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ABSTRACT

Cerrado is the second largest biome in Brazil, covering about 2 million km2. It is
considered a global biodiversity hotspot and it is essential for Brazil’s water security.
This biome has experienced land use and land cover changes at high rates in the last
three decades so that 50.51% of its natural vegetation has been already removed.
Thus, it is crucial to provide technologies capable to control and monitor the Cer-
rado vegetation suppression in order to undertake the environmental conservation
policies. Therefore, this work aims to develop a methodology to detect deforesta-
tion in Cerrado, combining two deep learning architectures, LSTM and U-Net, and
using Landsat and Sentinel image time series. In the proposed method, the LSTM
evaluates the time series in relation to the time axis to create a deforestation proba-
bility map, which is spatially analyzed by the U-Net algorithm alongside the terrain
slope to finally produce deforestation maps. To evaluate the potential of the pro-
posed methodology two study areas were defined, one in Bahia and other in Mato
Grosso. Besides, three strategies for training samples selection and also two time
series based on Landsat and Sentinel imagery were considered. The resultant maps
were validated through a stratified random sampling approach, using Sentinel time
series as reference. The results achieved high accuracy metrics, peaking at an overall
accuracy and F1-Score of 99.81% ± 0.21 and 0.8795 ± 0.1180, respectively, for the
Bahia study area and Sentinel time series. The validation tests showed that the pro-
posed methodology can provide accurate Cerrado deforestation maps, and besides
it has potential to be scalable to the entire Cerrado biome, after implementing some
improvements.

Keywords: Deforestation. Time Series. Change Detection. LSTM. U-Net. Landsat.
Sentinel.
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MÉTODO PARA O MAPEAMENTO DE DESMATAMENTO NO
CERRADO BASEADO EM DEEP LEARNING USANDO SÉRIES

TEMPORAIS DE IMAGENS LANDSAT E SENTINEL

RESUMO

O Cerrado é o segundo maior bioma do Brasil, cobrindo uma área de aproxima-
damente 2 milhões km2. Ele é considerado um hotspot de biodiversidade global e
é essencial para a segurança hídrica do Brasil. Este bioma vem apresentando altas
taxas de mudanças de uso e cobertura do solo nas últimas três décadas, de forma
que 50, 51% de toda a sua vegetação natural já foi removida. Deste modo, é crucial
que tecnologias capazes de controlar e monitorar a supressão da vegetação natural
do Cerrado sejam desenvolvidas, para que políticas de conservação ambiental sejam
empreendidas. Portanto, este trabalho visa o desenvolvimento de uma metodologia
para a detecção de desmatamento no Cerrado, combinando duas arquiteturas de
deep learning, LSTM e U-Net, e usando séries temporais de imagens Landsat e Sen-
tinel. Nos métodos propostos, a LSTM avalia as séries temporais no eixo do tempo
para criar um mapa de probabilidade de desmatamento, o qual é analisado pela
U-Net junto à declividade do terreno para finalmente produzir o mapa de desma-
tamento. Para avaliar o potencial da metodologia proposta, duas áreas de estudos
foram definidas, uma na Bahia e outra no Mato Grosso. Ademais, três estratégias
para a seleção de amostras de treinamento foram consideradas, além de séries tem-
porais diferentes baseadas em imagens Landsat e Sentinel. Os mapas obtidos foram
validados através de uma amostragem aleatória estratificada, usando séries tempo-
rais Sentinel como referência. Os resultados apresentaram altas métricas de precisão,
alcançando os valores máximos para a precisão global e F1-Score de 99, 81% ± 0.21
e 0, 880 ± 0, 118, respectivamente, para a área de estudos da Bahia e usando séries
temporais Sentinel. A validação dos resultados mostrou que a metodologia proposta
pode ser usada para gerar mapas de desmatamento para o Cerrado com uma alta
precisão, e que além disso tem o potencial de ser escalonada para todo o Cerrado,
após a implementação de algumas melhorias.

Palavras-chave: Desmatamento. Séries Temporais. Detecção de Mudanças. LSTM.
U-Net. Landsat. Sentinel.
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1 INTRODUCTION

The Cerrado is the second largest biome within the Brazilian territory, with an
area of approximately 2 million km2. Also known as Brazilian Savanna, this biome
composes 23% of the national territory, and covers areas of 11 states and the Federal
District. With more than 4,800 endemic species of plants and vertebrate animals,
it is a global hotspot for biodiversity conservation, as it is under severe human-
induced threats (STRASSBURG et al., 2017; MITTERMEIER et al., 2011). Besides, the
Cerrado biome preservation is also crucial for the country’s water security due to the
presence of headwaters and springs of important rivers, like the Tocantins-Araguaia,
São Francisco, and Paraná (IBGE, 2021; ANA, 2018).

Cerrado presents high degradation rates since the decade of 1960, in spite of its
large species diversity and importance for water supply (STRASSBURG et al., 2017;
RADA, 2013). The conversion of Cerrado vegetation to anthropic areas occurs at high
rates and 50.51% of its natural vegetation has been changed mainly into agriculture
and pasture (ROCHA et al., 2012; SCARAMUZZA et al., 2017; INPE, 2020). Projections
indicate that 31% to 34% of the remaining area will be affected until the year of
2050 (SOARES-FILHO et al., 2016). This projection also adverts that 480 species of
endemic plants are likely to be extinct, resulting in profound consequences to the
local fauna and flora (STRASSBURG et al., 2017).

Studies have shown that it is possible to increase agriculture production in Cerrado
through agricultural intensification and sustainable practices, among other actions
to protect the remaining natural vegetation (SPERA, 2017; SANO et al., 2019). These
practices could be encouraged by public environment conservation policies, but to
correctly direct them it is necessary to monitor the Cerrado native vegetation con-
version to understand the land occupation dynamic in this region (SANO et al., 2019).

Attempts to monitor deforestation and forest degradation in the Cerrado are rela-
tively recent, unlike the Amazon that began in 1988 (MAURANO et al., 2019b; BRITO
et al., 2018). Some initiatives started to monitor vegetation in the decade of 2000,
with the Conservation and Sustainable Use of Brazilian Biological Diversity Project
(PROBIO) creating a mapping of Cerrado’s vegetation cover (SANO et al., 2008),
along with deforestation alerts created by the Integrated System of Deforestation
Alerts (SIAD) (FERREIRA et al., 2007).

Cerrado deforestation maps were produced between 2010-2013 and 2013-2015 by the
National Institute for Space Research (INPE), which were the basis for submitting

1



a request for payments by avoided emissions. The production of this database re-
ceived financial support from the Ministry of Science, Technology, Innovation and
Communications (MCTIC), Ministry of the Environment (MMA) and the World
Bank, in addition to the German institutions Credit Institute for Reconstruction
(KfW) and German Corporation for International Cooperation (GIZ) (MAURANO

et al., 2019a). In 2016 Brazil submitted the request to the United Nations Frame-
work Convention on Climate Change (UNFCCC) as a first action for the biome in
the implementation of its REDD+ policies (MMA, 2018). Based on this submission,
MCTIC had approved the project “Development of Forest Fire Prevention Systems
Vegetation Cover Monitoring in the Brazilian Cerrado” by the World Bank (MCTI,
2021; MMA, 2021a). This project, called FIP Monitoring, is part of the Brazilian
Investment Plan (BIP) under the Forest Investment Program (FIP), which includes
6 other projects (MMA, 2021b). With support of FIP Monitoring, INPE started to
produce yearly deforestation maps for Cerrado through the Satellite Deforestation
Monitoring Project (PRODES) and Near Real-time Deforestation Detection System
(DETER) systems in 2016 (BRITO et al., 2018; INPE, 2021a). Figure 1.1 presents the
yearly deforestation rates from 2001 to 2020.

Figure 1.1 - Yearly deforestation of primary vegetation in Cerrado.

SOURCE: TerraBrasilis (2020).

PRODES aims to detect deforestation to calculate the annual deforested area in-
crement, as well as its annual rates (SHIMABUKURO et al., 2012; BRITO et al., 2018).
The PRODES methodology has been applied to Amazon and Cerrado since 1988 and
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2016, respectively. This methodology is based on visual interpretation of Landsat
imagery to detect deforestation areas in Cerrado, with an accuracy of 93.17%±0.89%
for the year 2018 (PARENTE et al., 2021).

The PRODES methodology employs many trained human analysts to produce defor-
estation maps, which increases the project’s cost. Besides, the analysts can represent
a source of subjectivity in the detection process, although they have been trained
to suppress this from the final product (BRITO et al., 2018; LUNETTA et al., 1991).
Therefore, the development of automatic methods for deforestation detection can
reduce the amount of specialists in the image interpretation, the subjectivity, and
consequently, the project’s cost (MA et al., 2019; BALL et al., 2017).

The Cerrado biome contains highly complex gradients of natural vegetation with
important differences in herbaceous, woody, and forest layers, and it is also highly
seasonal (FERREIRA et al., 2003). These factors make the detection of Land Use and
Land Cover (LULC) changes in Cerrado a challenge (SANO et al., 2010; MÜLLER et al.,
2015; REYNOLDS et al., 2016). In complex environments, such as Cerrado, state-of-
the-art Remote Sensing (RS) procedures used to automate mapping often have been
based on Deep Learning (DL) (MARETTO et al., 2020; MA et al., 2019; PARENTE et al.,
2019; PETROVSKA et al., 2020; LI; HSU, 2020). The study of RS time series using DL
has shown prominent results (INTERDONATO et al., 2019; XU et al., 2020b; DUTTA et

al., 2020). Then, classification methods based on time series and DL techniques, such
as the LSTM, take advantage of this temporal information to discriminate different
classes (ZENG et al., 2020; RUSSWURM; KÖRNER, 2020).

Taquary (2019) proposed a classification method to detect deforestation in the
Brazilian Cerrado by combining two different DL architectures: the Long-Short Term
Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997; GRAVES et al., 2013) and the
U-Net (RONNEBERGER et al., 2015), regarding the time and spatial domains. The
author used Planet images to compose a series of monthly mosaics for 1.5 year with
spatial resolution of 3m. Using such imagery for systematic Cerrado monitoring
have many implications, such as the huge amount of data and the costs to acquire
high spatial resolution images. Taken into account these barriers, current detection
projects are driven to use medium spatial resolution images (20m to 30m) taken
from Landsat and Sentinel platforms, which are cost-free and present good tempo-
ral resolution of 16 days and 5 days, respectively (BRITO et al., 2018; INPE, 2020;
MAPBIOMAS, 2021). Besides, Sentinel and Landsat images can be integrated in a
Data Cube in order to increase the temporal resolution.
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In the development of change detection methods in a complex environment, such as
Cerrado, it is important to consider the spatial patterns analysis (texture, shape,
reflectance, etc.) and temporal patterns. In this analysis, the objects’ features ex-
tracted from satellite images are used to discriminate classes taking into account the
pixel information as well as its neighborhood (PARENTE et al., 2019; TORRES et al.,
2020). Besides, to make the problem simpler, classification methods can create hier-
archical levels of representation to handle the information in different scales (LECUN

et al., 2015). All these points can improve the classification methods considerably,
especially for DL methods based on fully convolutional networks.

Within this context, the main objective of this study is to develop a method to
detect deforestation in the Cerrado biome based on the combination of two Deep
Learning architectures, LSTM and U-Net, and time series generated from Landsat
and Sentinel imagery. The hybrid classification based on LSTM and U-NET can
produce deforestation maps faster than end-to-end DL architectures, which analyze
time and spatial patterns at the same time, such as the ConvLSTM method (SHI et

al., 2015; MARTINEZ et al., 2021). Moreover, the time and spatial analysis performed
in two steps allows the analysis based on more contextual information extracted
from larger neighborhood areas, which can provide better classification results. The
Cerrado deforestation method proposed in this work is an adaptation of Taquary’s
method. Differently, the proposed method included topography data as auxiliary
data and used free Landsat and Sentinel image time series instead of Planet high
spatial resolution images. Besides, PRODES data was used as reference to generate
training samples through three different approaches.

To perform this work, the following tasks will be implemented:

a) Creation of training samples based on existing data from PRODES;

b) Detection of Cerrado deforestation using DL methods LSTM and U-Net
for two Cerrado areas;

c) Deforestation map evaluation, considering 3 different situations regarding
the training samples acquired in space and time for each area to be mapped;

d) Maps accuracy assessment to evaluate the results.
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2 THEORETICAL FOUNDATIONS

2.1 The Cerrado biome

The Brazilian Cerrado is the second largest biome in South America, with approx-
imately 2 million km2, corresponding to 23.9% of the country’s territory (IBGE,
2021). Figure 2.1 shows its localization and ecoregions, within portions of the states
of Maranhão, Piauí, Tocantins, Bahia, Mato Grosso, Goiás, Minas Gerais, Mato
Grosso do Sul, São Paulo and Paraná, as well as the Distrito Federal. The major-
ity of the biome is located in the Brazilian Highlands, between the latitudes of 3◦

and 22◦ South and between the longitudes of 36◦ and 65◦ West. The most present
climate type is the Tropical Savanna Climate, according to the Köppen Climate
Classification (ALBUQUERQUE; SILVA, 2008).

Figure 2.1 - The Cerrado Biome and its ecoregions in Brazil.
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Its large dimensions allow for a varied distribution of endemic species, in conditions
that interactions among them are critical to long-term survival. The biome size also
makes possible the existence of regions, where the ecosystems differ in terrestrial and
aquatic components, setting apart ecoregions. In total, the biome can be divided
into 19 distinct regions according to biophysical characteristics (Figure 2.1) that
highlights Cerrado’s environmental heterogeneity (SANO et al., 2019; STRASSBURG

et al., 2017).

The native flora contains heterogeneous physiognomies that range from semi-arid
to swamps, containing many different species adapted for such environments. One
of the most adopted physiognomies definitions is described by Ribeiro and Wal-
ter (2008) (Figure 2.2), based on the vegetation form (structure, dominant growth
forms, and possible stationary changes), environment aspects (edaphic factors) and
floristic composition. This physiognomies classification has 14 main classes that can
be grouped into 3 main formations: Forest, Savanna and Grassland.

Figure 2.2 - Physiognomies found in the Cerrado.

SOURCE: Adapted from EMBRAPA (2021).

Considering optical sensors, the 3 main formations present different spectral signa-
tures, which change according to the dry and wet seasons, with a clear separation
in the red spectral region (600nm to 700nm), for example. These differences can be
identified in satellite optical images, but the differentiation becomes harder as one
tries to map the vegetation types with more details since the physiognomies present
nearly identical spectral responses, depending on the spectral interval (FERREIRA
et al., 2003). Discrimination between some Cerrado vegetation types can be difficult
to make even in the field, considering that several Cerrado vegetation covers do not
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present evident transitions between them (RIBEIRO; WALTER, 2008; BENDINI et al.,
2020; NEVES et al., 2020).

Sano et al. (2010) reported difficulties in separating areas predominantly composed
of shrubs and forests, and also between cultivated pastures and Open Grassland.
Müller et al. (2015) mentioned difficulties for discriminating Grassland Formations
and agriculture, and Reynolds et al. (2016) pointed out the native vegetation het-
erogeneity as the main cause for omission and commission errors in the Cerrado
vegetation mapping.

2.1.1 Cerrado deforestation

The Cerrado biome presents a late drastic transformation. Since the decade of 1960
the biome experienced a rapid conversion of its native vegetation into anthropized
areas. Recent occupation at high deforestation rates was the main cause for huge
amounts of native vegetation loss, implying a big impact on biodiversity (STRASS-

BURG et al., 2017). Going ahead, we consider deforestation as the complete removal
of native vegetation, caused by human activities that aim to change the LULC.

As for 2020, 50.51% of the biome’s area was already covered by some anthropic
activity (Figure 2.3), an increment of 4.38% since the previous decade. The biome is
currently seriously threatened by changes in vegetation cover, whose extremely high
rate in recent decades was even higher than that recorded in the Amazon itself. Less
than 50% of the total area is native vegetation (around 1 million km2), compared
to 82% in the Amazon (INPE, 2020).
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Figure 2.3 - Cerrado’s natural and anthropic vegetation map, in 2020.

SOURCE: Adapted from INPE (2020) and IBGE (2021).

Given the Cerrado’s dimension, different drivers act pushing the boundaries of agri-
culture. Espírito-Santo et al. (2016) evaluated the north of Minas Gerais, between
2000 and 2015, showing a decrease in coal production areas (associated with defor-
estation) and an increase in cultivated pastures and soy areas. This deforestation
found was attributed to the expansion of the road network. On the other hand,
Garcia and Ballester (2016) evaluated the region defined by the river Guariroba
watershed in Mato Grosso, between 1975 and 2011. They observed a high rate of
conversion from native vegetation to cultivated pastures, and pointed out higher
scale opportunities as reason for such change.

Despite the different drivers for Cerrado deforestation, some of them are common
in the most regions of this biome. Rocha et al. (2012) reported that most of the
native vegetation conversion tends to occur in areas with dense vegetation (favorable
climate and soil conditions) and flat terrains (suitable for mechanized farming).
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2.1.2 PRODES Cerrado

Considering the importance to monitor the Cerrado vegetation, some initiatives to
map Cerrado LULC have been performed, which include MapBiomas (MAPBIOMAS,
2021), Probio (SANO et al., 2010), TerraClass Cerrado (SCARAMUZZA et al., 2017) and
PRODES Cerrado (INPE, 2020; FONSECA et al., 2021). INPE estimates deforestation
rates in the Brazilian Amazon biome since 1988, through the PRODES project, on
an annual basis (INPE, 2021b). This project has been used together with DETER,
playing an important role in the reduction of deforestation rates in the Brazilian
Amazon in the early 2000s (BOUCHER et al., 2013). PRODES and DETER method-
ologies were adapted, in order to be applied to the Cerrado biome, generating a very
consistent temporal series of natural vegetation suppression since 2018 (FONSECA et

al., 2021).

The PRODES methodology follows the steps illustrated in Figure 2.4, to estimate
the annual deforestation rate for a given year. The mapping process starts with the
selection of Landsat and CBERS images, during the dry season, which are down-
loaded and stored in the project’s database. After the images download, they are
imported by the analysts and used to create colored compositions, applying his-
togram stretching, contrast enhancement and cloud detection algorithms in order
to enhance and prepare them for visual interpretation. The following step is the
interpretation of images, when data is created and edited by trained analysts that
visually interpret the images in order to detect deforestation. The next step is to
audit data that was created, when deforestation polygons are revised and homoge-
nized. In case they are not approved, they return to the interpretation phase, but
if approved, they are sent to the next step, which is data processing. In the data
processing step, the deforestation data is used in topological analysis in order to
guarantee the quality of deforestation polygons, which then are used to compute
the total deforested area during the analyzed period. The last step of the PRODES
methodology is the creation and publishing of reports, made by using the total area
computed to calculate the deforestation increment rate. All PRODES data is also
made openly available during this step (BRITO et al., 2018).
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Figure 2.4 - Methodology used in PRODES Cerrado.
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SOURCE: Brito et al. (2018).

The PRODES year, or calendar deforestation year, refers to the period that runs
from 1st August of one year until 31st July of the subsequent year. For example,
the rate published for the PRODES year 2018 estimates the deforestation that has
occurred from 08/01/2017 to 07/31/2018. In order to produce an incremental map-
ping, PRODES uses a mask of exclusion, which covers areas deforested in previous
years. The task of interpretation is done only on parts of the image taken in the
reference year that still contains native vegetation. This mask is used to eliminate
the possibility that old deforested areas are mapped again (BRITO et al., 2018; SOUZA

et al., 2019). The PRODES Cerrado maps 3 classes (Table 2.1).

Table 2.1 - Interpretation classes used in PRODES Cerrado.

Class Description

Anthropic Anthropized area, where human intervention has
significantly changed the natural vegetation

Water Water bodies
Not Observed Not observed due to cloud or cloud shadows

Natural
(derived)

Natural vegetation, without major human interference
(Derived from the areas not included in the previous 3 classes)

SOURCE: Brito et al. (2018).

The visual interpretation task is carried out by analysts, who consider the main
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following criteria: color, tone, texture, shape and context. After producing the
deforestation map, the exclusion mask is revised and audited for possible errors.
A report about the results is elaborated and published with the data in http:
//terrabrasilis.dpi.inpe.br (BRITO et al., 2018; INPE, 2020; TERRABRASILIS,
2020).

2.2 Optical remote sensing time series

The first Landsat satellite was launched on 23 July 1972, which is considered an
important milestone in orbital RS (BELWARD; SKØIEN, 2015). This satellite obtained
images from the Earth’s surface periodically, what allowed the creation of time
series of RS images. Following the Landsat example, many initiatives from different
countries aimed to place in orbit satellites that are also able to generate time series
(Figure 2.5) (KUENZER et al., 2015).

Figure 2.5 - History of orbital earth observation programs between 1970 and 2019.

SOURCE: Barbosa et al. (2019).
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A time series of RS images is created when organizing satellite images for the same
region according to their order in time. In this context, the radiometric evolution
of a pixel can be analyzed through time. Thus permitting the delineation of regions
that undergo the same radiometric evolutions (PETITJEAN et al., 2012). These ob-
servations contain information that cannot be accessed through single-date analysis,
like tendency and periodicity (EHLERS, 2009).

RS image time series provide information to study LULC change through time. In
the case of vegetation, for example, phenology stages impact the spectral response,
like budbreak, leaf out and leaf senescence of forest. These phenology stages can
be associated with the radiometric evolution of the time series, and therefore be
detected by time series based methodologies. This detection cannot be done using
single date observations (BENDINI et al., 2020; ZENG et al., 2020).

The representation of phenological stages usually improves as time series more dense
in the time axis are used. Studies like Bendini et al. (2019), Bendini et al. (2020),
Müller et al. (2015), Matosak et al. (2020) and Ye et al. (2021) use dense time series
to map vegetation, agriculture, pasture, or forest disturbances.

A problem that affects time series is data degradation due to cloud or cloud shad-
ows, which create data gaps. When these are present, the information about the
coverage is lost, resulting in missing values in the time series. Many applications
rely on the series’ completeness, so methods were developed in order to estimate the
missing entries and fill these gaps. Simple algorithms, like cubic spline functions, in-
terpolate missing values considering the pixel neighbors in time. Other approaches
are more complex, using spatial information from similar areas on the same date to
estimate the missing values, or combining machine learning techniques to achieve
high accuracies for the estimation (VUOLO et al., 2017; MARUJO et al., 2020; HOU et

al., 2019).

In order to create access to and easy use of time series (among other reason), the
concept of data cube was created (LEWIS et al., 2017). Usually, data cube projects
provide images from different sources, clipped to a fixed extent, with pixels from
different dates exactly on the same location, which helps creating stacks to extract
each pixel spectral behavior during time. In Figure 2.6, (a) is an image time series’
stack, created from data cube images, followed by (b), which is the Normalized
Difference Vegetation Index (NDVI) variation for a pixel. The NDVI is derived from
MODIS MOD13Q1 data, in the Municipality of Mariana – MG, Brazil. One can
notice a change in periodicity around 2016, when a mining dam broke, covering part
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of the region with mining rejects.

Figure 2.6 - Satellite image time series.

(a) Satellite image time series stack; (b) NDVI variation through time for a pixel.
SOURCE: Author’s production.

2.2.1 Landsat-8 and Sentinel-2 satellites

Landsat-8

The satellite Landsat-8 was launched on 11 February 2013, as a successor of Landsat-
7, both part of the Landsat Data Continuity Mission (LDCM). This project is a
partnership between NASA and the United States Geological Survey (USGS) (LOVE-

LAND; IRONS, 2016).

Landsat-8 is the 8th satellite of LDCM, the first was launched on 23 July 1972, mak-
ing this project’s data the longest multi-spectral time series for the Earth surface
(BELWARD; SKØIEN, 2015; LOVELAND; IRONS, 2016). Landsat-8 has on-board the
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) cameras,
and many improvements were implemented comparing to its predecessor (LOVE-

LAND; IRONS, 2016), as follows:

• 11 imaging multi-spectral bands, with the sensors OLI and TIRS (Table
2.2);

• Improved on-board radiometric calibration, significantly improved signal-
noise rate for each band and radiometric resolution improved from 8-bits
to 12-bits;

• Improvement in the daily acquisition capacity, from 250 images per day to
400 images per day; and
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• Enhancement in the collected images processing net, resulting in immediate
processing and distribution to Landsat users.

Table 2.2 - Landsat-8: OLI and TIRS imaging bands.

Sensor Bands Wavelength
(µm)

Spatial Resolution
(m)

OLI

Band 1 - Coastal 0.433-0.453 30
Band 2 - Blue 0.450-0.515 30
Band 3 - Green 0.525-0.600 30
Band 4 - Red 0.630-0.680 30
Band 5 - NIR 0.845-0.885 30
Band 6 - SWIR 1 1.560-1.660 30
Band 7 - SWIR 2 2.100-2.300 30
Band 8 - Panchromatic 0.500-0.680 15
Band 9 - Cirrus 1.360-1.390 30

TIRS Band 10 - Thermal 1 10.6-11.2 100
Band 11 - Thermal 2 11.5-12.5 100

SOURCE: NASA (2013).

Landsat-8 operates in an heliosynchronous polar orbit, at an altitude of 705km at
the Equator line. The platform was established to generate images with a temporal
resolution of 16 days, with a swath of approximately 185km, following the same
sequence of ground tracks defined by the WRS-2 (USGS, 2019).

Sentinel-2

Like in Landsat, Sentinel images are also available free of cost to the user. In this
case, these images are obtained from a constellation of two satellites: Sentinel-2A
and Sentinel-2B (ESA, 2021a). This monitoring program was created by the initia-
tive Global Monitoring for Environment and Security (GMES), conducted by the
European Union through the European Space Agency (ESA) (DRUSCH et al., 2012).

Sentinel-2A was launched on 23 June 2015 and Sentinel-2B on 7 March 2017. Both
satellites are on heliosynchronous polar orbits and collect data with a swath of 290
km on Earth’s surface, with a temporal resolution of 5 days at the Equator Line. The
MultiSpectral Instrument (MSI) sensor on-board has 13 bands in different spectral
intervals (Table 2.3) and its radiometric resolution is 12-bits (ESA, 2021a; ESA,
2021b; DRUSCH et al., 2012).
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Table 2.3 - Sentinel-2A and Sentinel-2B bands configurations, from sensor MSI.

Bands Wavelength (µm) Spatial Resolution (m)
Band 1 0.432-0.453 60
Band 2 0.459-0.525 10
Band 3 0.541-0.577 10
Band 4 0.649-0.680 10
Band 5 0.696-0.712 20
Band 6 0.732-0.747 20
Band 7 0.771-0.791 20
Band 8 0.780-0.886 10
Band 8a 0.854-0.875 20
Band 9 0.934-0.954 60
Band 10 1.360-1.390 60
Band 11 1.566-1.658 20
Band 12 2.104-2.284 20

SOURCE: ESA (2021b).

The scientific community has utilized Sentinel-2 images in different scenarios (PA-

GEOT et al., 2020; BENDINI et al., 2019; ISAIENKOV et al., 2021). The advantages
found in Sentinel-2, in comparison to Landsat-8, are the higher revisit time and
spatial resolutions. These characteristics are responsible for more detailed informa-
tion, however, potential has also been found in the combination of data from both
platforms (CHASTAIN et al., 2019; MANDANICI; BITELLI, 2016).

2.2.2 Brazil Data Cube

In the context of RS, data cube projects have been important initiatives to aid
the study of time series (XU et al., 2020a; BROOKE et al., 2017; NGUYEN et al., 2018;
CHAVES et al., 2020). Some geoscience data cube initiatives are: the Swiss Data Cube
(GIULIANI et al., 2017), the Australian Geoscience Data Cube (LEWIS et al., 2017) and
the Brazil Data Cube (BDC) (FERREIRA et al., 2020b).

A data cube can be defined as a set of image time series, arranged in spatially
aligned pixels (APPEL; PEBESMA, 2019). In this, each element (or image) of a data
cube is composed of two spatial dimensions and one temporal dimension (FERREIRA
et al., 2020b). The images are pre-processed to be Analysis Ready Data (ARD), which
meet a minimum set of requirements to be used in immediate analysis without extra
effort by the user (SIQUEIRA et al., 2019). In this sense, spectral ARD images are
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the result of processing satellite images from their raw acquisition values to surface
reflectance (GIULIANI et al., 2017).

Projects conducted by INPE have been exploiting freely available RS imagery, using
cloud computing environments, big data technologies, and machine learning. One
of these projects, the e-Sensing ran from 2015 to 2018 applying new methods to
improve the extraction of LULC change information from big Earth Observation
datasets. The BDC project was created based on the know-how acquired in the e-
Sensing project and on national demands on LULC monitoring (FERREIRA et al.,
2020b).

The BDCmethodology to generate data cubes is illustrated in Figure 2.7. Data cubes
are created using images from 4 main earth observation programs: the Landsat-
8/OLI, Sentinel-2/MSI, Terra and Aqua/MODIS, and CBERS-4/MUX and AWFI
(FERREIRA et al., 2020b).

Figure 2.7 - BDC data acquisition, ARD processing, and data cube generation.

SOURCE: Ferreira et al. (2020b).

Sentinel, Landsat and CBERS images are first obtained as reflectance of Top of
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Atmosphere (TOA) according to their official providers, then processed into sur-
face reflectance. The atmospheric correction is performed by the MS3 (SILVA; AN-

DRADE, 2013) algorithm for CBERS-4/MUX and AWFI, and by the LaSRC (VER-

MOTE et al., 2016) algorithm for Sentinel-2/MSI and Landsat-8/OLI. For Terra and
Aqua/MODIS, the images are already acquired as surface reflectance through the
products MOD13Q1 and MYD13Q1.

A cloud and cloud shadow mask is provided for each image. The mask is produced
by using the FMASK 4.2 (QIU et al., 2019) algorithm for Sentinel and Landsat, and
the CMASK algorithm for CBERS. After this step, the images are used to create
the data cubes.

The project publishes its cubes in their online portal1, separated according to a
specific tiling system. This system is defined by the 54◦West longitude as the central
reference, from which 3 different grids are generated according to the tile size: 6◦×4◦

named BDC_LG (large), 3◦× 2◦ named BDC_MD (medium), and 1.5◦× 1◦ named
BDC_SM (small). The datum used is the SIRGAS 2000 and the projection is a
custom Albers equal area (FERREIRA et al., 2020b).

Despite being a project in development, the BDC has already provided data cubes
to the RS scientific community, which have been used in many environmental mon-
itoring applications (PICOLI et al., 2020; SOARES et al., 2020; MATOSAK et al., 2020;
FERREIRA et al., 2020a). In Ferreira et al. (2020b) the BDC project goals and data
are described, together with an example for the application of their data. In their
example they used one tile of the CBERS-4 data cube to create a LULC map (Figure
2.8a). They used a DL approach to separate the classes, using the pixels spectral
evolution in time (Figure 2.8b).

1http://brazildatacube.org/
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Figure 2.8 - LULC classification made using the BDC CBERS-4 datacube.

LULC map for one region in the western Bahia (a) and 422 training samples for the class
“Natural Vegetation” (b).
SOURCE: Ferreira et al. (2020b).

2.3 Deep learning algorithms in remote sensing

Current DL algorithms have been widely used in different RS applications. Many DL
works can be found in RS sub-areas, such as object detection, image segmentation,
LULC classification, among others (SHI et al., 2020; BALL et al., 2017; MA et al., 2019).

DL algorithms are part of the Representation Learning algorithms. They can be
defined as algorithms that allow the usage of raw data as input, and automatically
discover the representations needed to recognize patterns or detect changes (LECUN

et al., 2015).

The DL algorithms create different levels of representation, which can learn very
complex functions. To find patterns in different detail scales, for example, lower
layers detect the edges in an image, while higher layers learn the pattern of the
amalgamation of such edges (LECUN et al., 2015). Figure 2.9 shows a DL model and
the features identified by its layers, used to identify if there is a car, a person, or an
animal in the image.
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Figure 2.9 - Illustration of a deep learning model.

SOURCE: Goodfellow et al. (2016).

The main advantage of DL algorithms compared to other non-Representation Learn-
ing ones is their lower need of manual interference. DL algorithms can learn complex
patterns from raw data and automatically find features that are highly correlated
to the object of study (ALPAYDIN, 2014; LECUN et al., 2015).

DL algorithms are considered state-of-the-art methods for supervised classification
procedures. As in common machine learning applications, training samples are used
to adjust the DL model weights, in order to use it later in a prediction operation,
i.e. applying the model to classify data. DL applications became popular because
of its outstanding results, but many labeled samples are needed during the training
phase to improve the classifications created by the model. The creation of numerous
training samples is often impossible, due to data scarcity or high costs involved in the
process, but strategies have been developed to counter act these limitations. Data
augmentation, for example, is used to synthetically increase the sample quantity and
diversity. In case the samples are composed of images or part of images, these can
be rotated, flipped or transposed in order to create new samples (KATTENBORN et

al., 2021; MA et al., 2019).

Typical neural networks DL models are based on neurons, which arrangements form
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layers. The neurons between layers are connected through weights and bias, which
during training are optimized for the classification task. The activation function
determines if a neuron is active, if activated, the intensity of a neuron’s output is
determined by its weights an biases applied to the input. The weights and biases
start with random values, these are adjusted during training by the loss function
that minimize the errors when labeled samples are submitted through the model.
The classification happens by transforming the input data with the model’s layers.

Training a DL model is computationally expensive. The input normally has large
dimensions, like image data, implying in a multitude of neurons associated with
the layers that depict features and context at different scales. Usually, the model is
trained with a huge amount of data that may not fit the system memory at once.
To surpass this limitation, the training data is subdivided into batches that are
sequentially fed to the model during training. The training samples are submitted
to the model multiple times, called epochs, until the model is optimized.

The quality of training samples’ labels is a factor that greatly influences a DL model.
Mislabeled samples can drastically deteriorate the results obtained by a model during
prediction, since the weights and biases are not correctly optimized (JIANG et al.,
2017; LI et al., 2021). Another common problem related with DL training samples
is the class imbalance. Difficulties in training are reported when the number of
samples in one class is fewer than the others, resulting in a deterioration of the
model’s performance (RENDÓN et al., 2020).

Different DL algorithms have been used in the context of RS. Overall, these applica-
tions use one of the following architectures: Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), Autoencoders (AE), Restricted Boltzmann Ma-
chines and Deep Belief Networks, and Generative Adversarial Networks (MA et al.,
2019).

2.3.1 Long-Short Term Memory

RNN are a type of DL algorithm created specially to analyze correlations among
different positions of a data sequence (GRAVES et al., 2013). This is possible due to
the feedforward mechanism that connects the output to the input of the network,
during the processing of the next element of the sequence (GOODFELLOW et al., 2016;
OLAH, 2015). Figure 2.10 shows the unfolded computing graph of a feedforward
RNN. In this scheme (before the equal sign), a chunk of neural network A looks at
the input xt, creating the output ht. The feedforward RNN have a loop that pass
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information from one step of the network to the next. This loop allows these RNN
to be represented as multiple copies of the same network, with each one passing
information to its successor. If we ‘unroll’ the loop, the RNN can be represented
as in Figure 2.10 after the equal sign. Now, the input is x0, x1, ..., xt, one for each
‘copy’ of the network, however each iteration of the network receives information
from the previous one, resulting in h0, h1, ..., ht respectively. The chain-like nature
of RNN is easily used with data sequences, what makes RNN a DL architecture that
works well with time series.

Figure 2.10 - Unfolded computing graph of an feedforward RNN.

Input sequence: x = (x0, x1, x2, ..., xt) and output ht. “A” is the RNN.
SOURCE: Olah (2015).

The RNN have the form of a modules chain, composed of simple structures, like
a single neural tanh layer inside A, for example (GOODFELLOW et al., 2016). How-
ever, this basic feedforward form presents problems during the learning process of
long sequences, what makes them not suitable in the identification of long term
dependencies (PASCANU et al., 2013).

The Long-Short Term Memory (LSTM) is an improvement on feedforward RNN,
adapted to identify patterns in long sequences (HOCHREITER; SCHMIDHUBER, 1997;
GRAVES et al., 2008). Observing the simple RNN implementation of Figure 2.11a,
there is only a single tanh module inside the network, which uses the output of
the previous iteration concatenated with its xt value to generate an output that is
directly passed to the next iteration of the RNN loop. In the LSTM (Figure 2.11b),
multiple layers of neural networks are used in each module, interacting with channels
responsible to regulate the flux of information through the network unfolding. The
layers σ sort which information is passed forward by the model. Thus, meaningful
information is kept in the ‘time’ axis of the sequence, while irrelevant information is
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discarded, implementing a short memory of long term and selective (HOCHREITER;

SCHMIDHUBER, 1997).

Figure 2.11 - Internal modules of a feedforward RNN and the LSTM.

Components of a RNN feedforward module (a); Components of a LSTM module (b).
SOURCE: Olah (2015).

Being an algorithm to analyze sequences, the LSTM is used in RS as a tool to study
time series (PARENTE et al., 2019; TAQUARY, 2019; MATOSAK et al., 2020; CASTRO

FILHO et al., 2020). In these cases, the most common strategy is to analyze the time
series of each pixel separately, like the series in Figure 2.6. Each series is classified
considering only its time axis, disregarding the pixel neighboring in space.

According to Tobler (1970), close entities tend to be more correlated than distant
ones. When the LSTM application does not consider spatial axes, it does not take
advantage of the RS data intrinsic spatial characteristics. However, there are other
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DL architectures capable of using the spatial context of remote sensing data, like
the U-Net.

2.3.2 U-Net

The CNN are a DL type of architecture focused on image classification (LECUN et al.,
1999). Differently from RNN, they are composed of feature-extraction stages, with
multiple layers containing neurons. Each stage is composed of 3 parts: a convolu-
tional layer, a nonlinearity layer, and a pooling layer. A common CNN contains one,
two, or three feature-extraction stages, followed by one or more fully-connected lay-
ers and one classifier (ZHANG et al., 2016). Many CNN architectures have been used
widely in RS applications, given its outstanding results compared to less complex
machine learning algorithms (KATTENBORN et al., 2021).

CNN make successive transformations in the raw data to extract relevant charac-
teristics through sampling and convolution processes. These transformations reduce
data dimensions, whilst it approximates to deeper layers to extract relevant infor-
mation (TAQUARY, 2019). CNN were originally created to label images with a single
class, therefore this reduction in data dimensions helps the method to eliminate
not relevant information. However it also results in loss of spatial information along
many layers. It is possible to make the pixel-wise classification with traditional CNN,
but with reduced precision in location and context (MARMANIS et al., 2016).

To surpass this hindering aspect, alterations in the traditional CNN architecture
were proposed, resulting in the U-Net (RONNEBERGER et al., 2015). This architec-
ture is considered not only superior due to its higher spatial precision, but also for
using less training samples. In the U-Net, while half of its layers reduce the data
dimensions, the other half expand them, not reducing the output data dimensions.
This construction aims to generate an output with dimensions of the same order as
the input (RONNEBERGER et al., 2015).

In the U-Net architecture there are 4 main parts (Figure 2.12) (RONNEBERGER et

al., 2015):

a) Convolution layers composed of filters arrays applied on the images, formed
by neuron matrices;

b) Pooling layers to perform downsampling in the images to reduce their
spatial dimensions;
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c) Upsampling layers to increase images dimensions through transpose con-
volutions; and

d) Concatenate operations to combine the input and output of the Upsam-
pling and Pooling layers in the same level.

Figure 2.12 - General scheme of an U-Net architecture.

SOURCE: Li (2017).

The U-Net capacity to generate pixel-by-pixel semantic segmentation has been use-
ful to the RS research community. Methodologies were developed to create LULC
maps, clouds and cloud shadow masks, among other applications (KATTENBORN

et al., 2021; MOHAJERANI et al., 2018; RAKHLIN et al., 2018; WAGNER et al., 2019;
WIRATAMA et al., 2020; XU et al., 2018). Nevertheless, there is great potential to ex-
plore this algorithm, specially combining it with other methods applied to Earth
Observation images.

2.4 Mapping accuracy measures

Systematic LULC mapping using satellite images and RS techniques is a challenging
task. Errors can be obtained due to placing complex continuous conditions into
discrete classes, or even the mapping process itself, the data used in the classification
process, and also biases (FOODY, 2010). Accuracy estimation is important to provide
the confidence levels to the final user (FOODY, 2010; OLOFSSON et al., 2014).

The confusion matrix is used to derive many measures that describe the map ac-
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curacy, summarizing qualities or imperfections regarding specific contexts (FOODY,
2010). To create a confusion matrix, the map generated is compared to reference
data, which shall be of higher quality than the data used to create the map (OLOFS-

SON et al., 2014). If reference data is available for the whole mapped area, a complete
evaluation can be conducted. However, a complete reference is not always easy to
obtain. In this case, a sampling approach can be performed by randomly selecting
points over the resulting map, and acquiring reference corresponding to them. Con-
sidering a random sampling design, the number of points (n) for validation can be
calculated in the following way (LOHR, 2009):

n =
z2
α/2 · σ2 ·N

e2(N − 1) + z2
α/2 · σ2 (2.1)

where n is the sample size; zα/2 the (1−α/2)th percentile of the normal distribution
for the confidence level α; σ2 is the variance; N is the population size (number of
pixels); and e is the standard error.

2.4.1 Confusion matrix

The confusion matrix created for all the map classes provides a description of the
classification accuracy. On the other hand, if the focus is on target detection, a
binary confusion matrix can be constructed, which is tipically used in LULC change
(FOODY, 2010), as presented in Table 2.4.

Table 2.4 - Binary Confusion Matrix model.

Reference
Change No Change

Remote Sensing Change a11 a12 a1+ = ∑
a1j

No Change a21 a22 a2+ = ∑
a2j

a+1 = ∑
ai1 a+2 = ∑

ai2 n = ∑
aij

SOURCE: Foody (2010).

Usually, the change occurs less than no change, so Olofsson et al. (2014) recom-
mend to increase the change sample proportion, in order to achieve accurate quality
metrics. With unbalanced strata in relation to the class proportions, the authors
also recommend a normalization of the resultant confusion matrix, which can be
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achieved with:

âij = Wi
aij
ai+

(2.2)

where âij is the term of the confusion matrix in term of area proportion, Wi is the
proportion of area mapped for the class i, and i and j belong to the set {1,2} where 1
corresponds to change and 2 to no change. As âij is available for all confusion matrix
elements, accuracy metrics derived from the confusion matrix can be estimated
substituting âij for aij.

A first statistic that can be derived from the confusion matrix is the Overall Accu-
racy. Defined as:

Overall Accuracy =
∑
aii
n

. (2.3)

In the Overall Accuracy assessment, the confidence interval provides a better un-
derstanding of this statistical parameter. One way to estimate this statistic is with
±Zα/2(SEOA). Zα/2 is obtained from the normal distribution, which corresponds to
a determined significance level α (1.96 for a 95% significance level), and SEOA is
the standard error, defined as (FOODY, 2009).

SEOA =

√
a12 + a21 − (a12 − a21)2/n

n
(2.4)

In LULC change, the detection is often represented in terms of sensitivity and
specificity, also known as the Producer’s Accuracy (PA) for the “Change” and “No
Change” classes, respectively (FOODY, 2010). They measure the proportion of the
class that was correctly mapped, associated with the omission error. They are ob-
tained by:

PAchange = a11

a+1
; (2.5)

PAno change = a22

a+2
(2.6)
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Likewise, there are the predicted positive and predicted negative values, which are
also known as User’s Accuracy (UA) for the “Change” and “No Change” classes,
respectively. Associated with the commission errors, these values can be calculated
as follows (FOODY, 2010):

UAchange = a11

a1+
; and (2.7)

UAno change = a22

a2+
(2.8)

In order to obtain the User’s Accuracy standard error (SEUA), Olofsson et al. (2014)
suggested the following equation:

SEUAi
=

√√√√UAi(1 − UAi)
ai+ − 1 (2.9)

where i belong to the set {1,2}, where 1 corresponds to change and 2 to no change.
On the other hand, the Producer’s Accuracy standard error (SEPA) is obtained by
another means, as in the following equation:

SEPAj
=
√√√√ 1
N̂2

+j

[
N2
j+ · (1 − PA2

j · UAj(1 − UAj))
aj+ − 1 + PA2

j · T
]

(2.10)

where i and j belong to the set {1,2}, where 1 corresponds to change and 2 to no
change. The values for N are analogous to a in Table 2.4, where:

Nij = aij · tp
n

(2.11)

where tp is the total number of pixels in the classification. N̂j and T are:

N̂j =
q∑
i=1

Ni

ai+
aij (2.12)
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T =
∑
i 6=j

N2
i+
aij
ai+

(
1 − aij

ai+

)
/(ai+ − 1) (2.13)

A measure commonly used in DL classification is the F1-Score. This metric can be
used to analyze the quality of classes of interest since it is calculated for a specific
class. In the context of binary matrices, this value represents the harmonic mean
between the Change Producer’s Accuracy (Equation 2.5) and the Change User’s
Accuracy (Equation 2.7), also known as Precision (P) and Recall (R), respectively.
The F1-Score can be obtained by:

F1-Score = 2 P ·R
P +R

(2.14)
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3 METHODOLOGY

3.1 Study areas

In this work, the evaluation tests were conducted in two main locations: (1) State
of Bahia, and (2) State of Mato Grosso, as depicted in Figure 3.1.

Figure 3.1 - Study areas.
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Study areas: (a) Bahia and (b) Mato Grosso.
SOURCE: Author’s production.

The study areas have 35, 167.910km2 in Bahia and 27, 514.383km2 in Mato Grosso.
Each location has two sub-areas: ‘main’ and ‘auxiliary’. The latter is used only in
the training samples creation for Approach 2, detailed in Section 3.2.

The locations were chosen to evaluate the proposed methodology in different scenar-
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ios, where Bahia presents more favorable characteristics comparing to Mato Grosso.
In Bahia, the study area belongs mainly to the Chapadão do São Francisco ecoregion
(Figure 3.2a) and the main anthropic land occupation is agriculture, with crops in
large fields due to terrain aptitude for mechanization. In Mato Grosso, the study
area is situated in a transition area between Cerrado and Amazon, making it more
complex and heterogeneous than in Bahia. The area in Mato Grosso also belongs
to 3 ecoregions: Paraná Guimarães, Depressão Cuiabana, and Chapada dos Parecis
(Figure 3.2b), granting it a higher level of patterns complexity, given its high hetero-
geneity. For the Mato Grosso area, agriculture and pastures are the main anthropic
land occupations (MAPBIOMAS, 2021; SANO et al., 2019).

Figure 3.2 - Study areas and their ecoregions according to Sano et al. (2019).
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Ecoregions for the study area in Bahia (a) and in Mato Grosso (b).
SOURCE: Author’s production.

Another important difference between them is the topography. The deforestation
occurrence in Cerrado is correlated with the terrain slope, and the regions present
distinct characteristics (ROCHA et al., 2012). The study area in Bahia is composed
largely of slopes between 0% and 5% with few profound river valleys, in contrast
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with the area in Mato Grosso, which is composed of slopes between 0% and 10%
and occasional rocky outcrops (Figure 3.3).

Figure 3.3 - Terrain slope for the study areas in Bahia and Mato Grosso.
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Different regions also present differences in the deforestation occurrence. In Bahia,
the degradation occurs in large geometrical fields, while in Mato Grosso it is detected
in a greater number of polygons of amorphous shapes. For 2019, the amount of
PRODES polygons in Mato Grosso is higher, whilst the total deforestation area and
the mean area per polygon are higher for Bahia, as presented in Table 3.1.

Table 3.1 - Deforestation statistics for 2019 in the study areas (main and auxiliary).

Bahia Mato Grosso
Total Area (ha) 20, 723.315 13, 326.516

Mean Polygon Area (ha) 61.676 18.929
Polygon Count 336 704

SOURCE: INPE (2020).
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3.2 Approaches for training samples creation

The generation of appropriate training samples is as important as the detection
algorithm architecture. One of the most costly and time consuming task is the
creation of reference data. One way to reduce this cost is using pre-existing assets
obtained for other areas or time periods. Therefore, this work evaluates 3 different
approaches to create training samples, considering variations in space and time of
the reference data, to better understand the limitations that may exist in each case.
Figure 3.4 shows a diagram for these methods.

Figure 3.4 - Approaches to create training samples.

Areas in white color represent past deforestation.
SOURCE: Author’s production.

Approach 1

The training samples were selected in some parts of the main study area in 2019.
This scenario can be compared to a classification process, in which the training
samples are created for a small portion of the study area, and the final product is a
complete map for the entire region.

Approach 2

The training samples are created in a study area in 2019, adjacent to the area where
the algorithm will be applied. In this case, the ‘auxiliary’ study areas shown in
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Figure 3.1 were utilized to select the training samples. This approach replicates the
classification procedure, in which there are good quality thematic maps at nearby
study areas that can be used as reference data to train the classification algorithm.

Approach 3

The training samples were selected from the main study area in 2018 while the final
classification was carried out for the main study area in 2019. This replicates the
classification procedure, in which the thematic maps obtained in the past are utilized
as reference data to classify images acquired in posterior data.

In the context of PRODES, the approaches can be ranked according to their ap-
plicability. Approach 1 presents the most disadvantages because the analysts would
have to carry out visual interpretation, sometimes with aid of field work, to cre-
ate training samples for all regions. Approach 2 is timidly better since the analysts
would focus on classifying only part of the biome, while the rest could be made by
the algorithm, reducing the human workload. Approach 3 presents the most advan-
tages since the classification used as reference is already done for the prior PRODES
years.

3.3 Deforestation detection

The flowchart in Figure 3.5 summarizes the methods used in the deforestation de-
tection. Every combination between the time series type, approach for the training
samples creation, and study area was submitted through this methods.
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Figure 3.5 - Flowchart to describe the deforestation detection methodology.
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In the proposed methodology, 3 main data sources were used: Landsat-8/OLI (NASA,
2013) or Sentinel-2/MSI (ESA, 2021b) time series, PRODES Cerrado deforestation
data (INPE, 2020), and the Terrain Slope derived from SRTM (FARR et al., 2007).
Section 3.3.2 discusses in detail the input data as well as their pre-processing.

These data sources were used to select training samples for the LSTM algorithm.
After the training phase, this model was applied to the satellite image time series
to create the deforestation probability map.

The deforestation probability map was then employed in association with PRODES
and Slope data to generate training samples for the U-Net algorithm. After training,
the U-Net was applied to create the deforestation detection map, from the LSTM
result and Terrain Slope.
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Afterwards, 12 deforestation maps were created considering all possible combinations
of 2 satellite time series (Landsat-8/OLI or Sentinel-2/MSI), 3 training samples
scenarios (Approaches 1, 2 and 3), and 2 study areas (Bahia and Mato Grosso).
These maps were then validated using a random sampling approach and reference
data, created by visual interpretation based on Sentinel-2 time series.

3.3.1 Mapping classes

Three classes were utilized in the detection phase of this work, presented in Table
3.2.

Table 3.2 - Mapping classes in deforestation detection.

Class Description

Deforestation Total removal of natural vegetation (change)
caused directly by human activity in 2019.

Natural Vegetation Natural vegetation without deforestation
(no change) during 2019.

Past Deforestation Deforestation detected by PRODES
before 2019 (no change).

SOURCE: Author’s production.

The “Deforestation” class definition follows the class “Anthropic” in PRODES Cer-
rado (BRITO et al., 2018). Activities like natural forest clearcut, non natural fires,
among others are the main source for the LULC changes, disregarding the posterior
use in the deforested area. Although the term “Deforestation” is associated with
Forest suppression, the suppression of natural Savanna and Grassland formations is
also included.

The class “Natural Vegetation” can be understood as the remaining natural vege-
tation, without the presence of deforestation throughout the analyzed period. On
the other hand, the class “Past Deforestation” is defined as anthropized areas prior
to the analyzed period. “Past Deforestation” is obtained from PRODES, which was
not directly detected by the proposed algorithm.
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3.3.2 Input data

As input data, 2 different sensors were used to create dense image time series:
Landsat-8/OLI and Sentinel-2/MSI. Although they were employed separately, only
bands with similar spectral intervals were considered for both sensors (Table 3.3).
This was done to ignore differences among them related to spectral resolution since
this work aims to evaluate the proposed methodology only in the spatial and time
axis.

Table 3.3 - Landsat-8 and Sentinel-2 spectral bands used in the processing.

Landsat-8/OLI Sentinel-2/MSI
Band Num. Wavelength (µm) Band Num. Wavelength (µm)

2 0.450-0.515 2 0.459-0.525
3 0.525-0.600 3 0.541-0.577
4 0.630-0.680 4 0.649-0.680
5 0.845-0.885 8a 0.854-0.875
6 1.560-1.660 11 1.566-1.658
7 2.100-2.300 12 2.104-2.284

SOURCE: Adapted from NASA (2013), ESA (2021b).

The satellite data were obtained from data cubes produced by the BDC project
(FERREIRA et al., 2020b). In the context of this project, Landsat-8/OLI bands are
composed of pixels with 30 m, while the Sentinel-2/MSI are composed of pixels with
10 m, even for bands 8a, 11, and 12, which are upsampled from 20 m. The proposed
methodology also used image time series of 2 vegetation indices: the Normalized
Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI),
provided by BDC.

PRODES data was used as reference to create training samples. Because PRODES
is created using images from the dry season, the image time series were created to
end at this period. Thus, the time series used in the detection are from July 2018
to August 2019 to match with the PRODES deforestation calendar. A temporal
interpolation was applied to the time series in order to fill the gaps caused by
clouds and cloud shadows, therefore, in order to interpolate the end of the series
more precisely, the series were extended until the end of September. However this
extension was used only for the interpolation, with the detection of deforestation
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being made using images only until the end of August. The availability of surface
reflectance images in the BDC repositories was analyzed to create the image time
series (Figure 3.6).

Figure 3.6 - Landsat-8/OLI and Sentinel-2/MSI scenes availability for the study areas.

Images availability for the Landsat (a) and Sentinel (b) time series.
SOURCE: Author’s production.

From the end of July 2017 to September 2019 there are 52 Landsat-8/OLI images
available for the study areas in Bahia and in Mato Grosso. In the case of Sentinel-
2/MSI, some images are not available mostly for 2017. Then, missing dates were
interpolated in the process of filling data gaps in the images, with the gaps caused
by clouds and cloud shadows. From the end of July 2017 to September 2019 there
are 164 and 157 Sentinel images available for the Bahia and Mato Grosso study
areas, respectively.

To facilitate the time series analysis, some pre-processing steps were conducted to
construct and fill the gaps in the time series (Figure 3.7).
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Figure 3.7 - Pre-processing steps to create the time series stacks.
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First, the data (spectral bands and vegetation indices) were clipped using the study
area boundaries. Then, stacks were created for each spectral band, for two distinct
time intervals: from July 2017 to September 2018, and from July 2018 to Septem-
ber 2019. These time intervals were used to match with the PRODES calendar.
After interpolated, the time series were used only until August for the deforestation
detection, corresponding with the PRODES years of 2018 and 2019.

There were dates when it was expected to exist Sentinel images, but none was
available for download, as it is shown in Figure 3.6b. These missing scenes in Sentinel
image time series were flagged completely as clouds/cloud shadows. In the images
available for download, the regions where there were clouds or cloud shadows were
identified by the Fmask 4.2 method (QIU et al., 2019), applied by BDC and obtained
together with the spectral data. In the next processing step, these flagged images
and cloudy regions had their values entirely filled according to the spectral behavior
of their neighbors in the time axis. In this procedure, a cubic spline algorithm was
used to estimate these missing values in the image stacks (DOZIER et al., 2008; HOU et

al., 2019). Figure 3.8 shows the reconstruction of a pixel time series made by the gap
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filling process. The images download, clip to the study areas, stacks construction and
gap filling were all made using custom scripts created using the Python programming
language and various freely available libraries.

Figure 3.8 - Cubic spline application to fill gaps in a Landsat-8 NDVI time series.
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SOURCE: Author’s production.

PRODES Cerrado data were acquired in two georreferenced data sets: one with
deforestation prior to 2000, and another with deforestation after 2000 separated
by year. Using the Quantum Geographic Information System (QGIS), the vectors
were merged and used to generate raster datasets, for PRODES 2018 and 2019 to
each study area with spatial resolutions according to Landsat and Sentinel data.
The terrain slope information was derived from SRTM (FARR et al., 2007), using
Google Earth Engine. The original spatial resolution was 30m, which was used with
Landsat data, but for sentinel it was upsampled to 10m in order to match the spatial
resolution used with this data. Google Earth Engine’s standard slope calculation
method was used to generate the terrain slope with SRTM data. The data were
clipped to the study areas borders and resampled using cubic convolution (KEYS,
1981), to match exactly the pixels of the image time series and make it possible to
stack PRODES and slope data with the time series spectral data.
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3.3.3 LSTM training and prediction

The LSTM is the first DL step. This architecture was used to evaluate the time
series in the time axis, without considering the spatial relations among the pixels.
It was implemented specifically for this work in the Python programming language,
using the library TensorFlow. The learning rate and number of epochs for this model
were optimized for each map, but other general parameters were:

• Model with:

– One LSTM with 256 output units, tanh activation function, and
sigmoid recurrent activation function;

– One Batch Normalization Layer;

– One fully-connected output layer (Dense) with softmax activation
function;

• Batch size of 256 samples;

• Adam optimizer; and

• Loss function Categorical Cross-Entropy.

The LSTM model is composed of 3 main layers, as shown in Figure 3.9, where
the shape of its output arrays are shown. In the last layer, the model generates an
array with the probabilities of a pixel time series being deforestation and natural
vegetation, with the sum of both being equal to 1. The deforestation probability is
separated, resulting in the model’s final output.
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Figure 3.9 - The LSTM model layers and their output array shapes.

     LSTM model layers
     Optmizer: Adam
     Loss: Categorical 
               Crossentropy

Batch NormalizationLSTM

Input

Dense

Result

shape: [n,t,8]

output shape: [n,256] output shape: [n,256] output shape: [n,2]

shape: [n,1]

For the shapes, n is the analyzed pixel’s number in the batch, t is the number of time
entries in the time series (25 for Landsat-8/OLI and 79 for Sentinel-2/MSI). The number 8
in the input shape equals to the number of bands and vegetation indices used (Table 3.3).
SOURCE: Author’s production.

To train the LSTM, half the training samples are for deforestation and half for
natural vegetation. To obtain deforestation samples, pixel time series were selected
according to the PRODES deforestation polygons in the analyzed year. The selec-
tion of pixel time series respected a maximum number of samples per deforestation
polygon, delimited as a maximum of 0.18km2 inside each PRODES polygon. Con-
sequently, the maximum number of samples per polygon for Landsat and Sentinel
was 200 and 1,800, respectively. This threshold was used in order to avoid the ex-
cessive selection of samples in bigger polygons. The natural vegetation samples were
selected using PRODES as reference, stratifying them in regions according to the
topography slope. Thus, one third of the natural vegetation was selected in regions
with terrain slope from 0% to 4%, another third from 4% to 6%, and the last third
in regions with slopes higher than 6%.

These proportions were defined in an iterative empirical process, to guarantee an
equitable representation in the training phase. Otherwise, the model could favor
one class over the other and then affect the results. Table 3.4 shows the number of
LSTM samples for the 12 maps created. Since the maximum number of samples by
deforestation polygon in Sentinel data is larger than Landsat, the number of training
samples in Sentinel is much larger than the amount of samples for Landsat, because
of the difference among their spatial resolutions.
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Table 3.4 - Number of LSTM training samples for the combinations of time series, study
area, and samples approach.

Landsat
Approach 1 Approach 2 Approach 3

Bahia 14,312 18,288 38,840
Mato Grosso 21,536 32,665 42,812

Sentinel
Approach 1 Approach 2 Approach 3

Bahia 310,729 165,025 349,496
Mato Grosso 194,190 293,550 385,734

SOURCE: Author’s production.

Every training sample, labeled as natural vegetation or deforestation, is composed
of the pixel evolution through time from each spectral band defined in Table 3.3,
NDVI, and EVI, as illustrated in Figure 3.10.

Figure 3.10 - LSTM training samples for Sentinel time series.
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The LSTM model returns a value between 0 and 1 that corresponds to the proba-
bility of the pixel time series belonging to the deforestation class. After training, the
model could be used in a prediction procedure for the remaining study area. The
LSTM result is a deforestation probability map, which will be used in the next step:
U-Net processing.

3.3.4 U-Net training and prediction

In the proposed methodology, U-Net is the second DL architecture. Differently to
LSTM, it analyzes the spatial patterns in the data, such as relations of position,
shape, texture and values. U-Net was implemented through the DeepGeo python
package (MARETTO et al., 2019), which facilitated the application of this DL algo-
rithm.

The input to the U-Net were the deforestation probability map, generated by the
LSTM, and the terrain slope. Using this combination, the trained U-Net model can
generate the Deforestation map with the classes defined in Table 3.2.

To train the model, training samples composed of probability map, slope, and
PRODES reference data were created, as in Figure 3.11. Each sample is called a
‘chip’ and all chips in the same training have the same dimensions.

Figure 3.11 - Parts of an U-Net chip (sample).
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SOURCE: Author’s production.

Training parameters like epochs, learning rate, and decay rate vary, but common
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parameters were defined as:

• Learning rate decay activated;

• L2 regression rate of 0.0005;

• Chip size: 284 pixels;

• Loss function Average Soft Dice (avg_soft_dice); and

• 6 data augmentation operations per sample:

– 90◦ rotation;

– 180◦ rotation;

– 270◦ rotation;

– Flip horizontally;

– Flip vertically;

– Flip transpose.

The chips were manually selected to find optimal sets that have the potential to
maximize the classification accuracy. These chips locations were also the same for
the same study area and samples approach. For example, for Approach 1 in Bahia,
the same location for the training chips were used in the maps created with Landsat-
8/OLI and Sentinel-2/MSI time series. However, since the Landsat and Sentinel chips
have the same size (284 x 284 pixels), more Sentinel chips could be created inside
the area delimited by the Landsat chips, as it is shown in Figure 3.12.
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Figure 3.12 - U-Net samples for Approach 2 in Bahia.
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SOURCE: Author’s production.

In the chips selection process, the balance between chips with deforestation and
without it was maintained as fair as possible, in order to avoid problems due to class
imbalance (RENDÓN et al., 2020; YESSOU et al., 2020). Besides, data were included in
the chips that represent a wider variety of situations. These aspects were taken into
consideration in order to not privilege a class over the other as well as to increase the
model’s capability to predict accurate results in different regions. Table 3.5 shows
the number of U-Net training chips for the 12 maps created. It can be noticed that
Approach 1 almost always has less samples than its peers on the same line. This
occurred due to the less deforestation area available in this approach as training,
since the deforestation occurred in the main study area had to be divided in training
and validation. Approaches 2 and 3 had entire adjacent areas or the prior year to
use as deforestation reference, leaving all deforestation in the main study area in
2019 as validation.
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Table 3.5 - Number of U-Net training samples (chips) after data augmentation for the
combinations of time series, study area, and samples approach.

Landsat
Approach 1 Approach 2 Approach 3

Bahia 288 384 450
Mato Grosso 156 210 204

Sentinel
Approach 1 Approach 2 Approach 3

Bahia 468 708 702
Mato Grosso 294 324 336

SOURCE: Author’s production.

Afterwards, the classification was generated with a prediction operation. In this
operation, the trained model was applied to the whole study area using the LSTM
output and the terrain slope, in order to generate the deforestation maps.

3.4 Validation

As classification results, 12 maps were created from 2 different time series (Landsat-
8/OLI and Sentinel-2/MSI), 2 study areas (Bahia and Mato Grosso), and 3 training
samples approaches. It is recommended to use reference data of better resolution in
validation processes (OLOFSSON et al., 2014), and since PRODES deforestation maps
are based on Landsat images, they are not suitable to validate deforestation maps
obtained from Sentinel-2 time series. Therefore, the validation process for all maps
was performed by visual analysis using Sentinel-2 time series.

The validation was acomplished using a stratified random sampling approach in
order to create a binary matrix, in which change corresponds to “Deforestation”
class and no change to others. For each deforestation map, the number of validation
points was defined by Equation 2.1 (LOHR, 2009), considering a variance of 50%
(σ2 = 0.5), a standard error of 3% (e = 0.03) and a confidence interval of 95%
(zα/2 = 1.96) (PARENTE et al., 2021). This procedure resulted in 1,067 validation
points per map.

Since the proportion of area comprised of change (Deforestation) is much smaller
than the no change, it was stipulated that 100 points would be stratified in change,
as recommended by Olofsson et al. (2014). This would avoid overrepresentation
of the no change class. consequently, 967 points were stratified in no change. The
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probability of each stratified point in relation to its category is shown in Table 3.6.

Table 3.6 - Approximated samples probabilities for the validation process.

State Time Series Category Samples Probability (%)
Bahia Landsat Change 0.1346

No Change 0.0100
Bahia Sentinel Change 0.0150

No Change 0.0011
Mato Landsat Change 0.2229
Grosso No Change 0.0139
Mato Sentinel Change 0.0248
Grosso No Change 0.0015

SOURCE: Author’s production.

Reference data for every validation point was independently created by visual in-
terpretation over Sentinel-2 time series in the study area. In total, 12,804 reference
points were created, representing change and no change classes.

To facilitate the visual interpretation process, a mask was used to cover the past
deforestation areas, which were not included in the validation. Theoretically, all vis-
ible areas through the mask were never considered as deforestation, and therefore
were analyzed by the DL deforestation detection algorithm. When comparing the
visible area with Sentinel-2 reference, it was noticed that some small “Past De-
forestation” areas could be observed. This occurred due to the spatial resolution
difference between the PRODES product and the Sentinel-2 data. This means that
some validation points could be placed in these areas. However, as these points
are characterized as “Past Deforestation” they do not fit the “Deforestation” defini-
tion, hence being validated as no change. After acquiring reference for the validation
points, the confusion matrix for each map was obtained to estimate the classification
accuracies.

The confidence interval of Overall Accuracy and F1-Score were calculated through
±Zα/2(SE), where α = 95%, which means a Zα/2 value of 1.96. For Overall Accuracy,
the SE value was calculated as demonstrated in Section 2.4.1. In the case of the
F1-Score, the standard errors Change Producer’s Accuracy (P ) and Change User’s
Accuracy (R) were obtained to calculate SEF1. Considering that SEP and SER
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are given by Equations 2.10 and 2.9, SEF1 can be calculated through these errors
propagation since the F1-Score (Equation 2.14) is a function of these 2 variables (P
and R), as follows:

SE2
F1 =

(
∂F1
∂P

)2

SE2
P +

(
∂F1
∂R

)2

SE2
R (3.1)

Thus:

SEF1 =

√√√√( 2R2

(P +R)2

)2

SE2
P +

(
2P 2

(P +R)2

)2

SE2
R (3.2)
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4 RESULTS

Twelve deforestation maps were produced, from the combination of 3 training sam-
ples approaches (Approaches 1, 2, and 3), 2 satellite image time series (Landsat-
8/OLI or Sentinel-2/MSI), and 2 study areas (Mato Grosso or Bahia). Figure 4.1a
shows the LSTM deforestation probability map for the Bahia study area, Approach
1, Sentinel-2/MSI data, and Figure 4.1b shows its deforestation map created with
the U-Net.

Figure 4.1 - Result obtained for the Bahia study area using Approach 1 and Sentinel-
2/MSI time series.
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Figure 4.2 (c, d, e, f, g, and h) shows part of the 6 deforestation maps for the
Mato Grosso study area, corresponding to the largest deforestation occurrence in
the region detected by PRODES. Figures 4.2a and 4.2b present RGB (Band 11,
Band 8, Band 4) compositions of Sentinel-2/MSI images acquired in August 2018
and 2019, respectively, overlaid by the PRODES deforestation polygon and the past
deforestation mask.

Figure 4.2 - Deforestation detection comparison for the Mato Grosso study area.
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(a) and (b): RGB (Band 11, Band 8, Band 4) Sentinel-2/MSI images for 3 July 2018 and
3 July 2019, respectively, overlaid by the largest PRODES deforestation polygon for the
Mato Grosso study area in 2019; (c), (d), and (e): Results using Landsat-8/OLI time series
for Approaches 1, 2, and 3, respectively; (f), (g), and (h): Results using Sentinel-2/MSI
time series for Approaches 1, 2, and 3, respectively.
SOURCE: Author’s production.
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Visually, the most accurate deforestation detected corresponds to Approach 1 with
Sentinel-2/MSI data (Figure 4.2f). This may be due to the higher spatial and tem-
poral resolutions of Sentinel-2/MSI in relation to Landsat-8/OLI, as well as to the
higher correlation degree between training samples and mapped region. In this case
they are from the ‘main’ study area and same year (2019). Although this result is
very similar to the PRODES deforestation, it presents some noise not present in
PRODES and Sentinel-2 images (Figures 4.2a and 4.2b).

On the other hand, one can notice that results for Approach 2 (Figures 4.2d and
4.2g) are inferior to the others for the deforestation shown. This could be caused
by the position of the ‘auxiliary’ study area, in which the training samples were
collected. For the Mato Grosso region, the ‘main’ area contains parts of Chapada
dos Parecis and Depressão Cuiabana ecoregions while ‘auxiliary’ area contains parts
of Depressão Cuiabana and Paraná Guimarães ecoregions (Figure 3.2). In other
words, the input data and the training region are not well correlated, demonstrating
that maybe differences in vegetation and soil types can influence the results.

The confusion matrices were obtained to create the metrics to evaluate the defor-
estation maps accuracies. These metrics are presented in Table 4.1, calculated with
the confusion matrix weighed according to the proportion of the class areas, as
recommended in Olofsson et al. (2014).

Table 4.1 - Validation metrics for the Mato Grosso study area weighed by class areas.

Time
Series

Training
Samples

OA (%) C-PA
(%)

NC-PA
(%)

C-UA
(%)

NC-UA
(%)

Approach 1 99.58±0.35 63.03 99.88 82.00 99.69
Landsat Approach 2 98.96±0.57 33.98 99.78 66.00 99.17

Approach 3 99.60±0.29 68.27 99.80 69.00 99.79
Approach 1 99.15±0.53 41.34 99.86 79.00 99.28

Sentinel Approach 2 98.99±0.60 37.64 99.92 87.00 99.07
Approach 3 99.09±0.53 38.44 99.81 70.00 99.28

The ± sign represents the confidence interval. Abbreviations: OA = Overall Accuracy;
C-PA = Change Producer’s Accuracy; NC-PA = No Change Producer’s Accuracy; C-UA
= Change User’s Accuracy; and NC-UA = No Change User’s Accuracy.
SOURCE: Author’s production.

The Overall Accuracies are very high in Table 4.1, with no significant difference
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among them, according to their confidence intervals. For “No Change”, the User’s
and Producer’s Accuracies are very high (over 99.07%), indicating that the maps pro-
vide very good estimates for this class. In comparison to the other cases, Approach
2 presented the lowest Change Producer’s Accuracy, for both Landsat-8/OLI and
Sentinel-2/MSI data. This indicates that the “Change” class has a higher omission
error in Approach 2, while the “No Change” class presents a higher commission
error. This is clear when observing the maps in Figure 4.2. Overall, for “Change”
the User’s Accuracies are higher than the Producer’s Accuracies, which means that
the results favor the deforestation reliability over the identification of all deforested
areas.

For the Bahia study area another 6 maps were created, with part of them shown in
Figure 4.3. The largest deforestation polygon detected by PRODES in 2019 for this
study area was chosen to be showcased, as follows.
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Figure 4.3 - Comparison for part of the detections made for the Bahia study area.
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(a) and (b): RGB (Band 11, Band 8, Band 4) Sentinel-2/MSI images for 4 July 2018 and
4 July 2019, respectively, overlaid by the largest PRODES deforestation polygon for the
Bahia study area in 2019; (c), (d), and (e): Results using Landsat-8/OLI time series for
Approaches 1, 2, and 3, respectively; (f), (g), and (h): Results using Sentinel-2/MSI time
series for Approaches 1, 2, and 3, respectively.
SOURCE: Author’s production.

Visually, the most accurate deforestation mapping was provided by Sentinel-2/MSI
data and Approaches 1 and 2 (Figures 4.3f and 4.3g). In these cases, there were
not wrong natural vegetation islands inside the deforestation area as occurred in
Approach 3 (Figures 4.3e and 4.3h). Besides, the proposed method correctly detected
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thin natural vegetation corridors in the deforestation area, which was not well done
in Approaches 1 and 2 using Landsat-8/OLI data (Figures 4.3c and 4.3d). Similar
to the Mato Grosso study area, the differences found in the Bahia region may be
due to the higher spatial and temporal resolutions of Sentinel-2/MSI data as well
as to the higher correlation between the training and mapped data for Approach 1.

For the Bahia study area, Approach 2 is very similar to Approach 1, completely
opposite to the Mato Grosso study area. Both ‘main’ and ‘auxiliary’ portions are in
the same ecoregion, called Chapadão do São Francisco (Figure 3.2).

The validation metrics were estimated from the confusion matrices and are presented
in Table 4.2.

Table 4.2 - Validation metrics for the Bahia study area weighed by class areas.

Time
Series

Training
Samples

OA (%) C-PA
(%)

NC-PA
(%)

C-UA
(%)

NC-UA
(%)

Approach 1 99.40±0.45 57.06 99.91 89.00 99.48
Landsat Approach 2 99.81±0.21 86.79 99.91 88.00 99.90

Approach 3 99.52±0.35 65.71 99.82 77.00 99.69
Approach 1 99.81±0.21 86.93 99.91 89.00 99.90

Sentinel Approach 2 99.61±0.35 69.91 99.91 89.00 99.69
Approach 3 99.77±0.21 86.26 99.88 84.00 99.90

The ± sign represents the confidence interval. Abbreviations: OA = Overall Accuracy;
C-PA = Change Producer’s Accuracy; NC-PA = No Change Producer’s Accuracy; C-UA
= Change User’s Accuracy; and NC-UA = No Change User’s Accuracy.
SOURCE: Author’s production.

The Overall Accuracies are very high in Table 4.2, and again their values present
no significant difference according to the confidence interval, same as in Table 4.1.
By inspecting the Change Producer’s and User’s Accuracies one observes that the
differences among them are not as prominent as they are in the Mato Grosso study
area, and they also have higher values, therefore the deforestation in Bahia was more
accurately identified.

Another pattern can also be observed in the Change User Accuracy, in which Ap-
proaches 1 and 2 perform similarly with values equal to 88% or 89%. Differently,
Approach 3 presents lower Change User Accuracy values, such as 77% for Landsat-
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8/OLI data and 84% for Sentinel-2/MSI data. This pattern indicates that the com-
mission error is lower in Approaches 1 and 2. In other words, fewer “Natural Vege-
tation” areas were erroneously classified as “Deforestation”.

Another way to evaluate a map is through its F1-Score (Table 4.3) providing other
means of interpretation of the maps qualities.

Table 4.3 - F1-Score for the deforestation class.

Time Series State Training Samples F1-Score
Landsat Mato Approach 1 0.713 ± 0.171ab

Grosso Approach 2 0.449 ± 0.140b
Approach 3 0.686 ± 0.159ab

Landsat Bahia Approach 1 0.695 ± 0.161ab
Approach 2 0.874 ± 0.118a
Approach 3 0.709 ± 0.153ab

Sentinel Mato Approach 1 0.543 ± 0.157b
Grosso Approach 2 0.526 ± 0.150b

Approach 3 0.496 ± 0.150b

Sentinel Bahia Approach 1 0.880 ± 0.118a
Approach 2 0.777 ± 0.156ab
Approach 3 0.851 ± 0.119a

The exponent letters in the F1-Score values represent groups in which it is statistically
the same. Group a are the highest values and group b are the lowest values. The ± sign
represents the confidence interval.
SOURCE: Author’s production.

The highest F1-Score values belong to group a and were obtained using Landsat-
8/OLI time series in Mato Grosso with Approaches 1 and 2, and in Bahia with
Approaches 1, 2, and 3, also using Sentinel-2/MSI time series in Bahia with Ap-
proaches 1, 2, and 3. On the other hand, the lowest F1-Scores belong to group b and
were obtained using Landsat-8/OLI time series in Mato Grosso with Approaches 1,
2, and 3, and in Bahia with Approaches 1 and 3, and also using Sentinel-2/MSI time
series in Mato Grosso with Approaches 1, 2, and 3, and in Bahia with Approach 2.
These results suggest that the deforestation detection was more successful for the
Bahia study area.

The source code for this work is available at https:
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//github.com/menimato/Deforestation-TimeSeries-DL/tree/
db858ad41a7f266a63c20e3879181bf5940b2a92 and is free to use or modify.
The repository has jupyter notebooks that contain python code to all steps of the
methodology, from downloading the images until making the final deforestation
detection.
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5 DISCUSSION

5.1 Differences in the study areas

Regarding both study areas, it is clear that the deforestation detection was more
accurately achieved in the Bahia study area, according to its higher F1-Scores. By
further inspecting the groups defined in Table 4.3, one can notice that group a is
composed of 6 maps for Bahia and only 2 maps for Mato Grosso, representing the
higher F1-Scores. On the other hand, group b contains 6 maps for the Mato Grosso
study area and only 3 from Bahia, corresponding to lower F1-Scores. This may be
explained by the location of the study area as well as the deforestation patterns
present in this specific region.

According to Sano et al. (2019), the ecoregions were defined taking into account
the geomorphology, vegetation, soil, geology, and flora features, which present con-
siderable differences among ecoregions. Analyzing their location, the study area in
Bahia is far from the biome’s border and is within one ecoregion. Moreover, the
Mato Grosso study area is located in the transition zone between the Cerrado and
Amazonia biomes, which contain parts of three different ecoregions (Figures 3.1 and
3.2). Therefore, the Mato Grosso study area is more complex because it presents
heterogeneous vegetation patterns, which hinder the deforestation detection task.
This agrees with other works, which have been reported that discrimination be-
tween natural vegetation and other LULC targets in the Cerrado biome is difficult
due to the heterogeneous vegetation structure and canopy (REYNOLDS et al., 2016;
ALENCAR et al., 2020).

Other important information is that in the Bahia study area, in 2019, there were
fewer deforestation polygons of larger size while the Mato Grosso study area had
more polygons, but smaller and with amorphous shapes (Table 3.1). The smaller
polygons in Mato Grosso led to the inclusion of many mislabeled deforestation se-
ries as LSTM training samples, and as it is shown in Jiang et al. (2017) and in Li
et al. (2021), compromised reference data severely degenerate the performance of
DL models. This mislabeling occurred because PRODES has small uncertainties in
register and polygons borders (MAURANO et al., 2019b; PARENTE et al., 2021), and
with smaller areas the chance of selecting series at polygons borders are high, max-
imizing the influence of these uncertainties. Furthermore, Maurano et al. (2019b)
reported the relationship between deforestation patterns and their mapping accu-
racy. According to the authors, more complex deforestation polygons present higher
uncertainties, therefore the Mato Grosso study area could have deforestation refer-
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ence less accurate than Bahia.

5.2 Deforestation patterns and time series data

In Figure 3.10, one can observe that there is a clear difference in the natural veg-
etation and the deforestation samples. The natural vegetation NDVI, for example,
starts to rise in November 2018 during the wet season. It reaches a plateau in Jan-
uary 2019 and slowly starts to decrease in June 2019 during the dry season. On the
other hand, the deforestation NDVI profile follows a similar pattern as the natural
vegetation in the beginning, but shortly thereafter it got an abrupt fall in April 2019.
This implies that in this abrupt change there was a natural vegetation suppression.
This pattern is accessible through time series, which describe changes over time.

In this work, two types of image time series were used: (1) Image time series from
Landsat-8/OLI, with 30m spatial resolution and temporal resolution of 16 days
(NASA, 2013), and (2) Image time series from Sentinel-2/MSI, with up to 10m spatial
resolution and temporal resolution of 5 days (ESA, 2021b). The results achieved
showed the superiority of Sentinel-2/MSI over Landsat-8/MSI data when comparing
the deforestation detections in Figures 4.2 and 4.3.

Alencar et al. (2020) stated that Landsat data have limitations if used to discriminate
grasslands, savannas, and forests when the natural vegetation appears as a mosaic
of these three vegetation types. Lima et al. (2019) also pointed out better maps
created using Sentinel-2 than using Landsat-8 in their study about selective logging
in the Amazon. Furthermore, Alencar et al. (2020) and Bueno et al. (2019) indicated
that Sentinel-2 data could be used instead to achieve better results in the Cerrado
classification. These studies imply that time series with better spatial and temporal
resolutions result in better maps, therefore agreeing with our results.

Müller et al. (2015) used Landsat time series to identify cropland, pasture, and natu-
ral savanna in Cerrado and they stated that the high accuracy classification was only
achieved due to the combination of spectral and temporal information. Vegetation
studies have reported that dense time series were helpful to understand variations
in phenology (SCHWIEDER et al., 2016; MÜLLER et al., 2015). One explanation for
these results, and possibly for the results of this work too, is that more dense time
series provide better representation of vegetation cycles or breaks in them, since
information is more detailed and data scarcity due to clouds or cloud shadows is
improved.
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It is important to stress that the image time series provided by the BDC project
facilitated the development of this work (FERREIRA et al., 2020b). ARD image time
series could be immediately acquired, without waiting for the atmospheric correction
algorithm to be processed. The images acquisition through their BDC grid cells also
presented advantages, considering that the study areas would occupy multiple scenes
in the standard Landsat and Sentinel grids, but occupied only one or two grid cells
in BDC.

5.3 Training samples variation in location and time

Training data selection is a challenge in RS applications based on DL techniques
(SHI et al., 2020). Three different approaches were evaluated for the training samples
selection in this work: (1) samples in the same area and year as the data to be
processed (Approach 1), (2) samples in the same year but in an adjacent region
(Approach 2), and (3) samples in the same area but in a previous year (Approach
3).

In the Mato Grosso study area, Approach 2 presented the worst results, with its
F1-Scores belonging only to group b in Table 4.3. This information contrasts with
Approach 2 for the Bahia study area, in which the F1-Scores belong to group a. In the
case of Approach 2, the portions where the training samples and the deforestation
map were created belong to different ecoregions in Mato Grosso (Figure 3.2), hinting
that their vegetation and deforestation patterns may be different. This difference
in patterns would decrease the samples quality, hence the poorer results found,
because the quality of reference samples is crucial to obtain accurate results (JIANG

et al., 2017; LI et al., 2021; RENDÓN et al., 2020). It can be recommended that the
representability of the training data in relation with mapped data should be verified,
before using data from different areas or time periods to train a DL model.

Approach 3 did not perform consistently better or worse than Approach 1. In this
case, since the training samples were selected in the same area, but using data for
the prior year, interannual spectral differences between PRODES years 2018 and
2019 could compromise the results (OLIVEIRA et al., 2010). An strategy to minimize
this influence is to use more than just the prior year, what would also considerably
increase the number of training samples available. In this case more training samples
could improve the results even further, in Adarme et al. (2020), as the quantity of
training data increased, better results were achieved.
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5.4 Comparisons with other methodologies for deforestation detection

Adarme et al. (2020) compared 3 different DL methods (Early Fusion, Siamese
Network, and Convolutional Support Vector Machine), to detect deforestation in a
region of Cerrado in the Maranhão State, using two Landsat images from 3 Septem-
ber 2017 and 22 September 2018. Their methodology is less complex than the one
proposed in this work and therefore more easily replicated for the entire biome,
however, the results obtained by the combination of LSTM and U-net proposed
achieved higher accuracies than theirs, which were 98.0% and 0.770, respectively for
the Overall Accuracy and F1-Score. The best values obtained in this work for the
Overall Accuracy and F1-Score were 99.81% ± 0.21 and 0.880 ± 0.118, respectively.
Their training strategy is similar to Approach 1 proposed in this work.

Maretto (2020) used images from two dates to detect deforested areas in the Cerrado,
one at the beginning and one at the end of the PRODES year. These two images were
employed together in a U-Net with late spatio-temporal fusion, combining the images
to detect deforestation. Although their tests were also made for western Bahia, their
classes followed different definitions, the “Past Deforestation” was grouped with
“Deforestation”. As in Adarme et al. (2020), this methodology is easier to scale for
large areas, but the accuracy is not as high as the results found for the proposed
methodology combining LSTM and U-Net.

Taquary (2019) also used a combination of LSTM and U-Net to detect deforestation
in Cerrado, achieving an F1-Score of 0.9035, similar to ours. In their work, an image
time series with 13 entries for a portion of the Goiás State was used, where each
image was a monthly mosaic made with Planet images, with a spatial resolution
of 3m. In spite of their higher spatial resolution, they used only 4 spectral bands
(red, green, blue, and near infrared). Although their F1-Score was high, the use of
paid images would not be viable for monitoring the entire biome, also high quality
reference data had to be acquired in order to create the training samples.

Parente et al. (2021) performed an assessment of the PRODES Cerrado quality
metrics and reported an Overall Accuracy of 93.17% ± 0.89 for the year 2018. As
mentioned before, deforestation polygons are identified by analysis through visual
interpretation in the PRODES project. Mapping the Cerrado is complex, because of
its complexity and variations in vegetation and deforestation, covering a continental
area, what highlights the high quality obtained by PRODES in its products. Similar
results were obtained in this work, also using freely available images.
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Comparing with PRODES, the proposed method needs a larger amount of data,
which are also pre-processed by more intensive algorithms. The data preparation
and deforestation identification tasks require high performance computing never-
theless it is almost totally automatic and does not need interference from many
specialists. Currently, subjective work is only needed in the training samples selec-
tion and optimization of training parameters.

Considering the deforestation maps produced by the proposed methodology using
Approach 1 and Sentinel-2/MSI image time series, Figure 5.1 shows its agreement
with PRODES Cerrado deforestation data.

Figure 5.1 - Agreement comparison between PRODES Cerrado data for 2019 and the de-
tection maps obtained by the proposed method using Sentinel-2/MSI and
Approach 1.
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One can observe that PRODES and the maps produced using the proposed method-
ology present high agreement between the deforestation occurrence and the remain-
ing natural vegetation. There was only one considerable misclassification in the Mato
Grosso study area, due to the subtle change in pattern presented in this deforesta-
tion. To better understand the reasons for this disagreement, Figure 5.2 shows the
LSTM deforestation probability for this polygon.

Figure 5.2 - LSTM deforestation probability for the deforestation polygon in the Mato
Grosso study area that disagreed with PRODES.

13
°5
6′S

13°56′S

13
°5
7′S

13°57′S

53°41′W

53°41′W

53°40′W

53°40′W

53°39′W

53°39′W

13
°5
6′S

13°56′S

13
°5
7′S

13°57′S

53°41′W

53°41′W

53°40′W

53°40′W

53°39′W

53°39′W

13
°5
6′S

13°56′S

13
°5
7′S

13°57′S

53°41′W

53°41′W

53°40′W

53°40′W

53°39′W

53°39′W

13
°5
6′S

13°56′S

13
°5
6′S

13°56′S

53°41′W

53°41′W

53°41′W

53°41′W

53°41′W

53°41′W

13
°5
6′S

13°56′S

13
°5
6′S

13°56′S

53°40′W

53°40′W

53°40′W

53°40′W

53°40′W

53°40′W

2018 2019

PRODES	Deforestation
PRODES	Past	Deforestation
PRODES	Deforestation
PRODES	Past	Deforestation

Deforestation	Probability

aN b c

d e

S

EW

Coordinates:	Geographic
Datum:	WGS84
Imagery:	ESA,	Google	Satellite
Deforestation	Polygon:	PRODES

0

1

Deforestation
Probability

(a) and (b): RGB (Band 11, Band 8, Band 4) Sentinel-2/MSI images for 3 July 2018
and 3 July 2019, respectively, overlaid by a PRODES deforestation polygon for the Mato
Grosso study area in 2019. (c) is the LSTM deforestation probability map overlaid by the
PRODES deforestation polygon and PRODES past deforestation. (d) and (e) are Google
Maps images of natural vegetation that existed before deforestation in 2019, the first is a
Grassland Formation and the second is a Savanna Formation. It can be noticed that the
LSTM deforestation probability is more accurate for the Savanna Formation.
SOURCE: Author’s production.

Figures 5.2a and 5.2b evidence that the PRODES deforestation detection was cor-
rect, but in Figure 5.2c only some patches of this polygon had accurate high defor-
estation probabilities. Comparing the deforestation probabilities with the natural
vegetation showed in Figure 5.2a, one can notice that where the natural vegetation
was greener, the deforestation probabilities were high, while in the magenta areas

62



the probabilities were low. By further inspection, it can be verified that the ma-
genta region belongs to Grassland Formations, while the green regions belong to
Savanna Formations, as its shown in Figures 5.2d and 5.2e. Therefore, the LSTM
model may have less accurate results for deforestation in Grassland Formations for
Mato Grosso, hence the disagreement with PRODES. Other RS works also reported
difficulties regarding Grassland Formations in mapping procedures (MÜLLER et al.,
2015; SANO et al., 2010).

For the Bahia study area and Landsat data, around 1 hour was needed to train
the LSTM model, create the deforestation probability map, train the U-Net, and
generate the final deforestation map, using a Tesla V100-SXM2-16GB GPU. Con-
sidering that the “main” study area in Bahia has 17, 949.225km2, one can estimate
that around 111 hours would be needed to map the entire Cerrado. This estimation
considers that the Cerrado would be divided into smaller areas the same size as the
“main” study area in Bahia, with one LSTM and U-Net model for each. In case less
models were created, i.e. subdividing the biome in larger areas like its ecoregions,
the estimated time could be even shorter.
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6 CONCLUSIONS

In this work, we proposed a methodology to detect deforestation in the Cerrado
biome using Landsat and Sentinel time series through a combination of two DL
architectures: LSTM and U-Net. The method uses PRODES deforestation polygons
as a reference and image time series generated from Landsat and Sentinel-2 images to
train the LSTM model. The probability map resulting from the LSTM is combined
with PRODES and SRTM slope data to train the U-Net model, which is used to
produce the final deforestation map.

The proposed method showed great potential to be applied to medium spatial res-
olution images such as Landsat-8 and Sentinel-2 to detect deforestation in Cerrado
with a high overall accuracy of 99.81%±0.21. The combination of LSTM and U-Net
was able to rapidly process image time series for large areas in Cerrado. In addition,
the comparison of our deforestation map with PRODES 2019 showed high agree-
ment between them. Hence, these facts reveal the potential of our method to be
applied to the entire Cerrado biome and then to automate the PRODES deforesta-
tion detection process that is currently performed by visual interpretation.

We also observed that past deforestation maps were used with success to train the
algorithm. As PRODES Cerrado provides deforestation data from 2000 onward,
more training samples can be selected, taking advantage of the long-term earth
observation programs. For future work, we propose to divide the Cerrado biome
into ecoregions (SANO et al., 2019) and apply our method for each one of these
ecoregions separately in order to successfully detect the deforestation of the entire
Cerrado biome using Sentinel-2 imagery.
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