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ABSTRACT

Landslides happen with recurrence in Brazil and have been the reason for many
socioeconomic losses and casualties, for instance the consequences of the so called
“Mega-disaster” at Nova Friburgo in 2011. To prevent them, Land Use and Land
Cover (LULC) and landslide inventory maps are essential to identify areas of high
susceptibility. Most inventories are made using visual interpretation methods. How-
ever this approach is time and resource consuming. In this context, the aim of this
study is to use data mining techniques with remote sensing time series imagery to
produce a LULC classification and detect landslide scars via semi-automatic meth-
ods. The study area covers the whole extension of the Rolante River hydrographic
basin, located at Rio Grande do Sul state, Brazil. In January 5th, 2017, more than
300 landslides occurred due to an extreme precipitation event. Sentinel-2 from 2015
to 2020 was used, which resulted in 122 dates, with a temporal resolution of approx-
imately 13 days. A variety of attributes were generated, being them spectral indices,
as the Normalized Difference Vegetation Index (NDVI), the Normalized Difference
Built- up Index (NDBI), and the Soil Adjusted Vegetation Index (SAVI). Basic, polar
and fractal metrics were extracted from the time series. From the Digital Elevation
Model (DEM) provided by SRTM, six geomorphometric features were extracted
(Slope, Aspect, Plan curvature, Profile curvature, General Curvature and the Topo-
graphic Wetness Index). After that, classification was performed by the Random For-
est (RF) algorithm. Four different input approaches were analysed: Mono-temporal,
Bi-temporal, Metrical and All. Each approach consists of a different dataset in-
put, in which the first approach takes into consideration only 10 attributes and the
last one, 436 attributes. Considering the attributes importance ranking, the NDBI
index or metric derived from that index presented the highest position for every
approach, over NDVI and SAVI. Among the geomorphometric attributes, Slope was
ranked among the 6 first attributes for all of them. Comparing the approaches perfor-
mances through the overall accuracy analysis, All approach showed the highest value
(88.96%), followed by Metrical (87.90%), Bi-temporal (82.59%), and Mono-temporal
(74.95%). The approaches that presented the highest error rates for landslide class
were Mono-temporal (7.69%) for omission and Bi-temporal (14.67%) for commis-
sion error. Furthermore, from the interpretation of all of the accuracy results, with
the understanding that the goal was to provide both LULC and landslide inventory
products, the Metrical approach presented the most beneficial result, presenting high
overall accuracy values and low levels of commission and omission errors.

Keywords: Mass movements. Image time series. Time series metrics. Random Forest.
Machine Learning.
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MÉTODOS DE MAPEAMENTO SEMI-AUTOMÁTICO DO USO E
COBERTURA DO SOLO POR SÉRIES TEMPORAIS COM FOCO

NA DETECÇÃO DE CICATRIZES DE DESLIZAMENTOS

RESUMO

Os deslizamentos de terra acontecem com frequência no Brasil e têm sido a causa de
muitas perdas socioeconômicas e fatalidades, a exemplo das consequências do cha-
mado “Mega-desastre” em Nova Friburgo em 2011. Para evitá-los, os mapas de Uso
e Cobertura do Solo (LULC) e os inventários de deslizamentos são essenciais para
identificar áreas com alta suscetibilidade. A maioria dos inventários é feita usando
métodos de interpretação visual, no entanto, essa abordagem consome demasiado
tempo e recursos. Neste contexto, o objetivo deste estudo é utilizar técnicas de mi-
neração de dados com imagens de séries temporais de sensoriamento remoto para
produzir uma classificação LULC e detectar cicatrizes de deslizamentos por meio de
métodos semiautomáticos. A área de estudo cobre toda a extensão da bacia hidro-
gráfica do Rio Rolante, localizada no estado do Rio Grande do Sul, Brasil. Em 5 de
janeiro de 2017, mais de 300 deslizamentos de terra ocorreram devido a um evento
de precipitação extrema. Foram utilizadas imagens do Sentinel-2 de 2015 a 2020,
que resultaram em 122 datas, com resolução temporal de aproximadamente 13 dias.
Diversos atributos foram gerados, sendo eles índices espectrais, como o Índice de
Vegetação por Diferença Normalizada (NDVI), o Índice de Construção da Diferença
Normalizada (NDBI) e o Índice de Vegetação Ajustado do Solo (SAVI). Métricas
básicas, polares e fractais foram extraídas das séries temporais. Do Modelo Digital
de Elevação (DEM) fornecido pela SRTM, seis atributos geomorfométricos foram ex-
traídos (declividade, aspecto, curvatura do horizontal, curvatura vertical, curvatura
geral e índice de umidade topográfico). Em seguida, a classificação foi realizada pelo
algoritmo Random Forest (RF). Quatro abordagens diferentes de dados de entrada
foram analisadas: Mono-temporal, Bi-temporal,Metrical e All. Cada abordagem con-
siste em uma entrada de conjunto de dados diferente, em que a primeira abordagem
leva em consideração apenas 10 atributos e a última, 436 atributos. Considerando o
ranking de importância dos atributos, o índice NDBI ou métrica do derivada desse
índice apresentou o primeiro lugar para todas as abordagens, acima do NDVI e do
SAVI. Dentre os atributos geomorfométricos, a declividade foi classificada entre os 6
primeiros atributos para todos os casos. Comparando o desempenho das abordagens
por meio da análise da acurácia global, a abordagem All apresentou o maior valor
(88,96%), seguidas por Metrical (87,90%), Bi-temporal (82,59%) e Mono-temporal
(74,95%). As abordagens que apresentaram as maiores taxas de erro para a classe
de deslizamento foram Mono-temporal (7,69%) para omissão e Bi-temporal (14,67%)
para erro de comissão. Além disso, a partir da interpretação de todos os resultados
de acurácia, e compreendendo-se que o objetivo era fornecer tanto o mapa de LULC
quanto o produto de inventário de deslizamento, a abordagem Metrical apresentou
o resultado mais benéfico, mostrando altos valores de acurácia global e níveis baixos
de erros de comissão e omissão.

Palavras-chave: Movimentos de Massa. Séries Temporais de Imagens. Métricas de
Séries Temporais. Random Forest. Machine Learning.
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1 INTRODUCTION

Landslides are a natural gravity driven phenomenon, which consists in the move-
ment of a mass of soil or rock from the top of the hill towards the bottom. The
occurrence of landslides is registered all over the world, frequently in mountainous
areas where there have been extreme precipitation events, earthquakes or snow melt-
ing. Landslides happen with recurrence in Brazil and have been the reason for many
socioeconomic losses and casualties, for instance the consequences of the so-called
“Mega disaster” in 2011 at Nova Friburgo in Rio de Janeiro state, Brazil (CARDOZO,
2018).

On January 5th, 2017, an extreme precipitation event triggered a massive occurrence
of landslides in the Rolante River catchment in Rio Grande do Sul state, Brazil. Pre-
vious works have detected more than 300 landslide scars deriving from this episode
(QUEVEDO et al., 2019; GAMEIRO et al., 2019).

In order to reduce the landslide risk, inventory and Land Use and Land Cover
(LULC) maps are relevant information. The landslide inventory map consists of
identifying mass movement scars, which can provide much information about past
events, as location, types and patterns, assisting to build landslide susceptibility
models (RAMOS-BERNAL et al., 2018). Moreover, high quality landslide inventories
are also of upmost importance to calibrate and validate statistical landslide suscepti-
bility and hazard models as well as to evaluate the performance of physically-based
slope stability models (GUZZETTI et al., 2008; BLAHUT et al., 2010; PETSCHKO et

al., 2013; SCHMALTZ et al., 2017). Thus, the inventory is crucial to support urban
planning and disaster risk reduction (LUPIANO et al., 2019).

The completeness of a landslide inventory is frequently related to the land cover
distribution of an area (SCHMALTZ et al., 2017), once characteristics as vegetation
removal and construction building on high slope areas can increase the susceptibility.
The LULC maps assist the detection of areas that have experienced anthropogenic
interventions that may induce landslides. According to Glade (2003), the land use
change is recognized as one of the most important factors influencing the occurrence
of rainfall-induced landslides. LULC may act as predisposing factors of landslide oc-
currence, besides, may also conduct the spatial distribution of landslide consequences
(GARIANO et al., 2017; GLADE, 2003; BEGUERÍA, 2006; PROMPER et al., 2014). The
LULC maps are a fundamental aspect to the vulnerability analysis of an area. Not
only triggering changes can be identified (i.e, deforestation on hillslope), but also
can assist to the social vulnerability measurement. According to Birkmann (2006),

1



a vulnerability indicator is defined as a variable which is an operational represen-
tation of a system characteristic or quality able to provide information regarding
the susceptibility, coping capacity and resilience of a system to an impact resulting
from a natural hazard. Considering that, the social vulnerability can be character-
ized by the same attributes on a scale more closely focused on the social, including
attributes related to issues of livelihood, housing, income, education, security and
gender among many others (TAPSELL et al., 2010).

The inventory maps can be done by either conventional methods (field mapping
and manual vectorization by visual interpretation) or state-of-art techniques. Con-
ventional methods are time and resource (price of man-hour) consuming (QIN et

al., 2018); however, are still very commonly used, once they usually provide more
accurate results. Semi-automatic methods, on the other hand, can provide a rapid
mapping via change detection and pattern recognition algorithms (GUZZETTI et al.,
2012), specially through remote sensing images.

Earth observation sensors can provide data in several observation frequencies, such
as daily or weekly. Most LULC classification approaches, however, are designed for
cloud-free and mono-temporal observations (RUSSWURM; KÖRNER, 2018). Nowa-
days, many researches have identified the benefits of incorporating a multi-temporal
approach, recognizing its many potentials, as to deal with change detection and the
monitoring of targets which present seasonal behavior (i.e, croplands). Hence, time
series have been progressively used to LULC mapping and to identify the nature of
land cover changes (PARIS et al., 2019). Remote sensing medium spatial resolution
optical time series data have demonstrated high capacity for characterizing environ-
mental phenomena, describing trends as well as discrete change events. The inclusion
of time series change in the land cover mapping process provides information on class
stability and informs on logical class transitions, both temporally and categorically
(GÓMEZ et al., 2016).

Out of an earth observation time series, a diversity of properties can be calculated,
which are generally named as attributes. From remote sensing images, many spectral
information can be extracted. The spectral indices are created in order to emphasize
an specific target, which can be generated by making operations with the most rel-
evant spectral bands, finally resulting in one single product. A variety of attributes
have been successfully used on classification related to landslide. Firstly, regarding
spectral indices, the Normalized Difference Vegetation Index (NDVI), and the Soil
Adjusted Vegetation Index (SAVI), proved to be effective tools for landslide de-
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tection and LULC mapping (SALLEH et al., 2018; ISHAK, 2018; YANG et al., 2012).
Also, the Normalized Difference Build-up Index (NDBI) has been applied to many
LULC mapping researches, besides some other recent papers on landslide suscepti-
bility analysis that considered this index as a potential variable (PHAM et al., 2020;
CHANG et al., 2020). Moreover, the Digital Elevation Model (DEM) and its derived
geomorphometric attributes have significantly contributed to the landslide scars de-
tection, as presented by Li et al. (2017) and Pradhan and Mezaal (2017). Metric
attributes can also be extracted from time series and incorporated in the classifi-
cation inputs, among them there are the basic and polar metrics (KöRTING et al.,
2013), besides the fractal, and phenological metrics (EKLUNDH; JÖNSSON, 2012).

Studies related to the landslide theme are, in general, associated to landslide sus-
ceptibility modelling. Research on that field is ancient, however is constantly being
updated as new technologies and methodologies are developed. This happens be-
cause, besides all the effort on monitoring, in some cases this phenomenon can be
still extremely unpredictable and devastating. This is specially applied to unplanned
urban areas, usually in developing countries of tropical weather, where the irregular
auto-construction on hill slopes is a common practice, and heavy rainfall is frequent.

To tackle the challenge of landslide detection through semi-automatic methods, ma-
chine learning and deep learning classifiers are commonly used, as the Support Vec-
tor Machine (SVM), Artificial Neural Network (ANN), Maximum Likelihood (ML),
Random Forest (RF), and the Convolutional Neural Networks (CNN). SVM and ML
have been used to identify landslides in São Paulo state coast (SP, Brazil), in which
the SVM presented better performance than ML, especially when associated to the
NDVI (MANFRÉ et al., 2014). Studies have compared ANN and SVM to mapping
landslides and the results have shown no significant differences between both meth-
ods (MOOSAVI et al., 2014). The RF algorithm can be used both for classification
and regression modelling. As a classifier, it has been widely used for the identifica-
tion of landslide scars (GHORBANZADEH et al., 2019; CHEN et al., 2018). A research
of data mining-aided automatic landslide detection compared the performance of
SVM and RF, having the latter presented a higher classification accuracy (MEZAAL;

PRADHAN, 2018). Moreover, studies show that Decision Tree (DT) algorithms have
been used in landslide detection (SIYAHGHALATI et al., 2016) and LULC mapping
(FRIEDL; BRODLEY, 1997), outperforming other classifiers.

Previous studies show that different types of data have been explored to detect land-
slides scars. Cloud coverage is a great challenge to deal with when optical remote
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sensing imagery is used for landslide detection. This occurs because many of the
events are triggered by rainfall, so it is common that the images from dates close to
the events appear with most of the area covered by clouds. Many researches used
Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR), in which the
sensors can overcome this issue (MONDINI et al., 2019; ZHAO et al., 2018). Moreover,
besides the contribution of SAR data, some difficulties are still present as for land-
slide detection in dense forested areas. Considering that, the use of Light Detection
And Ranging (LiDAR) technologies have been gaining more space, presenting sig-
nificant results (PAWŁUSZEK et al., 2019; GORSEVSKI et al., 2016). Besides the afore-
mentioned issues, the most commonly used type of data to detect landslide scars are
still the optical remote sensing images. Several studies have focused on spaceborne
or airborne (very)high resolution optical images, once it can provide information on
a more detailed scale, usually resulting in higher accuracy values (GHORBANZADEH

et al., 2019; YI; ZHANG, 2020).

It is important to elucidate that there are many approaches for landslide scars de-
tection to produce inventory maps. However, in this study we assume the inventory
map as a secondary product derived from the LULC map. This means that, the
landslide scars consist of a class of land cover that is assigned during the classifica-
tion process. In a bi-temporal example, the Landslide class corresponds, specifically,
to vegetation land cover in time 1, and bare soil in time 2. Most methods for produc-
ing landslide scars identification are based on change detection, producing binary
results (scar Vs non scar). Nonetheless, based on the fact that both products (LULC
and inventory map) are an essential material for landslide susceptibility modeling
(the most effective method for preventing disasters), the methodology here applied
unites both final products in one single workflow. One should notice that, besides
the inventory is derived from the LULC map, it does not mean that the same com-
bination of attributes will present the best performance for both purposes. In other
words, accuracy is analysed separately, so a LULC classification, which considers all
classes, could have the best performance in one approach; however, for the Landslide
class, specifically, some other approach could present a better accuracy.

Although the contribution of time series for remote sensing imagery classification
has already been confirmed by many researches, the question unsolved is: Until
what point the addition of attributes is beneficial to the classification, taking into
account both accuracy analysis and the procedure’s complexity/processing time?
Under this light, which classes present a relevant improvement in the accuracy with
the increase of attributes? Which of them present high accuracy values with low
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quantity of attributes?

Furthermore, in order to choose the most suitable spectral index, many factors may
need to be considered. When dealing with time series, the use of vegetation indices,
as the NDVI, is very common, once it helps to reduce the quantity of attributes in
the time series by joining information from the red and near infrared bands in one
single attribute. The NDVI is indeed a widely used index for general classifications,
as the LULC maps; however, in the scenario of landslide susceptibility, would that
be the best index to be used? According to the literature, NDVI, SAVI, and NDBI
have been extensively used for LULC mapping, thus selected for this work.

Moreover, remote sensing time series metrics have been gaining more relevance in
the scientific community as the availability of historical data from free Earth ob-
servation imagery grows, as Landsat, Sentinel and Moderate-Resolution Imaging
Spectroradiometer (MODIS) data. Time series metrics have shown great potential
for classification specially for agricultural purposes, as exposed by Bendini et al.
(2019) with crop identification in the Brazilian Cerrado. This has to do with the
considerable variability of this type of class during the time. As the Landslides have
a fundamental change factor over the period, time series metrics might be helpful to
detect them. However, research in this field is still recent, so more investigation is
required over whether the time series metrics could be helpful to identify Landslide
scars. Moreover, the polar metrics are still not widely used in the remote sensing
community, which can be seen as a gap with considerable potential to be developed.

In this context, the aim of this research is to generate the LULC classification and
the landslide inventory map for the Rolante River catchment area through semi-
automatic methods, based on remote sensing time series imagery, geomorphometric
attributes and data mining techniques. The proposal consists of comparing different
classification approaches and searching for the optimal combination of attributes
for heterogeneous and landslide prone areas. Attributes are here interpreted as any
input given to the classification algorithm, which means it can be a time series
metric, one date of the NDVI image or the DEM, for example. Besides, metrics are
here interpreted only as the time series metrics (basic, polar, fractal), which are a
sub-group inside the wider category “attributes”. So, more specifically, the objectives
are:

• Analyse the performance of long, dense and irregular time series for LULC
classification of landslide prone areas.
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• Evaluate which classes present a relevant improvement in accuracy with
the increase of attributes, and which of them present high accuracy results
even with low quantity of attributes.

• Investigate the most suitable index, among NDVI, SAVI and NDBI to be
used in this type of areas.

• Explore the potential of time series metrics for classification and landslide
detection.

• Inspect the most relevant set of attributes to be used in this case.

• Compare different classification approaches that range from the most sim-
ple and reduced dataset to more complex and dense ones.

• Generate the best landslide inventory and LULC map, according to this
research methods, for the Rolante River catchment area.
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2 THEORETICAL REFERENCE

This chapter introduces relevant concepts and methods that are considered in this
research. It starts explaining the definition of landslides and contextualizing with
the Brazilian scenario. Secondly, explanation is done about time-series and its met-
rics. Third, the concept of data mining is exposed, followed by some comments on
the Random Forest classification algorithm. Finally, the description of the Sentinel-
2/MSI and the DEM by SRTM.

2.1 Landslides

Landslides are widespread natural geomorphological processes and represent a
gravity-driven component of erosion (DAVIES, 2015). They are downward movements
of soil and rocks from the slope triggered by earthquakes, snow melting or heavy
rain, which can also be caused or intensified by anthropic activities (GUZZETTI et

al., 2012). There are a variety of definitions for mass movements, however they are
generally based on the following criteria (AUGUSTO FILHO, 1995):

a) Motion kinematics: speed, direction and sequence of displacements of
matter in relation to the stable terrain;

b) Type of material: earth, rocks, debris;

c) Geometry: size and shape of displaced material.

Mass movements associated to slopes are assembled in many classes as shown in
Figure 2.1. This study focuses specifically on landslides (or slides); however, one
should know that all of the types typically occur simultaneously.

These phenomena can cause significant economic and human losses; hence, the im-
portance of the risk management, mitigation and monitoring. One can define risk
as a probability of undergoing damages by one or several hazards, and a disaster
as a realized risk (NATHAN, 2005). In order to convert a risk into a disaster there
must be specific conditions of vulnerability. Traditionally, vulnerability has been
used only as a natural factor, independently from the context. In fact, it is both
context-dependant and subject-dependant, once one is vulnerable to something, in
a given place and at a given time (NATHAN, 2005). Tapsell et al. (2010) emphasizes
the concept of social vulnerability when dealing with natural hazards. Landslide
hazard is a function of susceptibility (spatial propensity to landslide activity) and
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temporal frequency of landslide triggers, and its assessment may be done on different
scales (UNISDR, 2017).

Figure 2.1 - Types of mass movements.

SOURCE: Adapted from Schwab et al. (2005).

Different from extreme natural events, like hurricanes or earthquakes, which have
their causes mainly based on natural conditions, landslides present a deep associa-
tion with LULC. Increased landslide hazard, for instance, has been related to the
improper cut-and-fill construction of self-built housing on steep slopes, after the
removal of vegetation (MENDES et al., 2018). According to Monteiro et al. (2015),
considering it as a process, not as an event, could be helpful to comprehend how
disasters are historically constructed on a spatial-temporal scale. In this research,
besides considering it as a process, sometimes landslides will be referred as “event”
in order to standardize and simplify the writing.
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In Brazil, the landslides events were responsible for the second highest number of
deaths between 1991 and 2012 (UNIVERSIDADE FEDERAL DE SANTA CATARINA -

UFSC, 2013). A data survey from 1997 to 2017 showed that more than 202 deaths
were registered only in the Metropolitan area of São Paulo city during this 20 years
period (IPT, 2017). In the Brazilian case, the hazardous scenario with high number
of human losses arises from extreme precipitation events associated with a weak
infrastructure.

There is a serious issue related to the housing deficit due to the fast expansion of the
urban population without an efficient urban planning. In 2012, São Paulo presented
the largest housing deficit in Brazil; and while the state had about 4 million houses,
the state capital (the city of São Paulo) had about 11 million inhabitants in an
area of a little more than 1500 km2 (LISTO; VIEIRA, 2012). The housing deficit led
to the dense occupation of inappropriate areas, as high slopes, creating slums in
risk areas (Figure 2.2). Naturally landslide prone due to the declivity, these areas
become riskier when the vegetation is removed, and a dense amount of irregular
constructions are built instead. Since they are usually illegally occupied areas, no
assistance is given from the Government; hence, no appropriate sewage system is
created, which leads to the soaking of the soil, increasing the probability of landslides.
In these cases, one single event can generate many casualties.

Figure 2.2 - Landslides at irregular occupation, Salvador (BA - Brazil).

SOURCE: Dias (2015).
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Many episodes have marked the Brazilian history with human and economic losses
as a result of that. On January 11th and 12th, 2011, a so-called “Mega disaster”
occurred in the mountainous region of Rio de Janeiro state (Fig. 2.3). From the 23
municipalities affected, seven were stated as public calamity situation (VASSOLER,
2013): Areal, Bom Jardim, Nova Friburgo, São José do Vale do Rio Preto, Sumi-
douro, Petrópolis and Teresópolis. This episode resulted in 947 registered deaths, 300
missing and millions of homeless people, besides the severe economic losses and in-
frastructure destruction (CEMADEN, 2016). Nova Friburgo, Teresópolis and Petrópo-
lis municipalities recorded the greatest number of casualties (CARDOZO, 2018). In
Nova Friburgo, 3.000 landslides were mapped, having the majority in within the
urban area; while for the other municipalities, it occurred in the rural areas (BUSCH;

AMORIM, 2011).

Figure 2.3 - “Mega disaster” landslides at Nova Friburgo (RJ - Brazil).

SOURCE: Vallin (2011).

2.2 Time series

Orbital satellites generate images from the same part of the globe several times a
year. The time series of remotely sensed imagery basically consists in the images
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stacking, taking into consideration their ordered acquisition date.

Time series are composed of a set of observations dx,y(t), where each of them has
a specific coordinate in space (x, y) and was captured in a specific moment in time
(t); as illustrated in Figure 2.4.

Figure 2.4 - Representation of a time series.

tn corresponds to the date of each observation. dx,y is the coordinate in space. The
smoothed curve represents the NDVI values for each date.

SOURCE: Adapted from Eklundh and Jönsson (2012).

There are several ways to extract information from time series. Udelhoven (2010)
emphasized the problem of storing millions of temporal records in remote sensing
databases; however, reducing the detection of hidden patterns at various levels of
abstraction only by visual inspection. Considering that, many strategies have been
developed involving image analysis techniques for data processing and information
extraction. Time series can be used to make inferences, being necessary to set up a
hypothetical probability model to represent the data (BROCKWELL; DAVIS, 2016).
After that, it is possible to estimate parameters and check how well the model fits
to the data, for example.

Time series have demonstrated a significant capacity for characterization of environ-
mental phenomena, describing trends, seasonal behavior and abrupt change events.
For that reason, some metrics can be extracted from the series, helping to enhance
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the classification models. Some of those can be basic or polar metrics (KöRTING et

al., 2013), as well as fractal and seasonality metrics (EKLUNDH; JÖNSSON, 2012).
The basic metrics consist of statistical measures, for instance, mean, standard devi-
ation, maximum and minimum values of the curve. The polar ones are extracted by
a cyclical representation of the time series, as eccentricity, angle and area (KöRTING

et al., 2013). More details about this process are explained further in Section 2.2.1.
Some basic metrics are illustrated in Figure 2.5.

Figure 2.5 - Examples of basic time series metrics.
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SOURCE: Authors’s production.

The availability of free access to medium spatial resolution (Landsat-like) times
series raised many researches, improving results when compared to mono-temporal
approaches. Many authors have used time series for LULC mapping, as well as for
change detection analysis (AYELE et al., 2018; ZHU, 2017). Time series have been used
for the mapping of agricultural land use systems (BELLÓN et al., 2017), to analyse the
impact of drought on native vegetation (OKIN et al., 2018), to monitor deforestation
and trends of aeolian desertified lands (SCHULTZ et al., 2016; WANG et al., 2017).

Concerning landslides, many studies have been developed with SAR, for instance
the ones presented by Hu et al. (2016), Dai et al. (2016), Jiang et al. (2016). Optical
Satellite Image Time Series (SITS) have been used to monitor and detect creep (slow-
moving landslides) (STUMPF et al., 2017; LACROIX et al., 2019). To detect regular
landslides, bi-temporal optical imagery have been widely used (LV et al., 2018; QIN

et al., 2018; GERENTE et al., 2017a; LI et al., 2016). In these cases, change detection
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methods are applied to one image before and one after the event, identifying the
scars. Besides bi-temporal, few studies reveal the usage of more observations to
increment the temporal component, as presented by Huang et al. (2019), where
images from five dates were used.

2.2.1 Time series metrics

The stmetrics1, package available in Python, allows the extraction of features from
the time series. The package currently includes three modules to perform feature
extraction. The first module is composed of basic metrics, that are derived from the
time series using common statistical approaches, in which 10 metrics are available:

• Max - Maximum value of the time series.

• Min - Minimum value of the time series.

• Mean - Average value of the time series.

• Std - Standard deviation of the time series.

• Sum - Sum of values over a cycle. Usually is an indicator of the annual
production of vegetation.

• Amplitude - The difference between the time series’s maximum and mini-
mum values.

• First slope - Maximum value of the first slope of the cycle.

• Skew - Measures the asymmetry of the time series.

• AMD - Absolute Mean Derivative.

• AbsSum - Absolute Sum of values over of the time series.

The second module implements the polar metrics proposed by Körting et al. (2013).
Currently, 7 metrics are available:

• Area - Area of the closed shape.

• Angle - The main angle of the closed shape created after transformation.

1https://github.com/brazil-data-cube/stmetrics
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• Area s1 - Partial area of the shape, proportional to quadrant 1 of the polar
representation.

• Area s2 - Partial area of the shape, proportional to quadrant 2 of the polar
representation.

• Area s3 - Partial area of the shape, proportional to quadrant 3 of the polar
representation.

• Area s4 - Partial area of the shape, proportional to quadrant 4 of the polar
representation.

• Polar balance - The standard deviation of the areas per season, considering
the 4 seasons.

• Gyration radius - Equals the average distance between each point inside
the shape and the shape’s centroid.

These metrics are derived from a time wheel legend proposed by Edsall et al. (1997).
As exposed by Soares et al. (2020), to compute the polar features, each time series
has its values projected to angles in the interval [0, 2π]. A time series is a function
f(x, y, T ) where (x, y) is the spatial position of a point, and T is a time interval
t1, . . . tN , and N is the number of observations. The time series can be visualized
by a set of values vi ∈ V in time ti. Therefore, its polar representation is defined
by a function g(V ){A,O} (A corresponds to the abscissa axis in the Cartesian
coordinates, and O to the ordinate axis) where:

ai = vicos
(2πi
N

)
∈ A, i = 1, . . . N. (2.1)

and
oi = visin

(2πi
N

)
∈ O, i = 1, . . . N. (2.2)

In both equations, 2πi
N

is an arbitrary angle that depends on the acquisition date and
vi is the corresponding time series value. Considering that an+1 = a1 and on+1 = o1,
a closed shape is obtained. An example of polar plot is represented in Figure 2.6.
The same time series is represented in both linear and polar plots. In the latter,
the start point is the bottom of the top right quadrant, advancing in anti-clockwise
direction. From this plot, the metrics area calculated, as the area of each feature
inside the quadrants, for example.
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Figure 2.6 - Linear and polar plots.
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SOURCE: Authors’s production.

The third module implements the fractal metrics. Currently, 3 metrics are available:

• Hurst - Computes the Hurst Exponent (HE) by a standard re-scaled range
(R/S) approach. HE is a self-similarity measure that assesses long-range
dependence in a time series. It can be used to determine whether the
time series is more, less, or equally likely to increase if it has increased in
previous steps.

• DFA - Detrended Fluctuation Analysis measures the Hurst parameter H,
which is very similar to the Hurst exponent. The main difference is that
DFA can be used for non-stationary time series.

• Katz - Computes the fractal dimension using Katz algorithm.

2.3 Data mining

Data Mining (DM) is a process which consists of applying data analysis and discov-
ery algorithms that, under acceptable computational efficiency limitations, produce
a particular enumeration of patterns (or models) over the data (FAYYAD et al., 1996).
It is a core process inside the wider concept of Knowledge Discovery in Databases
(KDD) coined by Piatetsky-Shapiro (1990). KDD refers to the overall process of
discovering knowledge from data, while DM refers to a specific step. According to
Fayyad et al. (1996), the distinction between KDD process and DM step (within the

15



process) is important, once the additional steps in KDD, such as data preparation,
data selection, data cleaning, incorporation of appropriate prior knowledge, and
proper interpretation of the results of mining, are essential to ensure that knowl-
edge is derived from the data. DM component of KDD relies specially on known
techniques of machine learning, pattern recognition, and statistics to find patterns
from data. Figure 2.7 illustrates the steps needed to convert raw data into useful
knowledge. It is important to highlight that KDD is not a linear process; which
means that steps can be repeated in order to refine the relation between data and
patterns.

Figure 2.7 - Steps that compose the KDD process.
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SOURCE: Adapted from Fayyad et al. (1996).

According to Larose and Larose (2014), these are the main DM tasks: description,
estimation, prediction, classification, clustering and association. Regarding remote
sensing, the classification consists in a technique of extracting information from
digital images, and is responsible for giving a meaning or labeling a pixel (or a set of
them) according to its proprieties, being them spectral, spatial, etc (NOVO, 2010).

Many attributes can be extracted from digital images. The reflectance values from
the images derive an attribute itself, and by combining values from different spec-
tral bands new attributes can be generated (i.e, vegetation indices). A variety of
combinations and transformations have been developed in order to extract more
information from the original material.
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The advances in feature extraction techniques have resulted in a great capability of
generating and storing big amounts of data. However, it also includes irrelevant or
redundant data, which do not aid discrimination and can be discarded. Removing
the least effective features is referred to as feature selection. Hall (1999) defines
feature selection as a learning step that focuses on the most useful data aspects for
analysis and feature prediction. In that sense, the exclusion of unnecessary attributes
allows the time reduction for generating the model and increases the classification
overall accuracy (DASH; LIU, 1997).

Hughes phenomenon (HUGHES, 1968), also known as “the curse of dimensionality”,
demonstrates that the accuracy of a classifier depends on the number of training
samples. It shows that, as the number of features increases, the classifier performance
increases as well until we reach the optimal number of features (Figure 2.8). Adding
more features based on the same size as the training set will then degrade the
classifier performance.

Figure 2.8 - Hughes phenomenon.
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SOURCE: Adapted from Hsu (2007).

In order to deal with this effect, some classifiers have already included in their
algorithms the feature selection process, as the DT and RF. Classification algorithms
can be divided in two main groups: unsupervised and supervised. Unsupervised
image classification is the process by which each image in a dataset is identified to
be a member of one of the inherent categories present in the image collection without
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the use of labelled training samples (OLAODE et al., 2014). It searches for patterns
and structures capable to join similar data. Examples of unsupervised algorithms
are the K-means and ISODATA.

On the other hand, supervised methods work with pre-established classes, having
their algorithms been trained beforehand. A parametric supervised method adopts
the assumption that the classes can be modelled by probability distributions and, as
a consequence, are described by the parameters of those distributions (RICHARDS,
2013). An example is the ML classification algorithm. Other techniques, in which
neither distribution models nor parameters are relevant, are referred to as non-
parametric methods. Examples are the SVM, DT and RF.

2.3.1 The Random Forest classification algorithm

The RF consists of a decision tree classifiers combination where each classifier is
generated using a random vector sampled independently from the input vector,
and each tree casts a unique vote for the most popular class to classify an input
vector (BREIMAN, 2001). The trees are created by drawing a subset of training
samples through replacement (a bagging approach); which means that the same
sample can be selected several times, while others may not be selected at all (BELGIU;

DRĂGUŢ, 2016). Some proportion of the samples are used to train the trees, while
the remaining part is used for an internal cross-validation technique, estimating how
well the resulting model is performing (BREIMAN, 2001). Those samples are called
in-bag and out-of-bag samples, respectively.

The algorithm creates trees that have high variance and low bias, based on two user-
defined parameters: the number of trees (Ntrees) and the number of features (Mtry).
The final classification decision is taken by the majority value of the class assignment
calculated by all trees. Researches have pointed out that classification accuracy is
less sensitive to Ntree than to the Mtry parameter (KULKARNI; SINHA, 2012; GHOSH

et al., 2014). Another important observation by Guan et al. (2013) is that, once the
RF classifier is computationally efficient and does not overfit, Ntree can be as large
as possible. Many studies have proved the effectiveness of this classifier for LULC
mapping and landslide detection (PELLETIER et al., 2016; WANG; LU, 2019; CHEN et

al., 2017).
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Figure 2.9 - Random Forest structure.
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2.4 Sampling methods

There are many sampling design options, and each of them fulfills different objec-
tives. According to Stehman (2009), three key decisions that strongly influence the
choice of sampling design are whether to use strata, clusters, or to implement a
systematic/simple random selection protocol. Stratification corresponds to the par-
titioning of the Region Of Interest (ROI) so each assessment unit is assigned to a
single stratum. The stratum in classification, is usually related to the class in the
map. Olofsson et al. (2014) points out that stratification is implemented for two
primary purposes. Firstly, when the strata are of interest for reporting results (e.g.,
accuracy and area are reported by land cover class or by geographic sub-region).
Secondly, to improve the precision of the accuracy and area estimates; for example,
when strata are created for reporting accuracy by strata, the stratified design allows
specifying a sample size for each stratum guaranteeing that a precise estimate is
obtained for each stratum.

2.5 Sentinel-2/MSI

The Copernicus Sentinel-2 mission (Fig. 2.10) comprises a constellation of two iden-
tical polar-orbiting satellites placed in the same sun-synchronous orbit, phased at
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180◦ to each other (ESA, 2015). Their orbit stays at a mean altitude of 786km, which
allows a wide swath reaching a 290km field-of-view (FOV). The coverage limits are
between latitudes 56◦ south and 84◦ north. The revisit time is 10 days at the equa-
tor with one satellite, and five days with the combination of both satellites under
cloud-free conditions.

Figure 2.10 - Sentinel-2 satellite.

SOURCE: ESA (2015).

The MultiSpectral Instrument (MSI) works passively, by collecting sunlight reflected
from the Earth. The incoming light beam is split at a filter and focused onto two
separate focal plane assemblies within the instrument; one for Visible and Near-
Infra-Red (VNIR) bands and one for Short Wave Infra-Red (SWIR) bands (ESA,
2015). The MSI imager contains 13 spectral bands (443 nm – 2190 nm), which are
represented in Figure 2.11. The spatial resolutions are 10 m, for four bands; 20 m,
for six bands; and 60 m, for three bands (REGAN et al., 2010).

According to Jensen (2009), radiometric resolution is defined as the sensitivity of
a remote sensing detector to differences in signal strength as it records the radiant
flux reflected, emitted, or back-scattered from the terrain. It defines the number of
just discriminable signal levels, usually represented in bits ranging from 8 to 16.
The greater the radiometric resolution, the more accurate the sensed image could
be. The MSI instrument provides 12 bits imagery, enabling the image to be acquired
over a range of 0 to 4095 (212 − 1) potential light intensity values.
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Figure 2.11 - Sentinel-2 spectral channels.
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Two types of products are user available, Level-1C and Level-2A. For both of them,
the granules, also called tiles, are 100 × 100 km2 orthoimages in UTM/WGS84
projection. Level-1C processing comprises radiometric and geometric corrections in-
cluding orthorectification and spatial registration on a global reference system with
sub-pixel accuracy. For this level of processing, the stages are broken down into the
following steps:

a) Tiles association: selection of pre-defined tiles intersecting the footprint of
the required image.

b) Resampling grid computation: enabling linking of the native geometry im-
age to the target geometry image (ortho-rectified).

c) Resampling of each spectral band in the geometry of the ortho-image using
the resampling grids and an interpolation filter. Calculation of the Top-
Of-Atmosphere (TOA) reflectances also occurs in this step.

d) Masks computation: cloud and land/water masks are generated.
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e) Imagery compression of the resultant Level-1C imagery via the JPEG2000
algorithm and a GML geographic imagery-encoded header.

In resume, Level-1C product provides orthorectified TOA reflectance, with sub-pixel
multispectral registration. Cloud and land/water masks are included in the product.
Level-2A product provides orthorectified Bottom-Of-Atmosphere (BOA) reflectance,
with sub-pixel multispectral registration. A Scene Classification map (cloud, cloud
shadow, vegetation, soils/deserts, water, snow, etc.) is incorporated in the product.

Sentinel-2 provides data feeding services for applications in the Copernicus prior-
ity areas of land monitoring, emergency management and security (ESA, 2015). In
behalf of Copernicus programs, data from Sentinel-2 supports services such as land
management, agriculture, forestry as well as disaster management and humanitarian
relief operations.

2.6 SRTM digital elevation model

A Digital Elevation Model (DEM) can be defined as a numeric representation of
a topographic surface arranged as a set of regularly spaced points, normally in a
square grid or hexagonal pattern, expressed as three-dimensional coordinates (KEN-

NIE; PETRIE, 1990; OKSANEN et al., 2006). In other words, it is a digital representation
of the land surface elevation with respect to a given reference datum.

The Shuttle Radar Topography Mission (SRTM) is a joint project between the
National Geospatial-Intelligence Agency (NGA) and the National Aeronautics and
Space Administration (NASA), which aimed to produce digital topographic data
for 80% of the Earth’s land surface. The SRTM was carried on-board the space
shuttle Endeavour from February 11 to 22, 2000, which orbited Earth 16 times each
day during the 11-day mission, completing 176 orbits (USGS, 2021a). It considers all
land areas between 60º north and 56° south latitude, with data points located every
1-arc-second (approximately 30 meters) on a latitude/longitude grid. The absolute
vertical accuracy of the elevation data is around 16 meters (at 90% confidence).

These data can be used for military, civil, and scientific purposes. It provides an
accurate product, which can benefit different types of needs, as flood control, soil
conservation, reforestation, volcano monitoring, earthquake research, and glacier
movement monitoring.

In order to produce the DEM, SRTM made use of a technique called radar interfer-
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ometry. In this method, two radar images are taken from slightly different locations.
The calculation of surface elevation is realized based on the differences between these
images. To get two radar images, of the same spot, taken from different locations
the SRTM hardware consisted of one radar antenna in the shuttle payload bay and
a second radar antenna attached to the end of a mast extended 60 meters out from
the shuttle (USGS, 2021b).

SRTM was launched in an orbit with an inclination of 57 degrees, which allowed all
of the Earth’s land surface that lies between 60 degrees north and 56 degrees south
latitude to be covered by it. This represents about 80 percent of the Earth’s land
surface.
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3 STUDY AREA

The study area covers the whole extension of the Rolante River hydrographic basin,
a sub-basin of the Sinos River catchment, located in the state of Rio Grande do Sul,
Brazil. Its drainage area comprehends 828km2, with elevation values varying between
20m to 1040m. The main course of this basin is the Rolante River, which received
this name due to the great impact of the water during the flood period (PETRY,
2003). The main cities in this region are: Riozinho, Rolante and São Francisco de
Paula. The major activities are agriculture and livestock, with the presence of native
forest, silviculture and anthropogenic rural occupation (LUERCE, 2012).

Figure 3.1 - Study area, the Rolante River Catchment.
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Figure 3.2 shows more details on the geographical characterization of the study
area. Concerning pedological aspects, the basin contains four major types of soil:
dystrophic red-yellow argisol, eutrophic red nitosol, eutrophic litholic neosol and dys-
trophic humic cambisol. About the geomorphological characteristics, the area can be
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divided in five different units: alluvial-colluvial plains, Jacuí River depression, Serra
Geral baselines, Serra Geral unit, Campos Gerais plateau. Moreover, regarding the
geological aspects, it presents four units: holocene alluvial deposits, Botucatu unit,
Serra Geral unit and Serra Geral - Caxias facies. According to Rossato (2011), the
climate is very humid subtropical, characterized by abundant annual precipitation
varying between 1700mm to 2000mm and temperatures of 14◦C to 17◦C.

Figure 3.2 - Geographical characterization of the study area.
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Previous works have detected around 300 landslide scars at the catchment (GAMEIRO

et al., 2019; QUEVEDO et al., 2019). The scars occurred after an extreme precipitation
event on January 5th, 2017. The rain registered 90mm to 272mm and lasted for about
four hours (SEMA, 2017). Rolante city was affected after a natural dam disruption
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on the Mascarada river, a tributary of the Rolante river. This dam was generated
by the accumulation of debris driven from the hillside.

The criteria to select this area for the research consists in two main factors. First,
the significant presence of already mapped landslide scars. Second, the magnitude
of the event, which allows the identification of the scars via orbital imagery of 10m
spatial resolution, freely available by the European Spatial Agency (ESA).
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4 METHODOLOGY

The methodology developed for this research is represented in Figure 4.1. This chap-
ter will clarify each part of the process in details.

Figure 4.1 - Methodology flowchart.
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4.1 Data and pre-processing

The identification of landslide scars usually present better results when high spatial
resolution images are used (JOYCE et al., 2009). Considering that, Sentinel-2 (A and
B) imagery was chosen, especially because it provides free orthorectified reflectance
products with 10m of spatial resolution and a 5-day temporal resolution. Level 2A
(BOA) product was not available for the date of the event (Jan, 2017), so Level 1C
was used. Moreover, a 30m spatial resolution DEM from SRTM was used.

In order to get the surface reflectance product from Sentinel-2 Level 1C imagery,
the atmospheric correction was performed using the Sen2Cor algorithm, which is
used by ESA to provide the BOA Sentinel images. This system was implemented
in R by Ranghetti et al. (2020), and the “sen2r” package was used to perform this
correction. In this process, cloud and cloud shadow cover were masked. Images with
cloud coverage above 80% were removed, which resulted in a less refined temporal
resolution than 5 days. Further, an outlier removal filter was applied to smooth the
time series. This filter consists in identifying values that present more than 10% of
difference from the previous and the following values, if positive, it is replaced by
the mean value of these two neighbors. The time interval available for the study area
ranges from November 11th, 2015, to June 3rd, 2020; which, in total, resulted in 122
dates. The general temporal resolution of this time series is around 13 days. This can
be explained by two main factors: a) some images was discarded because of cloud
coverage; b) Sentinel-2B was launched in 2017, almost two years after Sentinel-2A.
Both satellites together make a 5-day resolution product; however, each of them has
a revisiting time of 10 days.

4.2 Feature extraction

The feature extraction process, illustrated in Figure 4.2, is based on landslide de-
tection literature, as presented by Gerente et al. (2017a), Gerente et al. (2017b),
Joyce et al. (2009). The NDVI, developed by Rouse et al. (1974), was used because
it presents a drastic reduction in its values when the landslide occurs. Besides that,
once it is a composition of bands, it allows the use of the Red and Near-Infrared
(NIR) bands in one single feature. This reduction of attributes is specifically ben-
eficial when dealing with dense time series. It is used to detect varying densities
of vegetation coverage which can be applied for natural disasters (BHANDARI et al.,
2012). The literature shows many successful researches using the NDVI for land cover
mapping (JEEVALAKSHMI et al., 2016; KONG et al., 2016). The Normalized Difference
Built-up Index (NDBI), proposed by Zha et al. (2003), was used to classification of
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urban areas. It is composed by the Red and Short Wave Infrared (SWIR) bands.
Once built-up areas present low NDVI values, these usually show high spectral sim-
ilarity with bare soil and landslide scars. Furthermore, the SAVI index, developed
by Huete (1988), was also used. It incorporates an adjustment factor (L), based on
the amount of vegetation, from 0 (for high vegetation) to 1 (for low vegetation), in
order to adjust the soil back-ground effect. In the absence of extrinsic knowledge,
an intermediate adjustment factor of 0.5 has been suggested and generally applied
(LAWRENCE; RIPPLE, 1998). A variety of papers mention the SAVI index as an useful
tool to detect landslides, as the one by Salleh et al. (2019), which analyzed vegeta-
tion anomalies in the NDVI and SAVI index as bio-indicators for landslide activity
mapping. The formulas of the aforementioned indices are represented as follows:

NDVI = ρnir − ρred

ρnir + ρred
(4.1)

NDBI = ρswir − ρred

ρswir + ρred
(4.2)

SAVI = (1 + L) ρnir − ρred

ρnir + ρred + L
(4.3)

Where:

• ρnir: reflectance value for the NIR band;

• ρred: reflectance value for the Red band;

• ρswir: reflectance value for the SWIR band;

• L: constant inversely correlated with the Leaf Area Index (LAI).

The SAGA tool, available in the QGIS software, allows the extraction of the geomor-
phometric features from the DEM. The use of these attributes is based on previous
studies, which have been associated to the landslide occurrence (SOTHE et al., 2017;
PETSCHKO et al., 2012; SARO et al., 2016). The extracted attributes are Slope, As-
pect, Plan Curvature, Profile Curvature, General Curvature, and the Topographic
Wetness Index (TWI). Figure 4.3 illustrates these geomorphometric attributes. Once
the Sentinel-2 data has 10m of spatial resolution, the geomorphometric attributes
were resampled from 30m to 10m using the Nearest Neighbor parameter in QGIS.
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Figure 4.2 - Feature extraction.
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The elevation attribute is represented in meters and corresponds to the pixel value
at the DEM, it is an altimetric data. The slope is defined as the zenital declivity
angle, having its values varying from 0◦ to 90◦, although is commonly expressed in
percentage (VALERIANO; ROSSETTI, 2008). The vertical curvature (◦/m) is related
to the profile shape of the hillside, referring to the convex/concave characteristic of
the hill. The horizontal curvature (◦/m) corresponds to the hill shape when observed
in its horizontal projection. Is defined as a second-order derivative from the contour
lines. It can be described as a variation of the aspect within a certain distance. The
aspect is defined as the azimutal angle corresponding to the highest declivity of the
terrain, in the descendent direction (VALERIANO; ROSSETTI, 2008). It is measured
in degrees, from 0◦ to 360◦. The topographic wetness index (TWI) was developed
by Beven and Kirkby (1979) within the runoff model TOPMODEL. The TWI is
defined by:

TWI = ln(a/tanβ) (4.4)
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where:

• a: upslope area per unit contour length;

• tanβ: local slope of the ground surface;

Locations with a large upslope area receive a high index value and are expected to
have relatively higher water availability than locations with a small upslope area
that are assumed to have relatively lower water availability and therefore receive
a small index value (SØRENSEN; SEIBERT, 2007).The TWI is designed to quantify
the effect of local topography on hydrological processes and for modeling the spatial
distribution of soil moisture and surface saturation (QIN et al., 2011).
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Figure 4.3 - Geomorphometric attributes at Rolante River’s Basin.
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4.3 Sampling

Considering the explanations on Sec. 2.4, a stratified sampling was applied. In that
sense, each class was sampled proportionally to their area based on previous clas-
sification works of the region (UEHARA et al., 2019; LUERCE, 2012). The proportion
was not exact, but served as a base to guide the number of samples. The samples
are pixel based and were separated in the proportion 30/70 for training and vali-
dation. The sampling was manually realized based on high resolution imagery from
Google Earth. In order to minimize errors regarding spatial auto-correlation, the
collection of samples took into consideration a standardized geographic block, so
no area is under or over sampled. A regular rectangular grid was used to collect
the samples, in which every polygon (25km2) should contain a minimum amount
of samples for each class, guaranteeing a satisfactory distribution of the samples on
the whole catchment area. In some cases, as the Landslide class, which are more
concentrated in an specific region, some polygons of the grid did not contain their
samples.

Regarding the sample size, Congalton et al. (1991) suggests a minimum of 50 samples
for each class, increasing to 75 - 100 for large areas (more than a million acres) or
if the classification has a large number categories (i.e, more than 12 classes). Even
though no specific number of samples was established for the construction of the
sample set, every class had at least more than 50 points. Some classes as Landslides
andWater, had notably less presence in the area compared to Forest and Silviculture,
having considerably less sample points. As a matter of fact, a first attempt was made
to divide the Landslide class into two sub-classes “upper” and “deposit”, in order
to differentiate the area where the scar starts, in the higher part of the hill, and the
area of material’s deposit. However, in the 10m spatial resolution data this could
not be separated, so only one class was created.

The classification labels are: Landslide, Forest, Silviculture, Agriculture, Pasture,
Bare Soil, Water and Urban area. Once the number of sample points for each class is
substantially different, which could create a negative consequence for under sampled
classes, the Monte Carlo simulations method was used in the validation process
guaranteeing a stable result, and will be explained further in this chapter.

4.4 Classification

The Random Forest classification algorithm was used for this procedure (for clas-
sifier’s description refer to Sec. 2.3.1). This process was conducted using the scikit-
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learn1 package in Python programming language. The classification was realized
under four distinct approaches, in which each of them considered a different set of
input attributes. As a result, four classification products were compared (Fig. 4.4).
The input approaches are:

• Mono-temporal: single date image (after the landslides occurrence) with
NDVI, NDBI and SAVI + geomorphometric attributes. Total of 10 at-
tributes.

• Bi-temporal: two dates images (before and after the landslides occurrence)
with NDVI, NDBI and SAVI + geomorphometric attributes. Total of 13
attributes.

• Metrical: time series metrics for NDVI, NDBI and SAVI + geomorphome-
tric attributes. Total of 73 attributes.

• All: 122 dates time series with NDVI, NDBI and SAVI + time series metrics
for NDVI, NDBI and SAVI + geomorphometric attributes. Total of 436
attributes.

Once most of the landslide scars occurred during an extreme precipitation event
in 2017, Jan, 5th, the aim was to find the closest images from that date do build
the Mono and Bi-temporal datasets. However, this period presents high levels of
cloud coverage, interfering in the images quality. For that reason, the chosen closest
images to the date of the event are from June 9th, 2016 (before) and March 11th,
2018 (after). This reveals the difficulty of choosing few images to classify landslide
prone areas. Figure 4.5 shows the distribution of the dates used in the approaches.
Figure 4.6 shows the two dates chosen for the Bi-temporal approach. Figure 4.7
shows all images available between these two dates that were rejected because of
cloud coverage issues.

The proposed methodology focus on finding the most accurate and simple approach
to tackle the classification problem. The idea of starting from a single-image dataset,
progressively increasing until the time series, is applied in order to guarantee the
statement “the simpler, the better”. No unnecessary procedure should be performed
before testing less complicated steps before. In this study, once one of the objectives
is to understand the contribution of the time series for the LULC classification and
landslide detection, the evaluation of these four approaches is fundamental.

1https://scikit-learn.org/stable/
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Figure 4.4 - Classification approaches.

Mono-temporal 

Geomorphometric
Attributes

Bi-temporal Metrical

Time Series
Metrics

NDVI 
Time Series 

All

NDBI 
Time Series 

NDBI 
Time Series 

10
13

73

436

The types of inputs are separated by colors, and represented respectively: Geomorphomet-
ric Attributes (yellow), Time Series Metrics (blue), NDVI Time Series (green), NDBI Time
Series (grey), SAVI Time Series (red). Below, the dataset of each approach is represented
and the number inside the box reveals the quantity of attributes. Note that for Mono and
Bi-temporal approach only one or two layers of NDVI, NDBI and SAVI are illustrated.

SOURCE: Authors’ production.

Figure 4.5 - Dates distribution.
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Figure 4.6 - Bi-temporal approach.

Chosen images from before and after the landslides occurrence.
SOURCE: Authors’ production.
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Figure 4.7 - Cloud coverage issue.

The landslides event occurred on Jan 5th, 2017. However, the closest images from that date
have a signifcant cloud coverage. Special attention is given to Nov 11th, 2017, in which the
image appears clear, but presents clouds exactly above the landslide scars (note the red
circle zoom).

SOURCE: Authors’ production.

39



4.5 Validation and analysis

The reference material for the validation of the products was based on Google Earth’s
high spatial resolution imagery, as suggested by Olofsson et al. (2014), and an in-
ventory map provided by Quevedo et al. (2019) and updated for this research. This
inventory was realized by visual interpretation of high spatial resolution imagery.
The reference was used for the construction of a sampling set for the classification.

In order to compare different accuracy results, it is important to establish a credibil-
ity interval. In case this interval is not considered, a comparison based on one single
value can lead to mistaken conclusions. This happens because different training and
validation set of samples can produce different results. Figure 4.8 shows how this
procedure was conducted via Monte Carlo simulations.

Figure 4.8 - Monte Carlo Simulations.
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Monte Carlo simulation is a type of simulation that relies on repeated random
sampling and statistical analysis to compute the results (RAYCHAUDHURI, 2008).
In this case, from all samples available, the set is randomly split in the proportion
70% for training and 30% for validation. The training set is used to perform the
RF classification, while the validation samples are used exclusively to validate and
calculate the overall accuracy value. This value is stored and the process is repeated
500 times. The credibility interval is built for 5% of significance using all values
stored. A classification accuracy value inside this interval was used for comparison
among the approaches.

The classifications evaluation and performance analysis was held under the statistical
measures derived from the confusion matrix. An example of confusion matrix is
showed in Table 4.1, so the statistical measures can be explained. The confusion
matrix reveals every validation sample point, comparing their true label and the
predicted one. From this matrix, the most relevant confusion between classes can
be detected and interpreted. The Overall Accuracy is extracted from the matrix
according to the formula expressed below, which ranges from 0.0 to 1.0 (100% of
accuracy).

Table 4.1 - Example of confusion matrix.

Predicted
True Label C1 C2 ... Cc Total

C1 x11 x12 ... x1c x1+
C2 x21 x22 ... x2c x2+
... ... ... ... ... ...
Cc xc1 xc2 ... xcc xc+
Total x+1 x+2 ... x+c n

Where:

• Cc: class c.

• xij: number of points from j (true label), predicted as class i (predicted).

• xkk: total number of points correctly classified in class k.

• x+j: total number of points evaluated from class j in the true label.

• xi+: total number of points evaluated from class i in the prediction.

41



• n: total number of correctly predicted points.

OA =
∑c
k=1 xkk
n

(4.5)

Furthermore, the commission and omission errors are extracted from the matrix.
This errors are analysed by class, the commission error for the class “C1” refers to
the prediction of a pixel as “C1”, when in the reference it truly belongs to the class
“C2”. The omission error, is the opposite, when a pixel truly belongs to the class
“C1”, but is predicted as “C2”.

The Cohen’s kappa index (COHEN, 1960) is another method used to evaluate the
model. According to Sim and Wright (2005), kappa is a measure of “true” agreement,
which indicates the proportion of agreement beyond that expected by chance. In
other words, the achieved beyond-chance agreement as a proportion of the possible
beyond-chance agreement, and can be calculated by the following formula:

κ = Po − Pe
1− Pe

. (4.6)

where Po is the proportion of observed agreements and Pe is the proportion of
agreements expected by chance.
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5 RESULTS AND DISCUSSION

5.1 Importance ranking

The Importance Ranking (IR) is an ordered list related to the relevance of each
attribute to the classification. In a range of 0.0 to 1.0, all attributes are assigned to
a value according to their importance, and the total sum of the attributes results
in 1.0. This information is provided by the RF algorithm during the classification
process. Table 5.1 shows the top 10 attributes, by each classification approach, and
their corresponding importance values. More focus should be given to the top 5
attributes, once the Mono-temporal approach considers a total of 10 attributes only.
Clarifying, all selected metrics which appear at Metrical and All top 10 are related
to the NDBI. Only Area s4, from Metrical, was derived from the NDVI time series.
For that reason, in order to reduce the amount of information in the table, the
difference between NDBI and NDVI metrics is represented by a “*”. Metrics related
to the SAVI index were not selected among the top 10 for neither approaches.

Table 5.1 - Attributes’ Importance Ranking (IR).

Mono-temporal (10 at.) Bi-temporal (13 at.) Metrical (73 at.) All (436 at.)
IR Attribute IR Attribute IR Attribute IR Attribute

1º 0.247 NDBI (11/03/2018) 0.162 NDBI (09/06/2016) 0.056 Area s2 0.0201 NDBI (09/06/2016)
2º 0.195 NDVI (11/03/2018) 0.148 NDBI (11/03/2018) 0.036 Slope 0.0177 Slope
3º 0.144 SAVI (11/03/2018) 0.146 NDVI (11/03/2018) 0.035 Min 0.0163 NDVI (09/06/2016)
4º 0.130 Slope 0.107 SAVI 2018 0.030 First Slope 0.0154 NDVI (26/12/2018)
5º 0.087 DEM 0.106 NDVI 2016 0.029 Area s4 * 0.0137 Min
6º 0.046 TWI 0.079 Slope 0.028 Polar Balance 0.0135 Area s1
7º 0.040 Aspect 0.071 SAVI 2016 0.027 Area s4 0.0121 Area s2
8º 0.039 Prof. Curvature 0.053 DEM 0.027 Sum 0.0120 NDBI (22/11/2015)
9º 0.038 Plan Curvature 0.027 TWI 0.026 Mean 0.0107 NDBI (17/09/2016)
10º 0.031 Gen. Curvature 0.024 Prof. Curvature 0.026 Abs. Sum 0.0101 NDBI (21/03/2019)
All selected metrics which appear at Metrical and All approaches are related to the
NDBI. Only Area s4*, from Metrical, was derived from the NDVI time series.

The most important attribute for all four approaches are either a NDBI image itself
or a metric extracted from its time series. In order, from Mono-temporal to All
approach, the first attributes selected are the NDBI image from 2018, the NDBI
image from 2016, the Area s2 metric from the NDBI, and the NDBI image from
2016. As explained above, the NDBI metrics represented the majority of metrics
attributes in the top 10 for Metrical and All. The NDVI also presented high IR
values in all approaches, being among the top 5. The NDVI image from 2018 was
selected by the two first approaches, the Area s4 from the NDVI for Metrical, and the
NDVI images from 2016 and 2018 for All. For the Mono and Bi-temporal approach,
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the date from 2018 selected to compose the dataset is 11/03/2018, once it was the
first date after the event which presented a cloud free image for the whole catchment
area. However, analysing All’s top 10 selection, one can see that the 11/03/2018 date
was not chosen. Instead, the first image selected from after the event occurrence was
the NDVI from 26/12/2018, which is nine months after. This may reveal that not
necessarily the closest image to the event’s date is the most appropriate to be chosen
as an attribute, even both being cloud free images.

Regarding the geomorphometric attributes the Slope stood out, being the first of
them, and sometimes unique, to be chosen in every approach. It was selected among
the top 5 for all of them, besides the Bi-temporal approach, which got the sixth
place. In respect to the metrics, it is evident that the polar metrics showed significant
importance. For Metrical approach, the first attribute chosen was the Area s2, and,
besides, NDVI’s Area s4 is also among the top 5. Moreover, Polar Balance and
NDBI’s Area s4 were selected. About All’s approach, from the three metrics selected
among the top 10, two of them are polar, NDBI’s Area s1 and s2.

5.2 Time Series metrics

There are many possibilities of analysing the performance of a classification map.
In this research, the discussion will be conducted by the analysis of the confusion
matrix and it’s statistical products, such as the overall accuracy, kappa index, and
commission and omission errors. Moreover, a deeper visual analysis of the maps is
described, showing in details some differences among the approaches regarding each
class. A similar discussion is developed, showing the contribution of the metrics for
the classes prediction. In addition, the metrics values for each class are analysed via
boxplots, linear and polar graphics.

From each time series (NDVI, NDBI and SAVI), 22 metrics were extracted. The
following figures reveal the results for the NDVI (Figure 5.1), the NDBI (Figure
5.2) and the SAVI (Figure 5.3). All metrics had their values normalized, being their
range between 0.0 and 1.0. In the maps, blueish colors represent lower values than
the reddish ones. Further in this chapter more detailed explanations will be given
regarding the metrics contribution to each class prediction. However, a quick visual
analysis may provide some relevant interpretations of the metrics.

Analysing the three indices results, it is notable that for all of them Area s1 has
presented a considerably different output compared to Area s2, s3 and s4. This
might be due to the fact that the landslide event happened chronologically on the
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first quarter block of the time series. This means that the date of the event is between
the first 30 observations. Thus, once landslides can cause a significant change in the
landscape, the event itself is the hypothesis for explaining the difference among Area
s1 and the others. In general, the NDVI index presented higher values for all metrics,
followed by SAVI, and NDBI, respectively.

45



Figure 5.1 - NDVI metrics.
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Figure 5.2 - NDBI metrics.
29

°2
4′

S

29°24′S

29
°3

6′
S

29°36′S

50°36′W

50°36′W

50°24′W

50°24′W

Max Min

Sum

Coordinate System: WGS84
EPSG: 4326

N

E

Mean

W

S

Amplitude

Abs. Mean
Derivative

Abs. Sum

Std

First Slope

Circle

Gyration

Skewness

Area

Area s2Area s1

Polar Balance

Area s3

Angle

Area s4

DFA

Hurst Katz Legend:

 1

 0

SOURCE: Author’s production.

47



Figure 5.3 - SAVI metrics.
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For analysing the potential of the metrics for identifying each class, some NDBI
metrics were chosen to be exposed. The criterion to select only NDBI metrics was
the fact that this index presented the most relevant results at the attribute’s im-
portance ranking (see Sec. 5.1). Moreover, this visual analysis is just realized for
the classes that presented the most revealing characteristics when interpreting the
metrics images, being Landslides, Agriculture and Silviculture classes.

The metrics in which Landslide scars stood out are represented in Figure 5.4. The
red points indicate the location of some of the landslides. The first three metrics,
Katz, Polar Balance, and First Slope, showed a quite similar result, presenting values
close to 0.0 (blue) for this class.

Figure 5.4 - NDBI metrics in details for Landslides scars.
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Area s1 and Area s2 where selected because of their contrast for that class, in which
Landslides do not appear in the first and are revealed in the latter. Mean shows a
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quite similar result to Area s2, where Landslides present a higher value (yellow),
comparing to the rest of the image, mostly with low values (blue). Regarding the
metrics’ types, First Slope, Mean, and Absolute Mean Derivative are basic; Katz is
fractal; and Polar Balance, Area s1, and Area s2 are polar.

The metrics that presented the most relevant results for Agriculture are exposed in
Figure 5.5. The Std metric revealed very high values for most of the agricultural
areas (orange/red). This is related to the great variability of the crops dynamics
along the agricultural cycles. For Absolute Sum, Agriculture also shows higher values
comparing to the rest of the image. An opposite result is the Min metric, in which
this class presented the lowest values, probably related to the harvesting periods.

Figure 5.5 - NDBI metrics in details for Agriculture class.
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Finally, Areas s1 to s4, confirm the result presented by the Std metric, in which the
variability seems to be a key characteristic for Agriculture. As each Area represents
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a period in the time series, the comparison among the four of them could reveal a
grown crop in the first period (high values for Area s1), harvest season in the second
(low values for Area s2), followed by another cycle of growing crop (values increase
in Area s3) and harvest (values decrease in Area s4). Once the time series considered
in this study is very large, it is possible that more than one agricultural season is
present in each period represented by the Areas (i.e seeding and harvesting in the
same Area period). Among the selected metrics, Std, Absolute Sum and Min are
basic; Areas s1 to s4 are polar.

The metrics for Silviculture class are showed below (Figure 5.6). Polar Balance
(polar), First Slope (basic) and Hurst (fractal) were the most revealing ones. The
Silviculture is represented by the light green dots. In all cases, this class presented the
highest values comparing to its’ surroundings. A contrast can be identified comparing
to the Forest, which presents a lower response, but still in the orange/red range
of values. This emphasises the contribution of polar, basic and fractal metrics for
discriminating Silviculture from Forest.

Figure 5.6 - NDBI metrics in details for Silviculture class.
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Basic and polar metrics are extracted from linear and polar graphs, which represent
the time series. These graphs provide a relevant illustration, under two different
perspectives, regarding the classes’ spectral behavior along the time. As an exam-
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ple, classes Landslide (Figure 5.7), Forest (Figure 5.8), Silviculture (Figure 5.9), and
Agriculture (Figure 5.10) are exposed below. The linear graphs are composed by the
X axis, representing the time (each date of the time series from 2015 to 2020), and
the Y axis, representing the NDVI values. The polar graph is divided in four rectan-
gles, each of them representing a quarter period of the time series. Values from the
first quarter period of the time series are plotted in the top-right green rectangle,
in anticlockwise direction, starting from the horizontal line that divides top-right
(green) and bottom-right (blue) rectangles. In other words, the green rectangle con-
tains values from the first season of the time series; the orange rectangle, from the
second season; the brown rectangle, from the third season; and the blue rectangle,
from the last season. In the polar graphs, values are plotted from the center point
(intersection point among the four rectangles) to the borders. This means that the
closer to the center, the lower the NDVI value; and the further from the center, the
higher the NDVI value.

Analysing the Landslide graphs (Figure 5.7), one can notice that there are high
values of NDVI in the beginning of the time series, followed by an abrupt reduc-
tion. After that, two small cycles of growth and decrease are observed. This profile
represents an area of high vegetation, probably Forest, that suffered the removal
of the vegetation due to the Landslide event. The attempts of reconstructing the
vegetation in the area are indicated by this two growing cycles, however, the high
susceptibility condition for landslides, as high slope values, might hinder the vegeta-
tion settlement. The decreasing curves, might point to the repetition of the landslide
in this area, maintaining the landslide scar. This reveals the difficulty of vegetation
recovery in landslide scars, and the possibility of multiple occurrence of the event in
the same spot.

Forest graphs (Figure 5.8) indicate a stable profile of high NDVI values. Some out-
liers can be observed by abrupt changes to low values, followed by high values again.
In the polar graph, these outliers are represented by the “teeth” (triangles shapes),
observed in the second and fourth rectangles. Very different from Landslide, the For-
est polar graph illustrates a wide and continuous circle, emphasizing the stability of
this class behavior along the time.

The Silviculture profile (Figure 5.9) is represented in the graphs by high, and two
moments of very low NDVI values. This reveals the growing and harvesting periods.
In the polar graph, the growing seasons are illustrated in the first and third rect-
angles, while the harvest in the second and fourth. Agriculture class (Figure 5.10)
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Figure 5.7 - Landslides linear and polar graphs.

Linear Polar
SOURCE: Author’s production.

Figure 5.8 - Forest linear and polar graphs.

Linear Polar
SOURCE: Author’s production.

is also represented by growing and harvesting periods. However, for this class, the
crops present shorter development cycles. In the linear graph, besides no similar
value is repeatedly present, as in the stable Forest profile, there is a regular pattern
frequency. This pattern is composed by short periods of high, followed by short pe-
riods of low NDVI values. In the polar graph, on can notice that, in general, there
are more than one cycle present in each season, revealing the expressive variability
of this class’ behavior.

The metrics’ contribution for classification was also interpreted via boxplot graphs.
This graphs provide a variety of information, as the lower and upper quartiles (rep-
resented by the limits of the bounding box), the median (line inside the box), and
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Figure 5.9 - Silviculture linear and polar graphs.

Linear Polar
SOURCE: Author’s production.

Figure 5.10 - Agriculture linear and polar graphs.

Linear Polar
SOURCE: Author’s production.

outliers (points). In order to understand if an specific metric can contribute to the
identification of a class, it is recommended to find the boxplot with the least vari-
ability (small boxes), with the least amount of classes sharing the same range of
values (boxes should be placed in different vertical positions). Boxplots can supply
with information for setting thresholds values to differ one class from another.

Regarding Landslides (Figure 5.11), the DFA metric extracted from the NDBI shows
the most differentiating potential of this class from the others, in which its’ upper
quartile reaches up to 0.1, while for the other classes, it is above 0.6. Even though
it presents a considerable quantity of outliers, the result for Landslide is notably
different from the others. Once Silviculture also shows low values for this metric,
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one strategy for Landslides detection could be the use of the DFA for separating
Landslides and Silviculture from the rest, and then use the NDVI’s Hurst metric
to distinguish one from another. In the latter, Landslide values, in general, range
around 0.40 to 0.58, when Silviculture ranges from 0.65 to 0.88. Maybe, the low
values for Landslides and Silviculture might occur because of their abrupt change
response in the time series when the vegetation is removed, purposely in the case of
the latter. One should notice that for Landslide detection, the metrics that revealed
the best results where both of the type fractal.

Figure 5.11 - Landslides boxplot analysis.

SOURCE: Author’s production.

Forest and Silviculture (Figure 5.12) presented very similar results in most of the
metrics. Both of them showed very high values for NDVI’s Polar Balance, with the
lowest quartile above 0.65, while the other classes reached upper quartile values
around 0.60. After separating the two of them from the rest, their differentiation
can be done thorough the SAVI’s Gyration, in which Forest’s median is around
0.68 and Silviculture’s, 0.58. Another method for differing Forest from Silviculture
is by using the NDVI’s DFA metric, in which the medians are around 0.32 and
0.05, respectively. The similarity between Forest and Silviculture might be due to
their high and dense vegetation characteristics. Both Polar Balance and Gyration
are polar metrics, and DFA, fractal.

Agriculture class presented the most outstanding results for the boxplots analysis
(Figure 5.13). The metrics that better revealed this differentiation were NDBI’s and
SAVI’s Area s1, NDBI’s and SAVI’s Std, and SAVI’s Absolute Mean Derivative. In
all five metrics demonstrated below, the Agriculture class shows medians values at
least 0.1 higher than the other classes. Moreover, in all cases its’ lower quartile is
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Figure 5.12 - Forest and Silviculture boxplot analysis.

SOURCE: Author’s production.

higher than the other’s upper quartile. Finally, in SAVI’s Absolute Mean Derivative
metric its’ lower quartile is above most of the other classes maximum range value.
Beside Area s1, which is polar, all other metrics are the type basic.

Regarding the Urban class (Figure 5.14), the only metric that out-stands it is the
NDBI’s Area s2, with lower quartile value around 0.52, while the others’ upper
quartile are all below. However, another strategy could be to separate Urban and
Water from the rest, by setting a threshold for values below 0.62 on NDVI’s Max, or
higher than 0.5 for NDBI’s Area s2. After that, the difference between both classes
could be solved by the NDVI’s Std, where Urban and Water median values present
around 0.3 of difference.

For Water class (Figure 5.15), no metric could provide an outstanding result for this
class uniquely. However, the NDVI’s Absolute Mean Derivative could be used to set
a threshold separating Agriculture and Water from the other classes, by selecting
only values above 0.3. Then, NDVI’s Katz or Polar Balance could be used to differ
between the two of them. Besides Urban and Water present very similar results for
this two last metrics, the Urban class would not be included in the first threshold
defined by the Absolute Mean Derivative, with upper quartile reaching up to 0.22.
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Figure 5.13 - Agriculture boxplot analysis.

SOURCE: Author’s production.
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Figure 5.14 - Urban boxplot analysis.

SOURCE: Author’s production.

Figure 5.15 - Water boxplot analysis.

SOURCE: Author’s production.
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5.3 Land Use and Land Cover maps

Figure 5.16 shows the LULC classification products derived from each approach.
Once the area is significantly large, this map can only provide an overview of the
classification. However, more detailed visual comparison is available further in this
chapter. Moreover, each LULC product as a separate map is provided in section
Appendix ( Figure A.1, A.2, A.3 and A.4). Even though, no deep consideration can
be done due to the scale of the maps, a simple comparison regarding the approaches
is possible through this figure. In this visual analysis, the salt-and-pepper effect ap-
pears more intensively at the Mono-temporal map, and get reduced as the number of
attributes increases. This can be seen more effectively at the south-west part of the
basin, where a significant part of agriculture is placed. At the Mono-temporal ap-
proach, the agricultural areas seem to spread to the whole area, whilst All approach
shows more limited and well designed polygons of agriculture.

The confusion matrix is an effective tool to analyse the misclassifications between
classes. It allows the calculation of a variety of statistical indices, which contribute to
the interpretation of the classification algorithm performance. The confusion matrix
for each approach is presented in Figure 5.17. Considering class by class, the Land-
slide presented a significant proportion of confusion with Forest, Silviculture, Bare
Soil, and Water. The confusion with Water is just present in the Mono-temporal
approach, while in the others it no longer appears. Another class that requires at-
tention is the Agriculture, which showed high values of confusion, specially in the
Mono-temporal and Bi-temporal approaches. For the Mono-temporal, it presented
more pixels classified as Bare Soil than the Agriculture itself, followed by a notable
confusion with Pasture, Urban and Silviculture. The confusion maintains in the Bi-
temporal approach, even though in a reduced level, where Agriculture is misclassified
with Bare Soil, followed by Urban and Pasture. On the other hand, this situation
changes drastically when compared to the scenario for Metrical and All, in which the
confusion between the classes is low, presenting more errors for Pasture and Bare
Soil, respectively.
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Figure 5.16 - Classification maps.
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Figure 5.17 - Confusion matrices.
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The diagonal shows the correctly classified pixels, the stronger the green tone color, the
higher is the number of correctly classified pixels.

SOURCE: Author’s production.

As stated in Section 4.5, each classification approach was conducted under 500 Monte
Carlo simulations, in order to guarantee an accuracy value between a confidence
interval. This confidence intervals assure that the accuracy values present significant
differences (or not), when comparing different approaches. Table 5.2 shows kappa
indices, OA values, and their associated confidence interval.
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Table 5.2 - Kappa index and Overall Accuracy.

Kappa (κ) OA Confidence
Interval for OA

Mono-temporal 0.7043 74.95% 74.78% - 75.11%
Bi-temporal 0.7938 82.59% 82.50% - 82.79%
Metrical 0.8574 87.90% 87.84% - 88.09%
All 0.8693 88.96% 88.81% - 89.05%

First of all, the kappa values show an expressive improvement comparing the ap-
proaches. Starting from the Mono-temporal, with 0.70, to the Bi-temporal, with 0.79,
around 0.09 is increased in the value, which represents more than 10% of improve-
ment. From Bi-temporal to Metrical, a relevant increase is also noticed, however
less intense, going from around 0.79 to 0.86. The highest value is presented by All
approach, with around 0.87. Comparing all kappa values, it seems that it increases
in an exponential behavior, showing large improvement steps in the first two ap-
proaches and stabilizing after Metrical. The same interpretation is visible in the OA
values, where 7.64% is increased from Mono to Bi-temporal, 5.31% from Bi-temporal
to Metrical, and only 1.06% from Metrical to All.

Another important factor to analyse a classification accuracy, is by the evaluation
of the commission and omission errors. In that sense, Tables 5.3 and 5.4 shows this
statistical products depicted for each separate class and approach.

Table 5.3 - Omission errors.

Mono-temporal Bi-temporal Metrical All
Landslide 7.69% 3.03% 3.08% 5.97%
Forest 1.79% 9.23% 15.52% 8.47%
Silviculture 27.27% 14.58% 9.01% 2.13%
Agriculture 75.00% 48.39% 12.20% 20.00%
Bare Soil 22.22% 16.00% 20.88% 13.33%
Pasture 31.37% 23.73% 6.52% 21.15%
Water 54.55% 42.11% 13.04% 13.04%
Urban 17.07% 20.00% 16.67% 17.07%

Concerning the omission errors, the Mono-temporal approach presented the best
result for only one of the classes, Forest, with 1.79%. The Bi-temporal approach
showed the lowest error rate only for Landslide class, with 3.03%, followed by Met-
rical, with 3.08%. Metrical also presented the best results for Agriculture (12.20%),
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Pasture (6.52%), Water (13.04%) and Urban (16.67%). All’s approach performed
best with the classes Silviculture (2.13%), Bare Soil (13.33%) and Water (13.04%),
with the same value than Metrical for this class. Thus, Metrical had the best results
concerning omission errors, with lowest error rates in five from the eight classes. Fur-
thermore, even though Mono and Bi-temporal presented very satisfactory results for
one of the classes, they also showed the highest omission error percentage for other
classes; for instance, 75% and 48.39% for Agriculture, and 54.55% and 42.11% for
Water, respectively.

Table 5.4 - Commission errors.

Mono-temporal Bi-temporal Metrical All
Landslide 9.09% 14.67% 5.97% 10.00%
Forest 19.12% 13.24% 16.95% 5.26%
Silviculture 12.09% 4.65% 9.01% 9.80%
Agriculture 47.06% 36.00% 18.18% 14.29%
Bare Soil 36.94% 26.96% 12.20% 18.02%
Pasture 37.50% 15.09% 18.87% 12.77%
Water 0.00% 15.38% 0.00% 0.00%
Urban 34.62% 22.22% 14.29% 5.56%

Regarding the commission errors, the Mono-temporal approach presented the best
result only for Water, with 0%, similar to Metrical and All. The Bi-temporal ap-
proach showed the lowest error rate only for Silviculture, with 4.65%. Metrical pre-
sented the best results for Landslide (5.97%), Bare Soil (12.20%), and Water (0%).
All’s approach performed best with the classes Forest (5.97%), Agriculture (14.29%),
Pasture (12.77%), Water (0%), and Urban (5.56%). Thus, All had the best results
concerning commission errors, with lowest error percentages in five from the eight
classes. Moreover, as in omission error, despite Mono and Bi-temporal presented
very satisfactory results for one of the classes, they also showed the highest omission
error percentage for other classes; for instance, 47.06% and 36% for Agriculture,
36.94% and 26.96% for Bare Soil, and 37.50% and 15.09% for Pasture, respectively.

In addition, a relevant information regarding the Landslide prediction is that, even
though the Bi-temporal presented the best results for omission error, the difference
from the Metrical was very narrow, about 0.05%. However, in regard to commission
error, Metrical presented the best result (5.97%) with about 8.7% of difference from
Bi-temporal (14.67%), which showed the highest values among all approaches.

63



Figure 5.18 depicts an example of this commission error comparison concerning the
Landslide class. The landslide inventory reference is represented by the red polygons
on top of the Sentinel image. The four maps below represent each classification prod-
uct derived from the approaches. Comparing the Bi-temporal approach to the others
it is visible that it could indeed detect all or most of the landslide scars. However,
it is also noticeable that it confused most of the forest area from the hillside with
Landslides. In this specific area, visually analysing, All approach performed better,
presenting well defined polygons (low salt-and-pepper effect), and very satisfactory
detection of the landslide scars, compared to the inventory reference.

Figure 5.18 - Landslides in details.
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The difference map is another method used to analyse the classification performance
regarding the Landslide scars. In Figure 5.19, the inventory reference is represented
by the dark blue polygons on top of the Sentinel image. From that vector data, a
raster reference was created (Reference), in which, every pixel inside the polygons
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are represented in red as Landslide class, and everything else is labeled as Non-
Landslide and represented in grey. The first four maps below show the classification
result for each approach. To clarify, in this case, the classification map from Figure
5.16 was used, and the Landslide was separated from all the other classes, which
were gathered in a unique class called Non-Landslide. The last four maps below,
represent the output of a simple difference between the reference and the prediction,
produced with band arithmetic. The blue color stands for correctly predicted areas,
while brown and orange represent omission and commission classification errors,
respectively. The inventory maps extracted from each approach are in the section
Appendix, Figure A.5.

Figure 5.19 - Landslide difference map.
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Observing the difference maps, it is clear that the amount of commission errors is
significantly superior to omission errors. This information is also confirmed by the
commission and omission error table, where the first presents considerably higher
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values than the latter. Furthermore, comparing the four approaches, All presented
the best result, with significantly more areas of correctly prediction.

The confusion matrices (Figure 5.17) reveal that Landslides showed confusion with
Silviculture for the four approaches, especially for Mono and Bi-temporal. This anal-
ysis can be developed in Figure 5.20. The two first Sentinel images represent an area
only composed by Forest, containing Silviculture in the central part, and no Land-
slides scars. Silviculture class is clearly apparent in the 2018’s image, where it has
been harvested. Besides, its’ texture in 2016’s image is also notably different from
the surrounding Forest. The classification results are displayed on the four maps
below.

Figure 5.20 - Landslide vs Silviculture.
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Mono-temporal approach presented the least satisfactory output, with most of the
Silviculture area classified as Pasture, Bare Soil and Landslides scars. Also, the Bi-
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temporal approach wrongly classified a considerable amount of Silviculture pixels as
Landslide. Metrical and All presented the best results, with the most part correctly
predicted as Silviculture. This results reveal, again, that one of the most challenging
obstacles to landslide detection is to reduce the commission errors. Once the Mono-
temporal approach did not have the previous information of Silviculture before the
harvest, it is comprehensible that the prediction classifies the area as Bare Soil
and Pasture, for example. Bi-temporal approach presented a more accurate result
(visually), however the only reason for this improvement is the fact that this specific
Silviculture area has been harvested exactly on the same period of time where the
two dates were used for Bi-temporal input. However, if the harvesting had been done
before the first date, maybe it would have presented a result close to Mono-temporal.

Another visual analysis comparison among the approaches is presented in Figure
5.21. The three columns refer to “a”, “b” and “c” areas spatially represented by the
red rectangles. Both “a” and “b” focus on the analysis of the Agriculture class, while
“c”, Urban. Each row shows the result for an specific approach. The pink points rep-
resent Agriculture areas of reference, while the blue points, Urban. In “a” area, it
is observable that from Mono-temporal to All, the Agriculture polygons progres-
sively gain a more solid and well designed shape. The salt-and-pepper effect is more
expressive at Mono and Bi-temporal results, which practically classified the whole
area as Agriculture. Besides, both of these approaches also misclassified Agriculture
pixels with Urban, which do not exist in this area. In “b” area, the Agriculture
areas are only well detected by Metrical and All approaches, being confused with
Forest, Pasture and Bare Soil by the other methods. An hypothesis for that might
be the fact that for agricultural purposes, the phonological cycle, provided by the
time series, is very relevant. If the agricultural crop is still low or very high, and
if that is the only information available for Mono or Bi-temporal approaches, it is
comprehensible that confusion might happen with these classes.

Finally, in “c” area, the Urban class can be identified as the pixels concentrated in
the quarter blocks divided by linear streets at the Sentinel image. Once again, the
Metrical and All approaches presented more well defined polygons, with less spared
pixels (salt-and-pepper). The Urban cluster at these approaches present consolidated
black polygons, with some Bare Soil, which could be explained by unpaved streets.
However, on Mono and Bi-temporal, many agricultural areas are represented in the
middle of the Urban center, which does not matches the reference.
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Figure 5.21 - Classification maps in details.
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Figures (a) and (b) show examples of agricultural areas. Figure (c) illustrates the example
for urban areas. The pink and blue points are references for each class. The RGB image
is a composition of the following Sentinel-2 bands: R (B4), G (B3) and B (B2).
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6 CONCLUSION

The major aim of this research was to develop and describe a methodology that
provides, with the highest accuracy possible, two main products to landslide sus-
ceptibility assessment through a semi-automatic process; LULC and landslide in-
ventory maps. Even though free access medium resolution (Landsat-like) orbital
imagery is constantly updated and available for use, landslides inventories are still
largely realized by visual interpretation of single or bi-temporal datasets of high
spatial resolution images. Not only this process is time-consuming and manually
realized, but usually requires updated images from (very-)high spatial resolution,
which, in general, have high costs. The idea that the “best” inventory map can only
be achieved by human visual interpretation has been questioned with the emergence
of new technologies and the advance into the Artificial Intelligence (AI) era, reduc-
ing the distance among conventional and state-of-art methods. Nowadays, the world
shows that data availability is no longer a limitation, once many types of data are
massively provided from countless sources everyday. The main challenge is how to
manage and transform data into information. In this sense, the 21st century has been
evolving towards the Machine Learning, Big Data and cloud processing techniques
pursuing the final goal, which is to build knowledge.

Taking all above into account, this work contributes on the use of state-of-art meth-
ods and data to generate landslide susceptibility assessment supply’s materials. The
methodology here proposed uses geomorphometric attributes, dense and irregular
time series of different spectral indices from remote sensing imagery and three mod-
ules of time series metrics (basic, polar and fractal), applied to RF classification
algorithm, all developed in a free and open source way. Analysing the attributes
importance ranking, among the four input approaches compared (Mono-temporal,
Bi-temporal, Metrical and All), each of them ranked a NDBI image or metric ex-
tracted from this index as the most important attribute to the classification. The
NDVI or attributes related to that index also presented high relevance. The geo-
morphometric attributes, specially the Slope, was present in all of the approaches
among the top 6 in the importance list.

Regarding the time series metrics, polar metrics showed high importance positions
in the rank. For Metrical approach, the first attribute chosen was the NDBI’s Area
s2, and NDVI’s Area s4 is among the top 5. Moreover, NDBI’s Polar Balance and
NDVI’s Area s4 were selected on the top 10. Considering All’s approach, from the
three metrics selected among the top 10, two of them are polar, NDBI’s Area s1 and
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s2. Moreover, the visual analysis revealed that specially for Landslides, Agriculture
and Silviculture, some metrics could support their detection, as, for example, Katz,
Std, and First Slope, respectively. Besides, the boxplots interpretation provided
more insights on how the time series metrics could contribute to the classification.
As an example, some metrics that stood out were the Absolute Mean Derivative for
Agriculture, Area s2 for Urban, and DFA for Landslides.

Comparing the approaches performances through the overall accuracy analysis, All
approach showed the highest value (88.96%), followed by Metrical (87.90%), Bi-
temporal (82.59%), and Mono-temporal (74.95%). Focusing on Landslide detection,
from which the inventory is made, the Bi-temporal approach presented the lowest
omission error rate (3.03%), followed by Metrical (3.08%), All (5.97%), and Mono-
temporal (7.69%). And concerning the commission error Metrical showed the lowest
values (5.97%), followed by Mono-temporal (9.09%), All (10.00%), and Bi-temporal
(14.67%). Out of these results, it is possible to conclude that the main challenge in
this methodology for landslide detection is the reduction of the commission error. It
is remarkable that the Bi-temporal approach, presented the lowest level for omission
error, however the highest for commission. Furthermore, from the interpretation of
all of the accuracy results, with the understanding that the goal was to provide
both LULC and landslide inventory products, the Metrical approach presented the
most beneficial result, once it showed the second best result for overall accuracy and
omission error; and the best result for commission error.

This research answered some questions on how time series and time series metrics
could contribute to LULC mapping and landslide detection. Moreover, the impor-
tance ranking may support on the decision of what attributes should be used for
classification on that scientific field. The effort of this work was to incorporate the
abundant availability of free orbital optical data of medium spatial resolution in
a semi-automatic procedure, in order to present an alternative to the conventional
mono/bi-temporal visual interpretation method. The idea was to explore the poten-
tial of this type of data and classification algorithm looking forward to assist on the
advance of automatized methods that make use of free and open source material, in
favor of accessible, faster, cheaper and accurate products for landslide susceptibility
assessment.

Nonetheless, field work and visual interpretation from specialists is indeed very im-
portant and should not be completely replaced by the semi-automatic approaches.
These techniques can provide accurate information that might not be achievable
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only by semi-automatic methods. However, the main suggestion could be to combine
these techniques. For future studies, it is recommended to apply this methodology
with different attributes and other regions with more urban areas. Moreover, for
a more complete analysis of the classification results, uncertainty maps are highly
recommended. Besides, the aggregation of other type of orbital data despite the
Sentinel-2 should be tested, for example CBERS-4 and 4A, Sentinel-1 (SAR) and
Landsat-8.
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Figure A.1 - LULC map from Mono-temporal approach.
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Figure A.2 - LULC map from Bi-temporal approach.
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Figure A.3 - LULC map from Metrical approach.
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Figure A.4 - LULC map from All approach.
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Figure A.5 - Landslide Inventory Maps.
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