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Abstract: Canopy dynamics associated with fires in tropical forests play a critical role in the terrestrial
carbon cycle and climate feedbacks. The aim of this study was to characterize forest canopy dynamics
in the southern Amazon during the 2019 fire season (July–October) using passive microwave-based
vegetation optical depth (VOD) and three optical-based indices. First, we found that precipitation
during July–October 2019 was close to the climatic means, suggesting that there were no extreme
hydrometeorological events in 2019 and that fire was the dominant factor causing forest canopy
anomalies. Second, based on the active fire product (MCD14ML), the total number of active fires
over each grid cell was calculated for each month. The number of active fires during the fire
season in 2019 was above average, particularly in August and September. Third, we compared the
anomalies of VOD and optical-based indices (the normalized difference vegetation index (NDVI), the
enhanced vegetation index (EVI), and the normalized burn ratio (NBR)) against the spatiotemporal
distribution of fires during July–October 2019. Spatially, the location with a concentrated distribution
of significant negative VOD anomalies was matched with the grid cells with fire activities, whereas
the concentrated distribution of strong negative anomalies in optical-based indices were found in
both burned and unburned grid cells. When we focused on the temporal pattern over the grid cells
with fire activity, the VOD and the optical-based indices behaved similarly from July to October
2019, i.e., the magnitude of negative anomalies became stronger with increased fire occurrences and
reached the peak of negative anomalies in September before decreasing in October. A discrepancy
was observed in the magnitude of negative anomalies of the optical-based indices and the VOD; the
magnitude of optical-based indices was larger than the VOD in August–September and recovered
much faster than the VOD over the grid cells with relatively low fire activity in October. The
most likely reason for their different responses is that the VOD represents the dynamics of both
photosynthetic (leaf) and nonphotosynthetic (branches) biomass, whereas optical-based indices are
only sensitive to photosynthetic (leaf) active biomass, which recovers faster. Our results demonstrate
that VOD can detect the spatiotemporal of canopy dynamics caused by fire and postfire canopy
biomass recovery over high-biomass rainforest, which enables more comprehensive assessments,
together with classic optical remote sensing approaches.

Keywords: the Amazon; fire; vegetation optical depth; optical indices; canopy changes

1. Introduction

The Amazon rainforest is a species-rich biome and is a major component of the
Earth’s ecosystem [1]. It is an important tropical carbon sink in the global carbon cycle [2].
However, because of deforestation, the expansion of agricultural activities, and climate
factors in the Amazon, forest fires occur every year [3,4]. Fire is a dominant disturbance
that changes the biomass, the ecosystem structure, and the species composition [5]. Fires
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lead to significant vegetation changes and an increase in carbon and aerosol emissions,
which greatly impacts the carbon cycle and climate conditions over long periods at both
regional and global scales [1,6,7].

In recent years, in addition to deforestation, the increased frequency of extreme
droughts in the Amazon has also increased fire incidence and the associated green-
house gas emissions [6,8,9], which reflects the increased vulnerability of Amazon forest to
droughts [10]. Additionally, the Amazon region is projected to have continuous warming,
according to climate-carbon cycle projections [11], an increase in the frequency and severity
of extreme events, as well as an extended duration and increasing dryness during dry
seasons in non-drought years throughout the 21st century [11–14]. The synergy between
extreme drought and human activities creates the conditions for large-scale forest fires
in the Amazon [15,16], which produces a dual threat of fires and climate change in this
century [1]. Therefore, a better understanding of the vegetation dynamics caused by fires
during the fire season would help us to improve our regional and global assessments of
carbon emissions, carbon cycle variability, and associated climate feedbacks.

Optical remote sensing data and indices such as the enhanced vegetation index (EVI),
the normalized difference vegetation index (NDVI), and the normalized burn ratio (NBR)
have been widely used to monitor the vegetation changes caused by fires because of their
real-time and wide-range monitoring [17]. Several studies have used high-resolution satellite
imagery with no cloud and haze contamination, from a single date or over multiple years, to
investigate canopy changes caused by fires in some areas of the Amazon [5,18,19]. However,
their results are mainly representative of their study area and may not translate to the whole
Amazon region [19]. Moreover, single-date or infrequent satellite data application may be a
potential source of assessment error because of rapid canopy closure and regeneration, leading
to an underestimate of canopy damage [20,21]. Moreover, vegetation changes caused by fire
in the understory of a forest might not be detected because optical indices mainly reflect the
information of canopy overstorey [22]. No study, to the best of our knowledge, has used
high temporal frequency images (several dates of satellite data from a year) to characterize
the canopy dynamics caused by fire for the whole Amazon region [20,23]. The main reason
may be that higher clouds and aerosol concentration in the Amazon restrict the use of optical
satellite data at high temporal resolutions.

Satellite passive (radiometer) and active (radar) microwave remote sensing are mini-
mally affected by atmospheric conditions in tropical regions because of the long microwave
wavelength and its strong penetration capacity [24–26], which can be used as one of the
means for monitoring vegetation changes [27,28]. The choice of observations from active
and passive microwave remote sensing in research depends on the objects of study in
research. Radar backscatter data is usually used to assess the vegetation changes in a fine
spatial scale [26,27,29], whereas radiometer-derived data is chosen to study the regional-
scale [30,31]. The passive microwave-based vegetation optical depth (VOD) is a vegetation
attenuation parameter for retrieving soil moisture, which is linearly correlated with vegeta-
tion water content and above-ground biomass comprising the leaf and woody parts [25,30].
There is little evidence for the signal saturation of the VOD in higher biomass density
regions [31]. Therefore, the VOD can provide global, repeated vegetation observations
with high temporal resolution and has been used to monitor large-scale vegetation changes,
providing an alternate source of information to monitor vegetation changes compared to op-
tical vegetation products [25]. The VOD derived from different spectral bands (L, C, X, and
Ku) have inconsistent sensitivities to the canopy biomass [30]. Longer wavelength VOD
retrievals are more sensitive to a larger bulk of vegetation biomass and deeper vegetation
layers. Therefore, there may be some difference in the same vegetation changes assessed
by various VOD products [32]. Currently, the VOD has been used to monitor vegetation
phenology [33], long-term vegetation change [34], vegetation’s response to drought [35,36],
vegetation changes associated with fire [32,37], forest loss [38], as well as aboveground
biomass carbon assessment [39,40]. The VOD retrieved from shorter wavelengths are more
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widely used in monitoring vegetation changes relative to VOD-L [41]. VOD-C is sensitive
to both leaf and woody vegetation, which has been proved by previous studies [36,42].

So far, the VOD has limited use in monitoring the vegetation variations associated with
forest fires [32], likely because of its commonly coarse resolution of 0.25◦. Jones et al. [32]
used NDVI and VOD-X with a 0.25◦ spatial resolution to estimate boreal forest canopy
recovery after fire and found that the recovery period indicated by VOD was longer than
that found by NDVI. More recent developments on the passive microwave-based VOD
that derived from the C band (VOD-C) has led to it being enhanced to a spatial resolution
of 0.1◦, which can capture more spatial information [43]. Liu et al. [35] used it to investigate
the Amazon rainforest canopy dynamic during the 2005 and 2010 droughts and found
canopy growth enhanced in the onset of drought (May–July), and canopy senescence was
observed during the peak of the drought (August–November). Chen et al. [37] combined it
with various datasets and proved that the 0.1◦ VOD could estimate the vegetation change
caused by fire in Australian tropical savannas in a timely way. Besides, there are few
studies using a 0.25◦ VOD to identify canopy dynamics affected by fire. The application
of the VOD with an enhanced spatial resolution is even less used in tropical forests with
highly dense vegetation. Hence, the potential of the VOD at a high (0.1◦) resolution to
study tropical forest canopy dynamics, especially to understand the effects of fire on
the canopy, urgently needs to be investigated. Whether a 0.1◦ VOD can capture more
detailed information about canopy dynamics affected by fires relative to a 0.25◦ VOD also
requires examination.

The southern Amazon fires of 2019 can be considered as an ideal experiment to test
the capacities of the VOD-C to assess fire-driven canopy dynamics because of the fact that
the region did not experience extreme hydrometeorological events [44] and because it,
unfortunately, has suffered one of the highest fire activities in recent decades [45]. The
primary objective of this study was to assess the potential of the passive microwave-
based VOD derived from 6.93 GHz observations of the Advanced Microwave Scanning
Radiometer 2 (AMSR2) to characterize forest canopy dynamics during the 2019 fire season
in the southern Amazon, combined with a series of optical-based indices (EVI, NDVI, and
NBR) and precipitation and fire products. A comparison of these datasets can reveal the
consistency and the difference between information indicated by the VOD and optical
indices. Furthermore, this study could not only identify the potential of the VOD for
estimating vegetation change caused by fires in high biomass density forests but also the
potential of a synergistic application between the VOD and optical-based indices, which
can provide a more comprehensive understanding of rainforest dynamics.

2. Materials and Methods
2.1. Satellite-Based Datasets

In this study, we used the 500 m MODIS land cover product (MCD12Q1, v6) based on
the International Geosphere–Biosphere Programme (IGBP) classification of 2019 and the
30 m land cover product from the Map Biomass dataset (collection 5) for 2019 to define
the perimeter of the forest in the southern Amazon (below 2.5◦ S, see Figure 1), where
increasing fires in 2019 caused widespread concern [46]. The Map Biomass dataset is
produced by the Brazilian Annual Land Use and Land Cover Mapping Project (https://
mapbiomas.org/colecoes-mapbiomas-1?cama_set_language=pt-BR, accessed on 16 March
2021), which was used to delineate the forest distribution over Brazilian biomes, and
the rest of the southern Amazon forest distribution was depicted by MCD12Q1. Of the
southern Amazon rainforest, 63.3% is covered by forests, while the other land cover types
are savannah, pasture, grassland, and cropland, which are mainly distributed over the
margin of the southern Amazon region. The wet season spans from November to June, and
the dry season is from July to September according to the season cycle of precipitation [47].

https://mapbiomas.org/colecoes-mapbiomas-1?cama_set_language=pt-BR
https://mapbiomas.org/colecoes-mapbiomas-1?cama_set_language=pt-BR
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Figure 1. Spatial distribution of intact forest in the Amazon with 0.1◦ spatial resolution in 2019. Intact
forest means that the fraction of forest cover was greater than or equal to 50% in one 0.1◦ grid cell
that was defined as forest. Intact forest below 2.5◦ S over the southern Amazon was the study area of
this paper.

We utilized the VOD and optical satellite vegetation data to characterize the rainforest
canopy dynamics. The VOD data were derived from passive microwave observations of
the Advanced Microwave Scanning Radiometer 2 onboard the Global Change Observation
Mission-Water (GCOM-W) satellite that is operated by the Japan Aerospace Exploration
Agency (JAXA). The land parameter retrieval model (LPRM) algorithm [48–50] was used to
retrieve the VOD based on the AMSR2 L3 daily brightness temperature (TB). The AMSR2
L3 TB was produced by JAXA and can be freely downloaded from the GCOM-W1 Data
Providing Service, which is available from 3 July 2012 until the present. The AMSR2 has
an equator-crossing orbit of 1:30 am (descending) and 1:30 pm (ascending). The LPRM
algorithm was applied to two different resolutions of C-band (6.93 GHz) TB-descending
paths to retrieve the VOD (VOD-0.1◦ and VOD-0.25◦). The VOD based on the nighttime
TB was expected to be more reliable than that based on the daytime TB [35] because of
the higher thermal equilibrium at night, which is beneficial for obtaining more accurate
retrievals. Hence, VOD-0.1◦ and VOD-0.25◦ retrieved from the nighttime TB were both
used in this study, with a focus on VOD-0.1◦. The optical satellite vegetation data used
here included nadir-solar-normalized NDVI and EVI from the MANVI product at 1 km
spatial resolution and monthly temporal aggregation [51]. This product was derived
from the MODIS product MCD19A1 (v6) with corrections for atmospheric effects by the
multi-angle implementation of atmospheric correction (MAIAC) algorithm [52]. The EVI
was calculated by red, near-infrared, and blue bands, whereas the NDVI was obtained
from the calculation between the near-infrared and red bands. The normalized burn ratio
was also used to estimate vegetation changes. The NBR is a normalized ratio of (NIR -
SWIR)/(NIR + SWIR), where NIR and SWIR refer to the surface reflectance of near-infrared
and short-wave infrared bands, respectively [53]. Surface reflectance was obtained from
a 16-day composite product with a 0.05◦ spatial resolution (MYD13C1, v6), which was
derived from the MODIS sensor on board the Aqua satellite [54].

We used two types of fire monitoring products to characterize the 2019 fire situation:
the active fire and the burned area products derived from the MODIS onboard the Terra and
Aqua satellites. The MODIS active fire product (MCD14ML, v6) is a monthly fire location
dataset at a 1 km spatial resolution. Each fire point records several details, including the
geographic location, the date of occurrence, the detection confidence, the satellite that
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detected the fire, etc. The detection confidence range is between 0 and 100%, which is an
indicator of the quality of the fire pixels, and is classified into three classes: low confidence
(0–30%), nominal confidence (30–80%), and high confidence (80–100%). The nominal- and
high-confidence fire pixels have lower errors of commission relative to low-confidence fire
pixels (see the user guide on https://modis-fire.umd.edu/files/MODIS_C6_Fire_User_
Guide_C.pdf (accessed on 16 March 2021)). The MODIS burned area product (MCD64A1,
v6) is a global monthly dataset containing burn dates and quality information for each
burned pixel at a 500 m spatial resolution [55]. Additionally, precipitation from the global
precipitation measurement [56] was used to judge whether the 2019 southern Amazon had
been through a drought event.

All datasets used in the study cover the period from January 2012 to December 2019,
except the VOD, which covers the period from July 2012 to now. More detailed information
about these datasets is given in Table 1.

Table 1. Satellite datasets used in the study.

Variable Name Product Name Original Spatial and
Temporal Resolution

Land cover type MCD12Q1, v6;
Map biomass product 500 m, year; 30 m, year

Vegetation optical depth
(VOD)

Retrieved by land parameter
retrieval model (LPRM) based on

AMSR2 L3 TB
0.25◦/0.1◦, twice per day

Enhanced vegetation index
(EVI) MANVI 1 km, monthly

Normalized difference
vegetation index (NDVI) MANVI 1 km, monthly

Active fire MCD14ML, v6 1 km, monthly

Burn area MCD64A1, v6 500 m, monthly

Normalized burn ratio
(NBR)

Derived from surface reflectance
based on MYD13C1 0.05◦, 16-day

Precipitation GPM_3IMERGM 0.1◦, monthly

2.2. Data Preprocessing

We used an aggregation or bilinear interpolation to resample precipitation, fire prod-
ucts, and optical remote sensing data into a 0.1◦ spatial resolution at a monthly timescale
for a more direct comparison with VOD-0.1◦.

For delineating Amazonia forest distribution at 0.1◦ grid cells, the evergreen broadleaf
forest land cover type of MCD12Q1 and the forest formation, mangrove, and forest plan-
tation land cover types of the Map Biomass dataset were considered. The forest cover
datasets with high resolution were resampled to 0.1◦ and 0.25◦ spatial resolutions by calcu-
lating the proportion of forest type in each corresponding 0.1◦/0.25◦ grid cell. To minimize
the influence of non-forest vegetation dynamics, the forest at a 0.1◦/0.25◦ grid cell was
defined when the fraction of forest cover was greater than or equal to 50% (Figure 1 and
Figure S1). The choice of the threshold value of forest cover, e.g., 50%, 60%, 70%, and 80%,
did not essentially change the results of this study. For retaining the large sample size, the
threshold value of 50% was chosen here.

MCD14ML’s precision to detect active fires is mainly affected by cloudy conditions [8].
To guarantee the fewest number of false fire detections, only the high-confidence active
fires (above the 80% confidence level) were used here to generate monthly active fire
data in 0.1◦/0.25◦ grid cells by summing up the daily active fires at the 1 km original
resolution within each grid cell. For MCD64A1, each pixel of 500 m masked as burned was
considered as the burn area with 0.25 km2. The monthly burned area data at the 0.1◦/0.25◦

https://modis-fire.umd.edu/files/MODIS_C6_Fire_User_Guide_C.pdf
https://modis-fire.umd.edu/files/MODIS_C6_Fire_User_Guide_C.pdf
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spatial resolution were obtained by counting the number of 500 m burned pixels within
the corresponding 0.1◦/0.25◦ grid cells.

2.3. Analysis Methods

To understand the general condition of precipitation and fire incidence over intact
southern Amazonian forest, we first characterized the seasonal cycle of precipitation and
active fires over a study period. The study period chosen here was the overlapping period of
all datasets used, i.e., 2012–2019. Moreover, we focused on the differences in precipitation,
fire activities, and vegetation behaviours between 2019 and other non-drought years;
therefore, drought years (2015 and 2016) and the study year 2019 were excluded from the
reference period used for the calculation of season cycle. The seasonal cycle of precipitation
was represented by the monthly averages during the reference period. To calculate the
seasonal cycle of active fires, we first calculated the regional total number of active fires for
each month and then we took the monthly average for the reference period. Furthermore,
precipitation and fire incidences over the region were examined by computing the monthly
anomalies of these variables in 2019, representing a departure from their seasonal cycle.

The standardized anomalies for each month were calculated for vegetation metrics
(VM, including VOD, NDVI, EVI, and NBR) at each pixel to detect the vegetation variation
in 2019, expressed as follows:

α =
x − m

σ
(1)

where α is the standardized anomaly in 2019, x is the actual value in 2019, and the monthly
long-term mean (m) and standard deviation (σ) were calculated over the reference period
mentioned above. Pixels with standardized anomalies less than −1 (i.e., <−1 standard
deviation (SD)) were defined as a canopy decrease relative to non-drought years. The
nonparametric Wilcoxon signed-rank test was used to evaluate anomalies in 2019 that were
statistically different from non-drought years at p < 0.05 [57].

Furthermore, to investigate the impact of fire on the canopy dynamics, it was necessary
to first extract the burned grid cells. The seasonal cycle of active fires showed that 86%
of high-confidence active fire occurrences were distributed from July to October over the
intact forest in the southern Amazon. Thus, we focused on July–October (the fire season)
with high fire occurrences overlapping with the dry season (July–September). The canopy
damage caused by fire may not recover too quickly because of the canopy growth limited
by the hydrometeorological conditions during the dry season. Some burn areas with a
high fire severity may never recover. There were multiple fires within each month in some
burned grid cells with a 0.1◦ spatial resolution. Therefore, canopy damage may increase
continually during the fire season. We used the cumulative number of active fires from
July to each month (active fires > 1) to quantify fire density and identify the burned pixels
for each month during the fire season. The method was also used to define the monthly
accumulated burn area based on MCD64A1. Accordingly, a comparison of the spatial
distribution of standardized anomalies of vegetation metrics from burned and unburned
pixels was used to reveal the impact of the 2019 fires on canopy changes. The Wilcoxon
rank-sum test was used to calculate the statistical significance of the anomalies’ distribution
between burned and unburned pixels (p < 0.05) [57,58].

To estimate the monthly canopy changes caused by fire, we classified the fire event
into 10 levels based on a 10% interval according to the cumulative distribution func-
tion (CDF) of the monthly cumulative active fire data (Figure S2) and took the average
of the standardized anomalies of vegetation metrics at the corresponding level. The
Pearson correlation coefficients (γ) between the mean number of active fires and the
mean of standard anomalies at corresponding levels was calculated. Moreover, the stan-
dardized anomalies of the difference between the October and July vegetation metrics
(∆VM = VMOct - VMJul,) based on Equation (1) were calculated to monitor canopy changes
during the fire season in 2019. Then, we calculated the mean of the standardized anomalies
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of ∆VM at the corresponding fire level based on the whole fire season’s cumulative active
fires data.

3. Results
3.1. Precipitation and Active Fires Anomalies in 2019

There was a strong seasonal cycle of precipitation and active fires over the southern
Amazon (Figure 2). Active fires started to increase with the decrease in precipitation from
June and reached their peak in September (Figure 2). After the dry season, active fires
decreased with increased precipitation in October. The precipitation anomalies in 2019
showed that there was no significant difference between 2019 and the non-drought years.
Before the dry season, the precipitation anomalies were within the standard deviation in
each month, except in April. During the dry season, the precipitation anomalies of August
and September were negative but just exceeding 0–1.5 standard deviations. However, the
number of active fires was increased by July 2019 compared with the non-drought years.
In August 2019, the number of active fires increased intensively—nearly three times higher
than the non-drought years. Even though active fires decreased in September 2019, the
number of active fires surpassed that in the non-drought years (0.88 standard deviation).
The number of active fire incidences in October 2019 was similar to that of the non-drought
years. Almost 90% of high-confidence active fires in 2019 occurred during the fire season.
During the fire season, 90% of the total high-confidence active fires were found from July to
September and 83% from August to September, which suggested that fires mainly occurred
in August–September 2019.
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Figure 2. A comparison of monthly averaged (a) active fires and (b) precipitation between 2019 and non-drought years.
Colored lines with asterisks show the averages of each month in 2019, whereas gray lines with circles show the averages of
each month in the non-drought years with standard deviations indicated by an error bar. The anomalies of each month in
2019 are shown as bar charts with a black line.

Spatially, active fires were mainly located at the forest margins in July 2019 and spread
into the forest in August and September (Figure 3a1–a4). In October 2019, the zone with
increasing fire occurrences was mainly the northeast of the study area, which was different
from other months during the fire season (Figure 3a4 and Figure S3d). Most of the fires
occurred over Brazil in 2019 (Figure 3a1–a4).
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Figure 3. Spatial distribution of cumulative active fires on 0.1◦ (a1–a4) grid cells from July to October 2019. Spatial
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3.2. Vegetation Response during the Fire Season

The spatial distribution between the cumulative active fires and the significant nega-
tive anomalies of vegetation metrics at each month were compared by direct observations
(Figure 3). It was found that the location with a concentrated distribution of significant
negative VOD anomalies coincided with the area with a higher number of active fires over
the fire season generally, except in July (Figure 3a1–a4,b1–b4 and Figure S4a1–a4,b1–b4).
The comparison of the location of fire pixels and significant vegetation metrics anoma-
lies demonstrated this further (Figure S5). With the decreasing number of active fires in
October, significant negative VOD anomalies were reduced (Figure 3b4). However, there
was a poor consistency in spatiotemporal distribution between the cumulative active fires
and the concentrated distribution of significant negative anomalies in the optical indices
(Figure 3). The concentrated distribution of significant negative optical indices anomalies
was not only observed in burned areas but also in the unburned areas, which made it hard
to discern the area affected by the fire from the spatial distribution of standard anomalies
by direct observations. Compared to the spatial distribution of VOD anomalies, there
were large-scale significant negative anomalies in the unburned grid cells of the optical
indices, especially in the west of the southern Amazon of the NDVI/NBR of September
(Figure 3, Figures S5 and S6). From here, a high burned area was chosen to compare the
differences in spatiotemporal distribution between VOD standard anomalies at the two
resolutions (Figure S7). In some grid cells with few active fires near the edge of unburned
pixels, only VOD-0.1◦ could detect the significant canopy changes caused by fire indicated
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by negative anomalies. VOD-0.1◦ showed more detailed information about the canopy
changes compared with VOD-0.25◦ in the burned pixels around the center of the severe
fire. The correlation of active fires and VOD standard anomalies showed more differences
between the results from VOD-0.1◦ and VOD-0.25◦ (Figure S7e1–e4). Within the range of
active fires at the 0.1◦ resolution, the standard anomalies of VOD-0.1◦ were consistent with
VOD-0.25◦ anomalies and showed more abundant information on the canopy changes
caused by fire. The VOD-0.25◦ negative anomalies showed a similar magnitude for the
increasing number of active fires, except in September.

Besides, the magnitude and spatial coverage of negative VOD anomalies increased
with the rising number of active fires from July to September. The negative VOD anomalies
in the area with no increased active fires in September (Figure S3) were larger than in
August. The area with negative VOD anomalies was larger than that of the fire region
(Figure 3b2–b4, Figures S4b2–b4, and S5a2–a4, b2–b4). The mean value of standard anoma-
lies of VOD-0.1◦ in unburned pixels at different distances from burned pixels clearly
showed that the canopy in unburned pixels was influenced by the nearly burned pixels
(Figure 4a). The negative VOD anomalies mean that unburned pixels reduced with the
increased distance between unburned and burned pixels, which ranged from 0 to 35 km,
then stabilized after exceeding 35 km. VOD-0.1◦ showed the effects of fire to the close un-
burned areas more precisely when compared to VOD-0.25◦ (Figure S8). The NBR showed
a similar pattern to that of the VOD, but the distance affected by fire was about 0–10 km.
The series of the EVI and the NDVI showed negative anomalies in August–September
and kept steady during 10–50 km, then they did not stabilize with the increasing distance
(Figure 4c,d). The NDVI in October still showed negative anomalies at any distance.
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Anomalies from the remotely sensed products in burned pixels were statistically
different from those of unburned pixels (p < 0.05) and displayed a strong negative skew
(Figure 5). In general, from July to September, the percentage of negative anomalies
in the burned pixels increased with the rise in fire activity, and the median of anomalies
became more negative, whereas the unburned pixels anomalies showed very small changes,
except the EVI and the NDVI. Thus, the burned pixel anomalies’ negatively skewed
distributions gradually moved away from the unburned pixel anomalies distributions from
July to September. With the end of the fire season in October, the percentage of negative
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anomalies (i.e., < -2 SD) in burned pixels reduced, causing the burned pixels’ anomalies to
become more skewed towards unburned pixels, which was consistent with the expected
canopy recovery. However, the EVI and NDVI anomalies in burned and unburned pixels
both showed a strong negative skew in August and September, moving away from the
normal distribution from July–September gradually with a 20–40% increased percentage
of negative anomalies. Although the medians of the EVI and the NDVI anomalies in
September were slightly smaller than those of August, the percentage of negative anomalies
of the EVI and the NDVI in September were slightly larger than that of August. In October,
the EVI and NDVI anomalies in unburned pixels displayed a normal distribution, whereas
the anomalies in burned pixels still performed as a negative skew with fewer negative
anomalies than in September.
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Figure 5. A comparison of standardized anomalies’ distribution between burned and unburned pixels in remote sense
indices over July–October. Histograms of standardized anomalies from July to October in (a1–a4) VOD-0.1◦; (b1–b4) EVI;
(c1–c4) NDVI; and (d1–d4) NBR. A red asterisk indicates that the anomalies between burned and unburned pixels were
significantly different.

Some differences were found among the anomalies of the burned pixel distribution
in the VOD, the EVI, the NDVI, and the NBR regarding the percentage of anomalies for
different magnitudes (Figure 5). Optical indices showed a higher median of negative
anomalies and a higher percentage of negative anomalies in burned pixels over July–
September than the VOD, except for the EVI in July (Figure 5). The percentage difference
of negative anomalies (< -1 SD) between October and September was greater in optical
indices. The declined percentage of negative anomalies in October relative to September
was 24%, 23%, and 14% in the EVI, the NDVI and the NBR, respectively, whereas it was
0% and 1.55% in VOD-0.25 (Figure S4c1–c4) and VOD-0.1 respectively. The anomalies’
distribution in the burned pixels of the VOD products at low and high resolutions also
showed some differences. There were 42.5%, 49.5%, and 49.5% of burned pixels with
negative VOD-0.25◦ anomalies of more than one standard deviation over August–October
(Figure S4(c2–c4)), versus 49.2%, 52.5%, and 50.9% of burned pixels with negative VOD-0.1◦

anomalies (Figure 5a2–a4). The negative VOD-0.25◦ anomalies’ distribution changed from
September to October (Figure S4c3–c4). The 5.4% of burned pixels with negative VOD-
0.25◦ anomalies greater than two standard deviations (<−2 SD) in September decreased in
October, and the increasing percentage of negative anomalies between -2 SD and -1 SD led
to a similar percentage of negative anomalies (<−1 SD) and median values in September
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and October. However, there were only 3.67% of burned pixels with negative VOD-0.1◦

anomalies (<−2 SD) decreased in October compared with September.

3.3. Vegetation Changes Caused by the 2019 Fires

An overall pattern of fewer negative anomalies at lower levels of active fires for
all indices and more negative anomalies at higher levels of active fire was observed
(Figure 6). The means of standard anomalies of vegetation metrics were negative at all fire
levels, and the mean values increased with the rising fire levels. The pattern was more
apparent in August–September and had a significant negative correlation. The Pearson
correlation coefficient of optical indices was larger than the VOD. The mean of negative
anomalies of optical indices was larger than that of the VOD in all fire levels of August,
around 0.1–2.2, and about 0.1–1.7 in most of the fire levels of September (> four active fires).
In July, with low active fires, the anomalies’ mean series of VOD and the optical indices
at different fire levels were not consistent, and the mean was smaller. Nevertheless, the
anomalies’ mean series of NDVI/NBR in July was similar to that of August–September.
Comparing the means of standard anomalies of vegetation metrics between September and
October at different fire levels, we found that the negative anomalies’ mean values in lower
fire levels (< eight active fires) decreased obviously in October, whereas little or no decrease
was observed in higher fire levels. The decline in negative VOD anomalies in October
relative to September was less than the optical indices, which was estimated between 0
and 0.1 for the VOD and at least 0.3 for the optical indices. The negative anomalies’ decline
of VOD-0.1◦ (Figure 6a4) was less than for VOD-0.25◦ (Figure S4d4). Meanwhile, the mean
standard anomalies of the remotely sensed indices at different fire levels based on the
monthly cumulative burn area data also showed the same canopy change patterns caused
by fire (Figure S9).

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 20 
 

 

(c1–c4) NDVI; and (d1–d4) NBR. A red asterisk indicates that the anomalies between burned and unburned pixels were 

significantly different. 

3.3. Vegetation Changes Caused by the 2019 Fires 

An overall pattern of fewer negative anomalies at lower levels of active fires for all 

indices and more negative anomalies at higher levels of active fire was observed (Figure 

6). The means of standard anomalies of vegetation metrics were negative at all fire levels, 

and the mean values increased with the rising fire levels. The pattern was more apparent 

in August–September and had a significant negative correlation. The Pearson correlation 

coefficient of optical indices was larger than the VOD. The mean of negative anomalies of 

optical indices was larger than that of the VOD in all fire levels of August, around 0.1–2.2, 

and about 0.1–1.7 in most of the fire levels of September (> four active fires). In July, with 

low active fires, the anomalies’ mean series of VOD and the optical indices at different fire 

levels were not consistent, and the mean was smaller. Nevertheless, the anomalies’ mean 

series of NDVI/NBR in July was similar to that of August–September. Comparing the 

means of standard anomalies of vegetation metrics between September and October at 

different fire levels, we found that the negative anomalies’ mean values in lower fire levels 

(< eight active fires) decreased obviously in October, whereas little or no decrease was 

observed in higher fire levels. The decline in negative VOD anomalies in October relative 

to September was less than the optical indices, which was estimated between 0 and 0.1 for 

the VOD and at least 0.3 for the optical indices. The negative anomalies’ decline of VOD-

0.1° (Figure 6a4) was less than for VOD-0.25° (Figure S4d4). Meanwhile, the mean stand-

ard anomalies of the remotely sensed indices at different fire levels based on the monthly 

cumulative burn area data also showed the same canopy change patterns caused by fire 

(Figure S9). 

 

Figure 6. The mean of standard anomalies of (a1–a4) VOD-0.1°; (b1–b4) EVI; (c1–c4) NDVI; and (d1–d4) NBR at different 

fire event levels from July to October. The significant Pearson correlation coefficient (p < 0.1, p < 0.05, and p < 0.01) was 

indicated with *, **, and ***, respectively. 

Figure 6. The mean of standard anomalies of (a1–a4) VOD-0.1◦; (b1–b4) EVI; (c1–c4) NDVI; and (d1–d4) NBR at different
fire event levels from July to October. The significant Pearson correlation coefficient (p < 0.1, p < 0.05, and p < 0.01) was
indicated with *, **, and ***, respectively.
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Regarding the canopy change in the fire season, all the ∆ (VM) standardized anoma-
lies in burned pixels were statistically different from those in unburned pixels (p < 0.05)
(Figure 7a1–a4). The percentage of negative anomalies of burned pixels was greater in the
VOD and the NDVI. The standardized anomalies’ averages for all ∆ (VM) were negative at
all fire levels (Figure 7b1–b4). In the areas with a small number of active fires, the anoma-
lies’ mean was less than -1 SD, which was caused by the decline of negative anomalies
in the area with a lower fire level in October according to the above monthly analysis
(Figure 6). However, the VOD’s, the EVI’s, and the NBR’s means were larger than -1 SD at
the ninth and tenth fire levels, whereas the mean of the NDVI was larger than -1 SD during
the seventh to the tenth fire level. The mean of VOD-0.1◦ from the seventh to the tenth fire
level was close to or larger than -1 SD, whereas the VOD-0.25◦ average was larger than -1
SD only at the ninth and tenth fire levels (Figure S10b). The mean of VOD-0.1 at the lower
fire levels was larger than that of VOD-0.25◦.
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Figure 7. The comparison of ∆VM (∆VM = VMOct - VMJul) standardized anomalies’ distribution between burned and
unburned areas. Histograms of standardized anomalies in (a1) ∆VOD-0.1◦; (a2) ∆EVI; (a3) ∆NDVI; and (a4) ∆NBR. A
red asterisk indicated that the anomalies between burned and unburned pixels were significantly different. The mean of
standard anomalies of (b1) ∆VOD-0.21◦; (b2) ∆EVI; (b3) ∆NDVI; and (b4) ∆NBR at different fire event levels.

4. Discussion

This is the first attempt at VOD data used to characterize tropical forests’ canopy
dynamics in relation to fire effects. The study was based on the 2019 southern Amazon
fire where precipitation in 2019 was similar to that of the non-drought years. There
were no extreme hydrometeorological events in 2019 [46,59] supporting the idea that
canopy dynamics here observed were driven by fire rather than drought. In this study,
the canopy dynamics driven by fires observed by the VOD were found to be similar
to optical indices that were usually used to monitor the vegetation changes associated
with fire or other disturbance factors. Our findings show that canopy dynamics vary
as a function of fire intensity, with increased change with higher fire incidences. This
corroborates previous studies [51]. Cochrane and Schulze [60] used field data from the
eastern Amazon and estimated the biomass loss in burned forest compared to unburned
forest; they found that biomass loss increased as the combustion degree rose, with 80%,
50%, and 10% losses in heavily, moderately, and lightly burned forest, respectively. In
October, the canopy began to recover after fires. There are many factors affecting post-
fire forest canopy recovery, including pre-fire environment (forest composition, structure,
and species ecology), climate, forest fire type (ground, surface, crown), fire intensity, fire
severity, and ecotype condition [17]. Fire intensity and fire severity are some of the most
important factors influencing the speed of canopy recovery after fire [17,61]. The increased
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fire intensity and fire severity induced the larger loss of biomass and the lower forest
resilience. Numata et al. [5] found it was difficult to distinguish the area with low fire
intensity and fire severity from intact forest in the early stages of canopy recover, but it was
still easy to identify the burn area with higher fire severity in a long period. The canopy
recovery indicated from this study was consistent with previous studies. The canopy
recovery in the lower fire incidence areas would have started when the fires stopped at the
end of the fire season because of rapid canopy regeneration and closure in lightly burned
forest [19,20,62]. The canopy recovery was not found in higher fire-occurrence areas, likely
because of the prolonged effects of fire in the canopy caused by higher fire intensity [63].
The assessment of canopy changes caused by fire here was based on remote sensing indices,
which was not completely consistent with the actual forest recovery, particularly the woody
part [61]. The canopy changes and recovery indicated from the VOD and the optical indices
were different, with higher changes and a faster recovery speed detected by optical indices.
The canopy damage indicated by VOD-0.1◦ was larger than that found by VOD-0.25◦,
whereas VOD-0.1◦ reflected a slightly lower canopy recovery speed than VOD-0.25◦. This
suggests that VOD-0.1◦ was more sensitive to the vegetation change caused by fire than
VOD-0.25◦.

The different degree of canopy damage caused by fire and postfire recovery detected
by these remote sensing indices may be due to various reasons. The high level of cloud
and aerosol contamination in the Amazon may affect the uncertainty of optical indices [64].
The optical indices are obtained by the calculation of the surface reflectance observations
that have been atmospherically corrected [48]. The inadequate atmospheric correction of
the blue band causes elevated EVI [65], which may lead to the canopy change detected
by the EVI being smaller than the NDVI. This also may increase the uncertainty of the
EVI and underestimate the vegetation changes caused by fire. In contrast, the high-level
aerosol attenuates the band reflection signal used to calculate the NDVI/NBR and obtain
the lower value of the NDVI/NBR [65], which may lead to detecting higher canopy
changes associated with fire. Although the multi-angle implementation of atmospheric
correction algorithm can eliminate the effect of atmospheric contamination and the sun-
sensor geometry variation more accurately [52,66,67] and can model more realistically the
Amazon forest’s canopy dynamics [66,68], the uncertainty of MAIAC VI data may still
exist in cases of high levels of aerosol contamination caused by fire.

Moreover, the different properties of the forest canopy represented by the correspond-
ing indices may be one reason for the higher canopy changes detected by the optical indices
relative to the VOD. The NDVI is sensitive to chlorophyll abundance and photosynthetic
biomass. The low reflectivity of the red band, due to the strong red-light absorption of
vegetation chlorophyll and the high reflectivity of the NIR band as result of no NIR light
absorption in vegetation, achieved the high NDVI [69]. The combination of the NIR and
the SWIR absorbed by water to calculate the NBR can find the bare ground information
caused by vegetation changes, so that the NBR is low in burned areas [37]. The VOD
represents the water content of both photosynthetic and non-photosynthetic biomass, in-
creasing with vegetation density [34]. The slower postfire canopy restoration captured by
the VOD also agreed with the expected outcome that the growth of photosynthetic and
non-photosynthetic (wood) biomass is slower than the rapid recovery in canopy greenness
indicated by the NDVI/NBR [32]. The delayed mortality of large trees (≥50 cm dbh)
in high fire severity areas demonstrated the properties of wood’s response to fire [70].
Moreover, the delayed canopy changes detected by the EVI in July seemed to be relative to
the sensitivity of the EVI to structural changes that were mostly detected one month later.
Pigments (the NIR band used in the NDVI and the NBR) and water changes (the SWIR
and the VOD) were rapidly detected in July when fires started.

Our findings also show that the VOD not only detected the direct effects of fire on the
canopy spatially but also seemed to monitor the impact of fire to the adjacent unburned
areas. In the Amazon, forest fires are usually associated with deforestation and spread into
the adjacent forest, aggravating the forest fragmentation. The forest fragmentation leads to
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the desiccation of surface biomass [4,71,72]. Greater canopy openness induces a significant
increase in solar radiation, wind speeds, and vapor pressure deficits, making leaf litter
and the aboveground fuels drier [72]. The VOD is sensitive to vegetation water content
and could monitor the dryness of the canopy. The magnitude of negative VOD anomalies
increased in some places during September, even with no rising active fires compared to
August. This was likely to have been caused by the canopy damage in August leading to
drier conditions in September. The impact of burned areas to the adjacent unburned areas
was similar to a phenomenon known as vegetation breeze, which is a local atmosphere
circulation as a result of forest fragmentation where the opening and intact canopy are
adjacent. The different physical characteristics between clearings and intact canopy were
the main inducement. Lower air pressure is seen in areas with canopy openness because of
the increase in solar heating at the surface, and the moist air from the adjacent forest was
dragged into the openness canopy, which promoted desiccation of the adjoining forest [4].
In a previous study, it was found that the vegetation breeze can affect the adjacent forest
up to 20 km from clearings in Rondonia [73]. The farthest impact distance of burned areas
on adjacent forest was around 30 km based on the VOD; the negative VOD anomalies in
unburned areas decreased with increased distance to the burned area, which suggests that
the effect of the burned area is more obvious to the nearby unburned forest.

Different from the VOD, the concentrated distribution of significant negative anoma-
lies of the optical indices was observed in both burned and unburned areas in space, so it
cannot intuitively observe the spatial distribution of the effects of fire on vegetation because
of the interference of false signals in unburned areas. The results of this study suggests
that the VOD can more accurately capture the general spatiotemporal evolution of canopy
changes affected by fires, natural conditions, and forest fragmentation associated with fire
relative to optical indices, especially where the fire event is unknown and the precipitation
anomalies are not very significant. Although the optical indices were contaminated by
atmospheric conditions, they still could detect the canopy dynamics caused by fire with
the help of fire products. In previous studies that relied on high-resolution optical imagery,
a particular challenge was that the time gap between cloud-free image acquisition and fire
occurrence possibly led to underestimation of the canopy changes caused by fire [5,19,20].
The VOD is less impacted by atmospheric conditions and has a high temporal resolution
(twice per day) [35]. Even though the daytime VOD (VOD-day) may not be as reliable
as the nighttime VOD (VOD-night), the daytime VOD detected similar canopy dynamics
(Figure S11). Furthermore, there was still a difference in performance in July between
VOD-night and VOD-day, with a higher percentage of negative VOD-day anomalies in
burned and unburned pixels relative to VOD-night.

It should also be noted that some areas with concentrated distributions of signif-
icant negative VOD anomalies in July were inconsistent with the corresponding fires’
spatial distribution, which may be caused by different factors or a synergy of these factors.
The negative VOD anomalies in the Acre state of Brazil with few high-confidence fires
(Figure 3b1,d1) may have been caused by the low- and nominal-confidence active fires
(Figure S12). Fire detection of MCD14ML was obtained from the emission of mid-infrared
radiation from fires and a contextual algorithm. MCD14ML may underestimate the fire oc-
currence as a result of cloud coverage, heavy smoke, a short fire duration between satellite
overpasses, the fire being too small or too cool, or the fire being obscured by the canopy.
False alarms in small forest clearings have been reduced in MCD14ML. Collection 6 of
MCD14ML has improved the fire confidence classification in that some highly questionable
fire pixels would not be classified in the nominal-confidence level. MCD14ML can detect
fires smaller than 50 ha better than other fire products [74]. The pixels with negative VOD
anomalies but no fire occurrence in the Mato Grosso state of Brazil may be caused by
the clear-cutting in July 2019 (Figure S13a). There was a large-scale negative VOD-0.25◦

anomaly in the junction of the Brazilian state of Arce and Peru with bamboo-dominated
or bamboo-susceptible forests, which was very likely to be related to the deforestation
and fires in 2018 (Figure S13b) or the large-scale die-off of bamboo in bamboo-dominated
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forests in 2019 [68]. Interestingly, VOD-0.1◦ did not perform a similar large-scale significant
negative anomalies distribution in this region but showed more detailed distribution of
negative anomalies with significant and non-significant signals.

The forest cover type with a coarse spatial resolution may influence the more realistic
identification of canopy dynamic caused by fire in this study. It cannot separate the
deforested and fire areas at a 0.1◦ or 0.25◦ grid cell since the fire is usually associated
with deforestation and spreads into the adjacent forest [44,46]. The deforestation rate
in the Brazilian Amazon has been increased from 2013, especially in 2019 and 2020 [75].
The canopy dynamic associated with fire may be influenced by the vegetation change in
deforested areas in burned pixels. However, the impact of deforestation may be minimized
by using monthly data for analysis. Although the spatial resolution of the VOD had been
enhanced to 0.1◦ and the VOD-0.1◦ can obtain more detailed information than VOD-25◦, it
is still not enough to meet the higher precision requirements. After all, the forest burned
area accounts for just a part of a 0.1◦ grid cell.

Although we demonstrated that the VOD is promising in characterizing the vegeta-
tion changes during the 2019 dry season, the VOD has its own uncertainties due to the
inherent characteristics of the satellite and retrieval algorithm. The VOD was retrieved
from the AMSR2 instrument onboard the GCOM-W1 polar-orbiting satellite based on the
LPRM. There are several assumptions in the LPRM, leading to the uncertainties of the
VOD [76]. For example, the equal assumption of canopy surface temperature and soil
surface temperature leads to the higher uncertainties of VOD-day because of the higher
temperature gradients in the daytime. VOD-night is more reliable than VOD-day, but the
descending orbit overpasses tropical regions about once every two days. VOD-night would
miss some canopy change in fast-changing events, such as a fire, if it were used alone to
identify the vegetation change. Besides, the surface open water also influences the retrieved
VOD, which affects microwave reflection of the ground and causes the underestimation of
the VOD [25,77].

Overall, the results of this study prove that the VOD is very useful for monitoring the
canopy dynamics caused by fire or postfire recovery and provides more comprehensive
information over time relative to the optical indices. The spatial results of the VOD can
also provide general indications for postfire management. The VOD and the optical
indices are two types of radiometric parameter products with different concepts. Their
response to climate conditions and fire do not necessarily consist in a similar pattern [32–34],
which implies that the combination of both products can provide a better understanding
of vegetation dynamics at different conditions and scale. Moreover, the uncertainties
and restrictions in both products also stimulate the combination of multiple radiometric
parameter products for vegetation studies in the future. The more comprehensive canopy
dynamic description associated with fire is beneficial for the improving of fire-emission
estimates and vegetation models too. The importance of carbon emissions in increasing
tropical wildfires has been recognized in recent years but is still not recorded in most
national or global carbon budget systems [6,78]. The Global Fire Emission Database (GFED)
may underestimate carbon emissions from understory fires because of the dependence
on burned area products in the estimation process [79]. The emission estimates in most
databases are temporal, focusing on immediate emissions from a fire [79]. Silva et al. [80]
investigated the long-term consequences of wildfires based on a 30-year study in the
Brazilian Amazon and revealed that the net annual emissions peak four years after a
wildfire, focusing on CO2 fluxes from the growth and decomposition of woody components.
The synergy of the VOD (biomass estimate) and the optical indices (photosynthetic) has
the potential to be an effective way of improving the estimation of carbon emissions or
stock recovery in the future [32]. At present, the application of the VOD in monitoring
canopy dynamics affected by various disturbance factors is still low relative to the use of
optical indices, which needs to be further expanded. Although the VOD has been proved
to provide complementary information on vegetation change for the optical indices, further
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estimations with field data are also needed to deeply explore the potential advantages of
the VOD.

5. Conclusions

This study demonstrated the potential of a passive microwave-based vegetation
optical depth (VOD) to detect the vegetation change patterns caused by fire over southern
Amazonian forest regions with high biomass where fire activity occurs in July–October
every year. In the absence of extreme hydrometeorological events, the VOD can reflect the
spatiotemporal distribution of fire-driven canopy changes. The VOD with a higher spatial
resolution can provide more detailed information on canopy changes. The optical indices
cannot spatially distinguish between canopy changes affected by fire from unburned areas
because of errors in the canopy change information in unburned areas that are likely due
to the effect of atmospheric conditions. The temporal pattern of canopy changes indicated
by the VOD and the optical indices was similar when looking only at grid cells with fire
activities. The magnitude of canopy damage increased with the rising fire occurrences
from July to September. In October, with fires decreasing or stopping, the canopy showed
signs of recovery in areas with fewer fires, while canopy restoration in severe fire areas had
not yet begun. The lower magnitude of canopy damage and recovery detected by the VOD
relative to optical indices was due to the physical meaning of the VOD, which is sensitive
to changes in non-photosynthetic (woody) and photosynthetic (foliar) components of
vegetation, whereas optical indices are more sensitive to canopy greenness. Because of
the different physical meaning, the combination of the VOD and the optical indices can
provide a more comprehensive real-time information on the vegetation changes caused by
fires at various fire types, fire severity, and regional scales, which should be applied widely
in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13122238/s1. Figure S1: Spatial distribution of land cover type in Amazon with 0.25◦

spatial resolution in 2018, Figure S2: The cumulative distribution function (CDF) of cumulative active
fires from July to October, Figure S3: Spatial distribution of active fires on 0.1◦ grid cells from July
to October 2019, Figure S4: Spatial distribution of cumulative active fires on 0.1◦ (a1-a4) grid cells
from July to October 2019. Spatial distribution of standardized anomalies in (b1-b4) VOD-0.25◦

from July to October 2019. Histograms of standardized anomalies from July to October in (c1-c4)
VOD-0.25. Red asterisks indicated that the anomalies between burned and unburned pixels were
significantly different. The mean standard anomalies of (d1-d4) VOD-0.25◦ at different fire situation
levels from July to October 2019. Significant Pearson correlation coefficient (p < 0.1, p < 0.05 and
p < 0.01) was indicated with *, **, and ***, respectively, Figure S5: A comparison of the locations
of burned pixels and significant (a1-a4) VOD-0.25◦, (b1-b4) VOD-0.1◦, (c1-c4) EVI, (d1-d4) NDVI,
(e1-e4) NBR anomalies pixels from July to October 2019, Figure S6: The absolute value difference
of significant negative anomalies between optical indices and VOD-0.1◦ in unburned pixels from
July to October 2019, Figure S7: A comparison of standard anomalies between fire data and VOD at
different resolutions in the higher fire occurrence areas (5◦-9◦S, 52◦-62◦W) from July to October 2019.
(a1-a4) and (d1-d4) was the spatial distribution of cumulative active fires with high-level confidence
on 0.25◦ and 0.1◦ grid cells. (b1-b4) and (c1-c4) was the spatial distribution of standardized anomalies
in VOD at low (0.25◦) and high resolution (0.1◦). The scatter plots of standard anomalies varied with
active fires (e1-e4), Figure S8: The mean of standard anomalies (SA-mean) of VOD-0.25◦ in unburned
pixels at different distances from burned pixels, Figure S9: The mean standard anomalies of (a1-a4)
VOD-0.25◦, (b1-b4) VOD-0.1◦, (c1-c4) EVI, (d1-d4) NDVI, and (e1-e4) NBR at different burn area levels
from July to October 2019, Figure S10: The comparison of ∆VM (∆VM = VMOct - VMJul) standardized
anomalies’ distribution between burned and unburned areas. Histograms of standardized anomalies
in ∆VOD-0.25◦ (a). A red asterisk indicated that the anomalies between burned and unburned
pixels were significantly different. The mean of standard anomalies of ∆VOD-0.25◦ (b) at different
fire event levels, Figure S11: Spatial distribution of standardized anomalies in VOD-0.1◦ based on
daytime passive microwave observation (named VOD-0.1◦-A here, a1-a4) from July to October 2019.
Histograms of standardized anomalies from July to October in VOD-0.1◦-A (b1-b4). Red asterisks
indicated that the anomalies between burned and unburned pixels were significantly different. The
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mean standard anomalies of VOD-0.1◦-A (c1-c4) at different fire situation levels from July to October
2019, Figure S12: Spatial distribution of cumulative active fires with all confidence levels on 0.1◦

grid cells from July to October 2019, Figure S13: A comparison of the locations of burned pixels and
deforested pixel in (a) July 2019 and (b) July 2018. F&D referred to burned pixels with deforested. F
referred to burned pixels with no deforested. D referred to deforested pixel with no fire.
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