
sid.inpe.br/mtc-m21d/2021/07.21.11.14-TDI

AN APPROACH TO SUPPORTING AGILE TEAMS IN
SOFTWARE ANALYTICS ACTIVITIES

Joelma Choma

Doctorate Thesis of the Graduate
Course in Applied Computing,
guided by Drs. Eduardo Martins
Guerra, and Tiago Silva da Silva,
approved in June 02, 2021.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34T/4559H5P>

INPE
São José dos Campos

2021

http://urlib.net/xx/yy

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Coordenação de Ensino, Pesquisa e Extensão (COEPE)
Divisão de Biblioteca (DIBIB)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Coordenação-Geral de Ciências da Terra
(CGCT)
Members:
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação (CPG)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia, Tecnologia e
Ciência Espaciais (CGCE)
Dr. Rafael Duarte Coelho dos Santos - Coordenação-Geral de Infraestrutura e
Pesquisas Aplicadas (CGIP)
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Divisão de Biblioteca (DIBIB)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)
ELECTRONIC EDITING:
Ivone Martins - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)

pubtc@sid.inpe.br

sid.inpe.br/mtc-m21d/2021/07.21.11.14-TDI

AN APPROACH TO SUPPORTING AGILE TEAMS IN
SOFTWARE ANALYTICS ACTIVITIES

Joelma Choma

Doctorate Thesis of the Graduate
Course in Applied Computing,
guided by Drs. Eduardo Martins
Guerra, and Tiago Silva da Silva,
approved in June 02, 2021.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34T/4559H5P>

INPE
São José dos Campos

2021

http://urlib.net/xx/yy

Cataloging in Publication Data

Choma, Joelma.
C454a An approach to supporting agile teams in software analytics

activities / Joelma Choma. – São José dos Campos : INPE, 2021.
xxii + 178 p. ; (sid.inpe.br/mtc-m21d/2021/07.21.11.14-TDI)

Thesis (Doctorate in Applied Computing) – Instituto Nacional
de Pesquisas Espaciais, São José dos Campos, 2021.

Guiding : Drs. Eduardo Martins Guerra, and Tiago Silva da
Silva.

1. Software analytics. 2. Agile software development. 3. Agile
teams. 4. Software quality. 5. Software process improvement.
I.Title.

CDU 004.4’413

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

DEFESA FINAL DE TESE DE JOELMA CHOMA
BANCA Nº 169/2021

No dia 02 de junho de 2021, as 13h, por teleconferência, o(a) aluno(a)
mencionado(a) acima defendeu seu trabalho final (apresentação oral seguida de
arguição) perante uma Banca Examinadora, cujos membros estão listados abaixo.
O(A) aluno(a) foi APROVADO(A) pela Banca Examinadora, por unanimidade, em
cumprimento ao requisito exigido para obtenção do Título de Doutora em
Computação Aplicada. O trabalho precisa da incorporação das correções sugeridas
pela Banca Examinadora e revisão final pelo(s) orientador(es).

Título: “An approach to supporting agile teams in software analytics
activities ”

Eu, Reinaldo Roberto Rosa, como Presidente da Banca Examinadora, assino esta ATA
em nome de todos os membros, com o consentimento dos mesmos.

Dr. Reinaldo Roberto Rosa - Presidente - INPE
Dr. Eduardo Martins Guerra - Orientador - INPE
Dr. Tiago Silva da Silva - Orientador - UNIFESP
Dr. Pedro Ribeiro de Andrade - Membro Interno – INPE
Dr. Alan James Peixoto Calheiros - Membro Interno – INPE
Dr. Uirá Kulesza - Membro Externo – UFRN
Dr. Alfredo Goldman vel Lejbman - Membro Externo - USP

Documento assinado eletronicamente por Reinaldo Roberto Rosa,
Pesquisador Titular, em 10/06/2021, às 16:57 (horário oficial de Brasília),
com fundamento no art. 6º do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site
http://sei.mctic.gov.br/verifica.html, informando o código verificador
7517537 e o código CRC 3AC94F78.

Referência: Processo nº 01340.003623/2021-89 SEI nº 7517537

Ata de Reunião INPE_SEPGR 7517537 SEI 01340.003623/2021-89 / pg. 1

“I never am really satisfied that I understand anything; because,
understand it well as I may, my comprehension can only be an
infinitesimal fraction of all I want to understand about the many
connections and relations which occur to me, how the matter in

question was first thought of or arrived at.”

Ada Lovelace

v

To my beloved Hélio,
my beautiful Family,
and my dear Friends!

vii

ACKNOWLEDGEMENTS

I thank God for all the blessings in my life, for always guiding and illuminating my
way. I also thank my guardian angels for all their protection and inspiration.

To my parents Alexandre and Expedita (in memoriam) for their unconditional and
eternal love. To my beloved husband Hélio for all his love, care, and encouragement
during my journey, for being at my side at all times. To my sister and my nephews
who have always supported me during this endeavor. I also thank my brother and
other members of my family for understanding my absence during these years.

I am deeply grateful to Prof. Eduardo Guerra and Prof. Tiago Silva for trusting in
my work, for guidance, for stimulus, and for the good mood always. Thanks for the
opportunity to work together, it has been a lot of fun.

My eternal gratitude to my dear professor Luciana Zaina, who was directly re-
sponsible for encouraging my doctorate and my career as a researcher, having the
unforgettable initiative of taking me by the hand to speak with the right people.

To professors and professionals at the National Institute for Space Research (INPE)
for their contributions during the conduct of this doctoral. In particular, I would like
to thank Prof. Reinaldo Rosa (CAP), Prof. Nandamudi Vijaykumar (CAP), Prof.
Alan Calheiros (CAP), Pedro Andrade (CCST), Marcelo BaniK (CEA), Leandro
Guarino (CPTEC), and Luiz Eduardo Guarino (CPTEC). Also, to professor Alfredo
Goldman at USP for his contributions and suggestions during my doctoral proposal.

To the Applied Computing Laboratory of the INPE, to the User Experience and
Usability Laboratory of the Federal University of São Paulo (UNIFESP), and to all
the people who participated in the evaluation studies and workshops. My special
thanks to Kelson Silva, Vanessa Albuquerque, Vinícius Paschoal, Danilo Alves, Igor
Kolesnikov, Allan Silva, Phyllipe Lima, Eduardo Pereira, and Marco Nardes.

To PLoP shepherds and writers workshops participants for all feedback and sugges-
tions to improve my work. Special thanks to Filipe Correia, Rebecca Wirfs-Brock,
Joseph Yoder, Lise Hvatum, Ademar Aguiar, Andreas Seitz, and Hernan Astudillo.

To Coordination for the Improvement of Higher Education Personnel (CAPES) for
financial support.

ix

ABSTRACT

Software analytics is a data-driven approach to decision making, which allows soft-
ware practitioners to leverage valuable insights from software data in order to achieve
a higher development process productivity and improve several aspects of the soft-
ware quality. Although widely adopted by large companies, software analytics has
not yet reached its full potential for broad adoption. For small teams, such as the
ones present on INPE, software analytics is an open question and rarely addressed.
In an agile software development context, small teams do not usually use software
data to inform their decisions. Often, they make decisions based on feelings and
intuitions, which can lead to wasted resources and increase the cost of building and
maintaining the software. Unlike most software analytics studies that focus more on
analytical tools and techniques, this thesis focuses on how agile teams can add soft-
ware analytics activities systematically and continuously along with development
tasks. As contributions, this research work includes (i) a software analytics pattern
language to encourage software practitioners to incorporate data-based approaches
to make better decisions in their projects; and (ii) a software analytics canvas mod-
eled from the pattern language as an artifact to support agile teams during the
planning and implementation of software analytics activities. An empirical study
based on real issues from the EMBRACE project was undertaken to (i) evaluate
the proposed canvas under the lens of cognitive activities, using resource model and
sequential analysis; and (ii) gather enhancements suggestions using participatory de-
sign. From the study results, the canvas was refined and a new version was presented
to software practitioners from INPE and other companies.

Keywords: Software Analytics. Agile Software Development. Agile Teams. Software
Quality. Software Process Improvement. Software Measurement.

xi

UMA ABORDAGEM DE APOIO ÀS EQUIPES DE
DESENVOLVIMENTO ÁGIL EM ATIVIDADES DE ANÁLISE DE

SOFTWARE

RESUMO

Software analytics é uma abordagem orientada a dados para a tomada de decisão
que permite que os profissionais de software aproveitem insights valiosos de dados de
software a fim de atingir uma maior produtividade no processo de desenvolvimento
e melhorar vários aspectos da qualidade do software. Embora amplamente adotada
por grandes empresas, o software analytics ainda não atingiu todo o seu potencial
para ampla adoção. Para equipes pequenas, como as presentes no INPE, o software
analytics é uma questão aberta e raramente abordada. Em um contexto de desenvol-
vimento ágil de software, pequenas equipes geralmente não usam dados de software
para informar suas decisões. Freqüentemente, eles tomam decisões com base em sen-
timentos e intuições, o que pode levar ao desperdício de recursos e aumentar o custo
de construção e manutenção do software. Ao contrário da maioria dos estudos de
software analytics que se concentram mais em ferramentas e técnicas analíticas, esta
tese se concentra em como as equipes ágeis podem adicionar atividades de software
analytics de forma sistemática e contínua junto com as tarefas de desenvolvimento.
Como contribuições, este trabalho de pesquisa inclui (i) uma linguagem de padrão de
software analytics para encorajar os profissionais a incorporar abordagens baseadas
em dados para tomar melhores decisões em seus projetos; e (ii) o software analy-
tics canvas modelado a partir da linguagem padrão como um artefato para apoiar
equipes ágeis durante o planejamento e implementação de atividades de software
analytics. Um estudo empírico baseado em questões reais do projeto EMBRACE
foi realizado para (i) avaliar o canvas proposto sob a lente de atividades cognitivas,
usando modelo de recursos e análise sequencial; e (ii) reunir sugestões de melhorias
usando design participativo. A partir dos resultados do estudo, o canvas foi refinado
e uma nova versão foi apresentada aos profissionais de software do INPE e de outras
empresas.

Palavras-chave: Analytics de Software. Desenvolvimento de Software Ágil. Equipes
Ágeis. Qualidade de Software. Melhoria de Processo de Software. Medição de
Software.

xiii

LIST OF FIGURES

Page

1.1 Information and insights from software analytics. 2

2.1 Results of study search, selection, and screening process for primary studies. 16
2.2 Year-wise distribution of studies. 18
2.3 Year-wise distribution of studies and research type. 20
2.4 Mapping of primary studies by type of contribution and research domain

over time. 22
2.5 Coauthorship-network. 23

3.1 DSR framework. 44
3.2 Research design. 51

4.1 Overview of the patterns and their relationships. 59

5.1 SA Canvas [version 1.0]. 88
5.2 SA Canvas [fictitious example]. 92

6.1 Observational study meetings over time. 97
6.2 Participatory design session. 100
6.3 Number of actions grouped by interaction strategy. 104
6.4 Plan construction strategy. 105
6.5 Plan following strategy. 105
6.6 Goal matching strategy. 106
6.7 History-based choice strategy. 106
6.8 Interaction strategy diagram. 108
6.9 Significant relationships between iterations strategies. 109
6.10 Perceived usefulness and ease-of-use. 110

7.1 Final sketch produced during the participatory design session. 114
7.2 SA Canvas [version 2.0]. 115
7.3 SA Canvas filled out by the workshop participants. 117
7.4 Participants’ perception of canvas usage. 119
7.5 Understanding of canvas components. 119
7.6 Participants’ perception of canvas usability. 120
7.7 SA Canvas organized in Trello. 122

C.1 Consent form. 166

xv

E.1 First iteration - Group 1. 168
E.2 Second iteration - Group 1. 169
E.3 Third iteration - Group 1. 170
E.4 First iteration - Group 2. 171
E.5 Second iteration - Group 2. 172
E.6 Third iteration - Group 2. 173
E.7 First iteration - Group 3. 174
E.8 Second iteration - Group 3. 175
E.9 Third iteration - Group 3. 176

xvi

LIST OF TABLES

Page

2.1 Questions addressed to mapping study. 10
2.2 Search string. 11
2.3 Inclusion and exclusion criteria. 12
2.4 Rigor aspects. 12
2.5 Relevance aspects. 13
2.6 Data extraction form. 14
2.7 Number of primary studies per database. 15
2.8 Results of forward snowballing performed in key studies. 16
2.9 Quality evaluation of the rigor aspects. 17
2.10 Quality evaluation of the relevance aspects. 17
2.11 Publication venues. 19
2.12 Studies per types of research approach. 21
2.13 Typical issues addressed to software analytics per contribution type. . . 24

6.1 Participants characterization. 95
6.2 Time spent in meetings. 99
6.3 Number of events per iteration. 102
6.4 List of emergent actions. 103

7.1 Group performance using SA Canvas. 118

A.1 List of selected studies. 157

D.1 Recommendations for use of SA Canvas. 167

xvii

CONTENTS

Page

1 INTRODUCTION . 1
1.1 Background . 1
1.2 Problem description . 3
1.3 Research questions and objectives . 5
1.4 Theme relevance and contributions . 6
1.5 Chapters overview . 7

2 LITERATURE REVIEW ON SOFTWARE ANALYTICS 9
2.1 Research method . 9
2.1.1 Research question . 9
2.1.2 Search strategy and data sources . 10
2.1.3 Selection criteria and screening . 11
2.1.4 Quality assessment . 11
2.1.5 Data extraction and classification scheme 13
2.1.6 Data analysis . 15
2.2 Mapping results . 15
2.2.1 Primary studies collection . 15
2.2.2 Quality evaluation of the primary studies 16
2.2.3 Frequency and publication venues (MQ1) 18
2.2.4 Research type (MQ2) . 19
2.2.5 Research focus over time (MQ3) . 20
2.2.6 Co-authorship network (MQ4) . 21
2.2.7 Typical issues addressed to software analytics (MQ5) 22
2.2.7.1 Data analytics - techniques, methods and tools 24
2.2.7.2 Predictive modeling . 28
2.2.7.3 Data mining - method and tools . 30
2.2.7.4 Monitoring - measure, metrics, and indicator 33
2.2.7.5 Software analytics issues and concepts 35
2.2.7.6 Visual software analytics . 36
2.2.7.7 Software analytics platform . 38
2.2.7.8 Software analytics projects implementation 39
2.3 Findings . 40

xix

2.4 Threats to validity . 41
2.5 Chapter summary . 42

3 RESEARCH METHODOLOGY 43
3.1 Research framework . 43
3.2 Research methods . 45
3.2.1 Data gathering . 45
3.2.2 Data analysis . 47
3.2.2.1 Distributed cognition . 47
3.2.2.2 Resources model . 48
3.2.2.3 Sequential analysis . 50
3.3 Research design . 51
3.4 Chapter summary . 52

4 A PATTERN LANGUAGE FOR SOFTWARE ANALYTICS . . 53
4.1 Patterns and pattern languages . 53
4.2 Patterns in software analytics area . 55
4.3 Pattern language summary . 56
4.4 Patterns description . 60
4.4.1 What you need to know . 60
4.4.2 Choose the means . 62
4.4.3 Plan analytics implementation . 65
4.4.4 Small steps for analytics . 68
4.4.5 Reachable goals . 70
4.4.6 Learning from experiments . 72
4.4.7 Define quality standards . 76
4.4.8 Suspend measurement . 78
4.5 Chapter summary . 82

5 SOFTWARE ANALYTICS CANVAS 83
5.1 Background . 83
5.2 Information flow and the role of artifacts in agile environments 84
5.3 Measurement in agile context . 86
5.4 Canvas model . 87
5.5 Software analytics canvas - 1st version 88
5.5.1 Software analytics canvas template . 88
5.5.2 Software analytics canvas elements . 89
5.5.3 SA Canvas: a fictitious example . 91

xx

5.6 Chapter summary . 93

6 SOFTWARE ANALYTICS CANVAS EVALUATION 94
6.1 Study design . 94
6.1.1 Research questions . 94
6.1.2 Participants . 95
6.1.3 Study planning and execution . 96
6.1.3.1 Observational study . 96
6.1.3.2 Participants perception questionnaire 99
6.1.3.3 Participatory design . 99
6.2 Method of analysis . 100
6.3 Results . 101
6.3.1 Cognitive activities analysis . 102
6.3.2 Usefulness and ease-of-use evaluation 110
6.4 Limitations and threats to validity . 111
6.5 Chapter summary . 112

7 SOFTWARE ANALYTICS CANVAS REDESIGN 113
7.1 Participatory design findings . 113
7.2 SA Canvas upgrade . 114
7.3 Second round of evaluation . 117
7.3.1 Workshops on SA Canvas . 117
7.3.2 Application at the CPTEC . 121
7.4 Chapter summary . 123

8 CONCLUDING REMARKS AND FUTURE WORK 124
8.1 Summary of the findings . 124
8.2 Contributions . 126
8.3 Future work . 127

REFERENCES . 129

APPENDIX A - LIST OF PAPERS OF THE SYSTEMATIC
MAPPING STUDY . 157

APPENDIX B - TYPICAL ISSUES ADDRESSED TO SOFT-
WARE ANALYTICS . 163

APPENDIX C - CONSENT FORM 166

xxi

APPENDIX D - CANVAS TUTORIAL 167

APPENDIX E - TIMELINES . 168

APPENDIX F - SUGGESTIONS FOR CANVAS DESIGN EN-
HANCEMENT . 177

xxii

1 INTRODUCTION

1.1 Background

Companies have increasingly invested in data analytics solutions to leverage accurate
and in-depth information about their business to make better decisions. Analytics
refers to the extensive use of data, analysis, and systematic reasoning to drive de-
cisions and actions (MAALEJ et al., 2016b). Analytics tools and methods encompass
statistical and quantitative analysis, explanatory and predictive models and fact-
based management (DAVENPORT; HARRIS, 2007).

Data-driven approaches are adopted mainly as a driver for competitive advantage
in several organizational contexts (LISMONT et al., 2017). In the Marketing area,
professionals have long used analytics to reach and better understand customers
in different consumer markets (DAVENPORT, 2009). Another well-known example
is the Web analytics used for site optimization, customer retention, and increase
conversion rates. Nowadays, there are various tools available to assist in monitoring
Web traffic and analyzing data on user behavior (CHAFFEY; PATRON, 2012).

More recently, data analytics have been encouraged as supporting decision making
within the context of software development to improve the development processes,
as well as the quality of software systems. In 2010, researchers and professionals
in the software industry already envisioned the use of software analytics bearing
in mind the challenges of deploying this approach in such a complex environment
– referring both to the complexity of project management and the complexity of
the code itself (BUSE; ZIMMERMANN, 2010). In 2011, Zhang et al. (2011) coined the
term “software analytics” with the purpose to expand the scope of previous work
on analytics for software development (BUSE; ZIMMERMANN, 2010) (HULLETT et al.,
2011) and on software intelligence (HASSAN; XIE, 2010).

Software analytics (SA) is defined as a data-driven approach that encompasses mon-
itoring, analysis, and understanding of software data to support the decision-making
process throughout the different phases of the software lifecycle (ZHANG et al., 2011).
The goal of software analytics is the use of data analysis and systematic reasoning
to leverage insightful information (accurate and in-depth) and actionable (with real
practical value) to assist software practitioners (developers, testers, designers, and
managers, to name a few) in decision making and completing various tasks concern
to systems, users, and development processes. Figure 1.1 summarizes this process.

1

Figure 1.1 - Information and insights from software analytics.

SOURCE: Prepared by the author.

For instance, software practitioners could obtain valuable information and insights
from data sets aiming at achieving higher development process productivity, improve
many aspects of the software quality, or provide a good user experience (MAALEJ et

al., 2016a). SA has a quite broad scope of application within the context of software
development. Development practices, testing methods, bug treatment, team collab-
oration, productivity, components reuse, customer requirements, software mainte-
nance, software evolution, quality evaluation, software usage, and services are typi-
cal issues that can be addressed with SA (STOREY, 2016). To solve such issues, an
SA project can involve analyzing software data retrieved from different sources (e.g.
source code, software requirements specifications, bug reports, commit history, test
cases, log files, and user feedback), and comes in various forms (both structured and
unstructured) (SHULL, 2014).

According to Hassan e Xie (2010), most of these software data are recorded and kept
in three categories of software repositories: (i) historical repositories that record in-
formation about the evolution and progress of a project (e.g., source control repos-
itories, and bug repositories); (ii) runtime repositories that record log data (e.g.,
execution traces and user interaction logs); and (iii) code repositories that contain
the source code versions of various software systems.

2

Several studies have been published in software analytics area in the last decade. Re-
searchers and practitioners have applied software analytics in issues regarding quality
of source code involving bug proneness, number of defects, and amount of effort to
fix bugs (CERULO et al., 2015) (GUO et al., 2016) (SUREKA et al., 2015); development
process including productivity and ROI (RAMARAO et al., 2016) (WANG et al., 2011)
(ROBBES et al., 2013) (RAMARAO et al., 2016); business success regarding usage of fea-
tures, data quality, and user satisfaction (PACHIDI et al., 2014) (GONZÁLEZ-TORRES

et al., 2013b); and software properties such as performance, number of transactions,
and error log (MUSSON et al., 2013) (AALST, 2015).

For some time now large companies – such as Microsoft, Mozilla, and Google –
have been used analytics in software data for better decision making concerning
many aspects of software quality and its development processes (BUSE; ZIMMER-

MANN, 2010). Typically, these companies can afford to keep a dedicated team of
researchers, analysts and data scientists with skills to implement software analytics
projects, working exclusively in the research and development of decision support
tools to meet development teams with particular needs, mainly focused on technical
indicators at the level of source code, versions, and defects (KIM et al., 2016).

When deploying software analytics in their processes, some companies ended up
building their own analytics platforms (on-demand) involving different analytics
technologies, such as e.g., data mining, machine learning, and data visualization
(BAYSAL et al., 2013a). Based on experiences of technology transfer at Microsoft,
Zhang et al. (2011) described four steps to implement a software analytics project:
(i) defining the target-task that will be assisted by SA; (ii) preparation for collec-
tion of data to be analyzed; (iii) design and implementation of analytic technologies
according to problem formulation, which involves enough information on the sys-
tem, in-depth knowledge about the data, and algorithms; and (iv) deployment and
feedback gathering on analytics implementation involving the domain experts.

1.2 Problem description

Most of the studies in the software analytics area have investigated and proposed
methods, techniques and tools for assisting those who make critical decisions in
software projects (ABDELLATIF et al., 2015) (ANWAR; PFAHL, 2017). However, to the
best of our knowledge, there is no consolidated approach to supporting software
practitioners in planning and implementing software analytics activities in their
projects. Despite widely adopted by large companies, software analytics has not yet
reached its full potential for broad industrial adoption.

3

For small software companies, for example, software analytics is an open question
and rarely addressed. Small companies often have fewer resources to include data
measurement programs in their projects. In certain cases, the effort to implement
software analytics is taken into account whether is worthwhile (ROBBES et al., 2013).
Traditionally, small teams do not have professionals with skills to plan and develop
software analytics activities. When configuring measurement tools, software practi-
tioners often collect data beyond what they really need and, sometimes are not able
to take advantage of advanced analytical applications, which include trend analy-
sis, classification algorithms, predictive modeling, statistical modeling, optimization
and simulation, and data mining (SHULL, 2014) (BUSE; ZIMMERMANN, 2010). That
issue is particularly relevant to teams that use agile software development (BECK
et al., 2001) and that rarely succeed in establishing measurement programs due to
the urgency of the product delivery, lack of time or other constraints (LIECHTI et al.,
2017b). Overall, assessment and measurement modes require to be compatible with
Agile values and principles that emphasize “working software is the primary measure
of progress”, over measuring intermediate work products (BECK et al., 2001).

In Agile contexts, the measurement tends to be immediate and straightforward. On
the other hand, another Agile principle claims that “continuous attention to tech-
nical excellence and good design enhances agility”. Technical excellence is about
uncovering better ways of developing software, and process improvement is one of
the main reasons for measurement in Agile software development (HARTMANN; DY-

MOND, 2006). In this sense, software analytics can support agile teams to make
more appropriate changes based on actual data, rather than only on their personal
experiences or intuitions. Additionally, the adoption of data-driven continuous im-
provement can help agile teams to save resources and decrease the cost of building
and maintaining the software (HASSAN; XIE, 2010).

In the context of the National Institute for Space Research (INPE), software analyt-
ics is aligned with the quality management and productivity in software development
in the space research areas, such as meteorology, remote sensing, space weather, im-
age processing, astrophysics, and aerospace engineering. In general, the software
development teams at these research centers are small and most of them typically
adopt agile practices. Talking to some of these teams, we found that software ana-
lytics could be used to address different issues within their development processes.
At INPE, many software projects that support research or research-related projects
often suffer unexpected demands since such projects are guided by results obtained.

4

During our research project, we held meetings with some development teams within
INPE and identified some issues regarding software analytics. We raised these issues
with members from the EMBRACE team at the Space Weather Center, the TerraME
team at the Earth System Science Center, and the CPTEC team at the Weather
Forecast and Climate Studies Center in Cachoeira Paulista.

For the EMBRACE team, software analytics could help them maintain and evolve
legacy software involving web applications and sensor data. Some questions raised by
them were: How much invalid data do we have in our database? Which products are
most accessed or used from our portal? What are the major maintenance troubles?
For the TerraME team, software analytics could be applied to explore the usage
data of API developed for dynamical modeling and geo-spatial data visualization.
In geo-spatial research, Application Programming Interfaces (APIs) are very useful
in the data visualization process. But, these applications are not always easy to use
(PICCIONI et al., 2013), mainly by scientist users who are not experts in software
engineering. A key issue addressed to software analytics could be: What are the
factors that may be influencing the API’s usability? For the CPTEC team, software
analytics could also be used to support them in making decisions about maintaining
and improving their products. Some of the questions initially raised by the team
were: What is the profile of our users? What are the bugs existing in the applications’
features? What content is most accessed by users? Which applications are accessed
and used most often? How much are our applications consuming computational
resources?

1.3 Research questions and objectives

The main objective of this thesis is an approach to supporting agile teams in software
analytics activities. To achieve this goal, we have outlined three research questions:

RQ1) What is the state of the art in the area of software analytics and the
research gaps? What kind of issues are commonly addressed by researchers
and software professionals in this area?

RQ2) What good practices could assist software professionals in conducting soft-
ware analytics projects?

RQ3) How could the planning and management of software analytics activities
be supported in practice?

5

This thesis studied how to support small and medium agile teams during the plan-
ning and implementation of software analytics activities. The steps of this study are
1) know how the research in the area of software analytics is doing and what types
of problems have been commonly addressed in this area; 2) identity which good
practices can be adopted by professionals who wish to conduct software analytics
projects to reduce the cost of uncertainty and change; and finally 3) to propose
and evaluate an approach to support software practitioners from planning and im-
plementing software analytics activities to informed decision making by insightful
and actionable insights. To answer the research questions, the following research
objectives are formulated:

• To investigate studies about software analytics including identifying re-
search gaps and the common issues addressed by researchers and software
practitioners in this area.

• To identify from the existing literature a set of good practices to assist
software practitioners in software analytics projects.

• To design an artifact to support software practitioners throughout the
software analytics process.

• To evaluate the use of the artifact from the perspective of software practi-
tioners.

• To refine the proposed artifact from evaluation findings.

1.4 Theme relevance and contributions

Research in the software analytics area is highly relevant both for academia and
industry. At the intersection between academia and practice, software analytics is
fundamentally an empirical approach that addresses real problems from the soft-
ware industry – e.g., assessing architecture and software design, allocating resources
and estimating effort effectively, comparing technologies, evaluating user experience.
Thus, the potential issues identified in an industrial context involve software data
analysis from actual projects in order to produce insightful results for practice. For
academia, this is an excellent opportunity to employ techniques and methods from a
grounded knowledge base – e.g., data science, data mining, descriptive and statistical
analysis, predictive and prescriptive algorithms.

6

In this context, our research project aims to help and encourage software practi-
tioners to make better data-driven decisions by an approach that leads them to an
informed decision-making process. The main contributions of this proposal include:

• a literature review to identify research gaps in the software analytics area.

• a survey of the state of the practice concerning how the metrics are used by
software practitioners for decision making in agile development contexts.

• a set of patterns to encourage agile practitioners to implement a software
analytics approach in their software projects.

• artifacts (techniques and methods) to support researchers and practitioners
to introduce software analytics in their development process.

Unlike the majority of software analytics studies that focus more on analytical tech-
niques and tools, our research is concerned to investigate how agile teams could add
software analytics activities along with development tasks systematically and con-
tinuously. This research has practical applicability and is closely linked to process
improvement and software quality, focusing on software practitioners working with
agile practices. We recognize that large software companies could offer fewer barriers
to the adoption of software analytics as part of their processes. Also, most of them
have better condition to hire a specialist team of professionals like researchers, an-
alysts, and data scientists to conduct software analytics projects and develop their
analytical tools. However, the foremost challenge is the software analytics culture
adoption for small and medium-sized teams with few resources to invest in new
practices. Given this challenge, our approach has been designed to meet the needs
of small and medium-sized teams by requiring minimal effort to fit software analyt-
ics activities in the teams’ daily work. In this sense, the results of this research are
also relevant for INPE that generally have small teams adopting agile methods. As
raised with some INPE teams, several important issues can be resolved and dealt
by using the developed approach.

1.5 Chapters overview

The chapters of this thesis proposal are arranged based on the research design. The
remainder of this document is organized into the following chapters:

Chapter 2 contains the systematic literature review on the state of art of software
analytics including a mapping of research gaps and issues commonly addressed.

7

Chapter 3 outlines the research methodology, including the research design and the
activities of the study. The research design describes the study’s characteristics in
terms of purpose, methods of collecting, analysis, and the flow of research activities
used to achieve the research objectives.

Chapter 4 presents a set of patterns for lightweight and interactive software analytics
projects, identified from experiences reports selected from the previous literature
review study.

Chapter 5 describes the approach proposed in the canvas format to support agile
teams during planning and implementing software analytics activities.

Chapter 6 covers the first round of evaluation of software analytics canvas which
involves an observational study undertaken in a controlled setting.

Chapter 7 introduces the new version of software analytics canvas and second round
of evaluation from a case study and workshops with software practitioners.

Chapter 8 presents the conclusions of this work and some consideration on the re-
search questions, highlights the contributions and directions for future works stem-
ming from this study.

8

2 LITERATURE REVIEW ON SOFTWARE ANALYTICS

This chapter presents the literature review on the state of the art in the area of
software analytics carried out to discover the existing research gaps and identify the
kind of issues that are commonly addressed by researchers and software professionals
in this area (RQ1). The results of the systematic mapping conducted on the literature
provided us an overview of the area of software analytics including experience reports
that will serve as a basis to delineate and propose the language pattern presented
in Chapter 4.

Section 2.1 outlines the review method adopted. Sections 2.2 presents the results of
the systematic mapping driven to answer the predefined research questions about
the domain under investigation. Section 2.3 highlights the findings and research
gaps based on the systematic mapping results. And, Section 2.4 discusses the study
limitations and threats to validity.

2.1 Research method

To systematically identifying and aggregating the evidence about the software ana-
lytics area, the research method consisted of a systematic mapping. Mapping study
(also referred to as a scoping study) is usually employed in early research stages
to provide an overview of the types of research and results available within certain
interest area (KITCHENHAM; CHARTERS, 2007). The focus of mapping studies is on
classification and thematic analysis since the related questions are concerned about
how the researched area is structured (PETERSEN et al., 2015).

To achieve rigor in our mapping study, we considered the guidelines proposed by
Petersen et al. (2015). Based on their guidelines, we performed the following steps: (i)
definition of research questions; (ii) definition of a search strategy and data sources;
(iii) definition inclusion and exclusion criteria; (iv) definition of quality assessment
criteria; (v) classification scheme and data extraction; and (vi) data analysis and
synthesis of evidence.

2.1.1 Research question

The goal of this literature review is to identify studies about the use of software an-
alytics for decision making in the software development context. After the selection
of the studies, we first map them into the classification scheme to identify research
gaps and current trends in the software analytics field.

9

After that, we analyzed in detail and synthesized the results to identify the main is-
sues commonly addressed in software analytics projects, including methods, metrics,
measurements, and tools commonly used. Table 2.1 presents the questions addressed
to the mapping study (MQs) and the rationals for every question.

Table 2.1 - Questions addressed to mapping study.

Mapping questions Rational
MQ1: How is the frequency of published stud-
ies over the years? Which are the primary pub-
lication venues?

This analysis indicates how software analytics
research is evolving over the years in terms of
the number of papers published and the lead-
ing forums for publication of future studies.

MQ2: Which are the research types of primary
studies and the most frequently applied re-
search methods?

The answer to this question allows the trace-
ability of studies, shows research trends over
time, and can point out the lack of specific
contribution types.

MQ3: What has been the research domain
over the years and types of contributions for
software analytics?

The answer to this question shows research fo-
cus on a specific area over the years and allows
the identification of research gaps within the
software analytics area.

MQ4: Which are the chain of co-authorship
within software analytics research?

This analysis allows the identification of the
co-authorship networks and future opportuni-
ties for partnerships with researchers in the
software analytics area.

MQ5: What the main issues addressed in soft-
ware analytics research?

By categorizing the issues addressed in the
area of software analytics, the research gaps
can also be identified.

SOURCE: Prepared by the author.

2.1.2 Search strategy and data sources

The search string was defined with keywords extracted from five relevant and well-
know articles related to software analytics (MENZIES; ZIMMERMANN, 2013; HASSAN;

XIE, 2010; BUSE; ZIMMERMANN, 2012; ZHANG et al., 2011; BUSE; ZIMMERMANN,
2010). Before defining our search string, some attempts have been made by com-
bining keywords in different ways. However, some options were discarded because
they returned a very limited number of articles. In the final test, in addition to
returning a balanced amount of articles, we verified that the defined string included
in the search result the set of studies chosen as the key articles related to the area
of interest, which ensured the quality of the search.

10

The general search query was formulated as showed in Table 2.2.

Table 2.2 - Search string.

("software analytics" OR "software intelligence") AND ("software
measurement" OR "data-driven decision" OR "decision making"
OR "software metric" OR "mining software repositories" OR "soft-
ware process" OR "software project" OR "software development"
OR "user experience")

SOURCE: Prepared by the author.

As for strategy, the search for primary studies was conducted in two rounds. In
the first round, we performed an automated search on seven databases considered
relevant in the area of software engineering and computer science (KITCHENHAM;

CHARTERS, 2007): IEEE Xplore, ACM Digital Library, Scopus, SpringerLink, Web
of Science, Engineering Village, and Science Direct (Elsevier). We used the defined
search string in every one of those databases for searching in titles, abstracts, and
keywords. Additionally, we set the publication date parameter to retrieve papers
from 2009. The automated search was performed in the period between February
14-18, 2019.

In the second round, we performed a search in Google Scholar using a forward
snowballing approach (WOHLIN, 2014) by searching in the reference list of the five
relevant papers (MENZIES; ZIMMERMANN, 2013; HASSAN; XIE, 2010; BUSE; ZIMMER-

MANN, 2012; ZHANG et al., 2011; BUSE; ZIMMERMANN, 2010). The search string was
also used at this stage to restrict the number of articles and improve retrieval of the
most relevant studies. This search round was performed on February 18, 2019.

2.1.3 Selection criteria and screening

After the removal of the duplicate studies, the studies identified during automated
search and snowballing rounds were evaluated based on the inclusion and exclusion
criteria as showed in Table 2.3.

2.1.4 Quality assessment

To evaluate the quality of the selected studies, we made use of rigor and relevance
scores suggested by Ivarsson e Gorschek (2011).

11

Table 2.3 - Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

I1: Studies related to the use of software an-
alytics in decision making in the area of SE,
including practices, methods, or tools.

E1: Technical report, masters, and Ph.D. the-
sis, and book chapters.

I2: Peer-reviewed research studies published in
journals and conference proceedings.

E2: Expanded summaries or summarized
keynotes.

I3: Experience report involving issues ad-
dressed to software analytics.

E3: Tutorial and panels presented in confer-
ences

I4: The full-text of the paper is available. E4: Studies not presented in English.

SOURCE: Prepared by the author.

Rigor consists of assessing how rigorous was the way the study was presented, while
relevance consists in assessing the potential research impact for industry. Rigor is
decomposed into three aspects: description of context, study design, and validity
threats. These aspects are scored with three score levels: weak (0), medium (0.5),
and strong (1). The scoring of each rigor aspect is described in Table 2.4. Relevance
is decomposed into four aspects: subjects, context type, scale, and research method.
The scoring discerns aspects that contribute to relevance (1) from aspects that do
not contribute to relevance (0). Table 2.5 present the description of each relevance
aspect.

Table 2.4 - Rigor aspects.

Item Rigor Aspect Score Description
QA1 Context Description 1 The context is described in detail allowing its under-

standing and comparison.
0.5 The study context is briefly mentioned.
0 No description of the context is presented.

QA2 Study Design 1 The study design is described in detail.
0.5 The study design is briefly described.
0 No description of the study design is presented.

QA3 Threats to Validity 1 The threats to validity is discussed in detail.
0.5 The validity of the study is mentioned but not described

in detail.
0 Any threats to validity is discussed.

SOURCE: Prepared by the author.

12

Table 2.5 - Relevance aspects.

Item Relevance Aspect Score Description
QA4 Subjects 1 Industry professional

0 Students, researchers, subject no mentioned

QA5 Context Type 1 Industrial setting
0 Laboratory, context no mentioned

QA6 Scale 1 Realistic size: industrial scale
0 Down-scaled industrial or toy example

QA7 Research Method 1 Action research, lessons learned, case study, field study,
interview, survey

0 Conceptual or mathematical analysis, laboratory experi-
ments, other, N/A.

SOURCE: Prepared by the author.

2.1.5 Data extraction and classification scheme

The selected studies were managed using Mendeley 1 – a reference management tool
– to support the data extraction process. A spreadsheet was used for data collection.
Table 2.6 present the form with the data items extracted after full reading the
articles. This form items was previously elaborated based on research questions. In
our classification scheme, the research method classification is based on the work
of Runeson et al. (2012). To classify the type of research, we have used existing
classifications suggested by Wieringa et al. (2006) and Petersen et al. (2015).

Below, we provide a short description of the six types of research considered in this
study:

• Evaluation: the study refers to implementation in practice including an
evaluation of the techniques, methods or tools related with SA. Examples
of evaluation studies include action research, ethnography surveys, case
studies, field studies, and a controlled experiment with practitioners.

• Solution Proposal: a novel technique to SA (or significant improvement
of an existing technique) is proposed, and its relevance is demonstrated
by an application in practice, or at least a proof-of-concept may be pre-
sented. However, we also include in this category the solutions proposals in
an initial phase of research which have not yet been evaluated or validated.

1Source: https://www.mendeley.com

13

• Validation: the study mentions a proposed solution in the SA area, and
presents an evaluation of this approach by research methods, such as by
experiments, simulation, or prototyping.

• Experience Report: it refers to an author’s personal experience. The expe-
rience reports explain how techniques, methods, and/or tools of SA have
been applied in practice, and also presents a list of lessons learned.

• Opinion: refers to the author’s opinion about issues regarding SA field;
regardless of the research methodologies or related work.

• Philosophical: these studies outline a new way of looking at existing things,
by an idealization of a new conceptual framework in the field of SA.

Table 2.6 - Data extraction form.

Data item Data Description MQ
1 ID Paper ID Overview
2 Database Data source from which the study was selected Overview
3 Title Title of the paper
4 Year The year of publication Overview
5 Keywords List of keywords Overview
6 Summary The summary of study including aim, method, results,

and conclusions
Overview

7 Venue The name of the venue where the study was published Overview
8 Publication type Journal, conferences, workshops MQ1
9 Research Type Evaluation, validation, solution proposal, personal opin-

ion, philosophical, experience report
MQ2

10 Research Method Single case study, multiple case study, experiment, sur-
vey, simulation, proof-of-concept, action research, etc.

MQ2

11 Research Domain Research domain taking into account the list of key-
words and the venue where the study was published

MQ3

12 Authors List of all the authors of the paper MQ4
13 Contribution Type data analytics (i.e., techniques, methods and tools); data

mining (i.e., method and tools); data collection (i.e.,
method and tools); prediction models; visual software
analytics; software analytics platform; software analyt-
ics monitoring (i.e., measure, metrics and indicators);
software analytics issues and concepts; software analyt-
ics projects implementation; advice, implication and/or
recommendations; and lessons learned.

MQ3

15 SA Issue Type effort prediction, fault prediction, bug treatment pro-
cess, teamwork and collaboration, productivity, program
comprehension, etc.

MQ5

SOURCE: Prepared by the author.

14

The research domain was classified base on the list of keywords and the venue where
the study was published, while types of contribution refer to the type of intervention
being studied involving processes, methods, models, or tools (PETERSEN et al., 2008).

2.1.6 Data analysis

The data analysis was conducted by using descriptive statistics, content analysis,
and narrative synthesis for explaining in details and interpreting the findings coming
from the content analysis. The content analysis consists of categorizing data and
analyzes frequencies of themes within categories (PETERSEN, 2011).

2.2 Mapping results

2.2.1 Primary studies collection

Figure 2.1 presents the results from searching, selection, and screening of the primary
studies. The searching string used on seven databases retrieved 382 records, while the
snowballing searching retrieved 217 records. After removing duplicates studies, 168
articles were selected from databases and 57 articles from the snowballing process.
Afterward, 84 articles were excluded based on the inclusion and exclusion criteria
during the screening step. In total, 141 articles remained for review. The list of the
selected studies is presented in Appendix A.

Table 2.7 shows the number of primary studies considered in the search, selection,
and screening process per database. Table 2.8 shows the results of forward snow-
balling from five key papers related to the SA area. As aforementioned, the same
search string was applied to select the most relevant studies, which were referencing
one or more key papers. During this step, many studies were not selected because
they had already been previously selected through searching in the digital libraries.

Table 2.7 - Number of primary studies per database.

Database Initial Set Removed Selected
IEEE Xplore 66 34 32
ACM Digital Library 47 25 22
Scopus 77 64 13
SpringerLink 98 80 18
Web of Science 38 32 6
Engineering Village 46 43 3
Science Direct 10 7 3

SOURCE: Prepared by the author.

15

Figure 2.1 - Results of study search, selection, and screening process for primary studies.

SOURCE: Prepared by the author.

Table 2.8 - Results of forward snowballing performed in key studies.

Paper# Year Cited by Search String Selected Reference
P1 2010 79 44 13 Hassan e Xie (2010)
P2 2010 40 27 5 Buse e Zimmermann (2010)
P3 2011 49 29 4 Zhang et al. (2011)
P4 2012 157 52 10 Buse e Zimmermann (2012)
P5 2013 96 63 12 Menzies e Zimmermann (2013)

SOURCE: Prepared by the author.

2.2.2 Quality evaluation of the primary studies

To evaluate rigor and relevance aspects of the selected studies, we used the quality
assessment criteria presented in Section 2.1.4 (Tables 2.4 and 2.5). On the whole,
we evaluated the quality of 102 papers (72.3%) matching to case study, experiment,
lessons learned, action research, and surveys.

16

The quality of the other studies was not assessed because they referred to research
agendas, personal opinion, philosophical articles and demos. It is noteworthy that
although they were not evaluated in this step, they were still remained in our review.

Table 2.9 presents quality evaluation concerning rigor aspects. For each research
method, we averaged the scores of each rigor aspect (see Table 2.4) and the average
of the final score, including all aspects. Overall, the studies had a low rating in
the aspect refer to the discussion of threats to validity (QA3), because in many of
them this aspect had not been described in detail, or it was not mentioned. Lessons
learned presented the lowest rigor score, while surveys, experiments, action research,
and case studies attended the rigor aspects at a higher level.

Table 2.9 - Quality evaluation of the rigor aspects.

Research Method N QA1 QA2 QA3 Score
Case Study 54 0.82 0.68 0.53 2.03
Experiment 26 0.96 0.92 0.75 2.63
Lessons Learned 16 0.78 0.28 0.06 1.13
Action Research 3 1.00 1.00 0.33 2.33
Survey 3 1.00 1.00 0.83 2.83

SOURCE: Prepared by the author.

Table 2.10 presents quality evaluation concerning aspects of industrial relevance.
For each research method, we also averaged the scores of each aspect (see Table 2.5)
and the average of the final score, including all aspects. Action research and surveys
obtained a maximum score concerning relevance, while the other three methods
representing 68% of the studies obtained a score above 3 points.

Table 2.10 - Quality evaluation of the relevance aspects.

Research Method N QA4 QA5 QA6 QA7 Score
Case Study 54 0.70 0.76 0.98 1.00 3.44
Experiment 26 0.62 0.62 1.00 0.81 3.05
Lessons Learned 16 0.75 0.88 0.94 0.94 3.51
Action Research 3 1.00 1.00 1.00 1.00 4.00
Survey 3 1.00 1.00 1.00 1.00 4.00

SOURCE: Prepared by the author.

17

2.2.3 Frequency and publication venues (MQ1)

Figure 2.2 shows the number of primary studies published from 2012 to 2018. Note
that the graphs do not include the studies published in 2019, once only two months
(January-February of 2019) were covered in the search period. The number of studies
related to software analytics published in conferences, symposium, and workshop has
increased year by year in the last four years. The number of studies published in
journals was smaller than in the other venues until 2017. Nevertheless, the number
of publications in journals had a peak in the last year, exceeding the other venues.

Figure 2.2 - Year-wise distribution of studies.

SOURCE: Prepared by the author.

Table 2.11 shows the distribution of the primary studies by publication venue, where
we list only the names of venues with more than two publications. From the selected
studies, 40.4% are journals, while international conferences, symposiums or work-
shops, account for 59.6%. The main forum for publications was the journal IEEE
Software. The second one was the journal Empirical Software Engineering. Thirdly,
the International Workshop on Software Analytics is the leading conference that has
been taking place annually since 2015 (first edition).

18

Table 2.11 - Publication venues.

Journal N %
IEEE Software 18 12.8
Empirical Software Engineering 13 9.2
IEEE Transactions on Software Engineering 5 3.5
Science of Computer Programming 4 2.8
Software Quality Journal 3 2.1
International Requirements Engineering 2 1.4
Others 12 8.5
Total 57 40.4
Conference. Symposium and Workshop N %
Workshop on Software Analytics 11 7.8
International Conference on Software Engineering 9 6.4
Conference on Automated SE 5 3.5
Joint Meeting on Foundations of SE 5 3.5
Symposium on Foundations of SE 3 2.1
Conference on SE & Knowledge Engineering 2 1.4
Conference on SE Companion 2 1.4
Symposium on Empirical SE & Measurement 2 1.4
Others 43 30.5
Total 84 59.6

SOURCE: Prepared by the author.

2.2.4 Research type (MQ2)

Figure 2.3 shows the mapping of the primaries studies according to the research type
over the years. Most of the studies (85 papers, 60.2%) were categorized as Evaluation
Research, representing on average, 12 papers per year. Experience reports and so-
lution proposal represent about 22% of the papers, while opinion and philosophical
paper represent only 12% of the total.

Table 2.12 presents the distribution of the studies’ underlying research method.
Case studies are used by a large part of the studies (54 papers, 38.2%). As shown
in the table, 29 studies were reported as Single-Case Study, whilst 25 studies were
reported as Multi-Case study. Of the 26 experiments reported, only one study in-
volved students. Lessons learned were reported from 16 experience reports. Few
studies conducted action research and surveys (4%), whereas the demos category
including studies using simulation, prototyping, proof-of-concept, or use cases rep-
resented 9% of studies. For research agendas, personal opinion, and philosophical
papers, we did not consider any research method.

19

Figure 2.3 - Year-wise distribution of studies and research type.

SOURCE: Prepared by the author.

2.2.5 Research focus over time (MQ3)

Figure 2.4 shows the bubble chart with the mapping the primary studies by type
of contribution and research domain. The bubbles indicate the numbers of papers
in each category over time. Both the domain category and contribution category
emerged from the analysis of keywords together with title, abstract, and publication
forums. In some cases, reading other parts of the article were also necessary to define
such categories.

Software analytics was the research domain with the highest frequency of studies
(72 - 51%). The other studies had a main focus on other research domains: software
prediction (19 - 13.4%), software maintenance and evolution (14 - 9.9%),mining soft-
ware repositories (12 - 8.5%), requirements engineering (8 - 5.6%), software quality
(7 - 4.9%), software testing (4 - 2.8%), and data-driven software development (5 -
3.5%). Although some of the studies do not focus directly on the area of software
analytics, we have identified some contribution involving our area of interest. We
identified and mapped the studies into eleven types of contribution. The top three
types of contributions with the highest frequency were data analysis including tech-
niques, methods, and tools (32 - 22.6%), predictive modelling (29 - 20.5%), and data
mining including methods and tools (26 - 18.4%).

20

Table 2.12 - Studies per types of research approach.

Research Method N Papers
Multi Case Study 25 S5 - S6 - S14 - S20 - S23 - S33 - S36 - S40 - S41 - S47 - S51 - S54

- S55 - S63 - S69 - S79 - S80 - S93 - S100 - S102 - S109 - S110 -
S111 - S131

Single Case Study 29 S11 - S12 - S15 - S22 - S24 - S26 - S34 - S43 - S44 - S45 - S46 -
S49 - S58 - S70 - S72 - S73 - S81 - S83 - S89 - S90 - S91 - S103 -
S107 - S108 - S114 - S121 - S129 - S136 - S138

Experiment 26 S7 - S28 - S29 - S32 - S35 - S42 - S57 - S66 - S67 - S76 - S78 - S85
- S88 - S96 - S98 - S104 - S106 - S115 - S122 - S123 - S127 - S128
- S137 - S139 - S140 - S141

Lessons Learned 16 S3 - S8 - S10 - S16 - S18 - S19 - S21 - S77 - S82 - S84 - S95 - S101
- S105 - S113 - S118 - S135

Action Research 3 S25 - S56 - S117

Survey 3 S27 - S48 - S116

Demos 13 S4 - S13 - S37 - S38 - S39 - S53 - S62 - S68 - S94 - S97 - S99 -
S119 - S126

No Method 26 S1 - S2 - S9 - S17 - S30 - S31 - S50 - S52 - S59 - S60 - S61 - S64
- S71 - S74 - S75 - S86 - S87 - S92 - S112 - S120 - S124 - S125 -
S130 - S132 - S133 - S134

SOURCE: Prepared by the author.

A fewer number of contributions were identified on proposals of some studies on
monitoring in software analytics encompassing measures, metrics, and indicators
(15 - 10.6 %), studies discussing issues and concepts related to software analytics
(14 - 9,9%), visual software analytics approaches (13 - 9.2%), and software analytics
platform (8 - 5.6 %). Finally, we identified only four studies on the implementation
of software analytics projects.

2.2.6 Co-authorship network (MQ4)

Figure 2.5 shows the co-authorship graph, which includes 350 nodes representing
unique authors and 692 edges representing the relationships among them. We used
the Gephi graphing tool (BASTIAN et al., 2009) to create this graph, which is also
available at https://bit.ly/2PjBJYy. By analyzing the number of connected com-
ponents in the graph, we identified 65 sets of authors that are mutually connected
through a network of co-authorship. There are 8 major sub-graphs, including more
than 10 authors nodes.

21

Figure 2.4 - Mapping of primary studies by type of contribution and research domain over
time.

SOURCE: Prepared by the author.

The largest sub-graph, including 54 authors nodes represents almost 16% of the total
number of authors. Connected nodes have distance 1. The most substantial distance
between two author nodes is 6, while the average graph-distance between all pairs
of nodes is 2.76. The graph density measures how close the network is to complete.
A complete graph has all possible edges and density equal to 1. This metric was
used to measure the collaboration between the authors of the papers selected in
this study. A greater connection between authors can be verified when the density
of the graph is closer to 1. In our graph, the co-authorship graph density is 0.011.
This value is considered low due to the existence of numerous connected components
(COSENTINO et al., 2017). That means that there is plenty of room for collaboration
between authors on different themes in the area.

2.2.7 Typical issues addressed to software analytics (MQ5)

This section introduces the categorization of issues addressed to the area of software
analytics according to research focus, which was organized according to contribution
type.

22

Figure 2.5 - Coauthorship-network.

SOURCE: Prepared by the author.

Table 2.13 presents the categories of issues identified. The number of papers per
category appears in brackets. The list of all issues addressed in each study is shown
in Appendix B.

23

Table 2.13 - Typical issues addressed to software analytics per contribution type.

Contribution type Issues categories
Data analytics - techniques,
methods and tools

Data analytics approaches (7); Software failures (6); Data-
driven requirements (5); Releases and code integration (5);
Project management (5); Teamwork and collaboration (4).

Predictive modeling Predictive models building (10); Defect and fault prediction
(8); Effort estimation (4); Predictive modeling in practice (3);
Predictive modeling performance (2); Project management (2).

Data Mining - method and
tools

Mining software repositories studies (7); Diagnosis of crashing
faults (5); Software traceability (3); Data collection (3); Bug
fixing process (2); Developers’ communication (2); Users’ feed-
back (2); Software integration (1); Requirement review (1).

Monitoring - measure, met-
rics, and indicator

Continuous monitoring (4); Development targeted analytics
(4); Project management (3); Continuous delivery (2); Defect
prediction building (1); Quality assurance (1).

SA Issues & Concepts Analytics for software maintenance (5); Data science and an-
alytics (4); Software analytics value (3); Software quality (2).

Visual software analytics Process improvement (4); Software evolution (4); Require-
ments management (2); Test and code visualization (2); Con-
tinuous deployment (1).

Software analytics platform Code quality (2); Repository mining studies (2); Maintenance
of mobile applications (1); Test analytics platform (1); Bug
fixer recommendation (1); Continuous improvement (1).

Software analytics projects
implementation

Software analytics in practice (1); Continuous delivery (1); An-
alytics from team metrics (1); Agile methods and DevOps (1).

SOURCE: Prepared by the author.

2.2.7.1 Data analytics - techniques, methods and tools

Data analytics approaches

Shull (2014) suggests goal-directed methods to help the analyst recognize which goals
can be addressed, which metrics available will answer the questions of interests, and
which datasets will lead to useful insights. Bruntink (2014) investigated the quality
of the software evolution data available in a large-scale online index and analytics
platform for open source projects. Gousios et al. (2016) introduced the concept of
streaming software analytics and proposed a data analytics infrastructure which
unifies the representation of historical and current data as streams and enables
high-level aggregation and summarization using a common query.

24

Theodorou et al. (2017) introduced a reference architecture for data-driven systems
that can change used data sources and data analysis algorithms at runtime to pre-
serve the quality of data analytics. Cito et al. (2017) proposed context-based analyt-
ics that makes the links between runtime information and program-code fragments
explicit by constructing a graph based on an application-context model. Compared
to a standard diagnosis approach, context-based analytics decreases the number of
required analysis steps, and the number of needed inspected traces. Ellmann et al.
(2017) proposed an approach to categorize and identify development screencasts
by conducting a similarity analysis of the transcripts and the Javadoc of the cor-
responding screencasts. Cosentino et al. (2018) presented an analytics tool called
Graal, which was designed to conduct ad-hoc analyses of source code by supporting
cross-cutting analysis on software project data.

Software failures

Lou et al. (2013) reported their experience about data-analysis techniques devel-
oped to solve engineers’ pain points in incident management, where the massive
data scale, sophisticated problem space, and incomplete knowledge were the main
challenges faced by researchers. Kidwell e Hayes (2015) described the utility of fault
classification in the context of software analytics and proposed an automated ap-
proach to learning a fault taxonomy by using machine learning techniques. Krishna
(2017) proposed two algorithms (XTREE and BELLTREE) for generating a set of
actionable recommendations on how to undertake code reorganization in order to
reduce defects in code. Batarseh e Gonzalez (2018) introduced the analytics-driven
testing (ADT), a method to predict software failures in the subsequent agile sprints
and their locations with a specified statistical confidence level. This method uses a
forecasting regression model for estimating where and what types of software sys-
tem failures are likely to occur. Lou et al. (2017) reported their experiences about
a set of data-analysis techniques developed and the Service Analysis Studio (SAS)
system deployed to Microsoft’ data centers for incident management. Bagherzadeh
et al. (2018) analyzed the changes that were made to Linux system calls during the
last decade by manually identify the type of changes and bug fixes that were made.

Data-driven requirements

Maalej et al. (2016b) introduced concepts on data-driven requirements engineering
involving user feedback analytics along with usage data, logs, and interaction traces
automatically collected.

25

Maalej et al. (2016a) carried out an experimental study to evaluate some probabilis-
tic techniques (i.e., text classification, natural language processing, and sentiment
analysis techniques) used to classify app reviews into four types: bug reports, feature
requests, user experiences, and text ratings. From experiment results, they designed
a review analytics tool for filtering critical reviews and assign them to the appro-
priate stakeholders. Fotrousi (2016) proposed quality-impact analytics of software
products, features, and requirements based on a joint analysis of software quality
and user feedback. Such analysis method should guide the verification and validation
of functional and quality requirements as well as capturing new requirements. Hem-
mati et al. (2018) proposed a method for the collection, processing, and analysis of
multiple data sources (i.e., requirements, bug reports, and usage data) to investigate
high-level connections between user requirements and system utilization. Morales-
Ramirez et al. (2018) proposed a technique based on speech-acts for the analysis
of online discussions in order to discover relevant information that could enhance
requirements elicitation.

Releases and code integration

Souza et al. (2015) investigated how rapid releases essential for the timely release
of new versions affect code integration by analyzing how the backout rate evolved
during Mozilla’s process change. Rosen et al. (2015) proposed a data analytics tool
for analysis and predictions on risky commits, called Commit Guru. This tool auto-
matically identifies risky (i.e., bug-inducing) commits and builds a prediction model
that assesses the likelihood of a recent commit introducing a bug in the future.
Rahman et al. (2018) analyzed the practice of making frequent commits in open
source software projects compared to proprietary projects, in order to investigate
the expected benefits after continuous integration adoption regarding software im-
provement. Baltes et al. (2018) analyzed the commit and merge activity in GitHub
projects that introduced the hosted continuous integration system. The aim was to
investigate if commit activities were being adjusted towards the small incremen-
tal changes to software projects, after start using continuous integration. Nayebi et
al. (2019) proposed an analytical approach called the Gandhi-Washington Method
(GWM) to analyze the impact of recurring events in software projects, which uses
regular expressions to condense and summarize information and infer treatments
automatically.

26

Project management

Chatzikonstantinou et al. (2013) proposed a data analytics framework where an-
alytics objectives are represented as goal models with conditional contributions.
After the goal models are transformed into rules, they are assessed by a proba-
bilistic reasoner using Markov Logic Network. Asuncion et al. (2013) presented a
technique that uses change entries to obtain relevant project information, called
FACTS PT (Flexible Artifact Change and Traceability Support for Project Team).
This technique consists in automatically extracts, traces, aggregates, and visualizes
change entries along with other software metrics to provide project information.
Karim et al. (2016) applied various data analytics techniques to understand the
factors responsible for estimation inaccuracy of project issues, verify whether the
company guidelines regarding issues are really followed by practitioners, and in-
vestigate whether a prediction on estimation inaccuracy can support managers to
take proactive measures. Guo et al. (2016) presented two data analytics methods to
address the cold-start problem. The first identifies the best overall performing con-
figuration, across all projects in the profile, and adopts that default configuration
for use in cold-start projects. The last one matches the project characteristics of a
cold-start project against those in the configuration profile, selects the most similar
project, and then adopts that project’s configuration for the cold-start project. Lin
et al. (2017) designed a web-based tool that allows users to express software-related
queries verbally or written in natural language. Those queries expressed in natu-
ral language are transformed into SQL and then executed against a centralized or
distributed database.

Teamwork and collaboration

Gonzalez-Barahona et al. (2013) employed analytics techniques to study two open-
source software development communities (WebKit and OpenStack). They conclude
that such analytics can improve factual knowledge about how development commu-
nities are performing in aspects that are of interest to companies. Alelyani e Yang
(2016) suggested a method to analyze worker behaviors when registering and car-
rying out the announced tasks within a software crowdsourcing context. Onoue et
al. (2016) analyzed the characteristics of the population structures of OSS projects
on GitHub using a population projection method which calculates the survival rate
based on past population. Devanbu et al. (2017) used circular statistics to analyze
the dispersion of timezones and work times, evaluating how timezone dispersion
affects work hour dispersion.

27

2.2.7.2 Predictive modeling

Predictive models building

Based on the advances in the areas of data mining and predictive modeling, Menzies
(2012) pointed out the need for evolution of prediction systems to decision systems
and then to social reasoners. Kocaguneli et al. (2013a) analyzed trends in building
prediction models when data need be transferred between different contexts and the
information are scarce; and discussed synergies between different machine learning
methods (transfer, semi-supervised and active learning) which may overcome these
issues. Minku et al. (2016) discussed the role of software engineering experts when
adopting data mining approaches and the lack of involvement of them in the pro-
cess of building predictive models. Dam et al. (2016) introduced the deep model of
software as an end-to-end generic framework based on deep learning for modeling
software and its development process to predict future risks and recommend inter-
ventions. Zhu et al. (2017) proposed an approach to leverage historical usage data
from users for constructing of context-aware reliability prediction models from web
services.

Using different methods for textual similarity analysis, Nayebi et al. (2017) found
that the combination of machine learning techniques with experts manually added
labels has the highest prediction accuracy on change impact. Czech et al. (2017) used
label ranking algorithms complemented with appropriate kernels to provide a simi-
larity measure for predicting rankings of software verification tools. Menzies (2018)
explored how software analytics can offer a somewhat accurate prediction about
software attributes (e.g., cost or defect) of future projects although, in theory, of-
ten software project behavior is not predictable. Peters (2018) focused on finding
a balance between privacy concerns and the utility of data for analytics, suggest-
ing a combination of minimization and obfuscation to confidently share data with
other projects and organizations to build prediction models. Menzies e Zimmermann
(2018) provided an overview of how software analytics can help software engineers
for discovering, verifying, and monitoring the factors that affect software develop-
ment. In addition, they discussed a future where both qualitative and quantitative
methods should be alternately used to explore software data; a model learned for
one project may be applied to another, and complex models generated via software
analytics need to be easily understood by humans.

28

Defect and fault prediction

Catal (2012) discussed challenges in building accurate fault prediction models to de-
tect error-prone modules before the testing phase and pointed out that new software
fault prediction tools should be developed and integrated with existing integrated
development environments. With the aim to improve the efficiency of the testing
process, Taipale et al. (2013) proposed a defect prediction model including different
modes of information representation of the data and the model outcomes for guiding
practitioners to focus their activities on the most problematic parts of the software.
Soltanifar et al. (2016) suggested the use of code smells metrics along with churn
metrics to train defect prediction models. Jiarpakdee et al. (2018) introduced an
automated metric selection approach for interpreting defect models based on cor-
relation analyses, using the Spearman rank test and the variance inflation factor
analysis. An et al. (2018) investigated the characteristics of commits that lead to
crashes into the Mozilla Firefox browser, and then they built predictive models to
improve the process of detecting and fix the crash-prone code early when their de-
velopers commit code. Huang et al. (2018a) explored supervised and unsupervised
models for effort-aware just-in-time defect prediction and proposed an improved
supervised model called CBS+, which leverages the idea of both models. Agrawal
et al. (2018) proposed an approach to combine data mining and optimization for
software analytics, where data miners can generate the defect prediction models
that are explored by optimizers, while optimizers can advise how to best adjust the
control parameters of a data miner. Barbour et al. (2018) examined clone genealo-
gies to identify fault-prone patterns of states and changes and found that adding
clone genealogy information can increase the explanatory power of fault prediction
models.

Effort estimation

Kocaguneli et al. (2013b) proposed an active learning algorithm for effort estima-
tion by investigating how active learning changes the time required for making effort
estimation models. Dehghan et al. (2016) presented a hybrid model for task com-
pletion effort estimation to be adaptable to a larger number of tasks. Choetkiertikul
et al. (2018) proposed a prediction model for estimating story points based on two
deep learning architectures (long short-term memory and recurrent highway net-
work). Karna et al. (2019) produced an effort estimation model for software projects
using a modified data mining approach where prior to model creation, additional
clustering of projects is performed.

29

Predictive modeling in practice

Misirli et al. (2013) investigated practitioners’ expectations of prediction models
from three software analytics projects in order to understand how these models can
be used in policymaking. The projects involved a defect prediction model, an early
effort estimation prototype, and a quality prediction project. Tantithamthavorn e
Hassan (2018) discussed some pitfalls and challenges observed in practice when
practitioners attempt to develop analytical models for defects prediction. Dam et al.
(2018) discussed explainability as a critical measure for developing software analytics
prediction models based on social science, explainable artificial intelligence, and
software engineering.

Predictive modeling performance

Focused on exploring the problem of transferring data from one project to another
for the purposes of data analytics, Krishna e Menzies (2018) proposed the use of the
bellwether method, where given N projects from a community one exemplary project
is the project whose data yields the best predictions on all others. Kondo et al. (2019)
analyzed the impact of eight feature reduction techniques on the performance and
the variance in performance of five supervised learning and five unsupervised defect
prediction models.

Project management

Choetkiertikul et al. (2015) used networked data classification to predict the degree
of delay for a group of related tasks, providing automated support in predicting
whether a subset of software tasks in a software project has a risk of being delayed.
In order to provide an early warning as to whether questions will be raised by a
developer in an issue report at the issue report filling time, Huang et al. (2018b)
built a prediction model to capture issue reports when they are submitted.

2.2.7.3 Data mining - method and tools

Mining software repositories studies

Menzies (2013) compares and contrasts four kinds of data miners: algorithm miners
that explore tuning parameters in data mining algorithms, landscape miners that
reveal the shape of the decision space, decision miners that comment on how best
to change a project, and the discussion miners that help the community debate
trade-offs between the different decisions.

30

Robles e González-Barahona (2013) reported the experience of using mining soft-
ware repositories techniques to detect plagiarism in a multimedia networks course
where students have to submit several software programs. Williams et al. (2014)
used an open-source telemetry platform to analyze ten modeling projects hosted by
the Eclipse Foundation, mining the required data from the version control systems,
bug tracking systems, and mailing lists. McIntosh et al. (2015) analyzed version his-
tories from thousands of software repositories, three software ecosystems, and four
large-scale projects in order to understand the prevalence of different build technolo-
gies and the relationship between build technology and build maintenance. Aniche
et al. (2015) presented a heuristic based on static code analysis using cyclomatic
complexity metric and the number of unit tests per method in order to statically
calculate code coverage and make feasible for large-scale mining software reposito-
ries studies. Bayati et al. (2015) proposed a framework for mining and analysis of
GitHub projects using features and metrics derived from historical data in reposito-
ries, object-oriented programming metrics, and the influences of developers on source
codes. Low et al. (2015) sought out patterns using machine learning algorithms in
projects hosted in GitHub in order to understand how free and open-source software
projects survive.

Diagnosis of crashing faults

Wu (2014) described a set of techniques to assist the diagnosis of crashing faults,
including a framework of collecting call sequence, a framework of crash bucketing,
and a framework of locating crashing faults. Ye et al. (2014) proposed an approach
for ranking source files of a project with respect to how likely they are to contain
the cause of the bug. Their learning-to-rank technique uses domain knowledge to
recommend relevant files for bug reports, making it easier to find the cause of the bug.
Wu et al. (2014) mined crash reports, bug reports, and change logs using a technique
for locating crashing faults based on crash stacks and static analysis techniques called
CrashLocator. Wu et al. (2018) proposed a method to automatically locate crash-
inducing changes for a given bucket of crash reports, useful to down the root causes
and reduces the search space of bug fix location. An et al. (2019) investigated bugs
that were caused by third-party DLL injections into the software ecosystems.

Software traceability

Tamla et al. (2017) proposed an architecture to implement an approach to automat-
ically track critical changes to its origin from collecting meta information on a code
example.

31

Hindle et al. (2015) presented a method for traceability and information retrieval to
extract requirements topics and bug report topics by performing topic analysis on
the documents and then inferring and linking these topics across all of the commit
log messages in the source code repository. Bao et al. (2018) proposed a framework to
improve the generalizability of the data collection, which uses operating-system-level
instrumentation to track developer interactions. Also, they proposed an approach
to segment and label the developers’ low-level actions into a set of meaningful de-
velopment activities by using machine learning.

Data collection

Finlay et al. (2014) described the extraction of metrics from a source control system
using the application of data stream mining techniques to identify useful metrics
for predicting build success or failure. Moser et al. (2015) used static code analysis
to extract mathematical formula and decision tables from program statements and
generate documentation from annotated source code. Dueñas et al. (2018) presented
a free software tool called Perceval to perform automatic and incremental data
gathering from the different data source - e.g., issue tracking systems, mailing lists,
forums, source code repository, and social media.

Bug fixing process

Mezouar et al. (2018) analyzed the short messages posted by end-users on Twitter
to investigate the usefulness of the social network in the bug fixing process. Noei
et al. (2019) proposed an approach to map issue reports that are recorded in issue
tracking systems to user-reviews in order to prioritize user-related issue reports of
mobile applications.

Developers’ communication

Cerulo et al. (2015) proposed an approach based on Hidden Markov Models for
extracting the content of developers’ communication which mixes different coding
languages (e.g., source code, stack dumps, and log traces) with natural language
parts. Fu e Menzies (2017) described a method to explore large programmer discus-
sion forums, using a convolution neural network to predict whether two questions
along with its entire set of answers posted on the forum are semantically related.

32

Users’ feedback

Licorish et al. (2015) used data mining and natural language processing (NLP)
techniques to investigate the issues that were logged by the Android community, and
how Google’s remedial efforts correlated with users’ requests. Suonsyrjä et al. (2016)
proposed a framework to support practitioners in finding a suitable technological
approach for automated collecting of usage data within the process of data-driven
software development.

Software integration

Yuzuki et al. (2015) presented techniques for identifying when conflicts occur in
merging and detecting conflict resolution in method level. To understand how con-
flicts are resolved in practice, they analyzed ten open source projects written in
Java.

Requirement review

Singh et al. (2017) developed an automated mining approach to validate requirement
reviews using supervised learning classifiers and natural language processing over
part of speech tags.

2.2.7.4 Monitoring - measure, metrics, and indicator

Continuous monitoring

Johnson (2013) discussed the trade-offs in designing analytics for software processes
and products taking into account the degree of automation, the level of overhead de-
velopers and management incur to obtain the analytics, barrier to adoption incurred
by the technique or technology, and a range of analytics that can be developed. Suon-
syrjä e Mikkonen (2015) proposed an unobtrusive analytics framework for monitor-
ing Java applications in order to help developers make informed decisions around the
software project and the code review process. Barik et al. (2016) reported the experi-
ences of the professionals at Microsoft during the transition to a data-driven culture,
cataloging activities that leverage data at rest (logs) and streaming data (teleme-
try), identifying challenges in conducting these activities, and describing tensions
that emerge as event data flow through these activities. Janes et al. (2017) proposed
a continuous issue and error monitoring approach for small and medium enterprises
to maintain quality above a minimum threshold supported by a recommendation
system of quality practices and quality actions based on created errors.

33

Development targeted analytics

Treude et al. (2015) investigated how developers would measure the development
activity, what information they would expect in a summary of development activity,
and what factors influence how such an activity can be condensed into summaries
(textual or numeric). Bruntink (2015) explored typical values to measure code size
and growth (using lines of code) and observed large dispersion, skew and outlier rates
for those metrics with the purpose of obtaining a base rate in software analytics. Cito
(2016) investigated approaches to support developers in their decision-making by
incorporating runtime information in source code and provide live feedback in IDEs
by predicting the impact of code changes. Syed-Mohamad et al. (2017) proposed
test-defect coverage analytic model to measure the test adequacy, which combines
test and defect coverage information presented in a dashboard to help to decide
whether the tests planned are enough.

Project management

Baldassari (2012) proposed an approach to software project quality measurement
called SQuORE, with the purpose of retrieving information from several sources,
compute a consolidation of the data, and show an optimized report on software or
project state. Manzano et al. (2018) proposed an on-time delivery indicator in rapid
software development to detect development problems in order to avoid delays and
to estimate the additional time needed when specific requirements are considered.
Decan et al. (2019) proposed metrics to analyze the growth, changeability, reusabil-
ity, and fragility of the dependency networks into packaging ecosystems.

Continuous delivery

Huijgens et al. (2017) explored whether data mining techniques can help to define
agile metrics with high predictive power for continuous delivery. Neri e Travassos
(2018) investigated multidimensional relationships between software product char-
acteristics to construct a continuous experimentation infrastructure to evaluate the
software quality from continuous development environments.

Defect prediction building

Falessi e Moede (2018) proposed a desktop application called Pilot Defects Pre-
diction Dataset Maker (PDPDM) to define the better set of product and process
metrics to be used in the defect prediction model.

34

Quality assurance

Martínez-Fernández et al. (2018) proposed a quality model (called Q-Rapids quality
model) composed with relevant metrics as well as product and process factors for
actionable analytics in the rapid software development context.

2.2.7.5 Software analytics issues and concepts

Analytics for software maintenance

Dang et al. (2017) reported their experiences on transferring a code-clone detection
and analysis approach to practice and their efforts to adapt the supporting tool to
addresses the needs of real scenarios into projects with their inherent characteristics.
Port e Taber (2018) reported examples of the use of a software metrics and analytics
program for strategic maintenance of critical software, which actions depend on
reliably knowing how many defects can be found, the likelihood of defects surfacing
at a critical moment, and how much time it will take to find out and fix a defect.
Ellmann (2017) discussed issues on the similarity of software documentation and
the challenges of understanding the characteristics of similar software development
documents. Godfrey (2015) discussed some of the dimensions of the problem of
extracting and reasoning about the provenance of software development artifacts.
Nguyen et al. (2018) discussed some challenges in discovering insights from the usage
data from cloud-based applications.

Data science and analytics

Begel e Zimmermann (2014) investigated questions that software engineers would
like data scientists to investigate software processes and practices, and then ranked
the most important issues to work on first from the software engineers point of view
at Microsoft. Kim et al. (2016) investigated the competencies and working styles of
data scientists in software-oriented data analytics context. Arndt (2018) explored
how big data techniques can be used to improve SE processes and how analytics
methods allow for capturing events from large sets of data to turned into actionable
intelligence for decision making. Kim et al. (2018) investigated the activities of data
scientists at Microsoft clustering them based on the time spent in each activity.

Software analytics value

Robbes et al. (2013) explored how smaller companies would benefit from software
analytics that has less manpower and less historical information in their repositories.

35

They observed that smaller companies can benefit from software analytics by break-
ing work down in a series of precise tasks that are assignable, estimable, and track-
able. Conboy et al. (2018) examined business value in analytics based on the tem-
poral complexity and identified a set of temporal factors that may affect the busi-
ness value when people use analytics in different contexts. Baysal (2013) reported
some experiences about extracting and analyzing data from software repositories to
support decisions around the code review process, understanding user adoption of
software systems, and improve developers’ awareness of their working context.

Software quality

Foidl e Felderer (2016) discussed the challenges related to defect prevention and
highlighted the importance of software analytics to improve quality assurance in the
Internet of Things applications. Felderer (2016) discussed issues on descriptive, gen-
erating and predictive software quality models, such as the maintenance of models,
traceability between quality models and unstructured artifacts, and integration of
software analytics and runtime information, to name a few.

2.2.7.6 Visual software analytics

Process improvement

From an action research approach, Lehtonen et al. (2013) proposed along with com-
pany practitioners visualization the issue management system’s data as a tool to
identify problems in the agile development process and to make them visible for
all stakeholders. Musson et al. (2013) reported experiences from software analytics
project at Microsoft where visualizations help development teams identify and prior-
itize performance issues by focusing on performance early in the development cycle,
allowing evaluating progress, identifying defects, and estimating timelines. Baysal
et al. (2013a) argued about the importance of qualitative dashboards designed to
improve developers’ situational awareness by providing task tracking with custom
views to help manage their workload while performing day-to-day development tasks.
Mattila et al. (2017) reported an industrial case where data visualization of issue
management system data was able to reveal deviations between planned process and
executed process.

Software evolution

González-Torres et al. (2013a) proposed a framework for the visual software analytics
process to understanding the software evolution with active participation of users.

36

Torres et al. (2013) presented the implementation of an architecture based on the
evolutionary visual software analytics process and described how it supports knowl-
edge discovery during software maintenance tasks. González-Torres et al. (2016) pre-
sented an application of visual analytics to software evolution developed to identify
the software items that have been changed by a group of programmers, determining
which programmer has led a project or contributed more to the development and
maintenance in system reviews. González-Torres et al. (2018) proposed the design
of an architecture for evolutionary visual software analytics which should retrieve
the source code from different version systems, carry out the advanced analysis of
programs written in different languages, and make visible the results of calculation
of software metrics through visual representations.

Requirements management

Focusing on dynamic visualizations to support software analytics, Reddivari et al.
(2014) proposed a framework for visual requirements analytics composed of five
conceptual goals: user, data, model, visualization, and knowledge. The authors used
the goal–question–metric to define the conceptual goals, as well as the set of ques-
tions for operationalizing the goals. Noorwali (2018) introduced the stakeholder
concern-driven requirements analytics to fill the lack of readily available metrics
and analytical methods that could aid the requirements management process.

Test and code visualization

Feldt et al. (2013) explored how visualization and correlation between test and code
measurements can support decisions on software quality improvements, based on a
case study where heatmaps were employed to visualize and monitor changes and
identify recurring patterns of an embedded control system. Haron e Syed-Mohamad
(2015) proposed a visual analytics tool to assess and validate the testing results
using bubble charts to represent number of defects, branch coverage, and lines of
codes per software component.

Continuous deployment

Mattila et al. (2015) demonstrated how to create an easy-to-interpret visualization
mashing up software data from the issue management system, development data
from the version control system, and actual end-user usage data.

37

2.2.7.7 Software analytics platform

Code quality

Czerwonka et al. (2013) presented a software analytics platform called CODEMINE
build for collecting and analyzing data from Microsoft’s products. The platform has
been adopted by the product teams for data acquisition and analysis as part of
a product development process, for customized analyses focusing on answering a
specific question, or as a source of information and inspiration for new lines of re-
search. Vargas et al. (2018) outlined a real-time software analytics platform named
CodeFeedr to improve the quality and speed of decision making, monitor software
development infrastructure in real-time, and create customized views of the work-
flow.

Repository mining studies

Focusing on replicability and validity of repositories mining studies, Trautsch et al.
(2016) presented a smart data platform named Smart SHARK for data acquisition
from several projects in order to create different analytic examples. The platform
implemented combines automated data collection from different sources and Apache
Spark to perform software analytics on the collected data. Trautsch et al. (2018)
improved the design and the data collection process of the SmartSHARK, and added
a table that shows the need for data storage for new plugins.

Maintenance of mobile applications

Minelli e Lanza (2013b) presented a web-based software analytics platform named
SAMOA for structural analysis of mobile applications based on the source code,
usage patterns, and historical data.

Test analytics platform

Liechti et al. (2017b) proposed the concept of test analytics that defined as “analytics
on test-related data in order to give actionable insights about product quality and
agile practices, with the goal to support a continuous improvement process”. Then,
they present a test analytics platform built to collects test-related data, analyze it,
and give feedback to the team.

38

Bug fixer recommendation

Sureka et al. (2015) presented a decision support platform for guiding and assisting
recommendations for the task of automatic bug assignment using textual informa-
tion content from bug reports and non-textual features such as developer workload,
experience, and collaboration network.

Continuous improvement

Liechti et al. (2017a) discussed the dimensions that need to be considered when
introducing a data-driven continuous improvement process in agile organizations
such as the nature of the channels through which the software and process metrics
are published.

2.2.7.8 Software analytics projects implementation

Software analytics in practice

Zhang et al. (2013) reported lessons learned about the software analytics system
produced for Microsoft product teams. The lessons reported include focusing on
problems that practitioners care about, using domain knowledge for correct data
understanding and problem modeling; building prototypes early to get practitioners’
feedback, taking into account scalability and customizability; and evaluating analysis
results using criteria related to real tasks.

Continuous delivery

Huijgens et al. (2018) examined what factors helped and hindered the implemen-
tation of software analytics in an environment of continuous delivery. Main success
factors refer to prior defining and communicating the aims, standardization of data,
build efficient visualizations, and use of an empirical approach.

Analytics from team metrics

Augustine et al. (2018) reported lessons learned from deploying a software analytics
solution focused on metrics and indicators around the improvement of agile teams
from a multinational organization.

39

Agile methods and DevOps

Snyder e Curtis (2018) reported how software analytics were used to guide improve-
ments and evaluate progress during an Agile/DevOps transformation in a software
company, including challenges in selecting measures and implementing analytics.

2.3 Findings

In this section, we discuss the findings and research gaps based on mapping results.
In general, when assessing the quality of the selected studies, we found that research
in the field of software analytics has been of high relevance to industry. Few studies
were conducted in an academic setting involving students or using toy examples.
On the other hand, many studies deal with real cases from the industry, but few
report involvement with professionals. The number of case studies and experiments
in industrial contexts is quite significant. The rigor scoring should enable locating
studies described in a way that facilitates replication, reproducing, and synthesis of
evidence (IVARSSON; GORSCHEK, 2011). However, studies reporting lessons learned
tend to be less rigorous concerning study design and threats to validity.

Noticeably, research related to software analytics has been increasing year by year
and becoming more robust, given the number of studies published in journals over
the past year. Over the years, many solutions in software analytics have been imple-
mented and evaluated in practice, so that few studies refer to validations performed
in academic settings. Software analytics research is closely associated with problem-
solving and process improvement, having practical value to the software industry.
By observing the co-authorship network, we found that there is still plenty of room
for collaboration with both academic researchers and industry professionals.

Many studies have contributed techniques, methods, and tools to support data anal-
ysis focused on more specific issues target software requirements, fault detection, and
project management; but also with general approaches that take into account data
type and information flow. Software analytics has a broad spectrum of activity that
permeates the areas of predictive modeling, maintenance, and software evolution.
Several studies proposed models for defect and fault prediction, while others con-
cern on models building, focusing on the evolution of predictive technologies. Means
to increase the degree to which a practitioner observer can understand the reasons
behind a specific prediction is an open question and interest topic in this domain.

40

Mining software repository studies provide methods and better ways of discovering
useful information on different software issues. However, there are few tools for au-
tomation of data gathering from different data sources, coming out various forms
(both structured and unstructured). Natural language processing and text mining
techniques have been applied to automatically analyze users’ feedback and to vali-
date requirement reviews, for instance. But there are still few contributions in these
areas.

Visual software analytics is commonly employed in software process improvement
and software evolution. We found few studies using visual software analytics for sup-
porting the decision making in issues target testing process and software quality as-
surance. In the domain of data-driven software development, data science knowledge
is critical to power software analytics process. However, an issue to be investigated
is whether the lack of in-depth knowledge and expertise in data science can make a
software analytics project infeasible in small teams.

Concerning monitoring activities, researchers and practitioners have been investi-
gating how to measure issues related to development activity, software quality, and
project management, especially within continuous development environments. Pro-
posals of analytics software platforms have been increasing over the past two years,
but there is little evidence about the practical value of these platforms and challenges
that practitioners face when using them. We found that continuous experimentation
and DevOps culture are emergent themes that can leverage the implementation of
software analytics projects. By the way, we found a small number of studies on the
implementation of software analytics projects in practice.

2.4 Threats to validity

The threats of this research mainly include issues related to the reliability of pri-
mary study selection, inaccuracy in data extraction, potential researcher bias, and
generalizability, according to Zhou et al. (2016).

Reliability of primary study selection: As for the selection of studies, we conducted
the search in two stages, combining the method of automatic search in multiple
databases (seven digital libraries well-known in the software engineering field) and
snowballing forward method from five key papers in the software analytics area. In
the second stage, we included a substantial number of relevant studies (44 articles)
which represented 31% of total selected studies.

41

In order to reduce the threat of exclusion of relevant papers during the screening
process, only papers that are not in the area of software engineering, or clearly
did not address issues related to software analytics, were excluded. Moreover, the
reasons for the exclusion decision were documented. The selected papers were twice
checked to detect and remove duplicate papers. Finally, to mitigate inappropriate
selection of papers, some inclusion and exclusion criteria were taken into account to
ensure the inclusion of only relevant articles.

Inaccuracy in data extraction: To avoid bias in data extraction, we established a
data extraction form to capture the information required for answering our research
questions. However, only a single researcher performed data extraction. To mitigate
this threat, (i) the data extraction process was twice checked, (ii) an existing classifi-
cation was used to categorize the types of research, and (iii) the analysis of keywords
together with title, and abstract were used to categorize the domain, contribution
type, and the addressed software analytics issues.

Potential researcher bias: An incorrect classification and unsatisfactory data synthe-
sis could be caused by subjective researcher interpretation about the extracted data.
As regards these issues, there is a potential threat to the validity of this study, since
a single researcher conducted these activities. To reduce this threat, the review pro-
tocol, quality assessment criteria, data extract form, and results were reviewed by
the research project supervisors. The double-checking was adopted by the researcher
as a method to check the reliability of searches, the inclusion and exclusion criteria,
and the studies classification accuracy.

Primary study generalizability: Considering the number of selected primary studies
and the time span, our data extraction and classification can be representative of
different domains. In this study, we identified the domains to which a study’s findings
can be generalized.

2.5 Chapter summary

This chapter presented a systematic mapping that provided us an overview of the SA
area. By categorizing the main issues addressed to software analytics, we were able to
identify the SA areas that have received the least attention.For instance, the results
of this review indicate that there are few studies related to the implementation of
software analytics projects in practice (ZHANG et al., 2013) (HUIJGENS et al., 2018)
(AUGUSTINE et al., 2018) (SNYDER; CURTIS, 2018). This gap is explored in this thesis.

42

3 RESEARCH METHODOLOGY

This chapter presents the research methodology and design adopted in this study.
The research methods, the techniques of data collection, and theoretical underpin-
nings used for data analysis are also presented. The application of these methods
and techniques are reported in Chapters 6 and 7.

Section 3.1 describes the central approach used as a research framework for conduct-
ing the study. Section 3.2 describes the inquiry techniques used in data gathering and
analysis during proposal evaluation. Section 3.3 outlines the activities and research
design.

3.1 Research framework

The proposal of this research is an approach to supporting agile teams in software
analytics activities. That is, we can consider that the ultimate goal of this work
involves generating knowledge through making by designing artifacts seeking to ex-
tend the boundaries of human and organizational capabilities (PURAO, 2002). To
accomplish this goal, Design Science Research (DSR) is adopted as the central re-
search methodology. Centered on discovery-through-design, the main DSR focus is
on problem-solving by means of the design of innovative artifacts to meet practical
needs identified from a given domain (BASKERVILLE, 2008). The term “artifact” used
herein is broadly defined as constructs (vocabulary and symbols), models (abstrac-
tions and representations), methods (algorithms and practices), and instantiations
(implemented and prototype systems).

DSR has its roots in the sciences and engineering of the artificial (SIMON, 1996).
In the last 30 years, DSR has been widely adopted by the Information System
community and associated areas, such as the Software Engineering and Computer
Science. In these areas, DSR is commonly used to producing new ideas in order to
improve the ability of people and organizations to adapt and succeed in environments
that are constantly evolving in terms of the scientific and technological paradigms
(GREGOR; HEVNER, 2013).

In this thesis, the DSR framework for building and evaluating of artifacts proposed
by Hevner et al. (2004) is applied. Figure 3.1 presents the key components of Hevner
et al.’s framework.

43

Figure 3.1 - DSR framework.

SOURCE: Adapted from Hevner et al. (2004).

According to Hevner e Chatterjee (2010), DSR is a problem-solving paradigm, where
“knowledge and understanding of a problem domain and its solution are achieved
in the building and application of the designed artifact” (HEVNER; CHATTERJEE,
2010). As displayed in Figure 3.1, the relevance cycle to the right of the frame-
work represents the inputs (requirements) for the research development. by identi-
fying potential opportunities and problems in a real environment. The environment
setting includes the people (roles, capabilities, and characteristics), organizational
systems (strategies, structure, culture, and process), and technology available (in-
frastructure, applications, development environments, communication aspects). The
relevance cycle also comprehends the definition of criteria to evaluate the research
contributions.

At the left of the framework, the rigor cycle provides foundations and methodolo-
gies from a knowledge base. The examples of foundations are theories, frameworks,
instruments, constructs, models, methods, and instances used in the developing and
building phase of a research study. And, methodologies typically encompass data
collection, empirical analysis techniques, and also provide guidelines to justify and
evaluate the solutions. The new knowledge generated by the research will be added
to the knowledge base later.

44

At the heart of the framework, the design cycle represents the construction and eval-
uation of an artifact guided on relevance and rigor. In an iterative way, the solutions
are refined through feedback. The outcomes of this process are contributions to both
research and practice. The design artifact is the most typical contribution of DSR.
The evaluation rigor refers to using appropriate methods available in the knowledge
base.

The research design of this thesis is based on the following guidelines proposed by
Hevner et al. (2004):

• Design as an artifact. DSR must produce a viable artifact in the form
of a construct, model, method or an instantiation.

• Problem Relevance. Objective of DSR is to develop technology-based
solutions to important and relevant business problems.

• Design Evaluation. The utility, quality and efficacy of a design artifact
must be rigorously demonstrated with well-executed evaluation methods.

• Research Contribution. Effective DSR must provide clear and verifiable
contributions in the areas of the design artifact, design foundations and/or
design methodologies.

• Research Rigor. DSR relies upon the application of rigorous methods in
both the construction and evaluation of design artifacts.

• Design as a search process. The search for an effective artifact requires
utilising available means to reach desired ends while satisfying laws in the
problem environment.

• Communication of research. DSR must be presented effectively both
to technology-orientated as well as management-orientated audiences.

3.2 Research methods

This section presents the methods applied in the DSR evaluation cycle divided into
data gathering and analysis methods.

3.2.1 Data gathering

For data gathering, an observational study was applied to achieve a deeper under-
standing of the phenomenon studied.

45

Within software engineering, the realization of observational studies can lead to a
better understanding of practices, and also to the elaboration of validated prac-
tice (D’ASTOUS; ROBILLARD, 2002). For example, observations can be conducted
in order to investigate how software engineers conduct a certain task (WOHLIN et

al., 2012). There are different types of observational methods. The case study and
ethnographic studies are examples of observational methods because involve study-
ing the spontaneous behavior of participants in natural surroundings. While a case
study focuses on a phenomenon or particular case in the real-world context looking
for a link between the natural setting and a phenomenon (RUNESON et al., 2012),
the ethnography studies examine the details of a person, an organization, or a cul-
ture from both a broad perspective to investigate how a phenomenon be aroused
and developed (AKTINSON; HAMMERSLEY, 1998). Structured observation is another
type of observational method typically carried out in a laboratory rather than in
a natural setting. In the structured observations, the researcher uses a standard-
ized procedure and decides where the observation will take place and with which
participants (PRICE et al., 2015).

Observation studies can be used in combination with a variety of techniques to
collect data such as interviews, surveys, and analysis of documents and artifacts
(BAKER, 2006). The data collected in observational studies are often qualitative in
nature but they may also be quantitative or both (mixed-methods) (PRICE et al.,
2015). Participants may or may not be aware of the research objective. Researchers
can conduct observational studies on a participant or non-participant basis. In the
participant observation, the researcher becomes more involved with the activities
of the study participants, while in the non-participant observation, the researcher
observes the study participants, with their knowledge, but without taking an active
part in the situation under investigation (LIU et al., 2010).

The main limitations of observational studies are related to the observation effect and
observer bias (LIU et al., 2010). The observation effect refers to the subject’s aware-
ness of being under observation. That is, the presence of the researcher (even not
participating) may influence the participants’ actions. This effect may be mitigated
by a longer period of observation. Observer biases may be mitigated by ensuring
systematic and rigorous approaches to sampling. To increase reliability, the observer
can take steps through the collection of detailed field notes, and recording of audio
and video.

46

In this study, a structured observational study was carried out to evaluate the use
of the artifact proposed to support software analytics activities in a lab setting.
To complement the observational study, the participatory design technique (PD)
(BRATTETEIG et al., 2012) was employed to gather design suggestions from study
participants. PD is usually used for engaging users in the design of new information
technology (BRATTETEIG et al., 2012). There are different ways for supporting how
PD can be done in practice (BODKER et al., 1995). Workshops and design sessions
are the main methods of participatory design in which users by taking an active part
in the activities and design decisions. During PD sessions users are encouraged to
think creatively and propose their own ideas by assessment of sketches, prototypes,
and mockups created by designers.

3.2.2 Data analysis

For analysis of observational data captured from interaction of the study’s partic-
ipants with the artifact proposed in the first design cycle, two approaches were
adopted: a resources model (RM) (WRIGHT et al., 2000) and sequential analysis
(SANDERSON; FISHER, 1994). RM is a conceptual framework based on Distributed
Cognition theory (DCog) that allowed us to classify the interaction type between
people and available resources used as activity support under observation. RM was
chosen by considering that software analytics planning and managing is essentially
characterized by cognitive activities that involve memory, planning, reasoning, infer-
ring, learning, and making decisions (ROBILLARD et al., 1998), (HOLLAN et al., 2000).
The sequential analysis, in turn, allowed us to explore the interaction patterns by
observing the sequence of interactions and the most significant participant’s actions
over time. It is worth mentioning that the combination of these two approaches is
an original contribution of this work. As far as we know, the RM and sequential
analysis have never been used in combination. Our method of analysis using both
approaches is described in detail in Section 6.2 from Chapter 6. Next, we introduce
the concepts of DCog, RM, and sequential analysis.

3.2.2.1 Distributed cognition

Rooted in the cognitive sciences, Distributed Cognition (DCog) (HUTCHINS, 1995)
has provided a sound theoretical basis for investigating cognitive activities (FURNISS;

BLANDFORD, 2006), (WRIGHT et al., 2000). DCog is commonly used to explore how
information acquisition and propagation occur by observing cognition as a process
distributed across individuals, artifacts, internal and external representations, and
space and time (HUTCHINS, 1995).

47

DCog extends the cognition study to beyond the individuals’ brains by emphasizing
a holistic and systemic view (HOLLAN et al., 2000). Hutchins and colleagues’ works
investigated the distributed cognition in airline cockpits (HUTCHINS, 1995) and
collaborative programming activities during adaptive software maintenance (FLOR;

HUTCHINS, 1992). In the ASD context, DCog has been adopted to understand cog-
nitive activities characterized by remote working and collaboration in agile teams
(SHARP; ROBINSON, 2006) (DESHPANDE et al., 2016) (SHARP et al., 2012). DCog is
not a ready approach that one can easily apply in practice. A lot of time can be
spent to understanding all concepts behind DCog theory.

3.2.2.2 Resources model

Wright et al. (2000) proposed the Resources Model (RM) grounded on DCog to
identify unnecessary cognitive complexities in user interfaces. The authors use the
term “resource” to mean a source of information used to achieve a given task taking
into account external artifacts and a set of abstract information structures which
can be distributed between people and technological artifacts. The RM identifies six
abstract information structures, as follow:

• Plan: refers to a sequence of actions that could be carried out. Plans can
be represented internally as memorized procedures to complete some task.
They can also be represented externally as a step-by-step procedure, for
example, checklists, or standard operating procedures, or user instructions.
A plan prescribes an order in which actions should be carried out.

• Goal: specifies a state of the world to be achieved. Goal are abstract infor-
mation structures that can be represented internally or externally.

• Possibilities: refers to the set of possible next actions that can be taken,
given the current state of the system. The artifact or situation affords a
set of possible actions.

• History: consists of a list of the actions already taken or states achieved,
to get to the current state.

• Action-Effect: involves a set of possible actions are known; a statement of
the effect that an action will have if it is carried out.

• State: refers to the collection of relevant values of the objects that feature
in the interaction at a given point in the interaction.

48

Abstract Information structures may be represented internally in the head of the
person, externally in the resource, or even distributed across the two. These struc-
tures can be combined as resources for action in different ways. To characterize the
different configurations of resources, RM prescribes four interaction strategies as
follows:

a) Plan Construction (PC): it involves to compare the current state with
some goal state and to select from possible actions those that reduce the
difference between the two states. In this strategy the resources required
are: goal, possibilities, action-effect, and state.

b) Plan Following (PF): it involves the coordination of a predefined plan based
on the history of the actions, the current state of activities undertaken, and
a goal to follow. In this strategy the resources required are: : plan, history,
state, and goal.

c) Goal Matching (GM): it is one alternative where decisions about what to
do are more localized by matching the effects of action with the current
goal and checking to see if the resulting state satisfies the goal. In this
strategy the resources required are: goal, possibilities, action-effect.

d) History-based Choice (HC): it can be considered a starting point to reach
a goal when external representations provide an interaction history to be
used as a possibility. In this strategy the resources required are: goal, pos-
sibilities, history.

Wright et al. (2000) emphasized that a strategy does not emerge as a consequence
of available resource configurations, but is an active process of interpreting external
representations as resources. Scaife e Rogers (1996) highlight that the understanding
of how external representations impact in the cognitive system can help in the future
improvements of the users’ work.

RM has been used for the representation of information structures as abstract con-
cepts but also as an analytical tool to investigate how resource coordination occurs
for action. Vick et al. (2003) investigated how distributed virtual teams engage in
synchronous problem solving using decision modeling software supposing that anal-
ysis of patterns of time, and cognitive information trace use and re-use during the
work process can be used to evaluate how effectively a team manages available re-
sources under a variety of circumstances.

49

Fleury et al. (2015) used the RM to ascertain how automated assistance helps users
to correct errors of architectural floor plans. Dubochet (2009) used the distinction
between abstract information structures of the RM to discuss how knowledge was
shared in a team of programmers. Smith et al. (1999) applied the RM to identify
external resources needs to support in virtual environments by interaction episodes
analysis.

3.2.2.3 Sequential analysis

Sequential analysis (SA) is an approach widely used in observational studies to ex-
plore interactive behavior when people use computing and communication technolo-
gies (OLSON et al., 1994). SA is based on observational data categorized according
to some predefined set of codes to locate and describe patterns of interdependence
that occur within a behavior stream (BAKEMAN; GOTTMAN, 1997). SA provides
information about how patterns of behavior characterized by a sequence of events
occur over time.

SA analysis is quite common in HCI research for the investigation of sequences of user
interactions involving complex tasks (SANDERSON; FISHER, 1994). However, SA has
been applied in SE research to discover patterns of behaviors from interaction events
sequence involving individual or group work (D’ASTOUS; ROBILLARD, 2002) (POHL

et al., 2016). Among various existing exploratory sequential data analysis method,
Lag Sequential Analysis (LSA) (BAKEMAN; GOTTMAN, 1997) is a statistical method
widely used to discover probabilistic patterns in the stream of events and indicate
the degree of confidence with which we can state that a given event influences the
occurrence of other.

d’Astous e Robillard (2002) applied a LSA to understand the collaborative activities
performed during peer review meetings. First, they decomposed reviewers’ verbal
interaction into sequences representing a series of successive moves corresponding
to a common subject, and then applied LSA to find significant relationships and
exchange patterns that may occur during such meetings.

Pohl et al. (2016) used LSA for understanding the reasoning processes of users
while interacting with software visualization artifacts. They gathered the interac-
tion streams through log files and then used an existing information visualization
taxonomy to categorized the user activities. Due to the emphasis on human reason-
ing and interaction of users with software visualization artifacts, their findings were
also based on DCog theory.

50

Recently, Jeong (2019) used LSA to identify possible associations between instruc-
tional events observed in educational audio recordings (podcasts) considering differ-
ent learner satisfaction levels. To coding the sequence of educational events, Jeong
(2019) used a set of instructional events prescribed in a pre-established instructional
model.

3.3 Research design

In this section, research design with the steps of conduction are presented. Eight
activities were delineate to answer the three research questions, as displayed in
Figure 3.2.

Figure 3.2 - Research design.

SOURCE: Prepared by the author.

The first activity (1) refers to a literature review on the existing studies regarding
software analytics to have a broad overview of the research area and provide insights
for the proposal outlining. The second activity (2) includes identifying patterns to
support software practitioners in software analytics activities. Then, a case study is
conducted to explore how patterns could be introduced in practice (3). The forth
activity (4) is the artifact design taking into account previous activities findings.

51

An observational study is conducted (5) to evaluate the artifact design in supporting
to the planning and manage of software analytics activities. The sixth activity (6)
is to refine the artifact design, and then a second round of evaluations is performed
through workshops with software practitioners (7). Finally, the eighth activity (8)
is the research consolidation.

3.4 Chapter summary

This chapter describes the DSR framework adopted as the central methodology of
this research that allows the application of different design and evaluation meth-
ods. Then, the techniques we selected to collect and analyze data are presented.
In particular, we describe the two approaches that were used for the analysis of
observational data: the resources model (RM) (WRIGHT et al., 2000) and sequential
analysis (SANDERSON; FISHER, 1994). Details on how these approaches were applied
in the evaluation of the artifact proposed in this work are provided in Chapter 6.
Finally, we explain the steps of the research.

52

4 A PATTERN LANGUAGE FOR SOFTWARE ANALYTICS

This chapter introduces a set of patterns for software analytics based on experi-
ence reports identified from the literature review. These patterns were discussed
previously at Conferences on Pattern Languages of Programs (CHOMA et al., 2017)
(CHOMA et al., 2018), and then documented in a pattern language format. By answer-
ing what good practices could assist software professionals in conducting software
analytics (RQ2), the proposed pattern language describe steps to integrate the ana-
lytics activities into the development process. In the next chapter, the ideas behind
the patterns will be used as the basis for SA Canvas design, an artifact to support
the planning and management of software analytics activities in practice.

The remainder of this chapter is structured as follows: Section 4.1 describes the
main concepts related to patterns and pattern language. Section 4.2 presents some
patterns related to software analytics area. Section 4.3 contains a brief description of
each pattern for software analytics and an overview of them and their relationships.
And, Section 4.4 describes the patterns in more detail.

4.1 Patterns and pattern languages

The original concept of patterns emerged in the 1970s and was conceived by the
architect Christopher Alexander (ALEXANDER, 1979). In his book “The Timeless
Way of Building”, Alexander (1979) presents the following definition of what a
pattern is:

The pattern is, in short, at the same time a thing, which happens
in the world, and the rule which tells us how to create that thing,
and when we must create it. It is both a process and a thing; both a
description of a thing which is alive and a description of the process
which will generate that thing (ALEXANDER, 1979).

Patterns in Software Engineering appeared in the 1990s when an influential collec-
tion of patterns for object-oriented software design was published by Gamma (1995).
Nowadays, there are patterns for many domains and interests, such as analysis pat-
terns, system test patterns, user interaction patterns, organization and process pat-
terns. The annual Pattern Languages of Programming (PLoP)1 conferences have
become a permanent forum to discuss recurring problems of software design and
other issues in such domains.

1http://www.hillside.net

53

In summary, patterns have been designed to capture successful solutions to recurring
problems by documenting experiences. Basically, each pattern presents the context
for the problem, the forces that weigh upon the problem-solver and suggests a proven
solution to it (RISING, 1999). Patterns can be written in various forms, but a very
usual way is the Christopher Alexander style (ALEXANDER, 1977). In general, a
pattern writing is composed by the following elements:

• Name: a short description or a single word that is significant.

• Context: where the pattern might apply.

• Problem: what problem could be solved with the pattern.

• Forces: considerations on constraints/limitations conflicting with the goals.

• Solution: what to do to solve problem, how to achieve the goal.

• Examples: one or more applications using the pattern.

• Consequences: positive and negative effects of applying the pattern.

• Known uses: it describes known uses that confirm the pattern recurrence.

• Related patterns: patterns that are dealing with correlated issues.

Patterns can be applied in isolation. Nonetheless, patterns are commonly applied
together from a language to solve a given problem. The group of interconnected
patterns that fit together and fully address a topic or specific domain is named
pattern language (BUSCHMANN et al., 2007).

Just as language is the main method of human communication, consisting of words
used in a structure to put words together in meaningful ways, a pattern language
is a language that comprises patterns and the rules to put patterns together also in
meaningful ways (COPLIEN; HARRISON, 2005). In a pattern language, the patterns
are ordered, connected, and presented in a certain sequence. Pattern languages are
about emergent behavior in systems, while individual patterns encapsulate related
forces that focus on specific trade-offs to guide the decisions (COPLIEN; SCHMIDT,
1995). Several pattern languages have been proposed in the engineering field to ad-
dress different matters from organizational aspects (ITO et al., 2019) to more technical
aspects such as the architectural and design patterns (GUERRA et al., 2013).

54

While, Ito et al. (2019) proposed a pattern language involving problems caused by
the transfer of knowledge and responsibilities in the software industry during the
transition of people to other parts of the company or when they retire, Guerra et
al. (2013) proposed a pattern language involving software architectural patterns by
defining a reference architecture which identifies a base structure for metadata-based
frameworks.

4.2 Patterns in software analytics area

As far as we know, no previous study has presented patterns addressing the imple-
mentation of software analytics, nor related patterns for similar practices in agile
teams. However, we found some patterns related to the analysis of specific software
issues (MCGRATH et al., 2013) (GIGER; GALL, 2013) (SOUZA et al., 2013).

McGrath et al. (2013) identified a pattern to trace code changes from user requests
to change implementation by analyzing mailing lists and code repositories called
Concept to Commit. First, they suggest how to reduce the volume of data, and
then how to analyze both emails and commits descriptions using basic text mining
by performing the steps: tokenization, stemming, and document matrix creation.
For this activity, they indicated some tools such as RapidMiner2 or any statistical
software program like R software3. Finally, frequency analysis can be performed
using word cloud, heat map, or a dendrogram chart. This pattern suggests solutions
to a very common problem within the context of software analytics that involves
the analysis of unstructured data.

Giger e Gall (2013) presented a pattern called Effect Size Analysis related to
significance testing used to determine whether the collected data support or not
the researchers’ hypothesis. They describe how significance testing can be extended
by an analysis of the magnitude. This pattern is indicated for researchers want to
draw more general conclusions and valid results using a restricted data subset. By
addressing issues in the context of statistical decision making, researchers could
rethink costly actions in response to such a comparatively small effect size.

Souza et al. (2013) identified two patterns related to cleaning up invalid bug data –
Look Out for Mass Updates and Old Wine tastes Better. They refer to
best practices to deal with missing or inaccurate data within bug tracking systems.

2Source: https://rapidminer.com/
3Source: https://www.r-project.org/

55

The first pattern is indicated to determine which changes to bug reports were the
result of a mass update, while the second one is to determine bug reports that are
too recent to be classified.

Baysal et al. (2013c) introduced a pattern called Artifact Lifecycle Model to
facilitate the analysis of software artifacts and its evolution throughout development.
Such models are used to capture the dynamic nature of how certain development
artifacts changed over time. For example, the status of the tasks, modifications to
lines of code, or bugs fixing status.

As mentioned earlier, these patterns describe solutions to specific problems in the
area of software analytics. However, the data analysis is only part of the process
that aims at generating insights and supporting decisions. Besides analysis, software
analytics process also comprises gathering, measuring and monitoring, and visualiz-
ing information (BUSE; ZIMMERMANN, 2012). It is further noted that the mentioned
patterns address data analysis from a more technological perspective. In contrast,
the patterns documented in our study focus on the human perspective, as regards
the decision-making process.

4.3 Pattern language summary

This section introduces the proposed Pattern Language for Software Analytics whose
purpose is to present viable solutions on how to implement software analytics activ-
ities in an agile software development contexts. As mentioned earlier, the patterns
emerged from a literature review carried out in software analytics area. In this re-
view, we searched for best practices in several experience reports and identified the
typical issues addressed with software analytics.

The set of patterns that compose our pattern language were previously submitted in
two PLoP conferences (CHOMA et al., 2017) (CHOMA et al., 2018). These conferences
are venues for pattern development and dissemination, such as process patterns,
analysis patterns, organizational patterns, security patterns, and architectural pat-
terns (BUSCHMANN et al., 2007). PLoP conferences consist of two phases, shepherding
and writers’ workshops 4. Shepherding occurs before the conference. In this phase,
the authors receive suggestions for improvement of the paper from an experienced
author – a shepherd. At the end of the shepherding process, the shepherd recom-
mends whether to accept the submission for review at the conference.

4http://www.hillside.net/plop

56

The writers’ workshop process occurs during the conference meeting. In these work-
shops, the participants are all authors who have submitted papers they want feed-
back on for improvement. The purpose is to review and help the author improve
the paper. After the revisions and publishes in the Plops conferences, the patterns
presented in this chapter were consolidated into a pattern language and submitted
to the Journal LNCS Transactions on Pattern Languages of Programming.

Next, we present a summary of the eight patterns containing a brief description of
each of them.

(1) What You Need to Know: To solve the issues that the team want
to improve in the system and/or the software development process, in a
context where there is a large amount of software data that can inform
the decisions of the team, the solution is to define the key issues that the
development team wants to focus on, in order to improve the software
throughout the project.

(2) Choose the Means: To solve how to gather useful data regarding the
issues that the team need to solve, in a context where a plethora of data
is available, the solution is to define the most appropriate means, such as
metrics, tools, techniques and other approaches for extracting data from
software artifacts that will be useful in future decisions.

(3) Plan Analytics Implementation: To solve how to implement the soft-
ware analytics activities fitting them to project roadmap along with other
development tasks, in the context where the tasks directly related to the
implementation of software features are the top priority, the solution is
add tasks related to the software analytics in the backlog to be prioritized
with the regular project tasks.

(4) Small Steps for Analytics: To solve how to implement software an-
alytics in a pace that it does not to overburden the team, in the context
where much information at the same time can confuse and make the team
lose focus, the solution is to adjust software analytics tasks within the team
schedule by breaking down them at smaller portions to be carried out in
multi-steps.

57

(5) Reachable Goals: To solve how to turn software analytics findings into
actionable insights to improve software aspects, in a context where to per-
form all improvements based on the analytics automated feedback might
lead the team to act without focus, the solution is to take actionable in-
sights from the software analytics findings, and from them, settle reachable
goal adjusting the action steps.

(6) Learning from Experiments: To solve how to obtain information to
make informed decisions about software issues on some aspect we have not
yet implemented or we need to redesign, in a context where the team has
nowhere yet to collect and analyze data to support their decisions, the
solution is to create an alternative solution and perform an experiment
collecting data that allow the comparison with the current solution.

(7) Define Quality Standards: To solve how to achieve and maintain a
good level of quality for important software aspects, in the context where
the improvements can be made incrementally, the solution is to define
quality standards and then establish minimal or maximum thresholds for
any software aspect that the team intends to monitor.

(8) Suspend Measurement: To solve if an issue still need to be continually
monitored after some initial measurements, in a context where the team
does not yet have a monitoring system, or the current system is overloaded
with other issues, the solution is to put on standby the measurements that
already fulfilled their initial goal, are costly to be continuously monitored,
or that do not represent a value to the team at that moment.

Figure 4.1 provides an overview of the pattern language for software analytics by
showing how patterns relate to each other. The blocks in black represent the pat-
terns representing steps recommended for implementation of software analytics. The
dashed blocks represent the expected outputs from the application of the patterns.
Questions included among the patterns refer to factor that motivates the applica-
tion of the pattern. According to the proposed patterns, the first step towards to
implement software analytics process is to define What You Need to Know.
After that, with the purpose to answer the raised issues, the team needs to Choose
the Means that will be used to data gathering and analysis. Learning from
Experiments can be a way of testing a particular solution that the team is not
sure if it is the best way from a practical standpoint.

58

During the Software Analytics Planning, the team plans the analytics activ-
ities and prioritizes the tasks in their to-do list along with other development tasks.
Because analytics activities can be time-consuming, the team do not have to be
deployed them at once. Then, the team can set Small Steps for Analytics, ac-
cording to delivery schedule. Based on actionable insights, the team needs to define
Reachable Improvement Goals to implement the improvements in software
or its development process. Following a continuous improvement mindset, the team
Define Quality Standards to guide their improvement actions. The team can
apply the pattern Suspend Measurement when measurements no longer make
sense or when they have other priorities at the moment.

Figure 4.1 - Overview of the patterns and their relationships.

SOURCE: Prepared by the author.

59

4.4 Patterns description

This section presents the patterns for software analytics in detail. To describe them,
we used the format based on Alexander’s style (ALEXANDER, 1977), which provides
the pattern name, context, problem, forces, solution, examples, consequences, known
uses, and related patterns.

4.4.1 What you need to know

Also known as Focus on Key Issues, Highlight Your Questions, What You Want to
Improve

Development teams know that metrics and other kinds of information can be ex-
tracted from their systems in order to support decision making. Development ac-
tivities generate a large amount of data. Various software artifacts including source
code, bug reports, commit history, test executions, etc. could provide valuable in-
sights about software project. There are several tools that can extract such data
from the development environment at runtime. However, it is common that even
development teams that have them available might not know how to use them more
efficiently.

What issues do you want to improve in the software system and/or the
software development process?

• Software practitioners produce different data-rich software artifacts, but
they usually do not use the data to support their decisions.

• Many tools were developed to support the software analytics deployment,
but most of them can be time-consuming to install and configure.

• For many development teams, it may be difficult to start a software analyt-
ics project because of lack of time, but they need to consider their benefits
for software improvement.

• Some tools can generate a huge amount of data by default from the de-
velopment environment at runtime, but the team should just focus on the
data that will be useful to solve a given issue.

Therefore:

60

Define the key issues that the development team wants to focus on, in
order to improve the software throughout the project.

During the development of the product, issues around software aspects arise to be
solved. The team frequently make decisions to solve them based on experiences
and intuitions. However, the team may not have enough information to solve a
given issue. Such an issue can be related to the structure of the source code, the
development process or the business rules. By defining the key issues that need to
be addressed, the team can focus on efforts to solve them through a data-driven
investigation in order to obtain meaningful information to support any decisions.

Some decisions might lead to one-time action, for instance, when the team needs to
prioritize the implementation of an architectural component to improve the system
performance. Or it might be a series of continuous decisions and actions that need
to be performed through the iterations, such as for what part of the system do we
need to prioritize refactoring.

As an example, imagine that a development team wants to improve their tests and
need to decide where in the system they should put their effort. Using What You
Need to Know, a possible question highlighted by the development team might be
“What data is required to verify software test adequacy?”. Answering this question,
the team can avoid unnecessary data gathering, planning better on how to collect
useful data to investigate the issue.

As a consequence, the team will understand the reason behind the data being col-
lected, making better use of them. Additionally, unnecessary data will not be col-
lected and will not take away the focus of the team on what is more important.
Sometimes, tools can detect unexpected problems based on measurements that do
not have a known reason. Focusing only on a subset of that information, the team
can fail to notice a potential problem.

� � �

Lou et al. (2013) formulated questions about incident-management as a software-
analytics problem. For them, incident management of an online service requires the
service provider to take actions immediately to resolve the incident, since the cost of
each hour’s service downtime is high. As the use of debuggers to conduct diagnosis
on services is usually impracticable, the teams need to highlight other questions in
order to detected anomalies and quality issues at runtime of the service.

61

Nord et al. (2014) presented a series of questions related to measurement and anal-
ysis for software architecture and about how to meet the business goals of software.
According to them, there is an increasing need to provide ongoing insight into the
quality of the system being developed. Thus, the team’s questions might be, for in-
stance, about how to improve feedback between development and deployment through
means to measure intrinsic quality, value, and cost.

In the case presented by Robles et al. (2014), the information about the development
effort invested in a project was considered a business strategy. And, the question high-
lighted by the development team was related to how to obtain software development
estimations with a bounded margin of error.

� � �

The pattern Find Essential Qualities (YODER; WIRFS-BROCK, 2014) focused
on quality assurance is linked to this pattern. Since software analytics is not just
addressed to solve quality issues, our pattern also encompasses other software as-
pects, from the development process to business requirements. As an example of
supporting strategic and tactical decisions, an issue to solve could be the need for a
reduction in overworks of developers. After defining What You Need to Know,
in the next step, the team need to Choose the Means towards to solve the related
issue.

4.4.2 Choose the means

Also known as Approach to Answer, Choose the most Appropriate Means, Choose
the Right Means

In order to solve the issues around What You Need to Know, the team can
conduct a data-driven investigation by collecting data related to such issues to sup-
port their decisions. If software practitioners trust only in their experiences and
intuitions, they risk having a bad experience in the future because chose the wrong
path.There is a plethora of data that can be collected from the development envi-
ronment at runtime, which could provide concrete evidence and reasons to inform a
decision making.

How can you extract useful data regarding the issues that you need to
solve?

62

• The team can solve some problems based on their experience and intuition,
but not always that decisions will be based on true premises.

• Some needs for change and improvement in software can be difficult to
justify to stakeholders, but an analysis of these issues based on actual data
can strengthen the team’s arguments.

• Different data mining tools and methods can be used to discovering pat-
terns in large data sets, but the team needs to know which of them are
most appropriate for each case.

• There are several tools that can extract data from different types of soft-
ware artifacts, but such tools need to be properly configured to extract
useful data.

Therefore:

Define the most appropriate means, such as metrics, tools, techniques and
other approaches for extracting data from software artifacts that will be
useful in future decisions.

Focusing on the issue that should be solved, the developers can identify data that are
useful in providing concrete evidence to support their decisions. This data can come
from different sources – e.g., development tools, software repository, issue-tracking
system, etc. As an example, developers could retrieve information about execution
time from the software components in order to verify points that should be modified
aimed at improving the performance of the system. As another example, commit
history for bug correction, object-oriented metrics, and frequency of modification
could be used to explore which parts of source code that need to be prioritized
for refactoring. Yet another example could be an analysis of usage data logs for
estimating the impact of a new feature.

After identifying what data is needed to explore on a given issue, the team needs
to find tools and/or approaches that can be used to extract them from the system.
There may be ready-to-use tools, but sometimes the team will have to develop their
own tool to retrieve data in a more specific scenario. Note that, at a first moment,
the team will not yet have to implement any method or setting any tool, but only
identify and define the more appropriate instruments for both data collection and
analysis.

63

A few steps can be needed to extract accurate information from the raw data initially
collected. Sometimes, raw data need to be filtered, interpreted, or yet combined with
other information to meet What You Need to Know. However, the approach for
this does not need to be totally defined at this point, but it is important to discuss
what kind of information do you expect to have at the end.

Considering the running example, the development team wants to improve their
tests and need to decide where they should put their effort. By using Choose the
Means, developers defined that they need to extract two kinds of information: the
testing coverage values and the number of commits that modified each class. From
this information, they intend to prioritize classes that are highly modified and that
have low test coverage. To collect testing coverage data, they can use a test coverage
tool that is available in their continuous integration environment. However, they do
not know a ready-to-use tool to count the commits for each class. A viable solution
could be to create a script to collect and record such data in a CSV file for further
analysis. In the next step, the team will need to analyzed classes with low test
coverage and with a high modification frequency.

As a consequence, the team can have an overview of how they can obtain concrete
evidence for a decision. From this overview, they could consider whether it worth
to follow or not a software analytics approach by weighing the cost of the decision
and the penalty for choosing the wrong alternative. Stakeholders would be able
to understand better technical tasks and their impact from data analytics results.
However, this process might consume precious time from the team, taking away the
focus from main software development tasks.

� � �

According to Pachidi et al. (2014), the collecting of usage data logs is an important
means to monitor which applications are being most often used, which features were
underutilized, and which features could be improved. Usage data can provide valuable
information about how end-users are using the software, and whether the services
are meeting their needs.

Cerulo et al. (2015) proposed the extracting data from developers’ communication –
as contained in emails, issue trackers, and forums – to improve the software devel-
opment process.

64

Suonsyrjä et al. (2016) proposed a framework to support practitioners in finding
a suitable technological approach for automated collecting of usage data within the
process of data-driven software development.

� � �

The pattern Measurable System Qualities (YODER; WIRFS-BROCK, 2014) is
related to this pattern especially when the issues are related to software quality. The
most common quality attributes are performance, reliability, and usability. However,
any internal or external attributes related to process, business and/or resources (e.g.,
effort, number of coding faults found, cost-effectiveness, communication level, system
structure, etc.) can be objects of measurement to solve an open issue addressed
with software analytics. Moreover, the measurements can be used for both software
evaluation and prediction. Note that, some attributes may be relatively easy to
measure, while others may be difficult or costly to measure.

After Choose the Means to investigate What You Need to Know, in the
next step, the team should Plan Analytics Implementation based on issues to
solve.

4.4.3 Plan analytics implementation

Also known as Analytics in the Backlog, Software Analytics Planning

Towards understanding factors or causes contributing to the unwanted situation
related to the software project, the team has already discussed which data is required
for answering their questions and which the means will be used in the process of
collecting and analyzing. The next step is implementing a plan. However, the team
encounters some resistance because a task that is not related to the implementation
of the software functionality may consume precious time and consequently delay
the project. Particularly in agile teams, the effort in each iteration is prioritized
by stakeholders. For practitioners, for instance, it may be difficult to explain to
the stakeholders that the number of unresolved software issues can grow over time,
generating technical debts increasingly difficult to handle and correct (LI et al., 2015).
Software analytics implementation is a way of solving problems related to technical
debts.

How to implement the software analytics activities fitting them to
project roadmap along with other development tasks?

65

• Software analytics tasks such as the implementation of methods and con-
figuration of tools for data collection and analysis can be time-consuming,
but the team does not have to do everything all at once.

• Tasks related to the extracting and analyzing data can be plan along with
development tasks, but it cannot make the team’s attention off their de-
livery schedule.

• Data analytics can provide valuable information to help solve issues related
to technical debts, but improvement actions will also need to be scheduled.

• Software analytics results surely lead to better decisions, but the cost of
implementing it cannot be greater than the added value.

Therefore:

Add tasks related to the software analytics in the backlog to be priori-
tized with the regular project tasks.

The tasks identified when the team used the pattern Choose the Means should
be planned. Tasks related to the extraction, filtering, and analysis of data should
be estimated and prioritized. At this point, the team needs to consider whether the
cost of implementing software analytics will not be greater than the value added to
the product after the possible improvements.

Many analytics tasks can be selectively performed throughout the project, or when
the decision making is required. For instance, considering a decision that will be
necessary to be made in two months, the implementation of analytics to support
that decision is not a priority for the next iteration, then it can be postponed.

In the running example, developers want accurate information in order to improve
the testing process. They chose means to investigate the testing coverage and the
number of commits that modified each class. As part of the planning, they estimated
the time for installing the tool for measuring test coverage and found that it would
not consume much time. However, they would take considerable time to create the
script for extracting the most modified classes, as well as to make a crossover analysis
of the coverage data with the modified classes.

66

Since the number of classes was not yet large at the moment, the team along with
stakeholders decided to add only the task of setting the test coverage tool to the
next iteration. Hence, the script creation task and data crossover analysis remained
in the project backlog because were not considered a priority at that point.

As a consequence, the activities of software analytics will be planned and priori-
tized in the to-do list along with development tasks. Since tasks will be distributed
throughout the project, it may be easier to manage the project without risk of de-
lays. However, some analytics tasks defined with low priority are at risk of remain in
the backlog indefinitely and never to be done. To avoid this, the stakeholders need
to be aware of how that effort can bring value to the project.

� � �

Defect prediction is one common application of software analytics. Taipale et al.
(2013) reported the challenges of deploying a defect prediction model into practice.
They proposed a defect prediction model based on different modes of information
representative of the data, such as a commit hotness ranking, an error probability
mapping, and an approach to the visualization of interactions among teams.

Gonzalez-Torres et al. (2011) focused on software maintenance issues that required
the comprehension of project details. Thus, they proposed a visual software analytics
tool for the exploration and comparison of project structural, interface implemen-
tation, class hierarchy data, and the correlation of structural data with metrics, as
well as socio-technical relationships.

Minelli e Lanza (2013a) developed a visual web-based software analytics platform for
mobile applications. This tool supports the mining task and uses a set of visualization
techniques to facilitate the data analysis task.

� � �

This pattern can be complemented with the System Quality Dashboards (YO-

DER; WIRFS-BROCK, 2014) pattern since it refers to a solution that facilitates the
monitoring of the software measurements. By adopting dashboards, the team can
visually identify potential risks at runtime and plan action to solve or mitigate them.

67

4.4.4 Small steps for analytics

Also known as Analytics Tasks in Multi-steps, Analytics in Small Steps

While recognizing the value of software analytics, the team’ priority is always to de-
velop the target software. Some tasks to implement a software analytics project can
be extremely complex. Software measurement implementation, the configuration of
the tools in the development environment, and data analysis can be time-consuming.
The set of software data can provide valuable information, but it can be hard to
analyze and interpret. Receiving much information at once, the team may not be
able to turn them into information with real practical value (actionable) in a timely
manner.

How to implement software analytics in a pace that it does not to over-
burden the team?

• Because of the tight schedule, the team may not have time to implement
software analytics tasks, but they are aware that technical debts tend to
accumulate and make the situation more complicated.

• Some tools in default configuration may generate a lot of information about
the system, but the team is not able to handle so so much information at
once.

• It is important to keep an overview of the software analytics project and
have a plan step-by-step outlined from beginning to end, but the team can
go back and re-evaluate the tasks priorities whenever necessary.

• There may be big and complex analytics tasks to be done in a short period
of time, but breaking such tasks into smaller tasks helps everyone on the
team stay on schedule.

Therefore:

Adjust software analytics tasks within the team schedule by breaking
down them at smaller portions to be carried out in multi-steps.

By using the pattern to Plan Analytics Implementation, the team will have
an overview of the analytics tasks and planning of how to perform them step by
step.

68

Certain tasks, however, can be complex and time-consuming. The team cannot take
additional commitments on analytics that compromise their delivery schedule. How-
ever, the team would be postponing the solution of a relevant issue or failing to set-
tle a technical debt when postponing any software analytics task. Instead, the team
defines Small Steps for Analytics breaking down complex tasks at smaller
portions to be carried out in multi-steps. This strategy can help to avoid delays and
increase team satisfaction with the task done.

Some analytics tools have built-in features to support the monitoring of diverse
software aspects collected from different sources. Such tools can generate a lot of
information for developers at once. It will take much more time and effort to ma-
nipulate a great amount of information. In order not to overcharge the team with
excessive and unnecessary information, the tool can be set to provide only specific
information to complete a prioritized task.

Considering the running example, the team decided to implement the SonarQube 5

that can produce a test coverage report integrated into the continuous integration
server. This tool can generate many other kinds of information, such as object-
oriented metrics and bad practices detection. Based on this pattern, the team decided
to disable the extraction of other kinds of information that would not be used by
the team right now. Moving on to other tasks, other tool features might be enabled
in the next iterations.

As a consequence, the team can move forward with the software analytics project
without harming other development activities. Little by little, they will be able to
solve key issues and decrease technical debts based on accurate information. How-
ever, critical problems can be detected late due to a slower project pace. Moreover,
measurements that have been paused to avoid overload of information might be
needed to support other decisions.

� � �

Baysal et al. (2013b) argued that modern issue tracking systems that provide an
immense amount of raw information that sometimes is irrelevant in given situation.
They suggest personalized development tools that highlight only the most important
information for developers by reducing information overload.

5https://www.sonarqube.org

69

Pinto et al. (2016) proposed a tool that provides architectural compliance checking
as part of the continuous integration process. When violations are detected, this tool
can lock the integration to the software repository.

Regarding useful information, Turhan e Kuutti (2016) state that a simpler analysis
to answer a simpler question can provide more actionable insights to the team than
a more complex alternative.

� � �

The Plan Analytics Implementation pattern is related to this pattern because
having an overview of the project is necessary to manage tasks and adjust them to
fit the team schedule. Following this pattern, the team can review and prioritize
tasks as needed. Also, the amount of information can be controlled.

4.4.5 Reachable goals

Also known as Actionable Insights, Achievable Targets

Metrics indicate that always something could be better. Through an automated
analytics tool, the team can detect several points of improvement. However, faced
with many issues to solve, the team is a risk of losing focus on what they wish to
achieve. Moreover, they can have the sensation that is not moving forward when
they failed to reach the minimum quality boundaries set far above reality.

How to turn software analytics findings into actionable insights to im-
prove software aspects?

• Software analytics can generate a lot of interesting insights, but the team
needs to set clear and actionable goals they want to achieve.

• The team can identify many points of improvement from analysis of soft-
ware data, but they may lose focus on what are the project priorities when
setting many goals.

• The result from analytics can identify a huge number of existing issues to
fix, but not all issues can be solved right away, in view of the tight team’s
schedule.

70

• An ambitious goal can be achieved, but sometimes it takes it can take a
long time, and the team may have the feeling that they are not evolving
with regard to the improvement issues.

Therefore:

Take actionable insights from the software analytics findings, and from
them, settle reachable goal adjusting the action steps.

Based on ideas emerged from software analytics with real practical value, the team
should define the goals they want to achieve. For bolder goals, the team must adjust
the action steps needed to achieve it. This prevents the team from becoming unmoti-
vated every time they can’t reach a goal. Both team and stakeholders should realize
the benefits of software analytics taking into an account implemented improvements
actions.

It is worthwhile noting that an improvement action sometimes does not have to be
fully implemented in a single iteration. That is, the improvement actions can be
planned to be carried out in multi-steps. For each step, the team sets achievable
goals adjusted to their delivery schedule.

Considering the running example, imagine that through software analytics the team
found three controllers modified frequently that had less than 20% code coverage.
Now, the team can prioritize which classes need test coverage more urgently. How-
ever, the tests might be gradually implemented when, for example, this activity
involves many features. As a reachable goal, the team defined to increase their code
coverage to at least 50% in the next iteration. In order to evaluate the effects of
their actions and manage the work in progress, the team decided to keep this issue
in continuous monitoring.

As a consequence, the development team ends up establishing a culture of contin-
uous improvement. By balancing the amount of work in progress, the team avoids
accumulating uncompleted works. Sometimes, the team may not be able to deal
with an extra amount of work needed to act over software analytics insights and
take advantage of its benefits. And, if this work is not well planned, the technical
debt may even increase rather than reduce.

71

� � �

Haron e Syed-Mohamad (2015) proposed a plug-in for IDE that integrates test cov-
erage, number of defects, number of unresolved defects, defects severity and lines of
codes, aiming to provide an analytical view for practitioners to assess and validate
the testing results.

As to continuously monitoring and measuring activities, Souza et al. (2015) noted
that improving automated testing tools and using integration repositories are two
measures that can improve any project. However, they pointed out the importance of
easier access to up-to-date information about the process, in order to evaluate the
impact of yet-to-be-made decisions.

As a practice of continuous inspection, Guerra e Aniche (2015) have recommended
the use of static and dynamic analysis tools that retrieve information about impor-
tant quality attributes from the source code, such as test coverage, complexity, and
decoupling. Based on this information, the developers continuously can evaluate and
refactoring small portions of code – one piece at a time.

� � �

A related pattern is Chunking (WEISS; MOCKUS, 2013) that shows how to con-
duct an analysis of the set of changes made to a software system over time. This
analysis aimed at identifying sets of code that have the property that a change that
touches a chunk touches only that chunk. This pattern may be useful to help the
team coordinate and optimize its improvement actions. In this pattern, authors pro-
vided an algorithm to identify uncoupled pieces of software (chunks) where each one
represents a module on which an individual or a small team can work independently.

4.4.6 Learning from experiments

Also known as Run Experiments, Measure with Experiments

The issues that emerge in software analytics can be related to different needs. At
the development process level, the team may need to evaluate for instance new
methods, tools, or practices. At the product level, the team may need to evaluate
the requirements, features, or usage data. At the user experience level, they may
need to evaluate product usability, user satisfaction, design aspects, etc.

72

Some of these issues can be investigated through data collected from the development
environment and software artifacts such as source code, bug reports, test cases, usage
logs, documentation, etc. For other issues, however, the team may need to evaluate
the usability of a feature that has not yet been implemented. Even further, the team
may have implemented a feature that needs to be improved but does not know how
to improve it. In both these situations, the team has nowhere yet to collect and
analyze data to support their decisions.

How can we obtain information to make informed decisions about soft-
ware issues on some aspect we have not yet implemented or we need to
redesign?

• The team often has more than one way of implementing the same feature,
using different methods and tools for development, and adopting different
alternatives of architectural design, but they need to seek to make their
choices as successful as possible.

• Sometimes the team makes a decision that will be simple to reverse if
it does not work out, but some solutions are worth experimenting before
implementation to avoid wasting resources and rework.

• Experiments can fail, but the team can improve the experiment design by
analyzing what went wrong.

• Sometimes, experiments can produce inconsistent results, but the team
can investigate the cause of such inconsistencies and then conduct new
experiments if it proves feasible.

Therefore:

Create an alternative solution and perform an experiment collecting data
that allow the comparison with the current solution.

Experiments allow us to test our hypotheses for better decision making. Results from
experiments can provide us with relevant information to find the best alternatives
for design, tools, approaches to development, test methods, among others. Through
experiments, we can compare two different approaches, where the control group can
be an existing solution in use. That is, we can verify whether an idea is promising
or it makes no sense to continue with it.

73

Moreover, experiments can have a low cost of implementation. However, before opt-
ing for experimentation, the team always needs to weight the cost of doing one or
more experiments with the cost of re-engineering or redesigning after implementing
something. The team needs to have a clear purpose for the experiment and have a
reasonable hypothesis to test. The experimental design should be carefully planned,
and the experimenters should know which aspects of the software or process will be
observed.

The results should be analyzed without bias by the development team to ensure suc-
cessful experimentation. During the experimental design planning, the team should
be especially careful also to define the experiment size. Large experiments can be
costly and unfeasible. Both ROI and the time to implement an experiment are im-
portant factors to be considered by the team before adopting them.

Sometimes experiments may not work out, and sometimes they can produce con-
flicting or unclear results. When an experiment did not provide useful information
or has unclear results, the team decides if new experiments should be carried out
from the lessons learned. Replicating an experiment may be impractical depending
on its cost and size. Small experiments tend to be cheaper and easier to replicate.
About experimenting and learning, worth taking into consideration Linda Rising’s
advice:

You can’t realistically plan anything from the beginning; the only way
to reach your long-term goals or solve your big problems is to try a
small thing and learn from the experience. That’s how we have always
learned. Babies do this from the start. It’s the basis for the scientific
approach. Experiment and learn (RISING, 2011).

As an example, imagine that a development team wants to increase the number
of hits/clicks on related products in an e-commerce application. Currently, in this
application, the products are merely recommended according to the category. The
team has the following idea: an algorithm to recommend products that were recently
bought with the product being searched. Additionally, the team wants to rearrange
products on the user interface. They do not know how much it will be pleasing to
the end-user. In order to save time and effort, the team develops some prototypes
and runs an experiment with a limited number of users, representing the target
audience. From the experiment results, they were able to know which was the best
option for the user interface redesign.

74

As a consequence, the results of experimentation can produce insightful information
about the product or the development process, that is, the reliable and valuable
knowledge needed to make better decisions. Sometimes, team members can be biased
in how they interpret the results of an experiment. If it doesn’t produce the results
they expect, they may discount the results or find ways to invalidate the experiment.
Other times, the results of an experiment may be inconclusive. In that case, the team
must decide whether to perform another experiment to pick among equally viable
options. Also, an experiment can provide misleading information which did not test
the hypothesis. In that case, the team may have to spend time figuring out why
something you thought would improve the system did not.

� � �

Kim et al. (2016) investigated the competencies and working styles of data scien-
tists in software-oriented data analytics context. They reported an increase in the
randomized two-variant experiments called A/B testing in order to assess the re-
quirements and utility of new software features. Because of numerous possibilities
for alternative software designs, data scientists along with engineering teams have
built software systems to inject the changes, called flighting.

Gousios et al. (2016) introduced the concept of streaming software analytics and
proposed a data analytics infrastructure which unifies the representation of historical
and current data as streams and enables high-level aggregation and summarization
using a common query. This approach can facilitate the execution of experiments,
as well as data collection and correlation of the results of applying specific design
and development decisions and their outcomes.

Liechti et al. (2017b) introduced the idea of test analytics with the purpose of helping
an agile development team to improve their test process. Focusing on collaborative
practices, they organized a series of workshops to train the team and started with
small experiments on simple features which allowed to evaluate and select a set of
tools and to create a collection of examples.

� � �

Build Prototypes (COPLIEN; HARRISON, 2005) is a related pattern that high-
lights the usefulness of prototypes in experiments to understand requirements, val-
idate requirements with customers, explore human/computer interactions for the
system, or explore the cost and benefits of design decisions.

75

Early Validations is another pattern addressed for software startups (MELEGATI;

GOLDMAN, 2015). In that pattern, experiments are performed to validate or reject
an initial hypothesis and make decisions about the direction of the project based on
acquired knowledge.

4.4.7 Define quality standards

Also known as Define Quality Boundaries, Set Quality Thresholds

By using an analytics approach, the team collects data about a given issue. From the
analysis of data, they discuss possible solutions and have insights to take action on.
Based on these insights, the team defines which goals they want to achieve concerning
critical issues. The improvement actions more audacious can be implemented in a
stepwise fashion. However, the team needs to establish milestones to achieve the
goals. Once implementing the improvements, the team can evaluate the impact of
the changes by collecting feedback from stakeholders. Once the goals have been
achieved, the challenge will be to maintain the quality level achieved.

How you can achieve and maintain a good level of quality for important
software aspects?

• By analyzing software data, developers can make better decisions about
improving the development process and software quality, but the quality
of some aspects will need to be continuously monitored.

• The culture of continuous improvement is stimulated by achieved goals and
satisfaction of stakeholders, but it may not be easy to convince stakeholders
about the tradeoffs of continuous inspection.

• The process of continuous improvement helps sustain the software evo-
lution and maintenance; the team must have reachable goals and define
quality standards.

Therefore:

Define quality standards and then establish minimal or maximum thresh-
olds for any software aspect that the team intends to monitor.

When investigating a given issue, the team might obtain information needed to take
steps to solve it based on actual data.

76

To maintain the level of quality achieved, some software aspects can be monitored
longer. For this purpose, the quality metrics can be used to assess different software
aspects such as code quality, testing coverage, performance, bug fixing, productivity,
and user satisfaction.

Following a quality standard, the team should establish quality thresholds to aspects
that they want to monitor. Quality thresholds can be defined whenever there is a
need for continuous inspection. For example, for issues related to coverage testing,
the response time cannot exceed 2 seconds (maximum acceptable value) or the test
coverage must be at least 70% (minimum acceptable value). However, the minimum
or maximum value established for an attribute should be periodically analyzed and
can be redefined focusing on continuous improvement. Moreover, the team may need
to make trade-offs between different software aspects – e.g., performance, security,
and usability. Thus, the threshold value of an aspect can be redefined so that another
aspect can work.

As an example, let us suppose that the team wants to automate more of their tests,
but they do not know where to start, once there is an immense amount of classes.
Their key issue is “Where should we focus our test efforts?”. To answer this question,
they identified the need to investigate two data sources: the code-source to verify
current test coverage, and the code repository to verify the percentage of commits
related to fixing bugs and the classes with the highest number of changes to identify
the classes with more problems. As data-gathering mechanisms they decided (a)
to adopt SonarQube for code coverage; (b) to find a tool to collect the number of
changes, and (c) to develop a script to relate commit messages with bug issues.
When analyzing the collected data looking for insights, the team found that “Web
controllers have a high change rate and a low coverage” and “many changes in DAOs
were related to bug fixes”. Then, as part of an incremental goal, they established a
minimum class coverage for Web Controllers of 60%; and minimum class coverage
for DAOs of 80%. Moving forward, they set a threshold of at least 80% coverage for
new classes.

As a consequence, as new requirements come in, the team is engaged in evolving
the software, while maintaining a quality standard. By setting the boundary values,
the team assumes a commitment to meet some pre-established quality standards.
If these boundaries do not comply, the team must identify the causes because they
have failed and if necessary redefine new achievable goals. Sometimes, the team
attempting to reach a certain target can unknowingly fail to notice other issues.

77

� � �

Feldt et al. (2013) reported how visualization and correlation between test and code
measurements can support decisions on software quality improvements, based on a
case study where heatmaps were employed to visualize and monitor changes and
identify recurring patterns of an embedded control system.

Foidl e Felderer (2016) discussed the challenges related to defect prevention and high-
lighted the importance of software analytics to improve quality assurance of Internet
of Things (IoT) applications. They recommend the usage of data mining algorithms
and techniques (e.g., classification, association, and clustering) as well as predictive
modeling to support the quality assurance of IoT solutions.

Martínez-Fernández et al. (2018) proposed a quality model called Q-Rapids. The
model encompasses four quality aspects. Maintainability, reliability, functional suit-
ability are quality aspects from ISO 25010 and refer to the quality of the software
system, while productivity refers to the quality of the software development process.
In this model, quality aspects are calculated based on product and process factors.
Both product and process factors are calculated based on the assessed metrics. And,
metrics are calculated from raw data, which may come from heterogeneous data
sources.

� � �

The System Quality Dashboards pattern (YODER; WIRFS-BROCK, 2014) rec-
ommends the use of dashboards to monitor important qualities aspects from values
established by the team. Tools for monitoring systems such as SonarCube allow
you to configure alerts and notifications when measured values cross a threshold.
The Continuous Inspection pattern (MERSON et al., 2014) captures the overall
practice of continuous inspection to preserve the quality of the source code and its
alignment to the architecture in an agile environment.

4.4.8 Suspend measurement

Also known as Standby Measurement, Hold Measurement

When investigating a critical issue using software analytics, the team first performs
data gathering to obtain accurate and in-depth information about it. And then, they
analyze the data in order to find out the best way to solve that issue.

78

In some instances, the information may be insufficient and the team will need col-
lecting more data. Sometimes, a greater effort may be required to automate data
collection and analysis when the team defines that a particular issue needs to be
monitored continuously. However, there may be issues with a low likelihood of re-
currence; or even issues that are no longer a priority for the team.

What should the team do when a particular problem requires additional
effort to be continuously monitored, or when a problem has a low likeli-
hood of recurrence, or whenever a particular measurement is no longer
a priority at that time?

• It is crucial that the development team make decisions in its process based
on evidence, but the software analytics activities need to be carefully
planned and evaluated over time because they can consume a lot of team
effort.

• Critical issues need an immediate investigation to avoid software operation
failures and information inconsistency, but the team has other priorities in
the project.

• A given issue that has been the subject of measurement may have achieved
the primary goal and, for the next interactions new measurements will be
unnecessary. Achieve a goal could be to prioritize the software maintenance
tasks by identifying classes with the highest number of bugs, for example.

• Once a metric has been obtained through scripts, such as a static log anal-
ysis or a SQL query, it can be costly to add it into a continuous monitoring
mechanism or to execute it frequently. The integration of this measurement
in the deployment or build environment collecting live data might demand
a considerable effort.

• It may be difficult for the team to maintain continuous monitoring of a par-
ticular aspect of the software. However, the amount of value-added may
outweigh team effort. Moreover, some tools can facilitate the process of
automating that reducing the effort significantly in the continuous moni-
toring implementation.

79

Therefore:

Put on standby the measurements that already fulfilled their initial goal,
are costly to be continuously monitored, or that do not represent a value
to the team at that moment.

When facing problems related to software usage, for instance, the team may need
to check specific issues. The team is suspicious of some flaws in the system, but
they have no idea about the dimension of the problem, nor the real impact upon
system operation. They decide to investigate the issue through further analysis.
In one-off action, they detect the problem through software analytics. Then, they
define the next steps to solve the problem and put the process used to collect and
analyze information on hold. The team can suspend measurement of the issues
with a low possibility of recurrence. However, some issues may need monitoring for
an extended period in order to prevent any flaw in the system operation. At that
moment, however, the team has defined that, for some reason (e.g., effort, cost or
other project constraints), the monitoring of these issues cannot be implemented
immediately.

When investigating and detecting potential problems, the team can choose metrics to
monitor them continuously. But, in many cases, the team may not have a monitoring
system yet, or it could be that the existing system is overloaded due to monitoring
other issues that are more important. Or even, the monitoring system does not
provide resources to monitor a particular problem. Anyway, the team will have a
certain cost to prepare the monitoring system.

The cost of collecting data either manually or in a “one-off” way can also be very
costly for the team. For instance, consider data extracted from the database using
an SQL query or information extracted from a log analysis using a simple script.
Both solutions need to be developed and implemented by the team. However, the
team needs to assess the feasibility of measurement of a given issue, taking into
account the list of priorities and the cost of implementation.

As a practical example of when to Suspend Measurement, let’s suppose that a
team is using software analytics to know about the consistency of the information
stored in the database where data are provided daily (minute by minute) from a
distributed sensors network. The team suspects data inconsistency caused by sensor
failures, but they do not know the extent of the problem.

80

From the analysis of data, the team has obtained evidence to prove their suspicions
and make some decisions about what to do to resolve this problem. In contact
with the domain experts, they discuss mechanisms to normalize the data before
the information is delivered to the end-user of the application. They envisage the
possibility of implementing continuous monitoring on the issue, but currently, they
have other higher priorities and demands. Because of this, they decide to put the
measurements on hold. As an advantage, after this experience, the team already
knows how to collect and analyze sensor data any moment they need to in the
future.

As a consequence, the team should act quickly to gather evidence on issues of con-
cern, which can have an irreparable effect if they are ignored for a long time. As an
immediate action, the team can mitigate a problem by using corrective methods.
In the future, they may implement preventive actions. Knowing how to do it, the
team can use the same means to fix a problem when it occurs. However, the team
can forever postpone a definitive solution of a problem, the installation of an alert
program, or the implementation of a continuous monitoring system for the most
critical issues.

� � �

Shull (2014) presented a discussion between two ways to handle software data. The
first advocate that analysts need to be intentional and to work on what is useful, not
just what is convenient to collect, and the other argue for reflecting and learning
more from collected data before collecting something new.

Ram et al. (2018) reported challenges faced in operationalizing metrics based on
multiple case study conducted at four Agile software companies. The main challenges
found were the lack of data or appropriate tools to produce that data, existing process
inhibiting change, and difficulty in deriving actionable inputs.

Huijgens et al. (2017) investigated how strong metrics for agile (Scrum) DevOps
teams can be set in an iterative fashion strong agile metrics. Strong agile metrics
refers to metrics with high predictive power to be able to support a highly effective
monitor and control capability within continuous delivery context.

� � �

81

The Recalibrate the Landing Zone pattern (YODER; WIRFS-BROCK, 2014) is
related to this pattern by addressing the implementation of decisions when resources
are incrementally implemented. It is natural that some criteria adopted in the course
of the project need to be adjusted over time. These decisions can affect or limit the
ability to achieve new goals and meet other demands. Thus, measurements may be
provisionally suspended and then refined in future actions. The Architectural
Trigger pattern (WIRFS-BROCK et al., 2015) suggests that when the team does
not know when to evolve the architecture, they can develop architectural triggers.
Similarly, the team can define triggers to warn them when a certain condition may
require immediate action to treat a particular issue.

4.5 Chapter summary

This chapter presented a pattern language for supporting software analytics activi-
ties implementation in practice. The proposed patterns focus on recurring solutions
about how to incorporate software analytics on an interactive and continuous basis
to inform the decision-making process of software practitioners. Considering differ-
ent levels of decision-making, these patterns can address different issues by using a
software analytics approach, such as the ones related to source code quality, testing
methods, bug treatment, runtime software properties, reuse of components, main-
tenance and software evolution, development practices, teamwork and productivity,
customer and requirements, user experience, and services.

82

5 SOFTWARE ANALYTICS CANVAS

This chapter reports the design cycle of the artifact proposed to supporting agile
teams in the software analytics activities, named SA Canvas. This artifact was based
on the recommendations covered in the pattern language described in the previous
chapter. The evaluation cycle of the artifact will be reported in Chapter 6.

Section 5.1 contextualizes how the idea of consolidating patterns for software ana-
lytics into an artifact emerged with the aim of supporting software practitioners in
a more practical way. Section 5.2 presents the investigation findings on information
flows and the role of artifacts in agile environments. Section 5.3 covers the measure-
ments in an agile context. Section 5.4 introduces the canvas as artifact to support
software analytics activities. Finally, Section 5.5 describes the first version of the SA
Canvas, some recommendations, and an example of use.

5.1 Background

The idea of the artifact to support analytics activities based on the patterns in-
troduced in the previous section was triggered from feedback and insights obtained
in meetings with members of the EMBRACE team at the Space Weather Cen-
ter, in October 2017. EMBRACE was created in 2008 at the National Institute for
Space Research (INPE) as a space weather forecast and information center in Brazil
through the association of the Space and Atmospheric Science division (CEA) and
of the Laboratory of Computation and Applied Mathematics (LAC). The purpose
of EMBRACE is to provide relevant information on spatial phenomena capable of
disrupting economic activities. Such information has a great scientific and techno-
logical impact and can assist decision-making by both the government, regulatory
agencies, and Brazilian companies.

Through a web portal 1, EMBRACE researchers offer different products based on
their research in space climate. On the website, information on disturbance scales
by Solar Radiation (X-Ray Flow or R Scale) and Geomagnetic Storm (Ksa Index or
G Scale) are available to fulfill the demand of the community of scientists working
with satellite orbit control, communication in the HF frequency range, and electric
power operators, for example. Over the years, EMBRACE researchers and developers
have invested in updates and expansions of their information systems (databases,
servers, physical and virtual memories, and software), always focusing on security
and quality.

1http://www2.inpe.br/climaespacial/portal/the-embrace-program/

83

Due to the domain nature, a large volume of data is collected daily by a sensor
network maintained by EMBRACE. Sensor data usually are used in the models
developed by the researchers and feed the databases at the research center. The
reliability and consistency of the information available on the EMBRACE portal
are aspects very relevant for them.

When we presented the software analytics patterns to the EMBRACE team, they
showed great interest in applying them in their practice. The team saw the software
analytics as an opportunity to guide their decisions during the process of developing
new products, as well as the evolution and maintenance of legacy applications. On
that occasion, we interviewed the Product Owner (PO) to understand their daily
work and agile practices adopted by team. We found that the developer team was
small composed of one back-end developer and two front-end developers. The mem-
bers were hired from a third-party company. The PO presented us a new product
under development and comment on difficulties to maintain the legacy products.
While the new products were already being developed within good development
practices and with automated testing, the legacies had no test coverage. As for soft-
ware metrics collection, he commented on the difficulty to set up rules on SonarQube
2, a tool for inspecting the code quality. SonarQube provides a pre-configured dash-
board that present output from various sensors but offer very limited customization
capability (DEISSENBOECK et al., 2008).

After this interaction, we perceived that a software analytics project could encourage
the team to take the time to identify the most appropriate tools and means to
establish a more efficient measurement program. As for legacy software, software
analytics could help them prioritize and optimize their maintenance activities. From
that meetings, we started to devise how the patterns could be applied in practice in
a systematic way. With this objective in mind, we decided to investigate the existing
literature to understand on how information flows and what is the role of artifacts
in agile environments (Section 5.2). In addition, we also investigated the studies on
measurements in agile contexts (Section 5.3).

5.2 Information flow and the role of artifacts in agile environments

Agile principles advocate that the most efficient and effective method of conveying
information to and within a development team working in close collaboration is
face-to-face communication (BECK et al., 2001).

2https://www.sonarqube.org

84

Two of the four values listed in the agile manifesto highlight collaboration as a key
practice for agile teams. Within Agile environments, collaborations are “complex
events that happen through talk, through artifact use, through gestures, through
various electronic media, or through combinations of these channels of communica-
tion” (BROWN et al., 2011).

Regarding channels of communication, one of the primary practices of XP, for in-
stance, is keeping an “informative workspace” about teams’ work where anyone
interested can be able to get a general idea of how the project is going, expending
very little energy to view what is displayed (BECK; ANDRES, 2004). The information
displayed in agile workplace tend to change over time following the dynamism of the
team’s activities (OLIVEIRA et al., 2013). Artifacts like posters, boards, or displays
with colored sticky notes posted in a place where people can see it as they work
are considered an important information radiator (COCKBURN, 2004) which allows
more communication with fewer interruptions since everyone can access any time
the shared information.

Seemingly simple, the agile artifacts are used in disciplined and sophisticated ways
allowing an efficient means of communication and work organization. By analyzing in
detail the activity of one agile team, Sharp et al. (SHARP et al., 2006) found that the
role of physical artifacts is largely restricted to process issues, rather than detailed
information about the software under production. For example, story cards – a small
index card used to write users’ requirements – when displayed upon whiteboards,
flip charts, or a wall allow the team to view the project status concerning work in
progress, in testing, or done.

Agile teams use a spectrum of communication ranging from informal communication
(face-to-face) to formal communication, one that is mediated by formal artifacts.
Gerard et al. (GERARD et al., 2018) introduced the concept of fuzzy artifacts to
include the artifacts which are not formally documented, but which are explicitly
recognized by an agile team. User story 3 planning, user story specification, and
Go/No-Go decisions are examples of fuzzy artifacts identified in the study by Gerard
et al. User story planning refers to the assignment of priorities and effort using, for
instance, the planning poker technique (COHN, 2005), while user story specification
refers to any additional information requested by the designers. Go/No-Go decisions
are decisions about, whether or not, the ongoing project should be continued.

3User stories are requirements notation commonly adopted in agile development (COHN, 2004).

85

5.3 Measurement in agile context

Agile was designed to reduce the cost of change and uncertainty (KS, 2017). However,
due to the urgency of product delivery, lack of time, and other constraints, many
agile teams have neglected the systematic use of metrics to improve the product
quality or the way they develop software (RAM et al., 2019). Within this scenario,
practitioners end up making important decisions based on vague assumptions or past
experiences. Nevertheless, to save time and resources, decisions must be as accurate
as possible.

Currently, there are numerous tools to support software analytics when it comes
to collecting, consolidating, and analyzing data. The range of tools includes unit
testing frameworks, software metrics tools, bug checkers, dashboards for supporting
developers’ daily activities, and some software analytics platforms to be ready to go
(BAYSAL et al., 2013a). Deissenboeck et al. (DEISSENBOECK et al., 2008) identified
four categories of tools according to usage dimensions: (i) sensors; (ii) system analysis
workbenches; (iii) project intelligence platforms; and (iv) dashboard toolkits.

Sensors include verification and testing tools, anomaly detectors and metric calcu-
lators that perform fully automated analyses. System analysis workbenches usually
are used on-demand during system inspection or review to support experts in the
analysis of various development artifacts such as source code and architecture spec-
ifications. Project intelligence platforms are designed to operate autonomously col-
lecting metrics within a software development environment, offering source control,
issue tracking functionality, and sensors that gather data and transmit it to a cen-
tral server for analysis, aggregation, and visualization. Dashboard toolkits provide
libraries to build custom-made analysis dashboards for quality analysis and project
controlling. The analysis results can be visualized in a variety of formats, including
general-purpose lists, tables, graphs, charts, or treemaps. SonarQube4 is an example
of a pre-configured dashboard that present output from various sensors but offer
very limited customization capability (DEISSENBOECK et al., 2008).

Although many of these tools provide structure on top of which data-driven im-
provement processes can be implemented, some tools can be difficult to use and
time-consuming to set up them (LIECHTI et al., 2017a). Furthermore, software prac-
titioners can even get lost with so much information that existing tools can provide.

4https://www.sonarqube.org

86

In some instances, there may be a need to develop a tool from scratch in order
to investigate more specific issues within certain domains (BAYSAL, 2013). How-
ever, whatever the case, the cost of extracting important information and insights
from data sets using analytical reasoning, and then deliberation of improvements
must be computed. As mentioned previously, to successfully run software analytics
projects, the entire team needs to be engaged and aware of the analytics process;
the software development tasks cannot be stopped to implement analytics; any mea-
surement should be done for a known reason; and awareness that decisions informed
from analytics should generate actionable goals. Based on these assumptions, an ap-
proach to supporting in an efficient manner agile teams is necessary throughout the
planning and execution of software analytics activities, as well as for deliberating
improvements.

5.4 Canvas model

Taking into account the existing studies on how information flows in agile environ-
ments, the types of artifacts commonly used to support interaction among team
members, and the agile measurements practices, we choose to create an artifact in a
canvas format to consolidate the concepts of our pattern language for planning and
tracking software analytics activities.

Canvas models are visual maps structured and preformatted commonly used to
improve analyzability and communicability by supporting the teamwork within col-
laborative environments (COES, 2014). Canvas as a powerful visual tool has been
popularised by Osterwalder and Pigneur (OSTERWALDER; PIGNEUR, 2010) who pro-
posed a canvas called Business Model Canvas (BMC) to mold a business model
framework. BMC has business-level applicability and, as defined by the authors, the
business model goal is to describe “the rationale of how an organization creates, de-
livers, and captures value” (OSTERWALDER et al., 2005). BMC has been successfully
applied and adapted for the development of new business, conception and plan-
ning of projects, strategic alignment of projects, value proposition, acceleration of
startups, among others (MAURYA, 2012) (JOYCE; PAQUIN, 2016) (NAGLE; SAMMON,
2016) (NIDAGUNDI; NOVICKIS, 2017).

From a practical point of view, agile artifacts tend to be simple and their main
purpose is to support communication and teamwork. In this sense, a canvas to
supporting agile teams in software analytics activities is aligned with this purpose
because it should be working as an important channel to communicate the analytics
process ongoing, results, insights, and decisions of the team.

87

5.5 Software analytics canvas - 1st version

This section presents the first version of the canvas named Software Analytics Canvas
(SA Canvas), which was initially published in (CHOMA et al., 2019). As aforemen-
tioned, the goal of the canvas is to support agile teams during planning, driving,
and tracking of the software analytics activities for informed decision making. Next,
we present the first template of the canvas. Then, the elements that make up the
canvas are described. And finally, an example of the canvas usage is presented.

5.5.1 Software analytics canvas template

Figure 5.1 shows the first version of SA Canvas – a template built with seven blocks
on which inputs and outputs of the software analytics process can be planned and
managed by the team.

Figure 5.1 - SA Canvas [version 1.0].

SOURCE: Prepared by the author.

88

The first template of the SA Canvas was drawn on the digital format to be re-
produced an A4 size picture. Nonetheless, note that the proposed canvas can be
presented in another digital format (e.g., power-point, iPad app, wiki), and printed
on another type of physical artifact (e.g., A3 paper, Flip-Chart, whiteboard). Or
even, it can be adapted to a collaboration tool that organizes projects into boards
such as Trello5, Mural6, and Miro.com7.

5.5.2 Software analytics canvas elements

During artifact design, we have taken into account that it should be flexible enough
to communicate the practitioners’ ideas, from a broad view of the elements that
compose it, including knowledge of the relationship between these elements. The
patterns presented in Chapter 4 were the main basis for defining the seven canvas’
elements, which also are referred to as blocks or sessions. The seven elements of
the SA Canvas in its first version were named as follows: Key Issues, Data Sources,
Data Gathering, Insights, Quality Thresholds, Analytics Implementation, and Incre-
mental Goals. Next, the explanation of each canvas’ element is presented including
the patterns related. Also, a guiding question is provided for each item, with the
objective of helping beginner users.

Key Issues. This element is related to pattern What You Want to Know. As a
first step, the team can raise issues that need to be verified, analyzed and improved.
The issues can be for example related to the internal quality of the system (e.g., code
quality), external quality of the system (e.g., performance, bug density, the effort
required to fix defects), productivity (e.g., effort estimation), and/or usage patterns
(e.g., usability, user satisfaction). The guiding question is: What does the team want
to know?

Data Sources. This element is related to patterns Choose the Means and
Learning from Experiments. After defining the key issues, the team identi-
fies what kind of data is needed to know more about the issue raised, and from
which sources the data should be extracted. For example a dump of the database
system on recent transactions, source code, behaviors’ user, historical data about
bugs incidence, etc. For certain issues, the team may recognize the need to collect
data from multiple sources for cross-referencing. The guiding question is: What data
sources can provide information on the issues raised?

5https://trello.com/
6https://www.mural.co/
7https://miro.com/

89

Data Gathering. This element also is related to pattern Choose the Means.
After identifying the data sources, the team should decide which metrics and tools
will be used to gather the data. The team can, for example, enable the collection of
specific code metrics in the development environment, export from SGBD data refer-
ring to a given period, verify the need to create a specific script to extract data from
the software repository, etc. Furthermore, the team needs to decide which methods
and tools will be used to analyze the data collected. The team can employ simple
statistical methods (e.g., descriptive and inferential statistics) to more sophisticated
methods (e.g., data mining, natural language processing, machine learning, etc.),
according to the type and amount of data. Also, the team needs to decide on the
tools to support their analysis. They can opt for platforms to software analytics
(e.g., Kiuwan8, Seerene9) which can be configured according to the team’s needs.
The guiding question is: How will the data be collected and analyzed?

Insights. This element is a trigger for the pattern Reachable Improvement
Goals. The team analyzes the results obtained from the collected data and discusses
possible solutions and insights to making-decision. For example, the team finds that
“tests have low coverage in module X”, “customers prefer this approach” and so on.
Then, Insights are raised from the search for solutions. Notice that, sometimes, the
data analysis did not reveal significant information about the issue raised. So, the
team will decide whether to continue the investigation by collecting new data or
if the issue is disregarded, once no action is necessary. The guiding questions are:
What insights emerged after analysis of the results?

Quality Thresholds. This element is related to pattern Define Quality Stan-
dards. When implementing the improvements via informed decision-making, the
team can evaluate the impact of the changes by collecting feedback from stake-
holders. From collecting feedback, the team will have enough information to decide
whether to consider the issue resolved, or whether the issue should be monitored
for longer. Concerning unresolved issues, the team will decide whether they will
be re-analyzed from new data, or discarded. Ideally, the team should establish the
quality threshold values for any issue that the team decides to evaluate or to keep
in monitoring. For example, in issues related to coverage testing, the response time
cannot exceed 2s or the test coverage must be at least 80%. The question is: What
are the acceptable values for maintaining quality standards?

8Source: https://www.kiuwan.com/)
9https://www.seerene.com/

90

Analytics Implementation. This element is related to both patterns Software
Analytics Planning and Analytics in Small Steps. The team should plan
how to conduct analysis activities to seek meaningful information from collected
data. These activities should be included on the to-do list and prioritized along
with the other development tasks. In order to avoid overloading the team, such
activities – that also includes the preparation of the analytical infrastructure – can
be distributed throughout the project and executed by steps resulting in something
deliverable. This block is divided into two regions, the first for the works to be done,
and the other to control the work done. The guiding questions are: How will software
analytics activities be implemented along with other tasks?

Incremental Goals. This element is related to pattern Reachable Improve-
ment Goals. However, if the current goals have been fulfilled, the pattern related
is Suspend Measurement. From their insights, the team discusses and defines
reachable goals to put their solutions into practice, considering that these improve-
ments can be made incrementally. Therefore, the most important in this step is to
define where the team wants to reach and what goals they want to achieve. The
main question is: What are the possible improvement actions to be implemented?

5.5.3 SA Canvas: a fictitious example

To better understand how SA Canvas works, this section presents an example of
how it can be used. Figure 5.2 shows a fictitious example based on a very common
issue in the area of software development. Supposing the team wants to automate
their tests, but they do not know where to start, once the software has an immense
amount of classes.

As showed in Figure 5.2, an example of key issue should be “Where should we
focus our test efforts?”. To answer this question, the team identified the need to
investigate two data sources: the code-source to verify current test coverage, and
the code repository to verify the percentage of commits related to fixing bugs and
the classes with the highest number of changes to identify the most “problematic”
classes. As data gathering mechanisms they defined (a) to adopt SonarQube10 as
the tool for inspecting the code quality; (b) to find a tool to collect the number of
changes, and (c) to develop a script to cross-reference committing messages with
bug issues.

10See more at https://www.sonarqube.org/

91

When analyzing the data looking for insights, the team found that “Web controllers
have a high change rate and a low coverage” and “many changes in DAOs are related
to bug fixes”. Then, as incremental goals, they established a minimum class coverage
for Web Controllers of 60%; and minimum class coverage for DAOs of 80%. And,
for new classes coverage, they defined as quality thresholds a minimum coverage
of 80%. In the current status of this fictitious project, the team is implementing
software analytics in an incremental way. Thus, they have already done the “setup
test coverage in the SonarQube”, and now to do they need to “find a tool that
measures commits/class” and to develop the “script for relating commit messages
to bug issues”.

Figure 5.2 - SA Canvas [fictitious example].

SOURCE: Prepared by the author.

92

5.6 Chapter summary

This chapter introduced the types of artifacts commonly used to support interaction
among agile teams and the practices of agile measurements. Considering the artifacts
and practices that characterize agile environments, a model canvas was built to
support the planning and management of software analytics activities based on the
patterns presented in the Chapter 4.

93

6 SOFTWARE ANALYTICS CANVAS EVALUATION

This chapter presents the evaluation cycle of the first version of SA Canvas presented
in previous chapter. One of the question in this study was to verify if the proposed
artifact supports the cognitive activities related to the planning and management
of software analytics activities. The results of the assessment and suggestions from
study participants provided us with insights for improving the design of the canvas
and its components. The second version of SA Canvas is presented in Chapter 7.

Section 6.1 introduces the study design that encompasses the objectives, planning,
and execution steps of this evaluation cycle. Section 6.2 describes the method used
for cognitive activities analysis. Section 6.3 presents the results, answering how does
the SA Canvas support the cognitive activities and what the participants’ percep-
tions about the usefulness and ease-of-use of the SA Canvas. And, Section 6.4 dis-
cusses the study limitations and threats to validity.

6.1 Study design

With the aim of evaluating the first version of SA Canvas artifact and improving
its characteristics, we have carried out a formative evaluation. The purpose of for-
mative evaluations is to help improve the outcomes of the process under evaluation.
According to Venable et al. (VENABLE et al., 2016), formative evaluations can pro-
vide a basis for successful action in improving the characteristics of an artifact from
empirically-based interpretations.

6.1.1 Research questions

The main goal of the formative study was to investigate how the SA Canvas supports
the cognitive activities of practitioners related to software analytics. Additionally,
we gathered participants’ perceptions about the usefulness and ease-of-use of the
artifact and their enhancement suggestions. The following research-questions were
the main focus of the artifact evaluation:

• RQ1) How does the SA Canvas support the cognitive activities of practi-
tioners related to software analytics?

– What are the actions that characterize the participants’ interaction
strategies?

– How are resources combined to guide participants’ actions?

– What interaction patterns emerge from iterations over time?

94

• RQ2) What are the participants’ perceptions about the usefulness and
ease-of-use of the SA Canvas?

• RQ3) What characteristics can be improved in the design of the SA
Canvas?

To answer RQ1, we first analyzed what were the actions that characterized each
of the participants’ strategies throughout the planning and management of software
analytics project. Second, we analyzed the sequencing of interactions in the temporal
view to map the interaction strategy, components of the canvas and other artifacts.
And then, we analyzed the shift between interaction strategies along the iterations
by group.

To answer RQ2, we collected participants’ perceptions about the usefulness and ease
of use of the artifact after iterations with the canvas, using a questionnaire based on
the Technology Acceptance Model (TAM) (DAVIS, 1989), an intention-based model
widely used to explain or predict user acceptance of computer technology. And, to
answer RQ3, we call the same subjects for a participatory design session to suggest
ideas for possible artifact enhancements.

6.1.2 Participants

The study participants were six individuals, master and doctoral students who were
enrolled in the course of Agile Projects at the National Institute for Space Research
(INPE). Table 6.1 shows the participants’ characterization in terms of background,
experience in developing software, and their practice on agile methods.

Table 6.1 - Participants characterization.

Pairs Subjects Background Software Development1 Agile Methods 2

G1 P1 web development 6 to 10 little
P2 software architecture 16 to 20 reasonable

G2 P3 systems analysis 3 to 5 none
P4 systems analysis 11 to 15 little

G3 P5 computer programming 3 to 5 little
P6 systems analysis 16 to 20 reasonable

1 experience in years
2 practical work

SOURCE: Prepared by the author.

95

Participants had at least three years of professional experience in the software in-
dustry and collaborative work. Moreover, four of them also were familiar with the
application domain involving sensors and spatial data. Only one of them had no ex-
perience with agile methods. We decided to conduct the study in pairs to stimulate
the conversation between the participants. Considering the participants’ experience,
we seek to form balanced pairs. The observational study sessions were carried out
in the Laboratory of Computation and Applied Mathematics.

6.1.3 Study planning and execution

In total, five meetings were held with the participants, during the period from
November 6 to December 11, 2018. The first four meetings were dedicated to ob-
servational study on cognitive activities (RQ1) and collecting the participants’ per-
ceptions of the artifact’s usefulness and ease of use (RQ2). And, the fifth meeting
was dedicated to a participatory design session to collect suggestions for canvas
improvements (RQ3).

6.1.3.1 Observational study

In the observational study, the pair of participants were invited to plan and manage
a software analytics project using the first version of SA Canvas. This study was
based on the real architecture of the EMBRACE’s system 1 and real issues reported
by the development team. Due to the type of evaluation we wanted to do, we opted
for a controlled study that would allow us to capture details of the participants’
interaction with our canvas.

Materials. Previously, we prepared a document describing the space weather ap-
plication and some real concerns extracted from meetings with the EMBRACE’s
development team. Such document was used as an input for the observational study.
Also, a SA Canvas was prepared using whiteboards to support the pairs of partic-
ipants during the study. As a additional artifacts, we prepared a list of possible
data sources, and a document based on recommendations for use of SA Canvas as
presented in the Chapter 5 - Section 5.5.1.

Pilot study. First of all, we carried out a pilot study with two researchers from
the computer lab to evaluate their iteration with the SA Canvas reproduced on the
whiteboard and the other materials – case study description, list of possible data
sources, and canvas guidelines.

1Site: http://www2.inpe.br/climaespacial/portal/pt/

96

From the pilot study, we established that (i) pairs should have to raise at least
two issues of software analytics; and that (ii) a warm-up exercise together with all
participants should be carried out before they begin planning their projects.

Study execution. To verify how cognitive activities related to software analyt-
ics are supported by the proposed artifact, an observational study was undertaken
during four weekly meetings with participants, as presented in Figure 6.1.

Figure 6.1 - Observational study meetings over time.

SOURCE: Prepared by the author.

1st Meeting) At the first meeting, we introduced concepts about software ana-
lytics, presented an overview of SA pattern, and presented SA Canvas using the
practical example similar to that mentioned in the previous chapter (Section 5.5.3).
For obtaining more information before the next meeting, we asked the partici-
pants the reading two articles on software analytics patterns (CHOMA et al., 2017)
(CHOMA et al., 2018) and one article presenting the architectural model for the collec-
tion, processing, and visualization of space weather information used in EMBRACE
(SANT’ANNA et al., 2014). After this first meeting, participants read and signed an
informed consent form to participate in the study (see Appendix C).

2nd Meeting) At the second meeting, we invited the participants to a practical
exercise to understand how they should use the canvas. One of the participants
provided us with a real example of his own work. From this example, we helped
them to plan software analytics activities on the board using sticky notes.

97

This activity took approximately one hour. After warming up, a pair of participants
at a time should fill out four blocks of the canvas (Key Issues, Data Sources, Data
Gathering, and Analytics Implementation) based on information written in the doc-
ument on the EMBRACE case study and the support material, i.e., list of possible
data sources and the document with recommendations for the use of canvas named
“canvas tutorial” (see Appendix D). Additionally, we encourage teams to use differ-
ent color sticks for different key issues. Each pair took from 25 to 40 minutes to fill
the four blocks with at least two key issues. The sessions were recorded for future
analyzes, and one of the researchers observed the activities in silence, taking notes
on the interaction of participants with canvas and other artifacts. After this itera-
tion, we prepared a report with (i) feedback about how they had used the canvas
including corrective actions, and (ii) fictitious results to encourage participants to
update the canvas and move the evaluation process forward. Also, we have intro-
duced some insights mixed into the text to be extracted by them. Because each team
raised different key issues, we then prepared three different documents for each of
them.

3rd Meeting) The report’s information was used as input for the second iteration
when the team should adjust some fill-in mistakes pointed out by researchers, update
the canvas with the tasks done, proceed in the planning their activities for the next
iteration, and fill in the remaining canvas blocks from the insights. As in the first
iteration, the sessions were recorded and observed by one of the researchers, again
in the non-participatory way. The sessions took from 40 to 60 minutes. From the
results of this iteration, we prepared a new report for each team with the feedback
on the use of the canvas, other fictitious results about the evolution of the project,
and new insights mixed into the text.

4th Meeting) As in the previous iteration, from the researchers’ report, the teams
should adjust some fill-in mistakes pointed out by researchers, update the canvas
with the tasks done, proceed in the planning their activities for the next iteration,
and fill in the remaining canvas blocks from the insights. The sessions took on average
40 minutes, and just like the previous ones, they were recorded and observed by one
of the researchers.

In summary, three iterations took place in which each group made use of the SA Can-
vas to planning and managing their tasks, totaling 371 minutes of videos recorded
for further analysis. Table 6.2 shows the time spent in each of the nine meetings
held by the pairs.

98

Table 6.2 - Time spent in meetings.

Pairs 1o Iteration 2o Iteration 3o Iteration
G1 24 min 36 min 37 min
G2 44 min 50 min 43 min
G3 39 min 60 min 38 min

SOURCE: Prepared by the author.

6.1.3.2 Participants perception questionnaire

The participants’ individual perceptions of usefulness and ease of use on proposed
artifact were collected at the same day of the 4th meeting, right after the hands-on
experience. A questionnaire based on Technology Acceptance Model (TAM) (DAVIS,
1989) was used as collect instrument to perceived usefulness (PU) and perceived ease
of use (PEU). PU refers to “the degree to which a person believes that using a
particular system would enhance his or her job performance”; and PEU refers to
“the degree to which a person believes that using a particular system would be free
of effort”. Both variables were measured through a multiple-choice questions, using
a 6-point Likert scale – from “Completely Disagree” to “Completely Agree”.

6.1.3.3 Participatory design

To investigate what how SA Canvas could be improved, we conducted a participatory
design session on a fifth date with the same participants from the observational study.
The method used to conduct the redesign section was divided into three steps. I
and the other researcher participated in the session as observers making notes of
relevant information. On average, each step lasted 30 minutes. In the first step, each
participant received a document with the description of all the components of the SA
canvas and a form requesting suggestions for design enhancement of the proposed
artifact. Participants were asked to individually respond to whether they suggested
any changes to the canvas (for example: extinguishing a component, creating a
new component, or merging one component with one another), and how it could be
improved. Figure 6.2 summarizes the methodology used to conduct the participatory
design session.

99

Figure 6.2 - Participatory design session.

SOURCE: Prepared by the author.

6.2 Method of analysis

To assess how the SA Canvas supports the cognitive activities related to software
analytics, we recorded on video the nine observation sessions where SA Canvas was
used by three pairs of participants. For data analysis, we considered only the data
that were observable through the actions and conversations between the participants.
Then, to explore cognitive activities captured during planning activities, an approach
for analysis based on Resource Model (RM) (WRIGHT et al., 2000) and Sequential
Analysis (SA) (BAKEMAN; GOTTMAN, 1997) was adopted, as introduced in Chapter
3, Section 3.2.2.

In this method of analysis, RM was used as a framework to the analysis of software
practitioners’ interactions with external resources by mapping the participants’ ac-
tions to interaction strategies prescribed in this model – i.e, plan construction (PC),
plan following (PF), goal matching (GM), and history-based choice (HC) (WRIGHT

et al., 2000).

100

Note that, external resources in other software engineering activities could be any
objects, artifacts, and support materials – e.g., diagrams, reports, sketches, proto-
types, patterns, guidelines, cards describing the software features, physical or digital
boards on which practitioners take to plan their tasks and to monitor their work in
progress. In our study, we considered various resources available in the study setting
to support participants during their tasks. However, our main interest was focused
on the use of SA Canvas. After interaction strategies characterization, we undertaken
a sequential analysis using LSA (BAKEMAN; GOTTMAN, 1997) to identify patterns
in sequences of interaction strategies.

In summary, the proposal for coding and analyzing the observed interactions con-
sisted of five steps:

i. Describing the events sequentially from observing interactions between
software practitioners and available resources over time;

ii. Categorizing the interactions events following a coding scheme based on
the observed actions;

iii. Associating of the emergent actions to the interaction strategies defined in
the RM (WRIGHT et al., 2000);

iv. Creating of graphical with a temporal view to identifying resources com-
bined during participants’ actions; and

v. Analysis of the interaction strategies by applying lag-sequential analysis
using Bakeman & Gottman’s formula (BAKEMAN; GOTTMAN, 1997), where
a transition from one state to another is considered significant if the z-score
was higher than 1.96. Then, state diagrams are used to show the patterns
of participant’s transitions from one interaction strategy to another across
time.

6.3 Results

This section presents the results of the observational study on cognitive activities
and findings on participants’ perception regarding canvas usage. And, the findings
from the participatory design session will be presented in Chapter 7, along with the
second version of the canvas.

101

6.3.1 Cognitive activities analysis

To verify how the SA Canvas supports the cognitive activities of participants during
the planning and management of software analytics issues, the six steps of the coding
and analysis method presented in the previous section were applied.

Events description (i): the pairs interactions with the artifact under evaluation
and other available resources were described as a set of events over time from the
transcription of videos. Table 6.3 shows the number of sequential events described
from nine iterations.

Table 6.3 - Number of events per iteration.

Pairs 1o Iteration 2o Iteration 3o Iteration
G1 104 92 77
G2 122 87 72
G3 112 111 69

SOURCE: Prepared by the author.

It is worth noting that events could involve pair interactions with more than one
available resource. The main resources observed include the seven components draw
on the canvas board (CB): Key Issues (KI), Data Sources (DS), Data Gathering
(DG), Insights (IS), Quality Thresholds (QT), Analytics Implementation (AI), and
Incremental Goals (IG). The other secondary resources also observed and included as
support artifacts were: scenario EMBRACE case (EC), list of possible data sources
(DS), canvas’ tutorial (CT), sticky notes (PT), two reports on tasks and insights (R1
and R2), feedback on the use of canvas (F1 and F2), and complementary material
such as two articles on SA patterns and the article on the architectural model used
in EMBRACE.

Emergent actions (ii): each event should be categorized following a coding scheme
based on the observed actions, which are coded as a behavioral unit. The coding
scheme could be established before data gathering. However, our coding occurred
during the analysis by following an inductive approach. This approach is usually
undertaken when a research question or interaction context is entirely novel, such
that published coding schemes cannot be applied to the data at hand (LEHMANN-

WILLENBROCK; ALLEN, 2018). The events were categorized into 27 emergent actions.
The list of observable actions along with a sample of the description of some events
is presented in Table 6.4.

102

Table 6.4 - List of emergent actions.

Actions Examples of events description

Analyzing results P2 analyzes insights on the board across report information [G3-i3]
Checking information P2 checks all data sources that have been defined by looking at the canvas board [G3-i1]
Choosing methods/tools P2 suggests Bugzilla as the bug-tracking tool for monitoring the legacy systems [G2-i1]
Complementing information P1 adds information in the sticky note to make clearer the target of the task [G1-i2]
Correcting information P1 right the early note of insight referring issue2 for “sensor reliability” [G2-i3]
Defining component P2 looking for the definition of the component “insights” in the canvas tutorial [G1-i2]
Detecting failure P1 realized that they used sticky notes of the same color for the three issues [G1-i1]
Discussing possibilities P2 comments that "it depends on how the system uses the database to register", and mentions the possibility

of access by login. P1 disagree with the idea by explaining that many sites do not use login to access [G3-i1]
Establishing thresholds P1 and P2 discuss values for the thresholds. P1 suggests an error rate at 30% [G2-i3]
Excluding information P1 excludes the two insights from canvas board that no longer make sense at that moment [G3-i2]
Finding information P2 asks whether there is a real need for refactoring. P1 search something about it in the report [G3-i3]
Formulating ideas P1 elaborates a task to create tests, first verifying in the report how data is accessed [G2-i3]
Identifying data source P1 identifies the need to define a data source for data gathering about “access records” [G2-i1]
Identifying insights P1 and P2 identify an insight related to the database from the findings in the report [G3-i2]
Identifying problem P1 and P2 identify the need to verify access of legacy systems when reading the document on the case [G2-i1]
Identifying tasks done P2 points the task1 about the verification of database on the canvas that had already been done [G3-i3]
Inserting information P1 inserts the note of a task for identifying the modules of legacy system on the analytics to-do session [G3-i3]
Interpreting information P1 and P2 discuss the report content to understand the cause of the access record problem [G3-i2]
Planning improvements P1 re-evaluates an action for testing and exchanging the faulty sensors [G1-i3]
Planning task P1 and P2 plan a task to meet the needs of the developers noted in the report [G2-i2]
Predicting future actions P2 recognizes that the mentioned task could be a solution possible if a given problem was confirmed [G2-i2]
Prioritizing task P1 and P2 agree to prioritize two activities before proceeding with the analysis [G1-i3]
Sharing idea P1 suggests measuring the size of files right after processing them, and P2 agrees with the idea [G3-i1]
Understanding context P2 reads aloud the case study excerpt related to the quality of data to discover how this is handled [G2-i2]
Updating canvas P1 moves task1 referring to issue1 from “to-do” to “done” on analytics implementation session [G3-i3]
Viewing goal P1 searches on the board what is the “ key issues” related to the findings pointed out by P2 [G3-i2]
Writing notes P1 writes in a sticky note “google analytics” using the corresponding color of the “key issue” [G1-i1]

SOURCE: Prepared by the author.

103

The top five actions found were inserting information [in the canvas board], writing
notes [using stick-notes], sharing ideas [with partner], discussing possibilities[with
partner], and checking information[contained in the canvas board, reports, or other
documents]. These actions are highlighted in blue, in the Table 6.4.

Interaction strategy (iii): after a broad analysis of participants’ interactions with
the artifact under evaluation and other available resources, the emergent actions
were associated with the interaction strategies of the Resource Model (WRIGHT et

al., 2000) – i.e., plan following, plan construction, goal matching, and history-based
choice. In this step, the purpose was to verify what types of actions characterized the
interaction strategies. Figure 6.3 displays the bar graphs with the average frequency
of emergent actions over three iterations grouped by interaction strategies.

Figure 6.3 - Number of actions grouped by interaction strategy.

SOURCE: Prepared by the author.

Figures 6.4 to 6.7 present the bar graphs grouped by interaction strategies with
the number of emergent actions accumulate during the iterations of each group.
The actions of plan construction strategy are focused on canvas construction and
maintenance, for instance, when it involves the inserting of information since the
first iteration, and updating of information from the second iteration (Figure 6.4).

104

Figure 6.4 - Plan construction strategy.

SOURCE: Prepared by the author.

In the plan following strategy, the action “checking information” usually occurs
before action of “updating canvas” that is part of maintenance activity (Figure 6.5).
However, in the second iteration, the participants had to check information more
times to fix some mistakes made at the previous iteration as pointed out in the
researchers’ report. Moreover, over the three iterations, participants needed to know
more about a specific component before entering or fixing information related to it.

Figure 6.5 - Plan following strategy.

SOURCE: Prepared by the author.

105

Figure 6.6 presents that most of the actions of goal matching strategy is directly
related to the components of the canvas. That is why some actions were only carried
out at the beginning of the study (e.g., choosing methods and tools), whereas some
actions are only performed from the second iteration when the participants received
new data, fictitious results, and insights to proceed with filling the canvas board
(e.g., planning improvements and establishing thresholds).

Figure 6.6 - Goal matching strategy.

SOURCE: Prepared by the author.

In the history-based choice strategy, the most of actions depend on the participants’
reflection on previously made decisions or pre-established conditions (Figure 6.7).

Figure 6.7 - History-based choice strategy.

SOURCE: Prepared by the author.

106

Part of the information needed for decision making is in the minds of the partici-
pants, another part is distributed within the supporting artifacts or is part of the
interaction history. For example when they write a note after formulating the content
in their minds, after discussing possibilities and sharing ideas with their partners or
consulting the history contained in the artifacts. Note that, the identifying of the
problem occurs only in the first iteration when the participants define the key issues
based on the case study history.

Observations over time (iv): in this step, nine graphs in the format of time-
lines were generated based on one-minute intervals to obtain a visual representation
of the participants’ interactions with components of canvas and other available re-
sources. In the same graphs, we included the interaction strategies adopted by the
participants. The timelines of all groups are presented in Appendix E.

The graphical visualization of the observations in a temporal view should facili-
tate the researcher’s analysis toward understanding how resources were combined
to guide the practitioners’ actions. When we analyzed the actions and sequencing of
interactions over time, we were able to identify, for instance, that group G2 in the
first and third iterations had more difficulties in understanding some components of
the canvas (e.g., Data Sources, Data Gathering, and Incremental Goals) since they
more frequently consulted the document with canvas guidelines (see Appendix E).

Sequential analysis (v): with the purpose of uncovering strategy exchange pat-
terns during participants’ interactions with components of canvas and other avail-
able resources, we draw nine diagrams using weighted directed graphs, as presented
in Figure 6.8. The diagrams provide a visual way for analysis of participants’ all
sequential moves by switching from one strategy to another in each iteration.

With the aim of identifying significant relationships between such moves, the lag-
sequential analysis (LSA) (BAKEMAN; GOTTMAN, 1997) was applied. Sequential
analysis generally is employed (a) to discover probabilistic patterns in the stream
of code events, or (b) assess the effect of contextual or explanatory variables on
the sequential structure of interactions (BAKEMAN; GOTTMAN, 1997). To exam-
ine whether the observed transition probabilities were statistically significant, we
used software developed by CoSci Research Group2, which uses the Bakeman &
Gottman’s formula (BAKEMAN; GOTTMAN, 1997):

2Available at: https://cosci.tw/lsaPage

107

zij = xij −mij√
mij ∗ (1− xi+/N)(1− x+j/N)

where xij is the observed number and mij= xi+x+j/N is the expected number of
transitions from event i to event j, with xi+ being the total observed counts of the
i-th row, x+j is being the total observed counts for the j-th column, and N being the
total number of records in the table. Since this formula uses the z-statistic based
on the normal distribution, values higher than 1.96 (or lower than 1.96) can be
considered statistically significant.

Figure 6.8 - Interaction strategy diagram.

The circles in the diagram depict different strategies. and the arrows display the transi-
tional frequency between them. The arrows in red highlight the most frequent moves. PC
= Plan construction, PF = Plan following, GM = Goal matching, HC = History-based
choice.

SOURCE: Prepared by the author.

108

Figure 6.9 presents the diagrams resulting along with LSA matrix for the moves.
LSA is useful for indicating the degree of confidence with which it can be stated that
a given event influences the occurrence of another (OLSON et al., 1994). The unit of
analysis in the sequential analysis is a two-event sequence recorded across some
period of time or across conditions or contexts. In this study, the unit of analysis is
the sequence of interaction strategies observed in each iteration. For this analysis,
all groups are considered. Moreover, self-loops are not computed, for example, when
a history-based choice move (HC) is subsequent to another HC move.

Figure 6.9 - Significant relationships between iterations strategies.

The circles in the diagram depict different strategies, and the arrows display only significant
relationships, according to values highlighted in red in the tables below each diagram.

SOURCE: Prepared by the author.

As presented in Figure 6.9 (at the bottom), pairs of events are organized into a
contingency table where, by convention, the antecedent occupies the rows, and the
subsequent move occupies the columns. Regarding interaction patterns, we found
one pattern in the first and third iteration - i.e., GM → HC ↔ PC. While, in
the second iteration, the emerged pattern was GM → HC ↔ PC → PF → HC.
When interpreting the first pattern characterized in the first and third iterations,
we can argue that it describes an expected flow since the GM strategy is focused
on the actions that refer to canvas filling. These actions trigger movements to solve
the problem, including reasoning, discussion, sharing, and the formulation of ideas
(HC).

109

Finally, the cycle closes with the PC strategy, where participants complete their
tasks when inserting information on the canvas. Eventually, there are movements in
which the PC strategy precedes HC. This fact is especially true when individuals
need to analyze some results before accomplishing a task. In the second pattern, we
can noted that there were more significant movements in addition to the movements
pointed out in the previous pattern. This pattern can be explained because, in this
iteration, the participants received feedback on the use of the canvas and had the
additional task of making some adjustments. At this point, we were able to verify
what were the main difficulties of the participants.

6.3.2 Usefulness and ease-of-use evaluation

After three iterations with the canvas, the participants were able to evaluate the
usefulness and ease of use of the artifact (RQ2). The data collected from TAM-based
questionnaire were analyzed using descriptive statistics. The Figure 6.10 displays the
bar graphs that summarize the responses of the participants (at the top), and the
questions elaborated for the questionnaire using Likert scale (at the bottom).

Figure 6.10 - Perceived usefulness and ease-of-use.

SOURCE: Prepared by the author.

110

When analyzing participants’ responses as to perceptions of usefulness and ease of
use of the proposed artifact, we noted that to some degree all participants agree that
the SA Canvas is usefulness (Figure 6.10). However, there was some disagreement
concerning the ease of use, according to the graph at right. Some participants do
not agree that it was easy to learn and understand what should be done at certain
times (PEU1 and PEU2). The learning curve certainly will have an impact on the
user’s ability to handle the artifact (PEU5). Furthermore, users tend to be more
critical as to the usefulness of the artifact when its use is not effortless.

6.4 Limitations and threats to validity

The empirical studies are commonly subject to limitations and threats to validity. In
this section, we report possible threats to the validity of our observational study in
terms of construct, internal, external, conclusion validity, and reliability (PETERSEN;

GENCEL, 2013).

Construct validity refers to the measures selected to answer research questions (PE-
TERSEN; GENCEL, 2013). All sessions of the observational study were video recorded.
For the codification of the participants’ cognitive activities identified during the
analysis of the videos, we used a set of interaction strategies prescribed from the
Resources Model (WRIGHT et al., 2000). Furthermore, to identify significant pat-
terns we use the Sequential Analysis concepts (BAKEMAN; GOTTMAN, 1997). In
addition, in order to guarantee the data quality, we conducted a warm-up with the
participants in advance to eliminate any misunderstanding about how the canvas
components should be filled out. To collect participants’ perceptions, we use TAM
- a well-established tool in the area of software engineering. And, to collect sugges-
tions for improvements we use the DP method which is widely used in the area of
user centered design.

Internal validity is about investigating whether one factor affects an investigated
factor (PETERSEN; GENCEL, 2013). The study protocol was previously planned and
refined through a pilot test. The study was divided into weekly meetings to char-
acterize the time-box of iterations that normally occur in agile environments. The
fact that the teams need to remember their past actions before evolving in filling
the canvas was a way to evaluate the usefulness of the artifact.

111

External validity is concerned to generalize the findings considering variations of
individuals, settings, treatments, and outcomes (PETERSEN; GENCEL, 2013). Our
study was carried out with pairs of individuals who were experienced in different
areas of software development and with different backgrounds. Also, one of the pairs
had expertise in the domain of the case studied. The study was based on issues
relevant to the real world. Although the starting point focused on a specific case,
each pair identified different issues and followed a different path to resolve their
issues.

Conclusion validity is concerning how researchers derive their conclusions from the
relationship between study variables (PETERSEN; GENCEL, 2013). To mitigate the
researcher’s bias when determining significant movements using absolute frequency,
we used the lag-sequential analysis (LSA) to test whether the observed transition
probabilities were statistically significant.

Reliability is concerning to verify whether data analysis depends on a specific re-
searcher (PETERSEN; GENCEL, 2013). A single person performed the analysis and
coding which after were refined and discussed with three other senior researchers;
and besides, the analysis protocol was previously discussed and validated with two
other researchers. Furthermore, all interactions during the observational study were
video-recorded that enabled the researcher to double-check the data to confirm de-
scribed events, coded actions, and the movements of the participants.

6.5 Chapter summary

This chapter presents the results of the evaluation of the first version of SA Can-
vas. The evaluation step consisted of an observational study to assess the use of
the artifact in support of cognitive activities, the collection of information on the
usefulness and ease of use of the artifact from the point of view of the participants,
and a participatory design session to collect suggestions improvements. In the next
chapter, the points of improvement suggested participants during the participatory
design session are listed with the second version of the canvas.

112

7 SOFTWARE ANALYTICS CANVAS REDESIGN

This chapter presents the second version of SA Canvas redesigned from evaluation
study outcomes reported in the previous chapter and the study participants’ sugges-
tions for improving the canvas which are introduced in this chapter. The initiatives
to evaluate the second version of the canvas in practice are also presented in this
chapter.

Section 7.1 lists the participatory design findings. Section 7.2 introduces the new
template of canvas and describes the changes carried out based on evaluation study
outcomes. Section 7.3 covers the new round of evaluations of the second version by
collecting feedback from software practitioners.

7.1 Participatory design findings

In the first step of the DP, participants were asked about the components of the
canvas. The responses of the participants for each SA canvas component are pre-
sented in Appendix F. When summarizing the participants’ suggestions, we found
the need to better clarify at least three canvas components:

• In “Insights”, three participants suggested making it clear that insights
should be described from the results of the analysis.

• The name of the “Quality Thresholds” block seems not to be suitable.
Participants suggested making it clear that the values may be minimum
or maximum.

• Understanding what should be considered in “Incremental Goals” was dif-
ficult for them. Some have suggested a more appropriate name since the
main idea is to implement the improvements.

Also at first step, the participants were asked to individually provide a sketch as a
proposal for redesigning the screen. In total, six sketches were generated at the end
of this stage. In the second step, they consolidated their opinions with their peers by
drawing a new sketch for canvas, generating a sketch per pair. Lastly, in the third
step, all participants discussed their redesign proposals and designed a single sketch
to the canvas. The final proposal sketched by participants is presented in Figure 7.1.

113

Figure 7.1 - Final sketch produced during the participatory design session.

SOURCE: Prepared by study participants.

As Figure 7.1 shows, at the top of the sketch, the participants suggested five blocks
reserved for planning (inputs and outputs) named “Key Issues”, “Data Sources”,
“Data Gathering”, “Incremental Goals”, and “Quality Threshold”. The latter was
subdivided into two parts to include a minimum acceptable value (minimum) and
the goal to achieve (goal). At the bottom of the canvas, the participants suggested a
block named “Analitycs Tasks” block instead of “Analytics Implementation”, which
was subdivided into four parts to accommodate the tasks to do, in progress, done,
and the impediments.

7.2 SA Canvas upgrade

We redesigned the SA Canvas considering the findings obtained from observational
study as well as the participants’ opinion and suggestions. The second version of
the canvas was very similar to the participants’ suggestion sketched during the
participatory design session (see Figure 7.1). Figure 7.2 presents the new version
of canvas. The new template has 7 components at the top, and 4 components at the
bottom.

114

Figure 7.2 - SA Canvas [version 2.0].

SOURCE: Prepared by the author.

As suggested by the participants, we decided to keep the components related to the
planning of activities at the top and the components related to the progress of the
analytics tasks as an implementation roadmap at the bottom. At the top, Key Issues
was the only component that have been kept with their original characteristics and
name. Regarding other components, we decided to rename Data Source to Measure-
ments and Data Gathering to Methods and tools in order to reduce the semantic
distance between the names and their definitions. Measurements refer to what will
you measure regardless of how it will be measured, while Methods and tools refer to
means used for conducting the measurements.

Following the suggestions of the participants, when trying to improve the description
of the Insights component, we realized that there was a step before the identification
of the insights that was not being addressed in the previous version, which we named
Highlights.

115

Highlights refer to the important observations and information that call attention in
the first contact with the data. That is, the collected data have not yet been analyzed
in-depth, but at first sight, some findings are noteworthy. In an issue involving code
quality and collecting coupling metrics, for example, one can observe that certain
classes have a higher coupling than others. In this case, if the team deems this
information important, it could be noted as a highlight. In another example involving
analysis of architectural metrics, such as the execution time, someone can verify an
unstable execution at a certain time of the day, or a determined method presenting a
much higher number of calls than others, these can be considered possible highlights.

From the definition of the Highlights, the Insights component gains a new description.
In the new description, insights are identified by analyzing the cause of the points
that were highlighted by the team. Considering the previous examples, the team
may conclude that coupling is high in a certain part of the code because of business
rules that should not be there. And in the case of performance, they conclude that a
method is being called unnecessarily, or that it involves a component that depends
on the hardware.

The Incremental Goals component that had the function of tracking the imple-
mentation of achievable goals, and the Quality Thresholds component that had the
function of setting goals were replaced by other components. In our observational
study, we found that participants had difficulty understanding both components. In
their place, we created two new components: Goals and Decisions.

Goals are related to monitoring and control actions, and usually related to some
metric. In Goals, values are established to be achieved based on predefined quality
indicators. In the coupling example, a goal could be to establish a limit for coupling
metrics, and in the performance example it would be to establish a minimum exe-
cution time for certain methods. Decisions include the actions that will be taken to
resolve or minimize a given problem after understanding its origins and reflecting on
possible solutions. In the coupling example, a team decision could be to refactor the
most problematic part of the code. In the performance example, a decision would
be to exchange a certain component of the application.

Regarding the components related to the progress of the analytics tasks, we divided
the bottom of the canvas into four blocks to include tasks to be done, tasks in
progress, tasks completed, and impediments. It is important to highlight that, these
blocks are optional, if the team prefers to keep a single tool to manage the analytics
tasks together with development tasks, within the same backlog.

116

7.3 Second round of evaluation

This section describes the efforts made to evaluate the second version of the canvas.
After completing the project for the second version, we looked for partners in the
industry to evaluate the use of canvas in practice. In March 2019, we invited 40
software practitioners from INPE and other companies to attend a lecture with
the aim of introducing them to SA Canvas and engaging them to participate in
a case study. Of the guests, 34 attended the lecture: 16 participants from INPE
(TerraME (1) FIP/Terrabrasilis (3), CPTEC (4), EMBRACE (5), and CAP (3));
and 18 participants from other companies (Aeronautics Computer Center-CCA (13),
Geopixel (2), ICEA (1), Embraer (1), and Superclient (1)).

7.3.1 Workshops on SA Canvas

Another initiative to evaluate the canvas was to collect data from two workshops.
The workshops were held with software industry professionals, in January and Febru-
ary 2020. During the workshops, after the presentation of the software analytics ap-
proach, the participants were divided into groups of 3-4 people. Using a paper SA
Canvas template and stick notes, each group had 10-20 min to raise some key issues
based in their work experiences. Then, they had 30-40 min to choose one of the
key issues and complete the remaining blocks of the canvas. Finally, each group had
15-20 min to present their results. Figure 7.3 shows some of the canvas templates
that were filled out by participants.

Figure 7.3 - SA Canvas filled out by the workshop participants.

SOURCE: Prepared by the author.

117

After workshops, we surveyed the participants’ opinion about the use of SA Canvas
through a questionnaire. The questionnaire consisted of both open-ended and closed-
ended questions divided in four groups of questions in addition to the demographic
questions about the participants: (a) 4 closed-ended questions about the partici-
pant’s perception of the group’s performance when using the canvas, (c) 3 closed-
ended questions about the participants’ understanding about canvas elements, (d)
3 closed-ended questions about the usability of the canvas, and (e) 3 open-ended
questions regarding participants opinion the canvas. For closed-ended questions, we
used a 1-5 Likert scale. From two workshops, we collected 15 responses.

The Table 7.1 shows the characterization of the participants in terms of background
and professional experience. About 60% of the participants had more than 4 years
of experience in software engineering, and more than half of them had intermediate
experience in agile practices.

Table 7.1 - Group performance using SA Canvas.

ID Background Software Development* Agile Practices
P1 Software Engineer 6 or more Intermediate
P2 Agilist 6 or more Expert
P3 Agile Master 0 to 1 Novice
P4 Software Engineer 2 to 4 Intermediate
P5 Chief Technical Officer 4 to 6 Intermediate
P6 Software Engineer 6 or more Intermediate
P7 Data Specialist 6 or more Intermediate
P8 Analyst Developer 0 to 1 Novice
P9 Scrum Master 6 or more Expert
P10 Back-end Developer 6 or more Intermediate
P11 Software Engineer 1 to 2 Novice
P12 Software Developer 4 to 6 Intermediate
P13 Software Developer 4 to 6 Novice
P14 Software Developer 2 to 4 Novice
P15 Mathematical Modeling Analyst 2 to 4 Intermediate
* Experience time in years

SOURCE: Prepared by the author.

Figure 7.4 presents the bar graph with the participants responses about their per-
ception on group performance by using the SA Canvas.

118

Figure 7.4 - Participants’ perception of canvas usage.

SOURCE: Prepared by the author.

As shown in Figure 7.4, for most respondents the groups succeeded to adequately
identify the key issues, chose the measurements, select the most appropriate methods
and tools, and forecast a possible solution to mitigate or solve the issue raised
based. However, a considerable number of participants (above 30%) were unable
to assess whether the groups were able to adequately plan the analytical tasks or
assess the potential impacts of the decisions. This result is understandable, due to
time constraints and the fact that they are not within a real environment. Figure 7.5
presents the bar graph about the participants’ understanding of canvas components.

Figure 7.5 - Understanding of canvas components.

SOURCE: Prepared by the author.

119

Overall, respondents understood all the components and the difference between
“Goals” and “Decisions”. However, we can note that perhaps the most problem-
atic issue for some of them was to understand the difference between “Highlights”
and “Insights”. Regarding participants’ perception of SA Canvas usability, the most
of respondents agreed that the canvas is useful, easy to use, and easy to learn, as
shown in Figure 7.6.

Figure 7.6 - Participants’ perception of canvas usability.

SOURCE: Prepared by the author.

We asked the participants if they thought the components of the canvas made sense
to them, or if any needed to be improved. Some participants pointed out the need
to better clarify the components Highlights (P4), Insights (P10 and P11), Goals
(P10 and P15), and Decision (P3 and P15). P9 suggested merging Measurements
with Methods and Tools. In the P11’s opinion, Measurement is “the solution to be
implemented”. P15 suggested dividing the canvas into two parts, one for defining
the problem and action plan, and another for reviewing the plan. Also, we asked
the participants what is the main benefit of the canvas for projects related to soft-
ware analytics, in their viewpoint. The responses of the participants are summarized
below:

• visibility into problems, activities and goals (P1, P6, P7, P10), allowing
for quicker responses (P1)

• organization of ideas (P2, P14) and work steps (P5, P11, P10)

• decision making based on metrics (P4, P12, P13) and fact analysis (P9)

• focus on problem solving (P1, P5, P8, P15)

120

• focus on action planning (P2, P15) and goals to improve (P3, P8, P13)

Finally, we asked the participants which factors could hinder the adoption of the
canvas in practice. One-third of the participants replied that they would have no
problem applying the canvas in practice. The other participants pointed out some
potential challenges:

• Cultural aspects (P2, P5, P10)

• Lack of team engagement (P10, P15) and support from managers (P12)

• Demand for time to elaborate (P8) and obtain results (P7)

• Lack of knowledge about software analytics (P5, P13)

• Lack of interest in management tools (P12, P15)

• Difficulties in fitting into the process (P5)

• Lack of team experience (P15)

• Project profile (P3)

Overall, the feedback received from software professionals regarding the second ver-
sion reveals the potential of our approach to supporting software analytics activities.
It may be that some elements still need to be reevaluated or the canvas needs to
be adapted to different situations according to the characteristics of the software
projects and teams. However, further studies are needed to verify the applicability
in long-term projects with different characteristics.

7.3.2 Application at the CPTEC

At the end of 2019, the team from CPTEC at INPE made themselves available to
participate in our study. On December 26th, we started a study with the CPTEC
team in Cachoeira Paulista.

In the first face-to-face meeting, we presented the canvas to the team and collected
some information about their processes. At the end of the presentation, the seven-
team members started a discussion about what types of problems could be addressed
using Analytics. The next day, we scheduled an online meeting where the team
prepared the canvas template in Trello, as shown in Figure 7.7.

121

Figure 7.7 - SA Canvas organized in Trello.

SOURCE: Prepared by the author.

First, they identified some key issues to be worked on in the following months. Some
issues raised by them were: What is the profile of our users? What are the bugs
existing in the applications’ features? What content is most accessed by users? What
applications are being used/accessed most often? How much do our applications
consume computational resources?

Thereafter, the team decided to focus on the question about the most used appli-
cations. In the sequence, they defined what would be measured (i.e., quantities of
requests and accesses), and chose some tools (i.e, Google analytics, Graylog, and
AWStats).

As partial results from interactions with them, we figure out that the approach
should not be limited to a physical artifact. It is necessary to make it clear that it
can be adapted taking into account the needs and resources of the team. For example,
the team opted by adapting of the items on the canvas within the same online tool
used for planning their development tasks. However, the original canvas template
was very important to convey the concepts of the software analytics, introduce the
canvas components, and explain the information flow.

122

Moreover, we found that the proposed approach can be used both as a planning tool
to track the activities that make up the software analytics process and as a research
framework to support researchers in the SA area.

When we asked the team leader about his opinion on the components of the canvas,
we found that all components made sense for him and none needed to be improved.
When we asked about the main benefit of the canvas, the team leader pointed out
the way to structure the tasks giving transparency to the team about the process.

As for the impediments or difficulties in adopting the SA Canvas in practice, he
pointed out that “the impediments are not related to Canvas, but to software ana-
lytics. We have to reorganize the routine to be able to insert the tasks of SA, this
is not simple to do when there is a great demand for work. But it is the burden to
achieve the bonus coming from the SA”.

Their work was in progress, but it was unfortunately interrupted fromMarch onward,
due to the Covid-19 pandemic and other demands. Just like the study at CPTEC,
other case studies that we were planning to carry out with the EMBRACE and
CCST teams were also interrupted for the same reason.

7.4 Chapter summary

This chapter introduces the second version of the canvas explaining the changes made
and the new components. Also, it describes the initiatives undertaken to evaluate
this new version, such as the study case with the CPTEC team and the workshops
carried out with software practitioners. Through these initiatives, we were able to
collect the perceived benefits of the approach and the possible difficulties of applying
it in practice. Although our approach’s evaluation has been positive, we found that
some points still need to be checked in future studies.

123

8 CONCLUDING REMARKS AND FUTURE WORK

This chapter concludes this thesis by reviewing the research questions and intro-
ducing the main remarks about the existing research gaps and the open questions
in the software analytics area presented in Chapter 2, the software analytics pat-
tern language presented in Chapter 4, and the SA Canvas artifact presented in the
Chapters 5, 6 and 7. In addition, this chapter point out the main contributions this
thesis and the suggestions for future work.

This chapter is structured as follows: Section 8.1 contains a brief review of our
research questions and findings. Section 8.2 highlights the main contributions and
8.3 addresses directions for future work.

8.1 Summary of the findings

This thesis aimed to propose an approach to supporting agile teams in software
analytics activities. In the context of INPE projects that have small software teams
and that normally adopt agile practices, such an approach would be especially useful
to help them make informed decisions in research-related projects, which have a
character of exploitation of the domain and the results.

To achieve the thesis objectives, we first conducted a systematic mapping in the
existing studies to discover research gaps and the kind of issues commonly addressed
by researchers and software professionals in the software analytics area (RQ1). We
found that there are few studies related to the implementation of software analytics
projects in practice, especially involving small teams.

From some experience reports, we identified good practices could assist software
professionals in conducting software analytics projects (RQ2). The patterns language
for software analytics raised as a proposal to guide agile teams in the planning and
conducting of software analytics activities in a lighter way.

When presenting the SA patterns to the EMBRACE team, we found that profession-
als were interested in introducing software analytics in their development roadmap.
However, we have identified a need to systematize and make the application of these
patterns more practical and traceable. Then, our proposal was to consolidate the
patterns for software analytics within a structure in canvas format to support pro-
fessionals activities (RQ3).

124

The first version of SA Canvas was designed and evaluated in a laboratory setting.
The study objectives were to evaluate the artifact in use through an observational
study, collected the participants’ opinions on usefulness and ease of use using a
questionnaire, and held a participatory design session to collect suggestions for im-
provement in the design of the artifact.

The observational study was specifically carried out to understand how the SA
Canvas could support cognitive activities during the planning and management of
software analytics activities. To analyze the observational data, we identified what
were the actions that characterized each of the participants’ strategies throughout
the three iterations using an approach based on distributed cognition and sequential
analysis.

In our analysis, we first categorized the interaction events into emergent actions,
and then we associated these actions with the interaction strategies of the Resource
Model (WRIGHT et al., 2000). Then, we analyzed the sequencing of interactions in the
temporal view to map the interaction strategy, components of the canvas, and other
artifacts. Finally, we performed a sequential analysis (SANDERSON; FISHER, 1994) to
identify common patterns on the shift between interaction strategies that occurred
during each iteration. We found two main patterns through sequential analysis car-
ried out to discover strategy exchange patterns during participants’ interactions with
available resources (see Figure 6.9 in Chapter 6).

Outside the findings of the cognitive aspects analysis, we verified that the canvas
worked well as a hub in terms of the information flow involving software analytics
issues. Information hubs can be considered spaces where information flows meet
and decisions are made. The proposed artifact is also a situation awareness channel,
which considers how people are kept informed about what is happening (BERNDT

et al., 2015). For Agile teams, the support of different visualization techniques and
tools throughout the software development process is crucial to foster awareness and
communication. Additionally, this factor can have a positive impact on the sense of
purpose (LIECHTI et al., 2017b) when the professionals follow the evolution of their
actions within a cycle of continuous improvement.

Despite the improvements that are needed, we found that the canvas design meets
the principle of representation that considers one way in which external artifacts can
aid cognition is by providing an explicit representation of the relationship between
the current state and a goal state (WRIGHT et al., 2000).

125

The closer the representation is to the cognitive need or goal of the user, the more
powerful that representation will be. In the case of SA Canvas, the team’s goal is
often to keep the focus on solve issues previously defined. Over time, results are
achieved and new goals are defined.

Our method of analysis was very useful at exposing the cognitive aspects of par-
ticipants’ activities. When we analyzed the actions and sequencing of interactions
over time, we were able to identify, for instance, that groups had difficulties in un-
derstanding some components of the canvas when sought for the document with
canvas guidelines. Then, after a brief discussion or shared ideas, they were able to
complete their tasks. Many difficulties observed were later confirmed with the col-
lection of opinion from the participants and the results of the participatory design,
as presented in Chapter 6. Reflecting on the findings of this first evaluation cycle,
we redesigned and proposed the second canvas version.

We started a new evaluation round of the second version and obtained some results
through case studies and workshops. We had planned to conduct more studies with
the teams at INPE. However, with the suspension of activities due to the covid-
19 pandemic, we would not have time to redirect our studies within the research
period. From obtained results, we found that our approach is promising, but we
recognized that it needs to be evaluated in more long-term projects with different
characteristics.

8.2 Contributions

The main contribution of this thesis is SA Canvas proposed as an approach to sup-
porting agile teams planning and managing software analytics activities. SA Canvas
can be considered a goal-focused approach, similar to the well-known Goal Question
Metric (GQM) approach proposed by Basili et al. (BASILI et al., 1994). The goal-
focused approaches are good ways to ensure that measurement goals are articulated
with the metrics being collected, and also, to avoid having useless measurements.
We argue that the SA Canvas is a suitable artifact to agile teams’ informative
workspaces where various techniques and tools for software visualization are com-
monly applied as information radiators – e.g., count of velocity automated tests,
continuous integration status, incident reports, and so forth (BECK; ANDRES, 2004).

126

Other important contributions of this thesis are:

• The literature review presenting the state of the art in the area of software
analytics, highlighting the main issues addressed in the area, and pointing
out the main research gaps.

• The software analytics patterns proposed as a way to encourage small and
medium-sized Agile teams to incorporate data-based approaches into their
development process to make better decisions.

• The methodology of analysis based on the Resource Model (WRIGHT et al.,
2000) and the sequential analysis (SANDERSON; FISHER, 1994) used to eval-
uate cognitive activities observed from the study participants’ interaction
with the canvas.

8.3 Future work

This work open up several opportunities for research into software analytics area,
such as questions that remain open or little studied. Considering the current stage of
our work presented here, some of the future directions consists of conducting stud-
ies within the software industry on real projects, involving different segments and
software products. At INPE, our approach can be adopted by several development
teams with great potential to contribute to quality management and productivity
in software development in the space research areas.

Currently, we are following two master’s studies in progress at the University of
Porto that are using SA Canvas. The former is a case study in a software startup
involving multiple teams using our canvas to address the code quality problems
in their projects. The study goal is to evaluate the impact the approach has on
the teams involved in terms of understanding the code quality issues and metrics
implemented but also on the efficiency and effectiveness of the approach. Also in the
area of software quality, the other study is being conducted in a larger company that
has several software teams. This study aims to investigate the utility of the canvas
and also the scalability of the approach in different types of software projects.

Furthermore, recently, we found out that our work has inspired software profes-
sionals from other countries. The software engineer specialized in the analysis of
software data from Germany, Markus Harrer created a version of the Sofware Ana-
lytics Canvas with a smaller number of components. More details of Harrer’s canvas
is available in (HARRER, 2020).

127

Also recently, we received an email from a professional who is part of the analytics
team at OLX-Br congratulating us on the research, and showing interest in the
second version of the canvas. We forwarded the new version of the canvas and made
ourselves available for further clarification.

For future work, we would recommend conducting longitudinal studies involving
software teams in actual projects to further verify the results of this thesis. Moreover,
the use of canvas can be verified in other contexts, such as Lean Analytics in software
startups. Other future work would be the identification of new patterns based on the
experiences of using SA Canvas, and the development of a tool based on the canvas
to support software analytics activities remotely. Finally, the methodology using a
resource model and sequential analysis for evaluating the canvas in the laboratory
could be used in other studies involving cognitive activities and the interaction with
software artifacts.

128

REFERENCES

AALST, W. v. d. Big software on the run: in vivo software analytics based on
process mining. In: INTERNATIONAL CONFERENCE ON SOFTWARE AND
SYSTEM PROCESS, 2015. Proceedings... [S.l.]: ACM, 2015. p. 1–5. 3

ABDELLATIF, T. M.; CAPRETZ, L. F.; HO, D. Software analytics to software
practice: a systematic literature review. In: INTERNATIONAL WORKSHOP ON
BIG DATA SOFTWARE ENGINEERING, 2015. Proceedings... [S.l.]: IEEE,
2015. p. 30–36. 3

AGRAWAL, A.; MENZIES, T.; MINKU, L. L.; WAGNER, M.; YU, Z. Better
software analytics via" duo": data mining algorithms using/used-by optimizers.
arXiv preprint arXiv:1812.01550, 2018. 29, 161, 163

AKTINSON, P.; HAMMERSLEY, M. Ethnography and participant observation.
In: DENZIN, N. K.; LINCOLN, Y. S. (Ed.). Strategies of Qualitative Inquiry.
[S.l.]: Thousand Oaks: Sage, 1998. p. 248–261. 46

ALELYANI, T.; YANG, Y. Software crowdsourcing reliability: an empirical study
on developers behavior. In: INTERNATIONAL WORKSHOP ON SOFTWARE
ANALYTICS, 2., 2016. Proceedings... [S.l.]: ACM, 2016. p. 36–42. 27, 159, 163

ALEXANDER, C. A pattern language: towns, buildings, construction. New
York: Oxford University Press, 1977. 54, 60

. The timeless way of building. New York: Oxford University Press,
1979. 53

AN, L.; CASTELLUCCIO, M.; KHOMH, F. An empirical study of dll injection
bugs in the firefox ecosystem. Empirical Software Engineering, p. 1–24, 2019.
31, 162, 164

AN, L.; KHOMH, F.; GUÉHÉNEUC, Y.-G. An empirical study of crash-inducing
commits in mozilla firefox. Software Quality Journal, v. 26, n. 2, p. 553–584,
2018. 29, 160, 163

ANICHE, M. F.; OLIVA, G. A.; GEROSA, M. A. Why statically estimate code
coverage is so hard? a report of lessons learned. In: BRAZILIAN SYMPOSIUM
ON SOFTWARE ENGINEERING, 29., 2015. Proceedings... [S.l.]: IEEE, 2015.
p. 185–190. 31, 158, 164

129

ANWAR, H.; PFAHL, D. Towards greener software engineering using software
analytics: a systematic mapping. In: EUROMICRO CONFERENCE ON
SOFTWARE ENGINEERING AND ADVANCED APPLICATIONS, 43., 2017.
Proceedings... [S.l.]: IEEE, 2017. p. 157–166. 3

ARNDT, T. Big data and software engineering: prospects for mutual enrichment.
Iran Journal of Computer Science, v. 1, n. 1, p. 3–10, 2018. 35, 161, 165

ASUNCION, H. U.; SHONLE, M.; PORTER, R.; POTTS, K.; DUNCAN, N.;
MATTHIES, W. Using change entries to collect software project information. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND
KNOWLEDGE ENGINEERING, 2013. Proceedings... [S.l.], 2013. 27, 157, 163

AUGUSTINE, V.; HUDEPOHL, J.; MARCINCZAK, P.; SNIPES, W. Deploying
software team analytics in a multinational organization. IEEE Software, v. 35,
n. 1, p. 72–76, 2018. 39, 42, 161, 165

BAGHERZADEH, M.; KAHANI, N.; BEZEMER, C.-P.; HASSAN, A. E.;
DINGEL, J.; CORDY, J. R. Analyzing a decade of linux system calls. Empirical
Software Engineering, v. 23, n. 3, p. 1519–1551, 2018. 25, 160, 163

BAKEMAN, R.; GOTTMAN, J. M. Observing interaction: an introduction
to sequential analysis. [S.l.]: Cambridge University Press, 1997. 50, 100, 101,
107, 111

BAKER, L. Observation: a complex research method. Library Trends, v. 55,
n. 1, p. 171–189, 2006. 46

BALDASSARI, B. Squore: a new approach to software project quality
measurement. In: INTERNATIONAL CONFERENCE ON SOFTWARE &
SYSTEMS ENGINEERING AND THEIR APPLICATIONS, 2012.
Proceedings... [S.l.], 2012. 34, 157, 164

BALTES, S.; KNACK, J.; ANASTASIOU, D.; TYMANN, R.; DIEHL, S. No
influence of continuous integration on the commit activity in github projects. In:
INTERNATIONAL WORKSHOP ON SOFTWARE ANALYTICS, 4., 2018.
Proceedings... [S.l.], 2018. p. 1–7. 26, 160, 163

BAO, L.; XING, Z.; XIA, X.; LO, D.; HASSAN, A. E. Inference of development
activities from interaction with uninstrumented applications. Empirical
Software Engineering, v. 23, n. 3, p. 1313–1351, 2018. 32, 161, 164

130

BARBOUR, L.; AN, L.; KHOMH, F.; ZOU, Y.; WANG, S. An investigation of the
fault-proneness of clone evolutionary patterns. Software Quality Journal, v. 26,
n. 4, p. 1187–1222, 2018. 29, 160, 163

BARIK, T.; DELINE, R.; DRUCKER, S.; FISHER, D. The bones of the system: a
case study of logging and telemetry at microsoft. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING COMPANION, 38., 2016.
Proceedings... [S.l.]: IEEE/ACM, 2016. p. 92–101. 33, 159, 164

BASILI, V. R.; CALDIERA, G.; ROMBACH, D. H. The goal question metrics
approach. In: MARCINIAK, J. J. (Ed.). Encyclopedia of Software
Engineering. [S.l.]: John Wiley & Sons, 1994. v. 1, p. 528–532. 126

BASKERVILLE, R. What design science is not. [S.l.]: Taylor & Francis, 2008.
43

BASTIAN, M.; HEYMANN, S.; JACOMY, M. Gephi: an open source software for
exploring and manipulating networks. In: INTERNATIONAL CONFERENCE ON
WEBLOGS AND SOCIAL MEDIA, 3., 2009. Proceedings... [S.l.]: AAAI, 2009.
21

BATARSEH, F. A.; GONZALEZ, A. J. Predicting failures in agile software
development through data analytics. Software Quality Journal, v. 26, n. 1, p.
49–66, 2018. 25, 161, 163

BAYATI, S.; PARSONS, D.; SUSNJAK, T.; HEIDARY, M. Big data analytics on
large-scale socio-technical software engineering archives. In: INTERNATIONAL
CONFERENCE ON INFORMATION AND COMMUNICATION
TECHNOLOGY, 3., 2015. Proceedings... [S.l.]: IEEE, 2015. p. 65–69. 31, 158,
164

BAYSAL, O. Informing development decisions: from data to information. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2013.
Proceedings... [S.l.]: IEEE, 2013. p. 1407–1410. 36, 87, 157, 164

BAYSAL, O.; HOLMES, R.; GODFREY, M. W. Developer dashboards: the need
for qualitative analytics. IEEE Software, v. 30, n. 4, p. 46–52, 2013. 3, 36, 86,
157, 165

. Situational awareness: personalizing issue tracking systems. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2013.
Proceedings... [S.l.]: IEEE, 2013. p. 1185–1188. 69

131

BAYSAL, O.; KONONENKO, O.; HOLMES, R.; GODFREY, M. W. Extracting
artifact lifecycle models from metadata history. In: INTERNATIONAL
WORKSHOP ON DATA ANALYSIS PATTERNS IN SOFTWARE
ENGINEERING, 1., 2013. Proceedings... [S.l.]: IEEE, 2013. p. 17–19. 56

BECK, K.; ANDRES, C. Extreme Programming Explained: Embrace
Change. [S.l.]: Addison-Wesley Professional, 2004. 85, 126

BECK, K. et al. Manifesto for agile software development. 2001. Disponível em:
<https://agilemanifesto.org/>. 4, 84

BEGEL, A.; ZIMMERMANN, T. Analyze this! 145 questions for data scientists in
software engineering. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, 36., 2014. Proceedings... [S.l.]: ACM, 2014. p. 12–23. 35, 158,
164

BERNDT, E.; FURNISS, D.; BLANDFORD, A. Learning contextual inquiry and
distributed cognition: a case study on technology use in anaesthesia. Cognition,
Technology & Work, v. 17, n. 3, p. 431–449, 2015. 125

BODKER, S.; GRONBÆK, K.; KYNG, M. Cooperative design: techniques and
experiences from the scandinavian scene. In: GRUDIN, J. (Ed.). Readings in
Human–Computer Interaction. [S.l.]: Elsevier, 1995. p. 215–224. 47

BRATTETEIG, T.; BøDKER, K.; DITTRICH, Y.; MOGENSEN, P. H.;
SIMONSEN, J. Methods: organising principles and general guidelines for
Participatory Design projects. [S.l.]: Routledge, 2012. 117-144 p. 47

BROWN, J. M.; LINDGAARD, G.; BIDDLE, R. Collaborative events and shared
artefacts: agile interaction designers and developers working toward common aims.
In: AGILE CONFERENCE, 2011. Proceedings... [S.l.]: IEEE, 2011. p. 87–96. 85

BRUNTINK, M. An initial quality analysis of the ohloh software evolution data.
In: INTERNATIONAL WORKSHOP ON SOFTWARE QUALITY AND
MAINTAINABILITY, 2014. Proceedings... [S.l.]: Citeseer, 2014. v. 65. 24, 157,
163

. Towards base rates in software analytics: early results and challenges from
studying ohloh. Science of Computer Programming, v. 97, p. 135–142, 2015.
34, 158, 164

132

https://agilemanifesto.org/

BUSCHMANN, F.; HENNEY, K.; SCHIMDT, D. Pattern-oriented software
architecture: on patterns and pattern language. [S.l.]: John Wiley & Sons,
2007. 54, 56

BUSE, R. P.; ZIMMERMANN, T. Analytics for software development. In:
WORKSHOP ON FUTURE OF SOFTWARE ENGINEERING RESEARCH,
2010. Proceedings... [S.l.]: FSE/SDP, 2010. p. 77–80. 1, 3, 4, 10, 11, 16

. Information needs for software development analytics. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 34.,
2012. Proceedings... [S.l.], 2012. p. 987–996. 10, 11, 16, 56

CATAL, C. Software mining and fault prediction. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, v. 2, n. 5, p. 420–426,
2012. 29, 157, 163

CERULO, L.; PENTA, M. D.; BACCHELLI, A.; CECCARELLI, M.; CANFORA,
G. Irish: a hidden markov model to detect coded information islands in free text.
Science of Computer Programming, v. 105, p. 26–43, 2015. 3, 32, 64, 158, 164

CHAFFEY, D.; PATRON, M. From web analytics to digital marketing
optimization: increasing the commercial value of digital analytics. Journal of
Direct, Data and Digital Marketing Practice, v. 14, n. 1, p. 30–45, 2012. 1

CHATZIKONSTANTINOU, G.; KONTOGIANNIS, K.; ATTARIAN, I.-M. A goal
driven framework for software project data analytics. In: INTERNATIONAL
CONFERENCE ON ADVANCED INFORMATION SYSTEMS ENGINEERING,
2013. Proceedings... [S.l.]: Springer, 2013. p. 546–561. 27, 157, 163

CHOETKIERTIKUL, M.; DAM, H. K.; TRAN, T.; GHOSE, A. Predicting delays
in software projects using networked classification (t). In: INTERNATIONAL
CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, 30., 2015.
Proceedings... [S.l.]: IEEE/ACM, 2015. p. 353–364. 30, 159, 163

CHOETKIERTIKUL, M.; DAM, H. K.; TRAN, T.; PHAM, T. T. M.; GHOSE,
A.; MENZIES, T. A deep learning model for estimating story points. IEEE
Transactions on Software Engineering, 2018. 29, 160, 163

CHOMA, J.; GUERRA, E. M.; SILVA, T. S. Patterns for implementing software
analytics in development teams. In: CONFERENCE ON PATTERN
LANGUAGES OF PROGRAMS, 24., 2017. Proceedings... [S.l.], 2017. p. 12. 53,
56, 97

133

. Learning from experiments, define quality standards, suspend
measurement: three patterns in a software analytics pattern language. In: LATIN
AMERICAN CONFERENCE ON PATTERN LANGUAGES OF PROGRAMS,
12., 2018. Proceedings... [S.l.], 2018. p. 10. 53, 56, 97

CHOMA, J.; GUERRA, E. M.; SILVA, T. S. da; ZAINA, L. A.; CORREIA, F. F.
Towards an artifact to support agile teams in software analytics activities. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND
KNOWLEDGE ENGINEERING, 2019. Proceedings... [S.l.], 2019. 88

CITO, J. Developer targeted analytics: supporting software development decisions
with runtime information. In: INTERNATIONAL CONFERENCE ON
AUTOMATED SOFTWARE ENGINEERING, 31., 2016. Proceedings... [S.l.]:
IEEE/ACM, 2016. p. 892–895. 34, 159, 164

CITO, J.; OLIVEIRA, F.; LEITNER, P.; NAGPURKAR, P.; GALL, H. C.
Context-based analytics: establishing explicit links between runtime traces and
source code. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, 39., 2017. Proceedings... [S.l.], 2017. p. 193–202. 25, 159, 163

COCKBURN, A. Crystal clear: a human-powered methodology for small
teams. [S.l.]: Pearson Education, 2004. 85

COES, B. Critically assessing the strengths and limitations of the
Business Model Canvas. 2014. 99 p. Master thesis Business Administration —
University of Twente, Nijverdal, 2014. 87

COHN, M. User stories applied: for agile software development. [S.l.]:
Addison-Wesley Professional, 2004. 85

. Agile estimating and planning. [S.l.]: Pearson Education, 2005. 85

CONBOY, K.; DENNEHY, D.; O’CONNOR, M. Big time: an examination of
temporal complexity and business value in analytics. Information &
Management, 2018. 36, 161, 165

COPLIEN, J. O.; HARRISON, N. Organizational patterns of agile software
development. [S.l.]: Pearson Prentice Hall Upper Saddle River, 2005. 54, 75

COPLIEN, J. O.; SCHMIDT, D. C. Pattern languages of program design.
[S.l.]: ACM Press/Addison-Wesley Publishing, 1995. 54

134

COSENTINO, V.; DUEñAS, S.; ZEROUALI, A.; ROBLES, G.;
GONZALEZ-BARAHONA, J. M. Graal: The quest for source code knowledge. In:
INTERNATIONAL WORKING CONFERENCE ON SOURCE CODE
ANALYSIS AND MANIPULATION, 18., 2018. Proceedings... [S.l.], 2018. p.
123–128. 25, 160, 163

COSENTINO, V.; IZQUIERDO, J. L. C.; CABOT, J. A systematic mapping study
of software development with github. IEEE Access, v. 5, p. 7173–7192, 2017. 22

CZECH, M.; HÜLLERMEIER, E.; JAKOBS, M.-C.; WEHRHEIM, H. Predicting
rankings of software verification competitions. In: INTERNATIONAL
WORKSHOP ON SOFTWARE ANALYTICS, 3., 2017. Proceedings... [S.l.]:
ACM, 2017. p. 23–26. 28, 160, 163

CZERWONKA, J.; NAGAPPAN, N.; SCHULTE, W.; MURPHY, B. Codemine:
building a software development data analytics platform at microsoft. IEEE
Software, v. 30, n. 4, p. 64–71, 2013. 38, 157, 165

DAM, H. K.; TRAN, T.; GHOSE, A. Explainable software analytics. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 40.,
2018. Proceedings... [S.l.]: ACM, 2018. p. 53–56. 30, 161, 163

DAM, H. K.; TRAN, T.; GRUNDY, J.; GHOSE, A. Deepsoft: a vision for a deep
model of software. In: INTERNATIONAL SYMPOSIUM ON FOUNDATIONS
OF SOFTWARE ENGINEERING, 24., 2016. Proceedings... [S.l.]: ACM, 2016.
p. 944–947. 28, 159, 163

DANG, Y.; ZHANG, D.; GE, S.; HUANG, R.; CHU, C.; XIE, T. Transferring
code-clone detection and analysis to practice. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, 39., 2017. Proceedings...
[S.l.], 2017. p. 53–62. 35, 160, 165

D’ASTOUS, P.; ROBILLARD, P. N. Empirical study of exchange patterns during
software peer review meetings. Information and Software Technology, v. 44,
n. 11, p. 639–648, 2002. 46, 50

DAVENPORT, T. H. Make better decisions. Harvard Business Review, v. 87,
n. 11, p. 117–123, 2009. 1

DAVENPORT, T. H.; HARRIS, J. G. Competing on analytics: the new
science of winning. [S.l.]: Harvard Business Press, 2007. 1

135

DAVIS, F. D. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, p. 319–340, 1989. 95, 99

DECAN, A.; MENS, T.; GROSJEAN, P. An empirical comparison of dependency
network evolution in seven software packaging ecosystems. Empirical Software
Engineering, v. 24, n. 1, p. 381–416, 2019. 34, 162, 164

DEHGHAN, A.; BLINCOE, K.; DAMIAN, D. A hybrid model for task completion
effort estimation. In: INTERNATIONAL WORKSHOP ON SOFTWARE
ANALYTICS, 2., 2016. Proceedings... [S.l.], 2016. p. 22–28. 29, 159, 163

DEISSENBOECK, F.; JUERGENS, E.; HUMMEL, B.; WAGNER, S.;
PARAREDA, B. M. Y.; PIZKA, M. Tool support for continuous quality control.
IEEE Software, v. 25, n. 5, p. 60–67, 2008. 84, 86

DESHPANDE, A.; SHARP, H.; BARROCA, L.; GREGORY, P. Remote working
and collaboration in agile teams. In: INTERNATIONAL CONFERENCE ON
INFORMATION SYSTEMS, 2016. Proceedings... [S.l.], 2016. p. 11–24. 48

DEVANBU, P.; KUDIGRAMA, P.; RUBIO-GONZÁLEZ, C.; VASILESCU, B.
Timezone and time-of-day variance in github teams: an empirical method and
study. In: INTERNATIONAL WORKSHOP ON SOFTWARE ANALYTICS, 3.,
2017. Proceedings... [S.l.]: ACM, 2017. p. 19–22. 27, 160, 163

DUBOCHET, G. Computer code as a medium for human communication: are
programming languages improving? In: WORKING CONFERENCE ON THE
PSYCHOLOGY OF PROGRAMMERS INTEREST GROUP, 21., 2009.
Proceedings... [S.l.]: University of Limerick, 2009. p. 174–187. 50

DUEÑAS, S.; COSENTINO, V.; ROBLES, G.; GONZALEZ-BARAHONA, J. M.
Perceval: software project data at your will. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, 40., 2018. Proceedings...
[S.l.]: ACM, 2018. p. 1–4. 32, 161, 164

ELLMANN, M. On the similarity of software development documentation. In:
JOINT MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING, 11.,
2017. Proceedings... [S.l.]: ACM, 2017. p. 1030–1033. 35, 160, 165

ELLMANN, M.; OESER, A.; FUCCI, D.; MAALEJ, W. Find, understand, and
extend development screencasts on youtube. In: INTERNATIONAL WORKSHOP
ON SOFTWARE ANALYTICS, 3., 2017. Proceedings... [S.l.]: ACM, 2017.
p. 1–7. 25, 160, 163

136

FALESSI, D.; MOEDE, M. J. Facilitating feasibility analysis: the pilot defects
prediction dataset maker. In: INTERNATIONAL WORKSHOP ON SOFTWARE
ANALYTICS, 4., 2018. Proceedings... [S.l.]: ACM, 2018. p. 15–18. 34, 161, 164

FELDERER, M. Issues on software quality models for mastering change. In:
STEFFEN, B. (Ed.). Transactions on foundations for mastering change I.
[S.l.]: Springer, 2016. p. 225–241. 36, 159, 165

FELDT, R.; STARON, M.; HULT, E.; LILJEGREN, T. Supporting software
decision meetings: heatmaps for visualising test and code measurements. In:
EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND
ADVANCED APPLICATIONS, 39., 2013. Proceedings... [S.l.]: IEEE, 2013. p.
62–69. 37, 78, 157, 165

FINLAY, J.; PEARS, R.; CONNOR, A. M. Data stream mining for predicting
software build outcomes using source code metrics. Information and Software
Technology, v. 56, n. 2, p. 183–198, 2014. 32, 158, 164

FLEURY, S.; JAMET, É.; GHORBEL, A.; LEMAITRE, A.; ANQUETIL, E.
Application of the resources model to the supervision of an automated process.
Human–Computer Interaction, v. 30, n. 2, p. 103–121, 2015. 50

FLOR, N. V.; HUTCHINS, E. Analyzing distributed cognition in software teams:
a case study of collaborative programming during adaptive software maintenance.
In: WORKSHOP ON EMPIRICAL STUDIES OF PROGRAMMERS, 4., 1992.
Proceedings... [S.l.], 1992. p. 36–64. 48

FOIDL, H.; FELDERER, M. Data science challenges to improve quality assurance
of internet of things applications. In: INTERNATIONAL SYMPOSIUM ON
LEVERAGING APPLICATIONS OF FORMAL METHODS, 2016.
Proceedings... [S.l.]: Springer, 2016. p. 707–726. 36, 78, 159, 165

FOTROUSI, F. Quality-impact assessment of software systems. In:
INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE, 24.,
2016. Proceedings... [S.l.]: IEEE, 2016. p. 427–431. 26, 159, 163

FU, W.; MENZIES, T. Easy over hard: a case study on deep learning. In: JOINT
MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING, 11., 2017.
Proceedings... [S.l.]: ACM, 2017. p. 49–60. 32, 159, 164

137

FURNISS, D.; BLANDFORD, A. Understanding emergency medical dispatch in
terms of distributed cognition: a case study. Ergonomics, v. 49, n. 12-13, p.
1174–1203, 2006. 47

GAMMA, E. Design patterns: elements of reusable object-oriented
software. [S.l.]: Pearson Education India, 1995. 53

GERARD, W.; OVERBEEK, S.; BRINKKEMPER, S. Fuzzy artefacts: formality
of communication in agile teams. In: INTERNATIONAL CONFERENCE ON
THE QUALITY OF INFORMATION AND COMMUNICATIONS
TECHNOLOGY), 11., 2018. Proceedings... [S.l.]: IEEE, 2018. p. 1–7. 85

GIGER, E.; GALL, H. C. Effect size analysis. In: INTERNATIONAL
WORKSHOP ON DATA ANALYSIS PATTERNS IN SOFTWARE
ENGINEERING, 1., 2013. Proceedings... [S.l.]: IEEE, 2013. p. 11–13. 55

GODFREY, M. W. Understanding software artifact provenance. Science of
Computer Programming, v. 97, p. 86–90, 2015. 35, 158, 164

GONZALEZ-BARAHONA, J. M.; IZQUIERDO-CORTAZAR, D.; MAFFULLI,
S.; ROBLES, G. Understanding how companies interact with free software
communities. IEEE Software, v. 30, n. 5, p. 38–45, 2013. 27, 157, 163

GONZÁLEZ-TORRES, A.; GARCÍA-PEÑALVO, F. J.; THERÓN, R. A
framework for the evolutionary visual software analytics process. In: LYTRAS,
M. D. et al. (Ed.). Information systems, e-learning, and knowledge
management research. Berlin: Springer, 2013. v. 278, p. 439. 36, 157, 165

. Human–computer interaction in evolutionary visual software analytics.
Computers in Human Behavior, v. 29, n. 2, p. 486–495, 2013. 3

GONZÁLEZ-TORRES, A.; GARCÍA-PEÑALVO, F. J.; THERÓN-SÁNCHEZ, R.;
COLOMO-PALACIOS, R. Knowledge discovery in software teams by means of
evolutionary visual software analytics. Science of Computer Programming,
v. 121, p. 55–74, 2016. 37, 159, 165

GONZÁLEZ-TORRES, A.; NAVAS-SÚ, J.; HERNÁNDEZ-VÁSQUEZ, M.;
SOLANO-CORDERO, J.; HERNÁNDEZ-CASTRO, F. A proposal towards the
design of an architecture for evolutionary visual software analytics. In:
INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND
COMPUTER SCIENCE, 2018. Proceedings... [S.l.], 2018. p. 269–276. 37, 160,
165

138

GONZALEZ-TORRES, A.; THERON, R.; GARCIA-PENALVO, F. J.;
WERMELINGER, M.; YU, Y. Maleku: an evolutionary visual software analysis
tool for providing insights into software evolution. In: INTERNATIONAL
CONFERENCE ON SOFTWARE MAINTENANCE, 27., 2011. Proceedings...
[S.l.]: IEEE, 2011. p. 594–597. 67

GOUSIOS, G.; SAFARIC, D.; VISSER, J. Streaming software analytics. In:
INTERNATIONAL WORKSHOP ON BIG DATA SOFTWARE ENGINEERING,
2., 2016. Proceedings... [S.l.]: ACM, 2016. p. 8–11. 24, 75, 159, 163

GREGOR, S.; HEVNER, A. R. Positioning and presenting design science research
for maximum impact. MIS Quarterly, v. 37, n. 2, 2013. 43

GUERRA, E.; ANICHE, M. Achieving quality on software design through
test-driven development. Software Quality Assurance, p. 201–220, 2015. 72

GUERRA, E.; SOUZA, J. de; FERNANDES, C. Pattern language for the internal
structure of metadata-based frameworks. In: NOBLE, J.; JOHNSON, R.; ZDUN,
U.; WALLINGFORD, E. (Ed.). Transactions on pattern languages of
programming III. [S.l.]: Springer, 2013. p. 55–110. 54, 55

GUO, J.; RAHIMI, M.; CLELAND-HUANG, J.; RASIN, A.; HAYES, J. H.;
VIERHAUSER, M. Cold-start software analytics. In: INTERNATIONAL
WORKSHOP ON MINING SOFTWARE REPOSITORIES, 13., 2016.
Proceedings... [S.l.]: ACM, 2016. p. 142–153. 3, 27, 159, 163

HARON, N. H.; SYED-MOHAMAD, S. M. Test and defect coverage analytics
model for the assessment of software test adequacy. In: SOFTWARE
ENGINEERING CONFERENCE, 9., 2015. Proceedings... [S.l.]: IEEE, 2015. p.
13–18. 37, 72, 158, 165

HARRER, M. Software analytics canvas. 2020. Disponível em:
<https://www.feststelltaste.de/software-analytics-canvas/>. 127

HARTMANN, D.; DYMOND, R. Appropriate agile measurement: using metrics
and diagnostics to deliver business value. In: AGILE CONFERENCE, 2006.
Proceedings... [S.l.], 2006. p. 6–pp. 4

HASSAN, A. E.; XIE, T. Software intelligence: the future of mining software
engineering data. In: WORKSHOP ON FUTURE OF SOFTWARE
ENGINEERING RESEARCH, 2010. Proceedings... [S.l.]: ACM, 2010. p.
161–166. 1, 2, 4, 10, 11, 16

139

https://www.feststelltaste.de/software-analytics-canvas/

HEMMATI, A.; ALAM, S. D. A.; CARLSON, C. Utilizing product usage data for
requirements evaluation. In: INTERNATIONAL REQUIREMENTS
ENGINEERING CONFERENCE, 26., 2018. Proceedings... [S.l.]: IEEE, 2018. p.
432–435. 26, 162, 163

HEVNER, A.; CHATTERJEE, S. Design science research in information systems.
In: ——(Ed.). Design research in information systems. [S.l.]: Springer,
2010. p. 9–22. 44

HEVNER, A. R.; MARCH, S. T.; PARK, J.; RAM, S. Design science in
information systems research. MIS Quarterly, v. 28, n. 1, p. 75–105, 2004. 43,
44, 45

HINDLE, A.; BIRD, C.; ZIMMERMANN, T.; NAGAPPAN, N. Do topics make
sense to managers and developers? Empirical Software Engineering, v. 20,
n. 2, p. 479–515, 2015. 32, 158, 164

HOLLAN, J.; HUTCHINS, E.; KIRSH, D. Distributed cognition: toward a new
foundation for human-computer interaction research. ACM Transactions on
Computer-Human Interaction, v. 7, p. 174–196, 2000. 47, 48

HUANG, Q.; XIA, X.; LO, D. Revisiting supervised and unsupervised models for
effort-aware just-in-time defect prediction. Empirical Software Engineering, p.
1–40, 2018. 29, 161, 163

HUANG, Y.; COSTA, D. A. da; ZHANG, F.; ZOU, Y. An empirical study on the
issue reports with questions raised during the issue resolving process. Empirical
Software Engineering, p. 1–33, 2018. 30, 160, 163

HUIJGENS, H.; LAMPING, R.; STEVENS, D.; ROTHENGATTER, H.;
GOUSIOS, G.; ROMANO, D. Strong agile metrics: mining log data to determine
predictive power of software metrics for continuous delivery teams. In: JOINT
MEETING ON FOUNDATIONS OF SOFTWARE ENGINEERING, 11., 2017.
Proceedings... [S.l.]: ACM, 2017. p. 866–871. 34, 81, 160, 164

HUIJGENS, H.; SPADINI, D.; STEVENS, D.; VISSER, N.; DEURSEN, A. van.
Software analytics in continuous delivery: a case study on success factors. In:
INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING AND MEASUREMENT, 12., 2018. Proceedings... [S.l.]: ACM,
2018. p. 25. 39, 42, 161, 165

140

HULLETT, K.; NAGAPPAN, N.; SCHUH, E.; HOPSON, J. Data analytics for
game development. In: INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERING, 33., 2011. Proceedings... [S.l.]: IEEE, 2011. p. 940–943. 1

HUTCHINS, E. Cognition in the wild. [S.l.]: MIT Press, 1995. 47, 48

ITO, K.; YODER, J. W.; WASHIZAKI, H.; FUKAZAWA, Y. A pattern language
for knowledge handover when people transition. In: NOBLE, J.; JOHNSON, R.;
ZDUN, U.; WALLINGFORD, E. (Ed.). Transactions on pattern languages of
programming IV. [S.l.]: Springer, 2019. p. 183–209. 54, 55

IVARSSON, M.; GORSCHEK, T. A method for evaluating rigor and industrial
relevance of technology evaluations. Empirical Software Engineering, v. 16,
n. 3, p. 365–395, 2011. 11, 40

JANES, A.; LENARDUZZI, V.; STAN, A. C. A continuous software quality
monitoring approach for small and medium enterprises. In: INTERNATIONAL
CONFERENCE ON PERFORMANCE ENGINEERING COMPANION, 8., 2017.
Proceedings... [S.l.]: ACM, 2017. p. 97–100. 33, 159, 164

JEONG, A. Comparing instructional event sequences in audio podcasts with low
versus high user satisfaction. TechTrends, v. 63, n. 5, p. 559–563, 2019. 51

JIARPAKDEE, J.; TANTITHAMTHAVORN, C.; TREUDE, C. Autospearman:
automatically mitigating correlated software metrics for interpreting defect models.
In: INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND
EVOLUTION, 2018. Proceedings... [S.l.]: IEEE, 2018. p. 92–103. 29, 161, 163

JOHNSON, P. M. Searching under the streetlight for useful software analytics.
IEEE Software, v. 30, n. 4, p. 57–63, 2013. 33, 157, 164

JOYCE, A.; PAQUIN, R. L. The triple layered business model canvas: a tool to
design more sustainable business models. Journal of Cleaner Production,
v. 135, p. 1474–1486, 2016. 87

KARIM, M. R.; ALAM, A.; DIDAR, S.; KABEER, S. J.; RUHE, G.; BALUTA,
B.; MAHMUD, S. Applying data analytics towards optimized issue management:
an industrial case study. In: INTERNATIONAL WORKSHOP ON
CONDUCTING EMPIRICAL STUDIES IN INDUSTRY, 4., 2016.
Proceedings... [S.l.]: ACM, 2016. p. 7–13. 27, 159, 163

141

KARNA, H.; VICKOVIĆ, L.; GOTOVAC, S. Application of data mining methods
for effort estimation of software projects. Software: Practice and Experience,
v. 49, n. 2, p. 171–191, 2019. 29, 160, 163

KIDWELL, B.; HAYES, J. H. Toward a learned project-specific fault taxonomy:
application of software analytics. In: INTERNATIONAL WORKSHOP ON
SOFTWARE ANALYTICS, 2015. [S.l.], 2015. p. 1–4. 25, 158, 163

KIM, M.; ZIMMERMANN, T.; DELINE, R.; BEGEL, A. The emerging role of
data scientists on software development teams. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, 38., 2016. Proceedings...
[S.l.]: IEEE/ACM, 2016. p. 96–107. 3, 35, 75, 159, 165

. Data scientists in software teams: state of the art and challenges. IEEE
Transactions on Software Engineering, v. 44, n. 11, p. 1024–1038, 2018. 35,
161, 164

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing systematic
literature reviews in software engineering. [S.l.]: EBSE, 2007. 9, 11

KOCAGUNELI, E.; CUKIC, B.; LU, H. Predicting more from less: synergies of
learning. In: INTERNATIONAL WORKSHOP ON REALIZING ARTIFICIAL
INTELLIGENCE SYNERGIES IN SOFTWARE ENGINEERING, 2., 2013.
Proceedings... [S.l.]: IEEE, 2013. p. 42–48. 28, 157, 163

KOCAGUNELI, E.; MENZIES, T.; KEUNG, J.; COK, D.; MADACHY, R. Active
learning and effort estimation: finding the essential content of software effort
estimation data. IEEE Transactions on Software Engineering, v. 39, n. 8, p.
1040–1053, 2013. 29, 157, 163

KONDO, M.; BEZEMER, C.-P.; KAMEI, Y.; HASSAN, A. E.; MIZUNO, O. The
impact of feature reduction techniques on defect prediction models. Empirical
Software Engineering, p. 1–39, 2019. 30, 162, 163

KRISHNA, R. Learning effective changes for software projects. In:
INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE
ENGINEERING, 32., 2017. Proceedings... [S.l.]: IEEE, 2017. p. 1002–1005. 25,
160, 163

KRISHNA, R.; MENZIES, T. Bellwethers: a baseline method for transfer learning.
IEEE Transactions on Software Engineering, 2018. 30, 161, 163

142

KS, A. Ideation to production: can it be a one man show? IEEE Engineering
Management Review, v. 45, n. 4, p. 28–29, 2017. 86

LEHMANN-WILLENBROCK, N.; ALLEN, J. A. Modeling temporal interaction
dynamics in organizational settings. Journal of Business and Psychology,
v. 33, n. 3, p. 325–344, 2018. 102

LEHTONEN, T.; ELORANTA, V.-P.; LEPPÄNEN, M.; ISOHANNI, E.
Visualizations as a basis for agile software process improvement. In:
ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, 20., 2013.
Proceedings... [S.l.]: IEEE, 2013. v. 1, p. 495–502. 36, 157, 165

LI, Z.; AVGERIOU, P.; LIANG, P. A systematic mapping study on technical debt
and its management. Journal of Systems and Software, v. 101, p. 193–220,
2015. 65

LICORISH, S. A.; TAHIR, A.; BOSU, M. F.; MACDONELL, S. G. On satisfying
the android os community: user feedback still central to developers’ portfolios. In:
AUSTRALASIAN SOFTWARE ENGINEERING CONFERENCE, 24., 2015.
Proceedings... [S.l.]: IEEE, 2015. p. 78–87. 33, 158, 164

LIECHTI, O.; PASQUIER, J.; REIS, R. Beyond dashboards: on the many facets
of metrics and feedback in agile organizations. In: INTERNATIONAL
WORKSHOP ON COOPERATIVE AND HUMAN ASPECTS OF SOFTWARE
ENGINEERING, 10., 2017. Proceedings... [S.l.]: IEEE, 2017. p. 16–22. 39, 86,
159, 165

. Supporting agile teams with a test analytics platform: a case study. In:
INTERNATIONAL WORKSHOP ON AUTOMATION OF SOFTWARE
TESTING, 12., 2017. Proceedings... [S.l.]: IEEE, 2017. p. 9–15. 4, 38, 75, 125,
160, 165

LIN, J.; LIU, Y.; GUO, J.; CLELAND-HUANG, J.; GOSS, W.; LIU, W.; LOHAR,
S.; MONAIKUL, N.; RASIN, A. Tiqi: a natural language interface for querying
software project data. In: INTERNATIONAL CONFERENCE ON AUTOMATED
SOFTWARE ENGINEERING, 32., 2017. Proceedings... [S.l.]: IEEE, 2017. p.
973–977. 27, 160, 163

LISMONT, J.; VANTHIENEN, J.; BAESENS, B.; LEMAHIEU, W. Defining
analytics maturity indicators: a survey approach. International Journal of
Information Management, v. 37, n. 3, p. 114–124, 2017. 1

143

LIU, F.; MAITLIS, S.; MILLS, A.; DUREPOS, G.; WIEBE, E. Nonparticipant
observation. In: MILLS, A. J.; DUREPOS, G.; WIEBE, E. (Ed.). Encyclopedia
of case study research. [S.l.]: SAGE, 2010. v. 2, p. 610–612. 46

LOU, J.-G.; LIN, Q.; DING, R.; FU, Q.; ZHANG, D.; XIE, T. Software analytics
for incident management of online services: an experience report. In:
INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE
ENGINEERING, 28., 2013. Proceedings... [S.l.]: IEEE, 2013. p. 475–485. 25, 61,
157, 163

. Experience report on applying software analytics in incident management
of online service. Automated Software Engineering, v. 24, n. 4, p. 905–941,
2017. 25, 160, 163

LOW, J. F.; YATHOG, T.; SVETINOVIC, D. Software analytics study of
open-source system survivability through social contagion. In: INTERNATIONAL
CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING
MANAGEMENT, 2015. Proceedings... [S.l.]: IEEE, 2015. p. 1213–1217. 31, 158,
164

MAALEJ, W.; KURTANOVIC, Z.; NABIL, H.; STANIK, C. On the automatic
classification of app reviews. Requirements Engineering, v. 21, n. 3, p.
311–331, 2016. 2, 26, 159, 163

MAALEJ, W.; NAYEBI, M.; JOHANN, T.; RUHE, G. Toward data-driven
requirements engineering. IEEE Software, v. 33, n. 1, p. 48–54, 2016. 1, 25, 159,
163

MANZANO, M.; GÓMEZ, C.; AYALA, C.; MARTÍNEZ-FERNÁNDEZ, S.; RAM,
P.; RODRÍGUEZ, P.; ORIOL, M. Definition of the on-time delivery indicator in
rapid software development. In: INTERNATIONAL WORKSHOP ON QUALITY
REQUIREMENTS IN AGILE PROJECTS, 1., 2018. Proceedings... [S.l.]: IEEE,
2018. p. 1–5. 34, 161, 164

MARTÍNEZ-FERNÁNDEZ, S.; JEDLITSCHKA, A.; GUZMÁN, L.; VOLLMER,
A. M. A quality model for actionable analytics in rapid software development. In:
EUROMICRO CONFERENCE ON SOFTWARE ENGINEERING AND
ADVANCED APPLICATIONS, 44., 2018. Proceedings... [S.l.], 2018. p. 370–377.
35, 78, 160, 164

MATTILA, A.-L.; LEHTONEN, T.; TERHO, H.; MIKKONEN, T.; SYSTÄ, K.
Mashing up software issue management, development, and usage data. In:

144

INTERNATIONAL WORKSHOP ON RAPID CONTINUOUS SOFTWARE
ENGINEERING, 2., 2015. Proceedings... [S.l.]: IEEE, 2015. p. 26–29. 37, 158,
165

MATTILA, A.-L.; SYSTÄ, K.; SIEVI-KORTE, O.; LEPPÄNEN, M.;
MIKKONEN, T. Discovering software process deviations using visualizations. In:
INTERNATIONAL CONFERENCE ON AGILE SOFTWARE DEVELOPMENT,
2017. Proceedings... [S.l.]: Springer, Cham, 2017. p. 259–266. 36, 159, 165

MAURYA, A. Running lean: iterate from plan A to a plan that works.
[S.l.]: O’Reilly Media, 2012. 87

MCGRATH, S.; BASTOLA, K.; SIY, H. Concept to commit. In:
INTERNATIONAL WORKSHOP ON DATA ANALYSIS PATTERNS IN
SOFTWARE ENGINEERING, 1., 2013. Proceedings... [S.l.]: IEEE, 2013.
p. 6–8. 55

MCINTOSH, S.; NAGAPPAN, M.; ADAMS, B.; MOCKUS, A.; HASSAN, A. E.
A large-scale empirical study of the relationship between build technology and
build maintenance. Empirical Software Engineering, v. 20, n. 6, p. 1587–1633,
2015. 31, 158, 164

MELEGATI, J.; GOLDMAN, A. Seven patterns for software startups. In:
CONFERENCE ON PATTERN LANGUAGES OF PROGRAMS, 22., 2015.
Proceedings... [S.l.]: Hillside Group, 2015. p. 20. 76

MENZIES, T. Predicting the future of predictive modeling. In: NSF
WORKSHOP: PLANNING FUTURE DIRECTIONS IN AI &SE, 2012.
Proceedings... [S.l.]: Citeseer, 2012. 28, 157, 163

. Beyond data mining. IEEE Software, v. 30, n. 3, p. 92–92, 2013. 30, 157,
164

. The unreasonable effectiveness of software analytics. IEEE Software,
v. 35, n. 2, p. 96–98, 2018. 28, 161, 163

MENZIES, T.; ZIMMERMANN, T. Software analytics: so what? IEEE
Software, v. 30, n. 4, p. 31–37, 2013. 10, 11, 16

. Software analytics: what’s next? IEEE Software, v. 35, n. 5, p. 64–70,
2018. 28, 161, 164

145

MERSON, P.; AGUIAR, A.; GUERRA, E.; YODER, J. Continuous inspection: a
pattern for keeping your code healthy and aligned to the architecture. In: ASIAN
CONFERENCE ON PATTERN LANGUAGES OF PROGRAMS, 3., 2014.
Proceedings... [S.l.], 2014. p. 6–8. 78

MEZOUAR, M. E.; ZHANG, F.; ZOU, Y. Are tweets useful in the bug fixing
process? an empirical study on firefox and chrome. Empirical Software
Engineering, v. 23, n. 3, p. 1704–1742, 2018. 32, 161, 164

MINELLI, R.; LANZA, M. Samoa-a visual software analytics platform for mobile
applications. In: INTERNATIONAL CONFERENCE ON SOFTWARE
MAINTENANCE, 2013. Proceedings... [S.l.]: IEEE, 2013. p. 476–479. 67

. Software analytics for mobile applications–insights & lessons learned. In:
EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND
REENGINEERING, 17., 2013. Proceedings... [S.l.]: IEEE, 2013. p. 144–153. 38,
157, 165

MINKU, L. L.; MENDES, E.; TURHAN, B. Data mining for software engineering
and humans in the loop. Progress in Artificial Intelligence, v. 5, n. 4, p.
307–314, 2016. 28, 159, 163

MISIRLI, A. T.; CAGLAYAN, B.; BENER, A.; TURHAN, B. A retrospective
study of software analytics projects: in-depth interviews with practitioners. IEEE
Software, v. 30, n. 5, p. 54–61, 2013. 30, 157, 163

MORALES-RAMIREZ, I.; KIFETEW, F. M.; PERINI, A. Speech-acts based
analysis for requirements discovery from online discussions. Information
Systems, 2018. 26, 161, 163

MOSER, M.; PICHLER, J.; FLECK, G.; WITLATSCHIL, M. Rbg: a
documentation generator for scientific and engineering software. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION
AND REENGINEERING, 22., 2015. Proceedings... [S.l.]: IEEE, 2015. p.
464–468. 32, 158, 164

MUSSON, R.; RICHARDS, J.; FISHER, D.; BIRD, C.; BUSSONE, B.;
GANGULY, S. Leveraging the crowd: how 48,000 users helped improve lync
performance. IEEE Software, v. 30, n. 4, p. 38–45, 2013. 3, 36, 157, 165

NAGLE, T.; SAMMON, D. The development of a design research canvas for data
practitioners. Journal of Decision Systems, v. 25, n. sup1, p. 369–380, 2016. 87

146

NAYEBI, M.; KABEER, S. J.; RUHE, G.; CARLSON, C.; CHEW, F. Hybrid
labels are the new measure! IEEE Software, v. 35, n. 1, p. 54–57, 2017. 28, 160,
163

NAYEBI, M.; RUHE, G.; ZIMMERMANN, T. Mining treatment-outcome
constructs from sequential software engineering data. IEEE Transactions on
Software Engineering, p. 1–20, 2019. 26, 162, 163

NERI, H. R.; TRAVASSOS, G. H. Measuresoftgram: a future vision of software
product quality. In: INTERNATIONAL SYMPOSIUM ON EMPIRICAL
SOFTWARE ENGINEERING AND MEASUREMENT, 12., 2018.
Proceedings... [S.l.]: ACM, 2018. p. 54. 34, 161, 164

NGUYEN, D.; TIEN, D.; KESAVULU, M.; HELFERT, M. Usage analytics:
research directions to discover insights from cloud-based applications. In:
INTERNATIONAL CONFERENCE ON SMART CITIES AND GREEN ICT
SYSTEMS, 7., 2018. Proceedings... [S.l.]: Sitepress, 2018. p. 1–8. 35, 161, 165

NIDAGUNDI, P.; NOVICKIS, L. Introducing lean canvas model adaptation in the
scrum software testing. Procedia Computer Science, v. 104, p. 97–103, 2017. 87

NOEI, E.; ZHANG, F.; WANG, S.; ZOU, Y. Towards prioritizing user-related
issue reports of mobile applications. Empirical Software Engineering, p. 1–33,
2019. 32, 162, 164

NOORWALI, I. Stakeholder concern-driven requirements analytics. ACM
Software Engineering Notes, v. 43, n. 1, p. 1–6, 2018. 37, 161, 165

NORD, R. L.; OZKAYA, I.; KOZIOLEK, H.; AVGERIOU, P. Quantifying
software architecture quality report on the first international workshop on software
architecture metrics. ACM Software Engineering Notes, v. 39, n. 5, p. 32–34,
2014. 62

OLIVEIRA, R. de M.; GOLDMAN, A.; MELO, C. O. Designing and managing
agile informative workspaces: discovering and exploring patterns. In: HAWAII
INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE, 46., 2013.
Proceedings... [S.l.]: IEEE, 2013. p. 4790–4799. 85

OLSON, G. M.; HERBSLEB, J. D.; REUTER, H. H. Characterizing the sequential
structure of interactive behaviors through statistical and grammatical techniques.
Human–Computer Interaction, v. 9, n. 3-4, p. 427–472, 1994. 50, 109

147

ONOUE, S.; HATA, H.; MONDEN, A.; MATSUMOTO, K. Investigating and
projecting population structures in open source software projects: a case study of
projects in github. Transactions on Information and Systems, v. 99, n. 5, p.
1304–1315, 2016. 27, 159, 163

OSTERWALDER, A.; PIGNEUR, Y. Business model generation: a
handbook for visionaries, game changers, and challengers. [S.l.]: John
Wiley & Sons, 2010. 87

OSTERWALDER, A.; PIGNEUR, Y.; TUCCI, C. L. Clarifying business models:
origins, present, and future of the concept. Communications of the
Association for Information Systems, v. 16, n. 1, p. 1, 2005. 87

PACHIDI, S.; SPRUIT, M.; WEERD, I. V. D. Understanding users’ behavior with
software operation data mining. Computers in Human Behavior, v. 30, p.
583–594, 2014. 3, 64

PETERS, F. On privacy and utility while improving software quality. In:
INTERNATIONAL CONFERENCE ON CURRENT TRENDS IN THEORY
AND PRACTICE OF COMPUTER SCIENCE, 43., 2018. Proceedings... [S.l.],
2018. p. 14. 28, 161, 163

PETERSEN, K. Measuring and predicting software productivity: a systematic
map and review. Information and Software Technology, v. 53, n. 4, p.
317–343, 2011. 15

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic
mapping studies in software engineering. In: INTERNATIONAL CONFERENCE
ON EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, 12.,
2008. Proceedings... [S.l.], 2008. p. 1–10. 15

PETERSEN, K.; GENCEL, C. Worldviews, research methods, and their
relationship to validity in empirical software engineering research. In:
INTERNATIONAL CONFERENCE ON SOFTWARE PROCESS AND
PRODUCT MEASUREMENT, 8., 2013. Proceedings... [S.l.]: IEEE, 2013. p.
81–89. 111, 112

PETERSEN, K.; VAKKALANKA, S.; KUZNIARZ, L. Guidelines for conducting
systematic mapping studies in software engineering: an update. Information and
Software Technology, v. 64, p. 1–18, 2015. 9, 13

148

PICCIONI, M.; FURIA, C. A.; MEYER, B. An empirical study of api usability.
In: INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING AND MEASUREMENT, 2013. Proceedings... [S.l.]: ACM,
2013. p. 5–14. 5

PINTO, A. F.; FONTES, N.; GUERRA, E.; TERRA, R. Archci: an architectural
verification tool into continuous integration. In: BRAZILIAN CONFERENCE ON
SOFTWARE: THEORY AND PRACTICE, 11., 2016. Proceedings... [S.l.], 2016.
p. 121–128. 70

POHL, M.; WALLNER, G.; KRIGLSTEIN, S. Using lag-sequential analysis for
understanding interaction sequences in visualizations. International Journal of
Human-Computer Studies, v. 96, p. 54–66, 2016. 50

PORT, D.; TABER, B. Actionable analytics for strategic maintenance of critical
software: an industry experience report. IEEE Software, v. 35, n. 1, p. 58–63,
2018. 35, 160, 165

PRICE, P. C. et al. Research methods in psychology. [S.l.]: BCCampus, 2015.
46

PURAO, S. Design research in the technology of information systems:
Truth or dare. [S.l.]: GSU Department of CIS, 2002. 45–77 p. 43

RAHMAN, A.; AGRAWAL, A.; KRISHNA, R.; SOBRAN, A. Characterizing the
influence of continuous integration: empirical results from 250+ open source and
proprietary projects. In: INTERNATIONAL WORKSHOP ON SOFTWARE
ANALYTICS, 4., 2018. Proceedings... [S.l.]: ACM, 2018. p. 8–14. 26, 161, 163

RAM, P.; RODRIGUEZ, P.; OIVO, M. Software process measurement and related
challenges in agile software development: a multiple case study. In:
INTERNATIONAL CONFERENCE ON PRODUCT-FOCUSED SOFTWARE
PROCESS IMPROVEMENT, 2018. Proceedings... [S.l.]: Springer, 2018. p.
272–287. 81

RAM, P.; RODRIGUEZ, P.; OIVO, M.; MARTÍNEZ-FERNÁNDEZ, S. Success
factors for effective process metrics operationalization in agile software
development: a multiple case study. In: INTERNATIONAL CONFERENCE ON
SOFTWARE AND SYSTEM PROCESSES, 2019. Proceedings... [S.l.]: IEEE,
2019. p. 14–23. 86

149

RAMARAO, P.; MUTHUKUMARAN, K.; DASH, S.; MURTHY, N. B. Impact of
bug reporter’s reputation on bug-fix times. In: INTERNATIONAL
CONFERENCE ON INFORMATION SYSTEMS ENGINEERING, 2016.
Proceedings... [S.l.]: IEEE, 2016. p. 57–61. 3

REDDIVARI, S.; RAD, S.; BHOWMIK, T.; CAIN, N.; NIU, N. Visual
requirements analytics: a framework and case study. Requirements
Engineering, v. 19, n. 3, p. 257–279, 2014. 37, 158, 165

RISING, L. Patterns mining. In: ZAMIR, S. (Ed.). Handbook of object
technology. [S.l.]: CRC Press, 1999. p. 38–31. 54

. Small experiments. Better Software, n. Jan-Feb, p. 13–44, 2011. 74

ROBBES, R.; VIDAL, R.; BASTARRICA, M. C. Are software analytics efforts
worthwhile for small companies? the case of amisoft. IEEE Software, v. 30, n. 5,
p. 46–53, 2013. 3, 4, 35, 157, 164

ROBILLARD, P. N.; D’ASTOUS, P.; DÉTIENNE, F.; VISSER, W. Measuring
cognitive activities in software engineering. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, 20., 1998. Proceedings...
[S.l.]: IEEE, 1998. p. 292–300. 47

ROBLES, G.; GONZÁLEZ-BARAHONA, J. M. Mining student repositories to
gain learning analytics: an experience report. In: GLOBAL ENGINEERING
EDUCATION CONFERENCE, 2013. Proceedings... [S.l.]: IEEE, 2013. p.
1249–1254. 31, 157, 164

ROBLES, G.; GONZÁLEZ-BARAHONA, J. M.; CERVIGÓN, C.; CAPILUPPI,
A.; IZQUIERDO-CORTÁZAR, D. Estimating development effort in free/open
source software projects by mining software repositories: a case study of openstack.
In: WORKING CONFERENCE ON MINING SOFTWARE REPOSITORIES,
11., 2014. Proceedings... [S.l.]: ACM, 2014. p. 222–231. 62

ROSEN, C.; GRAWI, B.; SHIHAB, E. Commit guru: analytics and risk prediction
of software commits. In: JOINT MEETING ON FOUNDATIONS OF
SOFTWARE ENGINEERING, 10., 2015. Proceedings... [S.l.]: ACM, 2015. p.
966–969. 26, 158, 163

RUNESON, P.; HÖST, M.; RAINER, A.; REGNELL, B. Case study research
in software engineering: guidelines and examples. [S.l.]: John Wiley and
Sons, 2012. 13, 46

150

SANDERSON, P. M.; FISHER, C. Exploratory sequential data analysis:
foundations. Human–Computer Interaction, v. 9, n. 3-4, p. 251–317, 1994. 47,
50, 52, 125, 127

SANT’ANNA, N.; GUERRA, E.; IVO, A.; PEREIRA, F.; MORAES, M.; GOMES,
V.; VERAS, L. G. Modelo arquitetural para coleta, processamento e visualização
de informações de clima espacial. In: SIMPÓSIO BRASILEIRO DE SISTEMAS
DE INFORMAÇÃO, 10., 2014. Anais... [S.l.]: SBC, 2014. p. 125–136. 97

SCAIFE, M.; ROGERS, Y. External cognition: how do graphical representations
work? International Journal of Human-Computer Studies, v. 45, n. 2, p.
185–213, 1996. 49

SHARP, H.; GIUFFRIDA, R.; MELNIK, G. Information flow within a dispersed
agile team: a distributed cognition perspective. In: INTERNATIONAL
CONFERENCE ON AGILE SOFTWARE DEVELOPMENT, 2012.
Proceedings... [S.l.]: Springer, 2012. p. 62–76. 48

SHARP, H.; ROBINSON, H. A distributed cognition account of mature xp teams.
In: INTERNATIONAL CONFERENCE ON EXTREME PROGRAMMING AND
AGILE PROCESSES IN SOFTWARE ENGINEERING, 2006. Proceedings...
[S.l.]: Springer, 2006. p. 1–10. 48

SHARP, H.; ROBINSON, H.; SEGAL, J.; FURNISS, D. The role of story cards
and the wall in xp teams: a distributed cognition perspective. In: AGILE
CONFERENCE, 2006. Proceedings... [S.l.]: IEEE, 2006. 85

SHULL, F. Data, data everywhere. IEEE Software, v. 31, n. 5, 2014. 2, 4, 24, 81,
158, 163

SIMON, H. A. The sciences of the artificial. [S.l.]: MIT Press, 1996. 43

SINGH, M.; WALIA, G. S.; GOSWAMI, A. An empirical investigation to
overcome class-imbalance in inspection reviews. In: INTERNATIONAL
CONFERENCE ON MACHINE LEARNING AND DATA SCIENCE, 2017.
Proceedings... [S.l.]: IEEE, 2017. p. 15–22. 33, 159, 164

SMITH, S.; DUKE, D.; WRIGHT, P. Using the resources model in virtual
environment design. In: WORKSHOP ON USER CENTERED DESIGN AND
IMPLEMENTATION OF VIRTUAL ENVIRONMENTS, 1999. Proceedings...
[S.l.], 1999. p. 57–72. 50

151

SNYDER, B.; CURTIS, B. Using analytics to guide improvement during an
agile–devops transformation. IEEE Software, v. 35, n. 1, p. 78–83, 2018. 40, 42,
161, 165

SOLTANIFAR, B.; AKBARINASAJI, S.; CAGLAYAN, B.; BENER, A. B.; FILIZ,
A.; KRAMER, B. M. Software analytics in practice: a defect prediction model
using code smells. In: INTERNATIONAL DATABASE ENGINEERING &
APPLICATIONS SYMPOSIUM, 20., 2016. Proceedings... [S.l.], 2016. p.
148–155. 29, 159, 163

SOUZA, R.; CHAVEZ, C.; BITTENCOURT, R. Patterns for cleaning up bug
data. In: INTERNATIONAL WORKSHOP ON DATA ANALYSIS PATTERNS
IN SOFTWARE ENGINEERING, 1., 2013. Proceedings... [S.l.]: IEEE, 2013. p.
26–28. 55

SOUZA, R.; CHAVEZ, C.; BITTENCOURT, R. A. Rapid releases and patch
backouts: a software analytics approach. IEEE Software, v. 32, n. 2, p. 89–96,
2015. 26, 72, 158, 163

STOREY, M.-A. Lies, damned lies, and analytics: why big data needs thick data.
In: MENZIES, T.; WILLIAMS, L.; ZIMMERMANN, T. (Ed.). Perspectives on
data science for software engineering. [S.l.]: Elsevier, 2016. p. 369–374. 2

SUONSYRJÄ, S.; MIKKONEN, T. Designing an unobtrusive analytics framework
for monitoring java applications. In: KOBYLINSKI, A.;
CZARNACKA-CHROBOT, B.; SWIERCZEK, J. (Ed.). Software
measurement. [S.l.]: Springer, 2015. p. 160–175. 33, 158, 164

SUONSYRJÄ, S.; SYSTÄ, K.; MIKKONEN, T.; TERHO, H. Collecting usage
data for software development: selection framework for technological approaches.
In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND
KNOWLEDGE ENGINEERING, 28., 2016. Proceedings... [S.l.]: ACM, 2016. p.
114–119. 33, 65, 159, 164

SUREKA, A.; SINGH, H. K.; BAGEWADI, M.; MITRA, A.; KARANTH, R. A
decision support platform for guiding a bug triager for resolver recommendation
using textual and non-textual features. In: INTERNATIONAL WORKSHOP ON
QUANTITATIVE APPROACHES TO SOFTWARE QUALITY, 3., 2015.
Proceedings... [S.l.], 2015. p. 25. 3, 39, 158, 165

SYED-MOHAMAD, S. M.; HARON, N. H.; MCBRIDE, T. Test adequacy
assessment using test-defect coverage analytic model. Journal of

152

Telecommunication, Electronic and Computer Engineering (JTEC), v. 9,
n. 3-5, p. 191–196, 2017. 34, 160, 164

TAIPALE, T.; QVIST, M.; TURHAN, B. Constructing defect predictors and
communicating the outcomes to practitioners. In: INTERNATIONAL
SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING AND
MEASUREMENT, 2013. Proceedings... [S.l.]: ACM, 2013. p. 357–362. 29, 67,
157, 163

TAMLA, P.; FEJA, S.; PRAUSE, C. R. Metadata-based code example embedding.
In: INTERNATIONAL WORKSHOP ON SOFTWARE ANALYTICS, 3., 2017.
Proceedings... [S.l.]: ACM, 2017. p. 15–18. 31, 160, 164

TANTITHAMTHAVORN, C.; HASSAN, A. E. An experience report on defect
modelling in practice: pitfalls and challenges. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE
ENGINEERING IN PRACTICE, 40., 2018. Proceedings... [S.l.], 2018. p.
286–295. 30, 160, 163

THEODOROU, V.; GEROSTATHOPOULOS, I.; AMINI, S.; SCANDARIATO,
R.; PREHOFER, C.; STARON, M. Theta architecture: preserving the quality of
analytics in data-driven systems. In: EUROPEAN CONFERENCE ON
ADVANCES IN DATABASES AND INFORMATION SYSTEMS, 2017.
Proceedings... [S.l.]: Springer, 2017. p. 186–198. 25, 160, 163

TORRES, A. G.; GARCÍA-PEÑALVO, F. J.; THERÓN-SÁNCHEZ, R. How
evolutionary visual software analytics supports knowledge discovery. Journal of
Information Science and Engineering, v. 29, n. 1, p. 17–34, 2013. 37, 157, 165

TRAUTSCH, F.; HERBOLD, S.; MAKEDONSKI, P.; GRABOWSKI, J.
Adressing problems with external validity of repository mining studies through a
smart data platform. In: INTERNATIONAL CONFERENCE ON MINING
SOFTWARE REPOSITORIES, 13., 2016. Proceedings... [S.l.]: ACM, 2016. p.
97–108. 38, 159, 165

. Addressing problems with replicability and validity of repository mining
studies through a smart data platform. Empirical Software Engineering, v. 23,
n. 2, p. 1036–1083, 2018. 38, 160, 165

TREUDE, C.; FIGUEIRA-FILHO, F.; KULESZA, U. Summarizing and measuring
development activity. In: JOINT MEETING ON FOUNDATIONS OF

153

SOFTWARE ENGINEERING, 10., 2015. Proceedings... [S.l.]: ACM, 2015. p.
625–636. 34, 158, 164

TURHAN, B.; KUUTTI, K. Simpler questions can lead to better insights. In:
MENZIES, T.; WILLIAMS, L.; ZIMMERMANN, T. (Ed.). Perspectives on
data science for software engineering. Boston: Morgan Kaufmann, 2016. 70

VARGAS, E. L.; HEJDERUP, J.; KECHAGIA, M.; BRUNTINK, M.; GOUSIOS,
G. Enabling real-time feedback in software engineering. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING, 40., 2018. Proceedings...
[S.l.]: ACM, 2018. p. 21–24. 38, 161, 165

VENABLE, J.; PRIES-HEJE, J.; BASKERVILLE, R. Feds: a framework for
evaluation in design science research. European Journal of Information
Systems, v. 25, n. 1, p. 77–89, 2016. 94

VICK, R. M. et al. Assessment of resource coordination effectiveness through
analysis of distributed cognitive traces in team decision making. In: ANNUAL
MEETING OF THE COGNITIVE SCIENCE SOCIETY, 25., 2003.
Proceedings... [S.l.], 2003. 49

WANG, C.; AKELLA, R.; RAMACHANDRAN, S.; HINNANT, D. Knowledge
extraction and reuse within "smart" service centers. In: ANNUAL SRII GLOBAL
CONFERENCE, 2011. Proceedings... [S.l.]: IEEE, 2011. p. 163–176. 3

WEISS, D. M.; MOCKUS, A. The chunking pattern. In: INTERNATIONAL
WORKSHOP ON DATA ANALYSIS PATTERNS IN SOFTWARE
ENGINEERING, 1., 2013. Proceedings... [S.l.]: IEEE, 2013. p. 35–37. 72

WIERINGA, R.; MAIDEN, N.; MEAD, N.; ROLLAND, C. Requirements
engineering paper classification and evaluation criteria: a proposal and a
discussion. Requirements Engineering, v. 11, n. 1, p. 102–107, 2006. 13

WILLIAMS, J.; MATRAGKAS, N.; KOLOVOS, D.; KORKONTZELOS, I.;
ANANIADOU, S.; PAIGE, R. Software analytics for mde communities. In:
WORKSHOP ON OPEN SOURCE SOFTWARE FOR MODEL DRIVEN
ENGINEERING, 1. [S.l.], 2014. p. 53–63. 31, 158, 164

WIRFS-BROCK, R.; YODER, J.; GUERRA, E. Patterns to develop and evolve
architecture during an agile software project. In: CONFERENCE ON PATTERN
LANGUAGES OF PROGRAMS, 22., 2015. Proceedings... [S.l.]: Hillside Group,
2015. p. 9. 82

154

WOHLIN, C. Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In: INTERNATIONAL CONFERENCE ON
EVALUATION AND ASSESSMENT IN SOFTWARE ENGINEERING, 18., 2014.
Proceedings... [S.l.]: ACM, 2014. p. 38. 11

WOHLIN, C.; RUNESON, P.; HOST, M.; OHLSSON, M. C.; REGNELL, B.;
WESSLÉN, A. Experimentation in software engineering. [S.l.: s.n.], 2012. 46

WRIGHT, P. C.; FIELDS, R. E.; HARRISON, M. D. Analyzing human-computer
interaction as distributed cognition: the resources model. Human-Computer
Interaction, v. 15, n. 1, p. 1–41, 2000. 47, 48, 49, 52, 100, 101, 104, 111, 125, 127

WU, R. Diagnose crashing faults on production software. In: INTERNATIONAL
SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEERING, 22., 2014.
Proceedings... [S.l.]: ACM, 2014. p. 771–774. 31, 158, 164

WU, R.; WEN, M.; CHEUNG, S.-C.; ZHANG, H. Changelocator: locate
crash-inducing changes based on crash reports. Empirical Software
Engineering, v. 23, n. 5, p. 2866–2900, 2018. 31, 161, 164

WU, R.; ZHANG, H.; CHEUNG, S.-C.; KIM, S. Crashlocator: locating crashing
faults based on crash stacks. In: INTERNATIONAL SYMPOSIUM ON
SOFTWARE TESTING AND ANALYSIS, 2014. Proceedings... [S.l.], 2014. p.
204–214. 31, 158, 164

YE, X.; BUNESCU, R.; LIU, C. Learning to rank relevant files for bug reports
using domain knowledge. In: INTERNATIONAL SYMPOSIUM ON
FOUNDATIONS OF SOFTWARE ENGINEERING, 22., 2014. Proceedings...
[S.l.]: ACM, 2014. p. 689–699. 31, 158, 164

YODER, J.; WIRFS-BROCK, R. Qa to aq part two: shifting from quality
assurance to agile quality. In: CONFERENCE ON PATTERNS OF
PROGRAMMING LANGUAGE, 21., 2014. Proceedings... [S.l.], 2014. 62, 65,
67, 78, 82

YUZUKI, R.; HATA, H.; MATSUMOTO, K. How we resolve conflict: an empirical
study of method-level conflict resolution. In: INTERNATIONAL WORKSHOP
ON SOFTWARE ANALYTICS, 1., 2015. Proceedings... [S.l.], 2015. p. 21–24.
33, 158, 164

ZHANG, D.; DANG, Y.; LOU, J.-G.; HAN, S.; ZHANG, H.; XIE, T. Software
analytics as a learning case in practice: approaches and experiences. In:

155

INTERNATIONAL WORKSHOP ON MACHINE LEARNING
TECHNOLOGIES IN SOFTWARE ENGINEERING, 2011. Proceedings... [S.l.]:
ACM, 2011. p. 55–58. 1, 3, 10, 11, 16

ZHANG, D.; HAN, S.; DANG, Y.; LOU, J.-G.; ZHANG, H.; XIE, T. Software
analytics in practice. IEEE Software, v. 30, n. 5, p. 30–37, 2013. 39, 42, 157, 165

ZHOU, X.; JIN, Y.; ZHANG, H.; LI, S.; HUANG, X. A map of threats to validity
of systematic literature reviews in software engineering. In: ASIA-PACIFIC
SOFTWARE ENGINEERING CONFERENCE, 23., 2016. Proceedings... [S.l.]:
IEEE, 2016. p. 153–160. 41

ZHU, J.; HE, P.; XIE, Q.; ZHENG, Z.; LYU, M. R. Carp: context-aware reliability
prediction of black-box web services. In: INTERNATIONAL CONFERENCE ON
WEB SERVICES, 2017. Proceedings... [S.l.]: IEEE, 2017. p. 17–24. 28, 159, 163

156

APPENDIX A - LIST OF PAPERS OF THE SYSTEMATIC MAPPING
STUDY

Table A.1 - List of selected studies.

Title Reference Year
S1 Predicting the Future of Predictive Modeling (MENZIES, 2012) 2012
S2 Software mining and fault prediction (CATAL, 2012) 2012
S3 SQuORE: A new approach to software project

quality measurement
(BALDASSARI, 2012) 2012

S4 A Framework for the Evolutionary Visual Soft-
ware Analytics Process

(GONZÁLEZ-TORRES et al., 2013a) 2013

S5 A goal driven framework for software project
data analytics

(CHATZIKONSTANTINOU et al., 2013) 2013

S6 A Retrospective Study of Software Analytics
Projects: In-Depth Interviews with Practitioners

(MISIRLI et al., 2013) 2013

S7 Active learning and effort estimation: Finding
the essential content of software effort estimation
data

(KOCAGUNELI et al., 2013b) 2013

S8 Are Software Analytics Efforts Worthwhile for
Small Companies? The Case of Amisoft

(ROBBES et al., 2013) 2013

S9 Beyond data mining (MENZIES, 2013) 2013
S10 CODEMINE: Building a Software Development

Data Analytics Platform at Microsoft
(CZERWONKA et al., 2013) 2013

S11 Constructing defect predictors and communicat-
ing the outcomes to practitioners

(TAIPALE et al., 2013) 2013

S12 Developer Dashboards: The Need for Qualitative
Analytics

(BAYSAL et al., 2013a) 2013

S13 How Evolutionary Visual Software Analytics
Supports Knowledge Discovery (similar)

(TORRES et al., 2013) 2013

S14 Informing development decisions: From data to
information

(BAYSAL, 2013) 2013

S15 Leveraging the Crowd: How 48,000 Users Helped
Improve Lync Performance

(MUSSON et al., 2013) 2013

S16 Mining student repositories to gain learning an-
alytics. An experience report

(ROBLES; GONZÁLEZ-BARAHONA, 2013) 2013

S17 Predicting more from less: Synergies of learning (KOCAGUNELI et al., 2013a) 2013
S18 Searching under the Streetlight for Useful Soft-

ware Analytics
(JOHNSON, 2013) 2013

S19 Software analytics for incident management of
online services: An experience report

(LOU et al., 2013) 2013

S20 Software Analytics for Mobile Applications–
Insights & Lessons Learned

(MINELLI; LANZA, 2013b) 2013

S21 Software Analytics in Practice (ZHANG et al., 2013) 2013
S22 Supporting software decision meetings:

Heatmaps for visualising test and code measure-
ments

(FELDT et al., 2013) 2013

S23 Understanding how companies interact with free
software communities

(GONZALEZ-BARAHONA et al., 2013) 2013

S24 Using change entries to collect software project
information

(ASUNCION et al., 2013) 2013

S25 Visualizations as a basis for agile software pro-
cess improvement

(LEHTONEN et al., 2013) 2013

S26 An initial quality analysis of the Ohloh software
evolution data

(BRUNTINK, 2014) 2014

continue

157

Table A.1 – Continuation.
Title Reference Year

S27 Analyze this! 145 questions for data scientists in
software engineering

(BEGEL; ZIMMERMANN, 2014) 2014

S28 CrashLocator: Locating Crashing Faults Based
on Crash Stacks

(WU et al., 2014) 2014

S29 Data stream mining for predicting software build
outcomes using source code metrics

(FINLAY et al., 2014) 2014

S30 Data, Data Everywhere... (SHULL, 2014) 2014
S31 Diagnose Crashing Faults on Production Soft-

ware
(WU, 2014) 2014

S32 Learning to rank relevant files for bug reports
using domain knowledge

(YE et al., 2014) 2014

S33 Software analytics for MDE communities (WILLIAMS et al., 2014) 2014
S34 Visual requirements analytics: a framework and

case study
(REDDIVARI et al., 2014) 2014

S35 A decision support platform for guiding a bug
trigger for resolver recommendation using tex-
tual and non-textual features

(SUREKA et al., 2015) 2015

S36 A Large-Scale Empirical Study of the Relation-
ship between Build Technology and Build Main-
tenance

(MCINTOSH et al., 2015) 2015

S37 Big data analytics on large-scale socio-technical
software engineering archives

(BAYATI et al., 2015) 2015

S38 Commit Guru: Analytics and Risk Prediction of
Software Commits

(ROSEN et al., 2015) 2015

S39 Designing an unobtrusive analytics framework
for monitoring Java applications

(SUONSYRJÄ; MIKKONEN, 2015) 2015

S40 Do topics make sense to managers and develop-
ers?

(HINDLE et al., 2015) 2015

S41 How we resolve conflict: an empirical study of
method-level conflict resolution

(YUZUKI et al., 2015) 2015

S42 Irish: A Hidden Markov Model to detect coded
information islands in free text

(CERULO et al., 2015) 2015

S43 Mashing Up Software Issue Management, Devel-
opment, and Usage Data

(MATTILA et al., 2015) 2015

S44 On Satisfying the Android OS Community: User
Feedback Still Central to Developers’ Portfolios

(LICORISH et al., 2015) 2015

S45 Rapid releases and patch backouts: A software
analytics approach

(SOUZA et al., 2015) 2015

S46 RbG: A documentation generator for scientific
and engineering software

(MOSER et al., 2015) 2015

S47 Software analytics study of Open-Source system
survivability through social contagion

(LOW et al., 2015) 2015

S48 Summarizing and measuring development activ-
ity

(TREUDE et al., 2015) 2015

S49 Test and Defect Coverage Analytics Model for
the assessment of software test adequacy

(HARON; SYED-MOHAMAD, 2015) 2015

S50 Toward a Learned Project-Specific Fault Taxon-
omy: Application of Software Analytics

(KIDWELL; HAYES, 2015) 2015

S51 Towards base rates in software analytics Early
results and challenges from studying Ohloh

(BRUNTINK, 2015) 2015

S52 Understanding software artifact provenance (GODFREY, 2015) 2015
S53 Why statically estimate code coverage is so hard?

a report of lessons learned
(ANICHE et al., 2015) 2015

continue

158

Table A.1 – Continuation.
Title Reference Year

S54 A Hybrid Model for Task Completion Effort Es-
timation

(DEHGHAN et al., 2016) 2016

S55 Addressing Problems with External Validity of
Repository Mining Studies Through a Smart
Data Platform (SmartSHARK)

(TRAUTSCH et al., 2016) 2016

S56 Applying data analytics towards optimized issue
management: an industrial case study

(KARIM et al., 2016) 2016

S57 Cold-start Software Analytics (GUO et al., 2016) 2016
S58 Collecting Usage Data for Software Develop-

ment: Selection Framework for Technological Ap-
proaches.

(SUONSYRJÄ et al., 2016) 2016

S59 Data mining for software engineering and hu-
mans in the loop

(MINKU et al., 2016) 2016

S60 Data Science Challenges to Improve Quality As-
surance of Internet of Things Applications

(FOIDL; FELDERER, 2016) 2016

S61 DeepSoft: A Vision for a Deep Model of Software (DAM et al., 2016) 2016
S62 Developer Targeted Analytics: Supporting Soft-

ware Development Decisions with Runtime Infor-
mation

(CITO, 2016) 2016

S63 Investigating and Projecting Population Struc-
tures in Open Source Software Projects: A Case
Study of Projects in GitHub

(ONOUE et al., 2016) 2016

S64 Issues on Software Quality Models for Mastering
Change

(FELDERER, 2016) 2016

S65 Knowledge discovery in software teams by means
of evolutionary visual software analytics

(GONZÁLEZ-TORRES et al., 2016) 2016

S66 On the automatic classification of app reviews (MAALEJ et al., 2016a) 2016
S67 Predicting delays in software projects using net-

worked classification
(CHOETKIERTIKUL et al., 2015) 2016

S68 Quality-Impact Assessment of Software Systems (FOTROUSI, 2016) 2016
S69 Software Analytics in Practice: A Defect Predic-

tion Model Using Code Smells
(SOLTANIFAR et al., 2016) 2016

S70 Software Crowdsourcing Reliability: An Empiri-
cal Study on Developers Behavior

(ALELYANI; YANG, 2016) 2016

S71 Streaming Software Analytics (GOUSIOS et al., 2016) 2016
S72 The Emerging Role of Data Scientists on Soft-

ware Development Teams
(KIM et al., 2016) 2016

S73 The bones of the system: A case study of logging
and telemetry at Microsoft

(BARIK et al., 2016) 2016

S74 Toward Data-Driven Requirements Engineering (MAALEJ et al., 2016b) 2016
S75 A continuous software quality monitoring ap-

proach for small and medium enterprises
(JANES et al., 2017) 2017

S76 An Empirical Investigation to Overcome Class-
imbalance in Inspection Reviews

(SINGH et al., 2017) 2017

S77 Beyond dashboards: on the many facets of met-
rics and feedback in agile organizations

(LIECHTI et al., 2017a) 2017

S78 CARP: Context-Aware Reliability Prediction of
Black-Box Web Services

(ZHU et al., 2017) 2017

S79 Context-Based Analytics - Establishing Explicit
Links between Runtime Traces and Source Code

(CITO et al., 2017) 2017

S80 Discovering Software Process Deviations Using
Visualizations

(MATTILA et al., 2017) 2017

S81 Easy over Hard: A Case Study on Deep Learning (FU; MENZIES, 2017) 2017
continue

159

Table A.1 – Continuation.
Title Reference Year

S82 Experience report on applying software analytics
in incident management of online service (S19
extension)

(LOU et al., 2017) 2017

S83 Find, Understand, and Extend Development
Screencasts on YouTube

(ELLMANN et al., 2017) 2017

S84 Hybrid Labels Are the New Measure! (NAYEBI et al., 2017) 2017
S85 Learning effective changes for software projects (KRISHNA, 2017) 2017
S86 Metadata-based Code Example Embedding (TAMLA et al., 2017) 2017
S87 On the Similarity of Software Development Doc-

umentation
(ELLMANN, 2017) 2017

S88 Predicting Rankings of Software Verification
Tools

(CZECH et al., 2017) 2017

S89 Strong Agile Metrics: Mining Log Data to De-
termine Predictive Power of Software Metrics for
Continuous Delivery Teams

(HUIJGENS et al., 2017) 2017

S90 Supporting Agile Teams with a Test Analytics
Platform: a Case Study (Beyond Dashboards)

(LIECHTI et al., 2017b) 2017

S91 Test adequacy assessment using test-defect cov-
erage analytic model (S49)

(SYED-MOHAMAD et al., 2017) 2017

S92 Theta Architecture: Preserving the Quality of
Analytics in Data-Driven Systems

(THEODOROU et al., 2017) 2017

S93 Timezone and Time-of-day Variance in GitHub
Teams: An Empirical Method and Study

(DEVANBU et al., 2017) 2017

S94 TiQi: A natural language interface for querying
software project data

(LIN et al., 2017) 2017

S95 Transferring code-clone detection and analysis to
practice

(DANG et al., 2017) 2017

S96 (No) Influence of Continuous Integration on the
Commit Activity in GitHub Projects

(BALTES et al., 2018) 2018

S97 Graal: The Quest for Source Code Knowledge (COSENTINO et al., 2018) 2018
S98 A deep learning model for estimating story points (CHOETKIERTIKUL et al., 2018) 2018
S99 A Proposal towards the Design of an Architec-

ture for Evolutionary Visual Software Analytics
(GONZÁLEZ-TORRES et al., 2018) 2018

S100 A Quality Model for Actionable Analytics in
Rapid Software Development

(MARTÍNEZ-FERNÁNDEZ et al., 2018) 2018

S101 Actionable Analytics for Strategic Maintenance
of Critical Software: An Industry Experience Re-
port

(PORT; TABER, 2018) 2018

S102 Addressing problems with replicability and valid-
ity of repository mining studies through a smart
data platform

(TRAUTSCH et al., 2018) 2018

S103 An empirical study of crash-inducing commits in
Mozilla Firefox

(AN et al., 2018) 2018

S104 An empirical study on the issue reports with
questions raised during the issue resolving pro-
cess

(HUANG et al., 2018b) 2018

S105 An Experience Report on Defect Modelling in
Practice: Pitfalls and Challenges

(TANTITHAMTHAVORN; HASSAN, 2018) 2018

S106 An investigation of the fault-proneness of clone
evolutionary patterns

(BARBOUR et al., 2018) 2018

S107 Analyzing a decade of Linux system calls (BAGHERZADEH et al., 2018) 2018
S108 Application of data mining methods for effort es-

timation of software projects
(KARNA et al., 2019) 2018

continue

160

Table A.1 – Continuation.
Title Reference Year

S109 Are tweets useful in the bug fixing process? An
empirical study on Firefox and Chrome

(MEZOUAR et al., 2018) 2018

S110 Autospearman: Automatically mitigating corre-
lated software metrics for interpreting defect
models

(JIARPAKDEE et al., 2018) 2018

S111 Bellwethers: A Baseline Method For Transfer
Learning

(KRISHNA; MENZIES, 2018) 2018

S112 Big Data and software engineering: prospects for
mutual enrichment

(ARNDT, 2018) 2018

S113 Big time’: An examination of temporal complex-
ity and business value in analytics

(CONBOY et al., 2018) 2018

S114 ChangeLocator: locate crash-inducing changes
based on crash reports

(WU et al., 2018) 2018

S115 Characterizing the Influence of Continuous Inte-
gration: Empirical Results from 250 Open Source
and Proprietary Projects

(RAHMAN et al., 2018) 2018

S116 Data scientists in software teams: State of the art
and challenges

(KIM et al., 2018) 2018

S117 Definition of the On-time Delivery Indicator in
Rapid Software Development

(MANZANO et al., 2018) 2018

S118 Deploying Software Team Analytics in a Multi-
national Organization

(AUGUSTINE et al., 2018) 2018

S119 Enabling Real-Time Feedback in Software Engi-
neering

(VARGAS et al., 2018) 2018

S120 Explainable Software Analytics (DAM et al., 2018) 2018
S121 Facilitating Feasibility Analysis: The Pilot De-

fects Prediction Dataset Maker
(FALESSI; MOEDE, 2018) 2018

S122 Inference of development activities from interac-
tion with uninstrumented applications

(BAO et al., 2018) 2018

S123 Is "Better Data" Better Than "Better Data Min-
ers"?

(AGRAWAL et al., 2018) 2018

S124 Measuresoftgram: A Future Vision of Software
Product Quality

(NERI; TRAVASSOS, 2018) 2018

S125 On Privacy and Utility while Improving Software
Quality

(PETERS, 2018) 2018

S126 Perceval: Software Project Data at Your Will (DUEÑAS et al., 2018) 2018
S127 Predicting failures in agile software development

through data analytics
(BATARSEH; GONZALEZ, 2018) 2018

S128 Revisiting supervised and unsupervised models
for effort-aware just-in-time defect prediction

(HUANG et al., 2018a) 2018

S129 Software analytics in continuous delivery: a case
study on success factors

(HUIJGENS et al., 2018) 2018

S130 Software Analytics: What’s Next? (MENZIES; ZIMMERMANN, 2018) 2018
S131 Speech-acts based analysis for requirements dis-

covery from online discussions
(MORALES-RAMIREZ et al., 2018) 2018

S132 Stakeholder Concern-Driven Requirements Ana-
lytics (doctoral research in progress)

(NOORWALI, 2018) 2018

S133 The Unreasonable Effectiveness of Software An-
alytics

(MENZIES, 2018) 2018

S134 Usage analytics: research directions to discover
insights from cloud-based applications

(NGUYEN et al., 2018) 2018

S135 Using Analytics to Guide Improvement During
an Agile/DevOps Transformation

(SNYDER; CURTIS, 2018) 2018

continue

161

Table A.1 – Continuation.
Title Reference Year

S136 Utilizing Product Usage Data for Requirements
Evaluation

(HEMMATI et al., 2018) 2018

S137 An empirical comparison of dependency network
evolution in seven software packaging ecosystems

(DECAN et al., 2019) 2019

S138 An empirical study of DLL injection bugs in the
Firefox ecosystem

(AN et al., 2019) 2019

S139 Mining Treatment-Outcome Constructs from Se-
quential Software Engineering Data

(NAYEBI et al., 2019) 2019

S140 The impact of feature reduction techniques on
defect prediction models

(KONDO et al., 2019) 2019

S141 Towards prioritizing user-related issue reports of
mobile applications

(NOEI et al., 2019) 2019

SOURCE: Prepared by the author.
Conclusion.

162

APPENDIX B - TYPICAL ISSUES ADDRESSED TO SOFTWARE AN-
ALYTICS

Data Analytics - Techniques, Methods and Tools (N=32)
Issues: software traceability (ASUNCION et al., 2013); project management
(CHATZIKONSTANTINOU et al., 2013); teamwork and collaboration (GONZALEZ-

BARAHONA et al., 2013) (KARIM et al., 2016) (LIN et al., 2017); service incident
diagnosis (LOU et al., 2013) (LOU et al., 2017); software measurement (SHULL,
2014); data quality (BRUNTINK, 2014); fault taxonomy (KIDWELL; HAYES, 2015);
rapid releases and code integration (SOUZA et al., 2015); risky software commits
(ROSEN et al., 2015); data driven requirements engineering (MAALEJ et al., 2016b)
(MAALEJ et al., 2016a); configuration of cold-start projects (GUO et al., 2016); quality
requirements (FOTROUSI, 2016); software crowdsourcing reliability (ALELYANI;

YANG, 2016); software development communities (ONOUE et al., 2016); streaming
software analytics (GOUSIOS et al., 2016); context-based analytics (CITO et al., 2017);
code defects (KRISHNA, 2017); development screencasts (ELLMANN et al., 2017);
timezone dispersion of project teams (DEVANBU et al., 2017); data-driven systems
(THEODOROU et al., 2017); analysis for requirements discovery (MORALES-RAMIREZ

et al., 2018); API evolution (BAGHERZADEH et al., 2018); continuous integration
(RAHMAN et al., 2018) (BALTES et al., 2018); predicting failures in agile development
(BATARSEH; GONZALEZ, 2018); requirement evaluation (HEMMATI et al., 2018);
source code analysis and manipulation (COSENTINO et al., 2018); release cycle time
patterns (NAYEBI et al., 2019).

Predictive Modeling (N=29)
Issues: prediction model building (MENZIES, 2012) (KOCAGUNELI et al., 2013a)
(MINKU et al., 2016) (DAM et al., 2016) (MENZIES, 2018) (DAM et al., 2018); software
testing process (TAIPALE et al., 2013); defect and fault prediction (CATAL, 2012)
(MISIRLI et al., 2013) (SOLTANIFAR et al., 2016) (JIARPAKDEE et al., 2018) (TAN-

TITHAMTHAVORN; HASSAN, 2018) (HUANG et al., 2018a) (AGRAWAL et al., 2018)
(BARBOUR et al., 2018); effort estimation (DEHGHAN et al., 2016) (CHOETKIERTIKUL

et al., 2018) (KARNA et al., 2019); software cost estimation (KOCAGUNELI et al.,
2013b); predictive modeling performance (KRISHNA; MENZIES, 2018) (KONDO et al.,
2019); risk management (CHOETKIERTIKUL et al., 2015); reliability of web-based
service (ZHU et al., 2017); software verification (CZECH et al., 2017); change impact
analysis (NAYEBI et al., 2017); issue reports (HUANG et al., 2018b); crash-inducing
commits analysis (AN et al., 2018); data privacy (PETERS, 2018); issues in software

163

analytics (MENZIES; ZIMMERMANN, 2018).

Data Mining Method & Tools (N=26)
Issues: open source MDE tools and language (WILLIAMS et al., 2014); plagiarism
(ROBLES; GONZÁLEZ-BARAHONA, 2013); data miners (MENZIES, 2013); ranking for
bug reports (YE et al., 2014); data stream mining (FINLAY et al., 2014); diagnosis of
crashing faults (WU et al., 2014) (WU, 2014) (WU et al., 2018); software documenta-
tion (MOSER et al., 2015); software project survival (LOW et al., 2015); traceability
of requirements and bugs (HINDLE et al., 2015); mining unstructured data (CERULO

et al., 2015); users’ feedback (LICORISH et al., 2015); build technology (MCINTOSH

et al., 2015); code coverage estimation (ANICHE et al., 2015); conflicts in merging
(YUZUKI et al., 2015); GitHub mining (BAYATI et al., 2015); users’ feedback collection
framework (SUONSYRJÄ et al., 2016); inspections reviews (SINGH et al., 2017); critical
changes tracking (TAMLA et al., 2017); search based software engineering (FU;

MENZIES, 2017); bug fixing process (MEZOUAR et al., 2018); developers’ interaction
data (BAO et al., 2018); software data mining tool (DUEÑAS et al., 2018); issue report
prioritization of mobile application (NOEI et al., 2019); bugs in software ecosystems
(AN et al., 2019).

SA Monitoring (measure, metrics and indicators) (N=15)
Issues: project management (BALDASSARI, 2012); useful software analytics (JOHN-

SON, 2013); monitoring java application (SUONSYRJÄ; MIKKONEN, 2015); base
rates for software analytics (BRUNTINK, 2015); development activity (TREUDE

et al., 2015); developer targeted analytics (CITO, 2016); continuous monitoring
(BARIK et al., 2016); test and defect coverage (SYED-MOHAMAD et al., 2017);
software quality from continuous experimentation (NERI; TRAVASSOS, 2018);
software metrics for continuous delivery (HUIJGENS et al., 2017); continuous quality
monitoring (JANES et al., 2017); on-time delivery indicator (MANZANO et al.,
2018); software quality models (MARTÍNEZ-FERNÁNDEZ et al., 2018); metrics for
defect prediction (FALESSI; MOEDE, 2018); dependency network (DECAN et al., 2019).

SA Issues & Concepts (N=14)
Issues: software analytics viability (ROBBES et al., 2013); data-centric decision-
making (BAYSAL, 2013); data science activity (KIM et al., 2018) (BEGEL; ZIMMER-

MANN, 2014); software artifact provenance (GODFREY, 2015); software quality

164

assurance (FOIDL; FELDERER, 2016); software quality models (FELDERER, 2016);
role of data scientists (KIM et al., 2016); code-clone detection and analysis (DANG

et al., 2017); similarity of software documentation (ELLMANN, 2017); maintenance
of critical software (PORT; TABER, 2018); cloud-based applications (NGUYEN et

al., 2018); software analytics value (CONBOY et al., 2018); big data in software
engineering (ARNDT, 2018).

Visual Software Analytics (N=13)
Issues: agile software process improvement (LEHTONEN et al., 2013); performance
monitoring (MUSSON et al., 2013); qualitative analytics (BAYSAL et al., 2013a); soft-
ware maintenance and evolution (GONZÁLEZ-TORRES et al., 2013a) (TORRES et al.,
2013) (GONZÁLEZ-TORRES et al., 2016); test and code measurements visualization
(FELDT et al., 2013); requirements management (REDDIVARI et al., 2014); test and
defect coverage (HARON; SYED-MOHAMAD, 2015); continuous delivery (MATTILA et

al., 2015); project management (MATTILA et al., 2017); concern-driven requirements
(NOORWALI, 2018); source code analysis (GONZÁLEZ-TORRES et al., 2018).

SA Platform (N=8)
Issues: bug fixer recommendation (SUREKA et al., 2015); code quality (CZERWONKA

et al., 2013); maintenance of mobile applications (MINELLI; LANZA, 2013b); reposi-
tory mining studies (TRAUTSCH et al., 2016) (TRAUTSCH et al., 2018); continuous
improvement (LIECHTI et al., 2017a); test analytics platform (LIECHTI et al., 2017b);
run-time error feedback (VARGAS et al., 2018).

SA Projects Implementation (N=4)
Issues: software analytics in practice (ZHANG et al., 2013); continuous delivery (HUI-

JGENS et al., 2018); analytics on team metrics (AUGUSTINE et al., 2018); agile methods
and DevOps (SNYDER; CURTIS, 2018).

165

APPENDIX C - CONSENT FORM

Figure C.1 - Consent form.

SOURCE: Prepared by the author.

166

APPENDIX D - CANVAS TUTORIAL

Table D.1 presents recommendations for the use of SA Canvas with a brief explana-
tion of each block and the guiding questions to drive users when filling in the canvas
components.

Table D.1 - Recommendations for use of SA Canvas.

Element Description
1 Key Issue What does the team want to know?

Identify problems that need to be verified, analyzed and improved - for
example, internal / external system quality, productivity or usage pat-
terns.

2 Data Sources What data sources can provide information on the issues raised?
Identify the sources from which data and metrics can be extracted to
investigate the issues raised.

3 Data How will the data be collected and analyzed?
Gathering Define ways to collect and analyze data, such as methods, metrics, scripts,

tools, etc.

4 Insights What insights emerged after analysis of the results?
Analyze the results obtained from the collected data, discuss possible
solutions for decision making, and identify the main insights to guide
improvement actions.

5 Quality What are the acceptable values for maintaining quality standards?
Thresholds Establish the threshold values to ensure minimum acceptable quality and

monitor continuously. Adjust the values when it is possible to achieve
higher quality standards.

6 Analytics How will software analytics activities be implemented along with other
Implementation tasks?

Plan how the software analytics activities will be carried out alongside
the development tasks. Use the space to manage the tasks to do (TO DO)
and the tasks done (DONE).

7 Incremental What are the possible improvement actions to be implemented?
Goals Set achievable goals considering that improvements can be made incre-

mentally. Use this session to manage the tasks to do (TO DO) and the
tasks done (DONE).

SOURCE: Prepared by the author.

167

APPENDIX E - TIMELINES

Figure E.1 - First iteration - Group 1.

SOURCE: Prepared by the author.

168

Figure E.2 - Second iteration - Group 1.

SOURCE: Prepared by the author.

169

Figure E.3 - Third iteration - Group 1.

SOURCE: Prepared by the author.

170

Figure E.4 - First iteration - Group 2.

SOURCE: Prepared by the author.

171

Figure E.5 - Second iteration - Group 2.

SOURCE: Prepared by the author.

172

Figure E.6 - Third iteration - Group 2.

SOURCE: Prepared by the author.

173

Figure E.7 - First iteration - Group 3.

SOURCE: Prepared by the author.

174

Figure E.8 - Second iteration - Group 3.

SOURCE: Prepared by the author.

175

Figure E.9 - Third iteration - Group 3.

SOURCE: Prepared by the author.

176

APPENDIX F - SUGGESTIONS FOR CANVAS DESIGN ENHANCE-
MENT

This section presents the participant’s suggestions to possible improvements in the
first version of SA Canvas at the session of participatory design. Participants were
asked whether they suggested any changes to the canvas (e.g., rename, move, or
take away some component, creating a new component, merging one component
with one another), and how it could be improved. Below, we present the responses
of the participants for each of the components of the SA canvas.

Component: Key Issue
[P3] - Change name to “Troubleshooting”
[P3] - Change name to “Issues”
[P5] - Change icon to “malicious buy”
[P5] - Change the guiding question to “What does the team want to know about
problem software?”
[P3] - Change the guiding question to “What problems should be considered?”
[P1] - Split this block into priorities or sectors.

Component: Data Sources
[P6] - Clarify about the types of data sources in the component description, for
example: “database”’ vs. some indicator as “response time”

Component: Data Gathering
[P5] - Add a “magnifying glass” to the icon.
[P5] - Change name to “ Gathering & Analysis ”.
[P5] - Divide the block into “ collection ” and “ analysis ”, as they are often distinct
activities.

Component: Analytics Implementation
[P5] - Change name to “Active Troubleshoting”
[P5] - Change icon to “gear and key”
[P5] - Change the guiding question to “What activities should be developed to
debug problems?”

Component: Insights
[P4] - Change the guiding question to “What information was extracted from the
data analysis?”

177

[P5] - Change the guiding question to “What information was extracted from the
previous analysis?”
[P2] - Change the guiding question to “What decision-making (or actions) should
be implemented from the information obtained?”

Component: Incremental Goals
[P5] - Change name to “Quality Increment”
[P1] - Change icon to “add” or “insert”
[P5] - Change icon to “gear” with “magnifying glass” and “key”
[P5] - Change the guiding question to “What are the improvement actions for the
issue?”

Component: Quality Thresholds
[P5] - Change name to “Minimum Quality Parameters ”
[P1] - Replace the word “thresholds ” with “ standards ”
[P4] - Change the guiding question to “ What are the values for maintaining
acceptable quality standards? ”

178

	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	DEDICATORY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	1 INTRODUCTION
	1.1 Background
	1.2 Problem description
	1.3 Research questions and objectives
	1.4 Theme relevance and contributions
	1.5 Chapters overview

	2 LITERATURE REVIEW ON SOFTWARE ANALYTICS
	2.1 Research method
	2.1.1 Research question
	2.1.2 Search strategy and data sources
	2.1.3 Selection criteria and screening
	2.1.4 Quality assessment
	2.1.5 Data extraction and classification scheme
	2.1.6 Data analysis

	2.2 Mapping results
	2.2.1 Primary studies collection
	2.2.2 Quality evaluation of the primary studies
	2.2.3 Frequency and publication venues (MQ1)
	2.2.4 Research type (MQ2)
	2.2.5 Research focus over time (MQ3)
	2.2.6 Co-authorship network (MQ4)
	2.2.7 Typical issues addressed to software analytics (MQ5)
	2.2.7.1 Data analytics - techniques, methods and tools
	2.2.7.2 Predictive modeling
	2.2.7.3 Data mining - method and tools
	2.2.7.4 Monitoring - measure, metrics, and indicator
	2.2.7.5 Software analytics issues and concepts
	2.2.7.6 Visual software analytics
	2.2.7.7 Software analytics platform
	2.2.7.8 Software analytics projects implementation

	2.3 Findings
	2.4 Threats to validity
	2.5 Chapter summary

	3 RESEARCH METHODOLOGY
	3.1 Research framework
	3.2 Research methods
	3.2.1 Data gathering
	3.2.2 Data analysis
	3.2.2.1 Distributed cognition
	3.2.2.2 Resources model
	3.2.2.3 Sequential analysis

	3.3 Research design
	3.4 Chapter summary

	4 A PATTERN LANGUAGE FOR SOFTWARE ANALYTICS
	4.1 Patterns and pattern languages
	4.2 Patterns in software analytics area
	4.3 Pattern language summary
	4.4 Patterns description
	4.4.1 What you need to know
	4.4.2 Choose the means
	4.4.3 Plan analytics implementation
	4.4.4 Small steps for analytics
	4.4.5 Reachable goals
	4.4.6 Learning from experiments
	4.4.7 Define quality standards
	4.4.8 Suspend measurement

	4.5 Chapter summary

	5 SOFTWARE ANALYTICS CANVAS
	5.1 Background
	5.2 Information flow and the role of artifacts in agile environments
	5.3 Measurement in agile context
	5.4 Canvas model
	5.5 Software analytics canvas - 1st version
	5.5.1 Software analytics canvas template
	5.5.2 Software analytics canvas elements
	5.5.3 SA Canvas: a fictitious example

	5.6 Chapter summary

	6 SOFTWARE ANALYTICS CANVAS EVALUATION
	6.1 Study design
	6.1.1 Research questions
	6.1.2 Participants
	6.1.3 Study planning and execution
	6.1.3.1 Observational study
	6.1.3.2 Participants perception questionnaire
	6.1.3.3 Participatory design

	6.2 Method of analysis
	6.3 Results
	6.3.1 Cognitive activities analysis
	6.3.2 Usefulness and ease-of-use evaluation

	6.4 Limitations and threats to validity
	6.5 Chapter summary

	7 SOFTWARE ANALYTICS CANVAS REDESIGN
	7.1 Participatory design findings
	7.2 SA Canvas upgrade
	7.3 Second round of evaluation
	7.3.1 Workshops on SA Canvas
	7.3.2 Application at the CPTEC

	7.4 Chapter summary

	8 CONCLUDING REMARKS AND FUTURE WORK
	8.1 Summary of the findings
	8.2 Contributions
	8.3 Future work

	REFERENCES
	 APPENDIX A - LIST OF PAPERS OF THE SYSTEMATIC MAPPING STUDY
	 APPENDIX B - TYPICAL ISSUES ADDRESSED TO SOFTWARE ANALYTICS
	 APPENDIX C - CONSENT FORM
	 APPENDIX D - CANVAS TUTORIAL
	 APPENDIX E - TIMELINES
	 APPENDIX F - SUGGESTIONS FOR CANVAS DESIGN ENHANCEMENT

