
sensors

Article

Spiral SAR Imaging with Fast Factorized Back-Projection:
A Phase Error Analysis

Juliana A. Góes 1,* , Valquiria Castro 1, Leonardo Sant’Anna Bins 2 and Hugo E. Hernandez-Figueroa 1

����������
�������

Citation: Góes, J.A.; Castro, V.;

Sant’Anna Bins, L.; Hernandez-

Figueroa, H.E. Spiral SAR Imaging

with Fast Factorized Back-Projection:

A Phase Error Analysis. Sensors 2021,

21, 5099. https://doi.org/10.3390/

s21155099

Academic Editors: Antonio Iodice

and Gerardo Di Martino

Received: 30 May 2021

Accepted: 23 July 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical and Computer Engineering, University of Campinas—UNICAMP,
Campinas 13083-852, Brazil; v162627@g.unicamp.br (V.C.); hugo@unicamp.br (H.E.H.-F.)

2 National Institute for Space Research—INPE, São José dos Campos 12227-010, Brazil; leonardo.bins@inpe.br
* Correspondence: jugoes@decom.fee.unicamp.br

Abstract: This paper presents a fast factorized back-projection (FFBP) algorithm that can satisfacto-
rily process real P-band synthetic aperture radar (SAR) data collected from a spiral flight pattern
performed by a drone-borne SAR system. Choosing the best setup when processing SAR data with
an FFBP algorithm is not so straightforward, so predicting how this choice will affect the quality
of the output image is valuable information. This paper provides a statistical phase error analysis
to validate the hypothesis that the phase error standard deviation can be predicted by geometric
parameters specified at the start of processing. In particular, for a phase error standard deviation of
~12◦, the FFBP is up to 21 times faster than the direct back-projection algorithm for 3D images and
up to 13 times faster for 2D images.

Keywords: synthetic aperture radar (SAR); fast factorized back-projection (FFBP); 3D imaging; drone

1. Introduction

In synthetic aperture radar (SAR) imaging, circular flight path surveys produce 2D
images with very high resolution as data are collected over 360◦ around the imaged area.
Circular SAR can also provide 3D scattering information, but the 3D images are deformed
by strong cone-shaped sidelobes [1–3]. Multicircular SAR, or holographic SAR tomography
(HoloSAR), creates another synthetic aperture in elevation that mitigates these undesirable
sidelobes, thus providing complete 3D data reconstruction with very high resolution [4–9].
HoloSAR geometry acquisition consists of multiple circular flight paths at different fixed
heights. The sparse nature of the elevation aperture in HoloSAR poses some difficulties for
a system working in the THz band [10]. These issues are overcome with a cylindrical spiral
flight pattern with constant vertical speed.

SAR image processing requires efficient algorithms in terms of both accuracy and
processing time. Frequency-domain algorithms are fast, but they perform better when
the flight path is linear and free of motion errors. The time-domain back-projection (BP)
algorithm can process SAR data for any flight path with high focusing quality but with high
computational costs. Fast factorized back-projection (FFBP) algorithms can significantly reduce
the computational time while still maintaining the accuracy of the BP algorithm. However, the
increase in the level of sophistication makes it difficult to formulate an FFBP algorithm for
arbitrary trajectories. As a result, many FFBP algorithms either assume a linear flight path
to simplify calculations [11–16] or are tailored for circular flight paths [2,17–19].

In [20], the authors proposed an FFBP algorithm that describes subapertures through
a data mapping approach that does not depend on the flight path geometry, even though
the algorithm assumes that the radar constantly illuminates the imaged area or volume.
Moreover, the algorithm operates in cartesian coordinates and employs a flexible tree
structure that can handle both 2D and 3D data.

For the HoloSAR presented by Ponce et al. [4], different image layers were processed with
a 2D FFBP that is customized for circular trajectories [2]. Ponce et al. did not pursue 3D focus-
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ing with their FFBP due to practical reasons [4]. Other HoloSAR solutions have used the direct
BP algorithm [6,8], sparse reconstruction models [4,5,7], adaptive imaging [6,9], or a combi-
nation of them. Apart from the choice in the algorithm, there are two common approaches:

• Process each circular flight independently and merge the outputs [4,6];
• Make radial slices of the cylindrical synthetic aperture, process them separately, and

then combine the results [5,7–9].

For the spiral SAR presented in [10], the whole trajectory was processed with the direct
BP algorithm. In [20], the initial version of our FFBP algorithm successfully processed
simulated SAR data of a spiral trajectory. To the best of our knowledge, it was the first full
3D FFBP algorithm capable of processing nonlinear SAR data.

Although the preliminary version of the FFBP algorithm [20] is fully functional, it
has proven inefficient when operating with real SAR data, both in processing time and
memory consumption. Therefore, this paper presents a more consolidated version of the
FFBP algorithm [21] that employs vectorized variables and parallel processing to mitigate
these issues. Vectorization is essential for increasing efficiency, while parallel computing
further decreases processing time and reduces memory consumption.

Processing SAR data with an FFBP algorithm is not as straightforward as with a BP
algorithm because some FFBP input parameters can affect the quality of the output image.
Thankfully, Ulander et al. [12] provided an error analysis that yielded a method to limit the
phase error by controlling the processing setup.

This paper proposes a statistical phase error analysis inspired by [12] but with a key
difference. Because the FFBP algorithm presented here works well with curved flight
paths, the proposed analysis does not consider that deviations from a linear flight path will
deteriorate the phase error.

The purpose was to test the hypothesis that geometric parameters at the beginning
of processing can predict the phase error standard deviation of the output image. The
data set for testing this hypothesis comprised processing results for a spiral flight path
performed by a multiband drone-borne SAR system [22,23]. The collected P-band SAR
data were processed with the BP and FFBP algorithms to produce 2D and 3D images.
Different parameters were chosen for the FFBP to alter the response in phase error and
processing time.

The other sections of the paper are structured as follows. Section 2 presents the FFBP
algorithm, the phase error hypothesis, and the case study. Section 3 evaluates several
2D and 3D SAR images regarding the phase error versus the signal-to-noise ratio (SNR),
geometric parameters, and processing time. Finally, discussion of the results is presented
in Section 4 and the conclusion in Section 5.

2. Materials and Methods
2.1. Fast Factorized Back-Projection Algorithm

The BP algorithm integrates the information from all SAR positions for each pixel
in the image in one go. If there are N SAR positions and the output image has N2 pixels,
the number of operations is O

(
N3). Fortunately, FFBP can reduce computational cost

to O
(

N2 log N
)

using a divide-and-conquer strategy, which is at the core of many FFBP
algorithms. Before processing starts, each SAR pulse covers a large area. At each iteration,
subapertures are merged as if building increasingly larger antenna arrays with more
focused beam patterns to cover progressively smaller subimages. Figure 1b shows the
steps in this iterative process.
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The FFBP algorithm is parallelizable, which means that the computation can be dis-
tributed among different processing units that work simultaneously. This is accomplished
by dividing the imaged volume into blocks to be processed independently of one another.
The data are managed by creating a cell array for each output matrix, i.e., processed SAR
data and voxel coordinates. All cell arrays have the same number of elements, and each cell
index is associated with an image block. When an image block is processed, its results are
stored in the corresponding cells. Then, after processing all image blocks, each cell array is
converted into a matrix that combines data for the whole output image. This process is
illustrated in Figure 1a.

The next sections use the following terminology (see Figure 1):

• Root variables: either inputs to the algorithm or defined in the preparation step;
• Child variables: calculated within each FFBP iteration and then become parent vari-

ables at the end of the iteration;
• Parent variables: inputs to the current iteration.

The proposed algorithm is also vectorized, so matrix indices are written within paren-
theses to distinguish them from other types of indices. In addition, variables representing
positions in the (x, y, z) space are written in bold letters.

2.1.1. Defining Child Subapertures

The method for defining child subapertures was first proposed in [20]. It takes a data
mapping approach and does not depend on the flight pattern. Let r0 be the set of radar
positions at the root node, let L be number of parent subapertures that are combined to
form a child subaperture at each iteration, and let rn be the set of the phase centers of all
child subapertures at the nth node.
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Case 1. When L is odd, rn is always a subset of r0.

Case 2. When L is even, each point in rn falls halfway between two consecutive points in r0.

Cases 1 and 2 are depicted in Figure 2a,b, respectively. Blue squares represent the
actual radar root positions, yellow circles represent the midpoints between them, and green
diamonds represent the subaperture phase centers.
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Now, let Ω0 be defined as

Ω0(i) = r0

(
i
2

)
, (1)

where i = 0, 1, . . . , 2(K0 − 1), with K0 being the number of radar root positions. Then,
Ω0 is the union between r0 and the set of midpoints between two consecutive radar root
positions (see Figure 2).

General Case. For any value of L, rn is always a subset of Ω0.

For the general case, rn is determined by [20]

rn(k) = Ω0((2k + 1)Ln − 1), (2)

where k = 0, 1, . . . , Kn − 1, with Kn = K0/Ln being the number of child subapertures at
the nth node. Note that for all k, if L is odd, then the argument on the right will always be
even, and vice versa.

2.1.2. Generating Child Subimages

Child subimages are generated using a flexible space-filling tree structure called the
modified Morton curve [20]. It arranges multidimensional data into 1D following a Z pattern,
much like the original Morton order curve [24,25]. The modification, however, allows for
different partition schemes beyond dividing by two in each direction in every recursion.
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The partition scheme for all iterations is defined in the preparation step (Figure 1a).
It consists of a matrix whose columns contain the number of partitions in the x, y, and z
dimensions (Dx, Dy, and Dz); the number of lines equals the number of iterations. These
quantities are obtained from the output image dimensions and resolution, the initial
subdivision into image blocks, and the number of combining subapertures L. Figure 3
shows the modified Morton order curve with a (3 × 3 × 2) partition on the first and second
recursions. When working with 2D data, i.e., images with zero thickness, the partition
scheme sets Dz = 1 for all iterations.
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ref. [20]. Copyright 2020 IEEE.

After retrieving the partition scheme for the current iteration, the algorithm finds all
possible values of x, y, and z coordinates for the center of the child subimages in a local
coordinate system with the parent subimage center hn−1(p) at the origin. Next, the possible
values of x, y, and z are arranged in a pattern similar to a truth table in digital systems
theory to construct a Z-shaped curve of coordinates x̃, ỹ, and z̃ (see Table 1). Then, the
position of each child subimage center hn(c) is given by

hn(c) =
[

x̃(d) ỹ(d) z̃(d)
]
+ hn−1(p), (3)

c = pDn + d, (4)

where d = 0, 1, . . . , Dn − 1, Dn = DxDyDz is the number of children generated by each
parent, p refers to a parent subimage, and c indicates a child subimage.
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Table 1. Order of arrangement of the x, y, and z coordinates of the child subimage centers in a
modified Morton order curve with a (3 × 3 × 2) partition.

d ~
x(d)

~
y(d)

~
z(d) d ~

x(d)
~
y(d)

~
z(d)

0 x(0) y(0) z(0) 9 x(0) y(0) z(1)
1 x(1) y(0) z(0) 10 x(1) y(0) z(1)
2 x(2) y(0) z(0) 11 x(2) y(0) z(1)
3 x(0) y(1) z(0) 12 x(0) y(1) z(1)
4 x(1) y(1) z(0) 13 x(1) y(1) z(1)
5 x(2) y(1) z(0) 14 x(2) y(1) z(1)
6 x(0) y(2) z(0) 15 x(0) y(2) z(1)
7 x(1) y(2) z(0) 16 x(1) y(2) z(1)
8 x(2) y(2) z(0) 17 x(2) y(2) z(1)

The positions hn−1(p) and hn(c) do not contain information about the terrain topogra-
phy. Thus, the terrain height HDEM needs to be interpolated from a digital elevation model
(DEM). Finally, the actual position of the child subimage h̃n,c is

h̃n,c = hn(c) + [0 0 HDEM(hn(c))]. (5)

To convert the serial index c into subscripts of a 3D matrix (u, v, w), recurrent se-
quences are necessary. These sequences are also built in a parent–child dynamic to allow
for flexible partition schemes. Let qxn, qyn, and qzn be the recurrent sequences of the nth

iteration, then
qx0(0) = qy0(0) = qz0(0) = 0, (6a)

qxn(uDx + dx) = Dnqxn−1(u) + dx, (6b)

qyn
(
vDy + dy

)
= Dnqyn−1(v) + dyDx, (6c)

qzn(wDz + dz) = Dnqzn−1(w) + dzDxDy, (6d)

where dx = 0, 1, . . . , Dx − 1, and the same for dy and dz. Therefore, the mapping
c→ (u, v, w) from the modified Morton order curve into a 3D matrix can be carried out
with the following relationship:

c = qxn(u) + qyn(v) + qzn(v). (7)

Figure 5 demonstrates how Equations (6) and (7) correspond to the curve shown in
Figure 3d–f. The sequences qx and qy are indicated on the axes, and each panel corresponds
to a different element of qz. The child subimage index starts with c = 0 at the bottom left
corner of Figure 4a, then moves back and forth between the layers qz = 0 and qz = 9 until
reaching c = 161 at the top right corner of Figure 4b. Then, it continues at the bottom left
corner of Figure 4c, going back and forth between qz = 162 and qz = 171 up until the end,
at the top right corner of Figure 4d.
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2.1.3. Computing Child SAR Data

The child SAR data are both an output of the current iteration and an input for the
next. For this reason, multiple range samples are required until the second to last iteration.
Additionally, the child SAR data are a function of two slant range distances instead of one.
Except for these differences, computing child SAR data is the step that most resembles the
direct BP algorithm. Its process is illustrated in Figure 5.
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Figure 5. Flowchart of the process for computing child synthetic aperture radar (SAR) data.

Range samples are collected along a line defined by the center of the child subaperture
rn(k) and the center of the child subimage h̃n,c. A sample is always taken at h̃n,c; except
for the last iteration, other samples are taken along the diameter of the sphere that circum-
scribes the child subimage, as depicted in Figure 6. The range sampling interval is the same
for all iterations. It is calculated in the preparation step, shown in Figure 1a, and is equal to
the resulting range bin spacing after upsampling the root SAR data.
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Figure 6. Range samples at a child subimage and geometry for calculating distances between a range
sample, a child subaperture, and a parent subaperture.

Figure 6 also shows how the required slant range distances are obtained. The depicted
triangle is composed of the following vertices:

• (C) the child subaperture center rn(k);
• (P) the parent subaperture center rn−1(l);
• (S) the mth data sample within a child subimage centered at h̃n,c.

The sides CPn(k, l) and CSn,c(k, m), as well as the angle θn,c(k, l) between them, are
found by analytic geometry. Then, the side PSn,c(k, l, m) is calculated with the law of cosines.
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The child datum sn(k, m, c) is computed by the coherent sum of the parent data [11]:

sn(k, m, c) = ∑
l∈Λn,k

sn−1(l, νn,c(k, l, m), p)ejϕn,c(k,l,m), (8)

where l ∈ Λn,k = {kL + b|b = 0, 1, . . . , L− 1} is the set of parent subapertures associated
with the kth child subaperture. The fractional index νn,c(k, m, l) is given by [11]

νn,c(k, l, m) =
PSn,c(k, l, m)− CSn−1,p(l, 0)

α
, (9)

where α is the range sampling interval and CSn−1,p(l, 0) is the slant range from the parent
subaperture to the first sample in the parent data. The value sn−1(l, νn,c(k, l, m), p) is
determined via linear interpolation, and the phase compensation term ϕn,c(k, l, m) in (8) is
given by [13]

ϕn,c(k, l, m) =
4π

λ0

[
PSn,c(k, l, m)− CSn,c(k, m)

]
, (10)

where λ0 is the radar frequency.
Each of the indices k, m, and l correspond to a different matrix dimension. Note that

none of the variables denoting position (indicated in bold letters) are dependent on the
data sample index m, so there is no need for a fourth matrix dimension to account for the
(x, y, z) triplets.

After reaching the final iteration, the remaining subapertures are coherently combined.
Finally, the resulting serial data are mapped into a 2D or 3D data matrix using (6) and (7).

2.2. The Phase Error Hypothesis

According to Ulander et al. [12], the phase error is proportional to the range error
averaged over all subapertures and iterations. The range error, in turn, is introduced
by the FFBP algorithm and can be estimated for each iteration. For a linear flight path,
the estimated range error is proportional to the child subaperture length and the child
subimage width and inversely proportional to the distance between those two entities. For
nonlinear flight paths, the across-track deviation has to be taken into account. Based on
this analysis, they proposed a method for keeping the phase error below a given threshold:

• Calculate the maximum subimage size for the first iteration;
• Balance the increase in subaperture length with an equivalent decrease in subimage

width to keep the range error constant.

This paper investigates if the phase error standard deviation σ∆ϕ can be predicted by
the geometric parameters at the first iteration. Moreover, instead of the subimage width,
the subimage diagonal is considered as it is more relevant to the FFBP algorithm detailed
in the preceding sections. Specifically, the goal is to test the following hypothesis:

σ∆ϕ ∝ β =
4π

λ0
· δk∆h
Rmin

, (11)

where δk and ∆h are the child subaperture length and the child subimage diagonal at the
first FFBP iteration, respectively, and Rmin is the shortest distance from the radar to the
imaged volume.

In [12], the across-track deviation is inserted into the estimated range error equation
to account for phase error degradation in nonlinear flight paths. However, the FFBP
algorithm proposed in this paper does not suffer from such degradation thanks to the
phase compensation term (10), as noted in [20]. That is why hypothesis (11) does not take
into consideration any deviations from a linear flight path.
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2.3. The Case Study

The case study comprised SAR data from a drone-borne SAR system [22,23] that
flew over a eucalyptus plantation with a spiral flight pattern. Figure 7 displays a Google
Earth image of the drone trajectory over the imaged area; the eucalyptus plantation can
be seen on the bottom left. The spacing between the trees was around 3 m. The survey
took place on 13 November 2019, in Mogi Guaçu, São Paulo, Brazil. The drone-borne SAR
system works with three different frequency bands, but only the results for the P-band are
presented here. Table 2 shows the radar acquisition parameters.
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Table 2. Radar acquisition parameters.

Radar Parameters Values Units

Carrier wavelength 70.54 cm
Bandwidth 50 MHz

Range resolution 2.4 m
Pulse repetition frequency 64.95 Hz

Mean velocity 8.5 m/s
Mean flight radius 338 m

Height above ground level 79–120 m
Number of turns 3 -

The purpose of this case study was to investigate the hypothesis (11) by varying δk,
∆h, and Rmin for the first iteration. This was accomplished by the following steps:

• Setting different values for the number of subapertures that are combined at each
iteration (L);

• Choosing different schemes for the initial partition into image blocks;
• Selecting two image blocks for analysis, one close to the edge and one close to the

center of the output image (see Figure 8).
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Figure 8. An illustration of the selected image blocks for analyzing the phase error as a function of
geometric parameters.

Table 3 shows the selected set of input parameters.

Table 3. Set of processing parameters for the case study.

Processing Parameter Values

Output image dimension 2D 300 × 150 m2

3D 300 × 150 × 2.4 m3

Output image resolution 2D 0.2 × 0.2 m2

3D 0.2 × 0.2 × 0.2 m3

Number of subapertures combined at
each iteration (L)

2
3
4
5

Initial partition of image blocks

8 × 4 × 1
12 × 6 × 1
16 × 8 × 1

20 × 10 × 1
24 × 12 × 1

For each setup, the partition scheme was the same for all image blocks. Because of that,
the resulting number of pixels or voxels might not match the expected value calculated
from the output image dimension and resolution. There were two options: either process
the image with a different resolution or let the output image size be distinct from what is
required. Because the FFBP images needed to be compared with the BP to carry out the
analysis, the second option was adopted. Moreover, to minimize the waste of computing
undesired pixels or voxels, the actual number of image blocks might be larger than the
one provided as an input. Ultimately, this would result in a wider variation for ∆h and
Rmin. A function executed this process at the preparation step (Figure 1a). The outcome is
figuratively represented in Figure 8.

Both BP and FFBP algorithms were written in MATLAB R2018a with vectorized
variables and parallel computing functions. All data were processed on an Intel(R) Core
(TM) i7-7700 CPU (3.60 GHz) with 64 GB RAM.

3. Results
3.1. FFBP vs. BP

Figures 9 and 10 present the 3D output images processed by the direct BP algorithm
and the FFBP algorithm, respectively. They depict isosurfaces at −15 dB normalized
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magnitude, clearly showing that the radar detects every single eucalyptus tree. The
processing setup for Figure 10 uses L = 5 and an (8 × 4 × 1) initial partition. Although
this setup produced the highest phase error of the case study, a qualitative comparison
suggested that the differences between the two images were quite subtle. Indeed, the
degree of coherence between them was 0.9916; the magnitude error had a −0.3 dB mean
and a 2.5 dB standard deviation; the mean phase error was 0.0007 rad (0.04◦); and the phase
error standard deviation was 0.35 rad (19.9◦), slightly below π/8 rad.
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Figure 10. 3D output image processed by the FFBP algorithm with L = 5 and an (8 × 4 × 1) initial
partition. Perspective view of isosurfaces at −15 dB normalized magnitude.

Figure 11 presents the 2D output image processed by the direct BP algorithm, and
Figure 12 shows the 2D output image processed by the FFBP algorithm using L = 5
and an (8 × 4 × 1) initial partition. Again, this setup produced the highest phase error
of the case study. However, as in the previous case, the differences between the two
images were barely perceptible. The degree of coherence between them was 0.9942; the
magnitude error had a −0.2 dB mean and a 2.3 dB standard deviation; the mean phase
error was 0.0004 rad (0.02◦); and the phase error standard deviation was 0.33 rad (18.8◦),
also somewhat below π/8 rad. Lastly, the lines of trees of the eucalyptus plantation can be
easily seen in both Figures 11 and 12.
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Figure 12. 2D output image processed by the FFBP algorithm with L = 5 and an (8 × 4 × 1) initial partition.

3.2. Phase Error vs. SNR

Figure 13 presents the phase error response between the 2D images shown in
Figures 11 and 12. Notice that the darkest area of Figure 11 corresponds to an increase
of phase error in Figure 13, which indicates a noisy behavior. The mean normalized mag-
nitude at a 30 × 30 m2 square in the northwestern-most corner of Figure 11 is close to
−40 dB. Thus, this value was considered the noise floor level for calculating the SNR for
the following analysis.



Sensors 2021, 21, 5099 14 of 20

Sensors 2021, 21, x FOR PEER REVIEW 14 of 21 
 

 

 

3.2. Phase Error vs. SNR 

Figure 13 presents the phase error response between the 2D images shown in Figures 

11 and 12. Notice that the darkest area of Figure 11 corresponds to an increase of phase 

error in Figure 13, which indicates a noisy behavior. The mean normalized magnitude at 

a 30 × 30 m2 square in the northwestern-most corner of Figure 11 is close to −40 dB. Thus, 

this value was considered the noise floor level for calculating the SNR for the following 

analysis. 

 

Figure 13. Phase error for the 2D FFBP image with 𝐿 = 5 and an (8 × 4 × 1) initial partition. 

Figure 14 displays three histograms for the phase error. The first (Figure 14a) had no 

SNR threshold, i.e., all pixels are taken into account; the second (Figure 14b) had a 0 dB 

SNR threshold; and the last one (Figure 14c) had a 10 dB SNR threshold. As can be seen, 

between Figures 14a and b, there is a subtle change of less than 2% in relative probability 

for each bin. The corresponding decrease in phase error standard deviation was from 0.33 

(18.8°) to 0.20 (11.4°) rad. On the other hand, between Figures 14a and c, there is a percep-

tible change of more than 8% in relative probability for the central bins, which made the 

phase error standard deviation decrease even more to 0.10 rad (5.8°).  

As the 10 dB SNR threshold might have eliminated valuable information, the chosen 

threshold for the subsequent analysis was 0 dB SNR. By applying the selected SNR thresh-

old to Figure 10, the resulting phase error standard deviation became 0.22 rad (12.7°). 

 

 

(a) 

 

(b) 

 

(c) 
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Figure 13. Phase error for the 2D FFBP image with L = 5 and an (8 × 4 × 1) initial partition.

Figure 14 displays three histograms for the phase error. The first (Figure 14a) had no
SNR threshold, i.e., all pixels are taken into account; the second (Figure 14b) had a 0 dB
SNR threshold; and the last one (Figure 14c) had a 10 dB SNR threshold. As can be seen,
between Figure 14a,b, there is a subtle change of less than 2% in relative probability for each
bin. The corresponding decrease in phase error standard deviation was from 0.33 (18.8◦) to
0.20 (11.4◦) rad. On the other hand, between Figure 14a,c, there is a perceptible change
of more than 8% in relative probability for the central bins, which made the phase error
standard deviation decrease even more to 0.10 rad (5.8◦).
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Figure 14. Histogram of the phase error for the 2D FFBP image with L = 5 and an (8 × 4 × 1) initial partition for (a) no
signal-to-noise ratio (SNR) threshold, (b) SNR >0 dB, and (c) SNR >10 dB.

As the 10 dB SNR threshold might have eliminated valuable information, the cho-
sen threshold for the subsequent analysis was 0 dB SNR. By applying the selected SNR
threshold to Figure 10, the resulting phase error standard deviation became 0.22 rad (12.7◦).

3.3. Phase Error vs. Geometric Parameters

Figures 15 and 16 present scatter plots of the phase error standard deviation σ∆φ

versus β, defined by (11). Figure 15 shows two separate linear regressions for 2D and 3D
images, while Figure 16 shows a unique linear regression for all results. In Figure 15, the
slopes indicate lower phase errors for the 2D data than for the 3D data.
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The statistics for all three linear regression models are indicated in Table 4. All
intercepts had high p-values, and all of their confidence intervals contained zero. Thus, the
intercepts were not statistically significant. On the other hand, all slopes had negligible
p-values, and neither of their confidence intervals contained zero. Moreover, all linear
regression models presented high coefficients of determination, R2 > 0.9. Therefore, the
hypothesis

(
σ∆φ ∝ β

)
is supported by the data. Moreover, the hypothesis is accepted even

when combining 2D and 3D data (Figure 16).
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Table 4. Statistics of the linear regression models.

Data Coefficient Estimate Standard
Error

95% Confidence
Interval p-Value R2

2D
Intercept 0.0029 0.0028 −0.0029 0.0086 0.32

0.9427Slope 0.0683 0.0027 0.0628 0.0738 3.3 × 10−25

3D
Intercept 0.0001 0.0035 −0.0069 0.0071 0.97

0.9427Slope 0.0832 0.0033 0.0765 0.0899 3.3 × 10−25

2D and 3D
Intercept 0.0015 0.0026 −0.0038 0.0067 0.58

0.9196Slope 0.0758 0.0025 0.0708 0.0809 1.9 × 10−44

3.4. Phase Error vs. Time

Figure 17 presents the phase error standard deviation versus the processing time for
the 2D images at different values of L. Figure 18 shows a similar line chart for the 3D
images. Here, the phase error standard deviation was calculated for the whole image, not
only for the selected image blocks of Figure 8.
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As can be seen, the curves for the 3D images (Figure 18) are not as smooth as those
for the 2D images (Figure 17). The reason is that the function for defining the split scheme
causes unnecessary waste and needs improvement. Beyond that, it is easy to notice that
both curves for L = 2 are far slower than for other values of L.

Table 5 lists the slowest, fastest, and average processing times of the FFBP algorithm
compared to the BP for 2D and 3D images. Table 5 also presents the corresponding speed-
up factors. These results are from the same data sets of Figures 17 and 18. It is worth
noticing that the speed-up factor was more pronounced for the 3D images.

Table 5. Processing time of the slowest, fastest, and average FFBP configurations compared to the BP algorithm.

Image Type BP Processing Time
FFBP

Configuration Processing Time Speed-Up Factor

2D
Fastest 2 min 40 s 13.33

35 min 33 s Average 5 min 45 s 6.18
Slowest 12 min 28 s 2.85

3D
Fastest 20 min 24 s 21.2

7 h 12 min 18 s Average 42 min 8 s 10.3
Slowest 1 h 18 min 18 s 5.52

4. Discussion

The hypothesis that the geometric parameters at the first iteration can predict the
phase error standard deviation at the output was validated for the P-band data. It was
also validated when joining the 2D and 3D data sets (Figure 16), reinforcing the idea that
what matters most for this FFBP algorithm is the diagonal of the subimages, not their
width. In Section 3.3, all linear regression models produced slopes with negligible p-values,
statistically irrelevant intercepts, and R2 > 0.9.

This hypothesis was inspired by the range error analysis presented in [12] but disre-
garding the effect of any deviations from a linear flight path. The reason is that the phase
compensation term (10) ensures good focusing quality for nonlinear flight patterns. This
term was proposed by Zhang et al. [13] but with a different goal, namely to avoid taking
range samples at each recursion in order to accelerate processing.

If (10) was removed from the FFBP algorithm, the outcome of the case study presented
here would be completely unsatisfactory. Indeed, Figure 19 shows the resultant 2D image
with L = 2 and a (24 × 12 × 1) initial partition, i.e., the configuration with the lowest phase
error standard deviation in Section 3.4. If Figure 19 is compared to the BP output image of
Figure 11, the degree of coherence is a meager 0.12.
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According to the method for controlling the phase error proposed in [12] (and briefly
described in Section 2.2), the partition scheme should attempt to keep the product of
the subimage diagonal by the subaperture length constant across all iterations. This was
possible in the processing of the 2D images but not for the 3D images. The reason is
that the number of voxels in the x- and y-directions are significantly larger than in the
z-direction. Therefore, in some setups, the volumetric images were only split across the x-
and y-directions for the last iterations. Consequently, the linear regression of the 3D image
data set had a slightly steeper slope than that of the 2D data set.

In the future, this methodology should be repeated for other frequencies as the phase
error also depends on the radar wavenumber. The linear regression models can be used to
determine processing parameters from a requirement in phase error, which would be more
accessible for other users to benefit from the FFBP algorithm.

As expected, the configuration with the lowest image quality (see Figures 10 and 12)
had the longest subaperture length and subimage diagonal, i.e., L = 5 with an (8 × 4 × 1)
initial partition. Likewise, the configuration with the highest image quality had the shortest
subaperture length and subimage diagonal, i.e., L = 2 with a (24 × 12 × 1) initial partition.
Table 6 lists some figures of merit at these extremes for the 2D and 3D data sets, namely the
phase error standard deviation, the degree of coherence, and an SNR of equivalent thermal
noise, calculated according to [26]. SNR of equivalent thermal noise can be understood
as the signal-to-thermal noise ratio that would result in an interferometric image with the
same degree of coherence. Table 6 also shows the values for an average image quality,
which corresponds to the following configurations:

• L = 5 with a (16 × 8 × 1) initial partition for 2D;
• L = 2 with an (8 × 4 × 1) initial partition for 3D.

It is important to note that the term “lowest quality” refers to a relative comparison
within the data set, not to poor quality in absolute terms. Qualitatively, Figures 10 and 12
appear to be almost identical to Figures 9 and 11, which may well indicate that this level
of image quality is suitable for SAR processing. Indeed, in [23], the same drone-borne
SAR system produced a high-accuracy forest inventory with SAR interferometry in the
P-band. A 5% accuracy was possible thanks to the forest SNR being higher than 17
dB. Because the SNR of equivalent noise was more than 20 dB, the configurations with
the lowest image quality were already satisfactory. Moreover, they were also associated
with the fastest processing times (see Table 5), with speed-up factors of 13 and 21 for 2D
and 3D images, respectively.

Table 6. Performance of the configurations with highest, average, and lowest image quality.

Image Type Figure of Merit
Image Quality

Highest Average Lowest

2D
Phase Error Standard deviation 0.025 rad (1.4◦) 0.073 rad (4.2◦) 0.20 (11.7◦)

Degree of coherence 0.9999 0.9993 0.9945
SNR of equivalent Thermal noise 40 dB 31 dB 23 dB

3D
Phase error Standard deviation 0.026 (1.5◦) 0.077 rad (4.4◦) 0.22 rad (12.7◦)

Degree of coherence 0.9999 0.9988 0.9921
SNR of equivalent Thermal noise 38 dB 29 dB 21 dB

On the other hand, the configurations with the highest image quality had unneces-
sarily slow processing times. If a specific application would require an SNR higher than
20 dB, then a configuration with average image quality could be employed. The average
phase error standard deviation points were close to those with average processing time in
Figures 17 and 18. Therefore, more demanding applications could benefit from a speed-up
factor of about 6 for 2D images and 10 for 3D images.

Figures 9–12 show processed images from data acquired with a spiral flight path. As
can be seen, the trees on the eucalyptus plantation are easily recognized. If the same area
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was surveyed with a linear flight pattern, the resultant image would have a slant range
resolution of 3 m and an azimuth resolution of 50 cm [23]. However, thanks to the 360◦

acquisition, the resolution across all directions in the (x, y) plane was at least 50 cm. The
maximum attainable resolution in the (x, y) plane would be ∼ λ0/4 [1–3].

Unsurprisingly, the speed-up factor was higher for 3D images than for 2D images.
Section 2.1 pointed out that FFBP algorithms can reduce the computational cost from
O
(

N3) to O
(

N2 log N
)
. Therefore, the expected speed-up factor N/ log N would increase

with the size of the output image.
It was noted in Section 3.4 that the function for creating the partition scheme needs

improvement. Moreover, the current version of the algorithm assumes that the radar is
constantly illuminating the imaged area. In future works, this assumption should no longer
be required. Finally, a bistatic version of the algorithm should be implemented as well.

5. Conclusions

Spiral and multicircular SAR acquisition techniques can produce high-resolution
3D SAR images. In [20], the authors presented an FFBP algorithm capable of processing
simulated SAR data replicating a spiral flight path. In the present work, an improved
version of the FFBP algorithm [21] could successfully process real P-band SAR data acquired
by a drone-borne SAR system that performed a spiral flight pattern.

This paper proposes a statistical phase error analysis to determine how the FFBP setup
affects the quality of the output images. In the case study, the same raw radar data were
processed with the FFBP algorithm with different parameters to produce several 2D and
3D SAR images. The analysis validates the hypothesis that geometric parameters defined
at the beginning of processing can predict the phase error standard deviation at the output.
In future works, the linear regression models generated in the analysis could be applied to
determine the processing setup from a requirement in phase error.

The FFBP algorithm produces nearly identical images to those processed with a direct
BP algorithm, only faster. The speed-up factor is up to 21 times for the 3D images and
13 times for 2D images, with a phase error standard deviation of ~12◦, corresponding to
an SNR of equivalent thermal noise of 20 dB. For higher image quality, with a phase error
standard deviation of ~4◦ and 30 dB SNR of equivalent thermal noise, the speed-up factor
is 10 and 6 times for the 3D and 2D images, respectively.
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