Crops (Figure 7.15). 

 

Figure 7.14  – LULCC classification from 2017 to 2019, using the roadside data. Change 
details on the right.  

 

Source: Author's production. 
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Figure 7.15  – Details of LULCC classifications and the two-stage sampling LULC 
classification from 2017 to 2019.  

 

Source: Author's production. 

7.4 Discussion 

Accurate and update LULC information is challenging in large tropical 

regions, as Roraima states. The use of remote sensing data is recommended for 

this task, but frequent cloud cover and huge data processing are some of the 

limitations. In this research, we proposed two approaches to try to minimize such 

issues. The use of SAR data combined with optical data, and the use of a two-

stage sampling-based approach to estimate the LULC classes which have the 
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benefit to be quicker and less computational-consuming. To guarantee good 

training samples to the classification process, the samples from our study came 

from fieldwork and from visual interpretation of time series of optical images, by 

a specialist.  

For the roadside LULC classification, our results showed that the OA is 

near 90% for 2018 and 2019. Lower OA was found for 2017, the year that had 

the fewer quantity of cloud-free data available (Figure 5.15). Although the use of 

roadside data for LULC classification has been a known approach (WALDNER 

et al., 2019), the process takes a considerable time, generating many polygons 

and demanding high computational power to train the classifiers. So, the time 

between the field campaign and the firsts LULC results will be longer than the 

two-stage sampling approach. With a stratified method, it is possible to provide 

the first results quicker than with the roadside approach. The first results are later 

corrected with the LULC classification of each block. Different from the roadside 

approach, with the two-stage sampling it is possible to estimates the proportion 

of the LULC areas in different levels, even before the classification to the entire 

area.   

Forest and Savannas are the predominant classes in Roraima. The 

Campinarana located in the southern part of the state show some 

misclassification with Savannas and Perennial crops. One reason could be 

because there are the Campinas and Campinaranas inside our Campinarana 

class. Campinas is formed by grassland and small shrubs, similar to the 

Savannas. Moreover, Campinaranas is formed by small trees, that could be like 

some Perennial species, as Acacias.  

The pasture class is the predominant non-natural class in Roraima. It is 

more present in the southern part, in the middle of the Forest class. Extensive 

cows’ pasture is the activity more present in Roraima. In Perennial Crops, 

Acacias is the predominant species, present mainly in the lavrados region. In 

recent years has been replaced for Annual crops (soybean and corn). Dende, 

Orange, and Banana are common Perennial Crops species located more in the 

south. However, Orange and Bananas fields are small, and classify them with the 
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proposed methodology was challenging. Dende, used for palm oil, is produced 

on a more industrial scale, with bigger areas than orange groves, which facilitates 

the identification.  

For Annual Crops, comparing (Table 7.5) the areas estimated using our 

approaches with the Municipal Agricultural Production (PAM) data from IBGE 

(2018a), the two-stage sampling approach has more similarity with PAM data for 

2018 and 2019. The roadside approach result has the same pattern as PAM, 

although with lower values for 2017, and higher values for 2018. We do not 

compare our results with the Perennial Crops from PAM, because IBGE does not 

consider Acacia species as Perennial Crops.  

 

Table 7.5 Area (in km2) from Municipal Agricultural Production (PAM) data from IBGE 
and our roadside and two-stage sampling-based classifications for the 
Annual Crops class. 

Approach 2017 2018 2019 

PAM 476 655 635 
Roadside 390 703 556 

Two-stage 
sampling 

641 621 671 

Source: Author's production. 

The major changes that we observed were from Forest to Pasture and 

from Perennial Crops to Annual crops. Also, during the training process, it was 

possible to identify small deforestation areas near the rivers in the northwestern 

part of Roraima. Many of these areas are destined for mining activities. However, 

due to the mining process, rafts, and dredges, the identification using remote 

sensing data is difficult (LOBO et al., 2018). 

Understanding where and when is LULCC is happening has an important 

role in food security and environmental protection. However, this type of 

information is not available for Roraima yet. In this sense, our study brings some 

insights to provide LULC classifications for this state. Our results showed a few 

LULCC from 2017 to 2019 in Roraima. Three years is a short period for LULCC 

in Roraima. Besides, it is important to highlight that the RS data used in this paper 

started later in 2017 (considering Sentinel-2A and 2B). Moreover, Sentinel-1 

represents a new era, with SAR data for free of charge and better temporal and 
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spatial resolution. If the data were available, in early 2000, for example, the 

LULCC detection would be bigger. Our results indicate the usefulness of the 

methodology proposed to map LULC, which can help improve existing LULC 

mapping initiatives, as well as be helpful to identify and monitoring future LULCC. 

7.5 Conclusion 

Our research explored remote sensing data from optical and SAR sensors 

(Sentinel-2 and Sentinel-1, respectively), and two methodologies, to map the 

LULC for Roraima state in 2017, 2018, and 2019. The multisensor data was 

necessary because of the high cloud cover of this region. Field samples collected 

during a field campaign, alongside the roads, and on selected blocks, were 

essential for the analysis conducted. 

Based on our results, the two-stage sampling point has the potential to 

provide LULC information in fewer steps with less computational demand. 

However, as the blocks and points are randomly sampled, some classes of small 

areas might not be well represented. On other hand, the roadside approach has 

the advantage that it captures small classes, but it needs higher computational 

power, as well as more time to be run, to pre-process the field data. Overall, by 

applying the combination of SAR and optical data it was possible to obtain 

reasonable LULC maps.  
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8. OVERALL DISCUSSION 

LULC information about Brazil has an important role for economics and 

environmental purposes. However, there is a lack of updates and accurate 

information for the entire territory. Without such knowledge about the spatial 

LULC distribution is not possible to monitor and understand the and use dynamics 

and impacts. Initiatives as TerraClass (ALMEIDA et al., 2016) (Figure 3.7) and 

MapBiomas (SOUZA et al., 2020) (Figure 3.8) are trying to change this scenario. 

However, for the Roraima state, the first one does not cover the entire state yet, 

and the second one needs some improvements. In this context, our approach 

shows some promising results that can help such initiatives to improve their 

methodology for mapping the Roraima state, as well other regions. 

One of the reasons for the shortage of information about LULC is the 

frequent cloud cover over tropical regions. Our first study showed that the use of 

Optical Remote Sensing (ORS) data for earth observation is a challenge for most 

parts of South America (SA). This limitation is aggravated in the Equatorial zones 

(between 15º N and 14 ºS), where there is a higher Cloud-Cover Frequency 

(CCF) when compared to that of regions with latitudes between 15º N and 40º N. 

We found that it is challenging to use optical sensors even in the months with 

lower cloud frequency (June to August), which represents medium CCF 

interference (CCF near 40-50%) in most of SA, as we showed in Figure 5.11.  

Roraima state, located in a tropical region near the Equator line, has 

frequent cloud cover, which makes it difficult to sense this area with an optical 

sensor even if is the Sentinel-2A and 2B with a temporal resolution of 4 to 8 days. 

The period more affected is between April and August, the crop season (QP2). 

Corroborating with our study, Pavanelli et al. (2018) mentioned that due to the 

frequent cloud cover, mainly during the crop seasons, it is almost impossible to 

obtain clear sky observations with optical data in this region. Thus, for LULC 

mapping, ORS data from QP1 (January to April) and QP3 (September to 

December) are not enough, because the Annual crops class will be not well 

represented.  
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Associating the lack of accurate LULC information with the cloud cover 

limitation, and the recent agriculture expansion, turn Roraima LULC classification 

a challenging task. In this context, the use of microwave data, as Sentinel-1 SAR, 

is an alternative to improve the LULC mapping. Although SAR data is less 

affected by atmospheric than ORS data, the interpretation of these types of data 

is more complex and less widespread. Therefore, the key is to combine optical 

and –SAR, in a multisensor approach to take benefit of the complementary 

character of each type of sensor.  

To test the optical-SAR approach, we choose a region in Roraima with 

ecological tension between Forest and Savannas, with different classes, as 

Annual and Perennial Crops, Pasture, Water, Campinarana, etc. We used two 

different classifiers algorithms in 29 scenarios, with optical, SAR, and SAR-optical 

datasets, in five different periods of the year 2019. Multi-Layer Perceptron (MLP) 

classifier had slightly higher Overall Accuracy (OA) values (1% or 2% in general) 

than Random Forest (RF). Besides, LULC classifications from MLP were visually 

better, with less salt-pepper effect when compared with RF classifier. Our best 

LULC classification was obtained using the MLP classifier applied to the dataset 

(D3P5) with optical and SAR data combined (D3), considering the three periods 

together (P5). These results showed the benefits of optical and SAR data 

associate with the seasonality from different periods.  

Our best classification results have more detailed classes than 

MapBiomas (SOUZA et al., 2020) (Figure 6.17). We separate the Grassland 

Formations class from MapBiomas in Savannas and Campinarana classes. 

Besides, in our approach, it was possible to identify the areas with Acacia and 

Cashew (Perennial Crops), that were not well represented in the Forest 

Plantation class in the MapBiomas LULC map. Acacia is a common Forest 

plantation in Roraima Lavrados and is one of the sources of conversion to the 

annual crops' areas. In general, our results provided a better overview of the 

LULC in Roraima. Thus, our methodology could be helpful to better discriminate 

Annual Crops, Perennial Crops, and the Lakes formations in the next MapBiomas 

LULC version. 
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We classified the LULC of the whole Roraima state using the Google Earth 

Engine (GEE) platform (GORELICK et al., 2017). Although MLP had better 

results, we used RF because the GEE platform does not have MLP. With the two-

stage sampling approach, it was possible to estimate the LULC areas from the 

validated points, blocks classifications, and the entire estate classification. 

Comparing with the classification of the entire state at once, the two-stage 

sampling provide the firsts information with less effort and gave some idea about 

the changes among the studied years. In the three years analyzed (2017 to 

2019), the LULCC areas were mostly located in Savannas and Acacias, which 

were converted to croplands, and in Forest, areas turned into Pasture. Our results 

showed that the multisensor approach, combined with the two-stages sampling, 

could be a useful tool to monitor the LULC and provide information about the 

variations in LULC classes. 
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9. OVERALL CONCLUSION 

Our approach represents an advance for heterogenous LULC mapping in 

tropical regions using spaceborne remote sensing data. This area presents 

limitations for the use of continuous Optical Remote Sensing (ORS) data due to 

high cloud frequency. This is more evident in equatorial zones (Amazon), as are 

the case of Roraima State, and Brazilian coastal regions. Agricultural monitoring 

with ORS data, during P1 and P2 (September-February) for most of the country 

and QP2 (May-August) for Roraima, becomes difficult in practically the entire 

territory. Our approach with ORS and SAR multisensor data had better Overall 

Accuracy (OA) than comparing with only optical or SAR data. Besides, SAR data 

is an import source of data, mainly during the rainy season (P2), when cloud 

cover frequency limits the availability of the optical imagery. The use of different 

periods allowed us to identify when could be a concentrated effort to map specific 

classes. SAR-optical data for the P5, combining P1 (January to April), P2 (May 

to August), and P3 (September to December), show better LULC maps results. 

Moreover, the MLP classifier performed higher OA than RF and better-smoothed 

maps. Minor and similar classes are difficult to estimate, even with SAR and 

optical data. To expand the approach to the entire state, we use RF inside the 

Google Earth Engine (GEE). Moreover, we test a two-stage sampling approach 

to estimate the LULC area. A two-stage sampling point has the potential to 

provide LULC information in a few steps with less computational demands. 

However, as the blocks and points are random samplings, some classes could 

not be well represented. On other hand, the roadside approach needs higher 

computational power, as well as more time, to pre-process the field data. The 

roadside approach has the advantage that it captures small classes, not 

depending on where the class is. Both methods need accurate input and Remote 

Sensing data to process the LULC classification. Thus, multisensor with SAR and 

optical data is a way to work around the cloud limitation, a common situation of 

tropical areas.  
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