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Abstract: Precision agriculture integrates multiple sensors and data types to support farmers with
informed decision-making tools throughout crop cycles. This study evaluated Aboveground Biomass
(AGB) estimates of Rye using attributes derived from PlanetScope (PS) optical, Sentinel-1 Synthetic
Aperture Radar (SAR), and hybrid (optical plus SAR) datasets. Optical attributes encompassed surface
reflectance from PS’s blue, green, red, and near-infrared (NIR) bands, alongside the Normalized
Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Sentinel-1 SAR attributes
included the C-band Synthetic Aperture Radar Ground Range Detected, VV and HH polarizations,
and both Ratio and Polarization (Pol) indices. Ground reference AGB data for Rye (Secale cereal
L.) were collected from 50 samples and four dates at a farm located in southern Brazil, aligning
with image acquisition dates. Multiple linear regression models were trained and validated. AGB
was estimated based on individual (optical PS or Sentinel-1 SAR) and combined datasets (optical
plus SAR). This process was repeated 100 times, and variable importance was extracted. Results
revealed improved Rye AGB estimates with integrated optical and SAR data. Optical vegetation
indices displayed higher correlation coefficients (r) for AGB estimation (r = +0.67 for both EVI and
NDVI) compared to SAR attributes like VV, Ratio, and polarization (r ranging from −0.52 to −0.58).
However, the hybrid regression model enhanced AGB estimation (R2 = 0.62, p < 0.01), reducing
RMSE to 579 kg·ha−1. Using only optical or SAR data yielded R2 values of 0.51 and 0.42, respectively
(p < 0.01). In the hybrid model, the most important predictors were VV, NIR, blue, and EVI. Spatial
distribution analysis of predicted Rye AGB unveiled agricultural zones associated with varying
biomass throughout the cover crop development. Our findings underscored the complementarity
of optical with SAR data to enhance AGB estimates of cover crops, offering valuable insights for
agricultural zoning to support soil and cash crop management.
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1. Introduction

Cover crops are important components of precision agriculture [1]. They are exten-
sively employed for soil erosion prevention and enhancement of its physical and chemical
properties [2–6]. Furthermore, the biomass-related functions of cover crops can mitigate
weed proliferation [7,8] and reduce pathogen survival [9]. Serving as a conservation prac-
tice, cover crops facilitate sustainable farming while functioning as providers to ecosystem
services [10,11] and nutrients provision [12].

From a remote sensing perspective, various strategies employing passive optical data
to estimate cover crop biomass have emerged as effective proxies for delineating agricultural
management zones across different observational scales [13–15]. For example, daily data
generated by hundreds of CubeSats operating synchronously in orbit, particularly from
satellite constellations like PlanetScope (PS), have significantly enhanced the probability of
acquiring cloud-free images at high spatial resolution (~3 m) across the visible, red-edge,
and near-infrared (NIR) spectral bands [16]. Nonetheless, despite the capacity for daily
image capture, satellite constellations encounter challenges in providing a sufficiently
frequent supply of cloud-free observations in specific regions of Brazil (e.g., the southern
region) or during particular periods of the year (e.g., the rainy season). The causes are
the variable atmospheric conditions prevalent in tropical and subtropical environments
in Brazil.

To address the limitations associated with atmospheric effects on optical data acqui-
sition, satellite constellations comprising synthetic aperture radar (SAR) data serve as a
promising alternative for estimating cover crop biomass, particularly when integrated with
optical data. One notable example is the Sentinel-1 SAR constellation, consisting of two
polar-orbiting satellites, which offers near-weekly global data at a median spatial resolution
of 15 m. As an early component of the Copernicus program, the Sentinel-1 payload has a
SAR system operating in the C-band (5.6 cm wavelength), ensuring comprehensive and
continuous global coverage [17].

While the SAR Sentinel-1 constellation may capture cover crop responses related to
dielectric properties, surface roughness, and biophysical attributes, the PS constellation can
retrieve compositional information associated with leaf/canopy pigments and vegetation
structure retrieved from vegetation indices such as the Normalized Difference Vegetation
Index (NDVI) and Enhanced Vegetation Index (EVI) [18–22]. Therefore, SAR data are
well-suited for evaluating canopy structural information of cover crops and addressing
saturation issues encountered with optical data [23]. In agricultural studies, time series of
PS images enable timely monitoring of crops for various purposes [14,24–26]. Given cloud
coverage concerns in Brazil, which impact most applications needing the detection of rapid
changes on the land surface, Sentinel-1 SAR data offer a partial solution to atmospheric
limitations on image acquisition [23,27–29].

In the literature, most remote sensing studies, combining optical and SAR data, have
focused on estimating the Aboveground Biomass (AGB) of crops and forests [30–36].
For instance, studies by Hosseini et al. [37,38] successfully monitored maize biomass in
Canada using RapidEye and RADARSAT-2 data. Additionally, research efforts have been
directed towards monitoring and estimating the biomass of cash crops such as paddy
rice [39], wheat [40], and grassland mowing [41–43]. Another study has mapped crop-
livestock systems using combined optical and SAR data and tested machine and deep
learning algorithms [44]. Despite their significant agricultural importance, cover crops have
remained inadequately monitored and modeled using combined optical and SAR data [45].
Considering the leaf and canopy characteristics of Rye (Secale cereal L.), we hypothesize that
incorporating SAR data into the analysis can provide additional insights into the canopy
structure and surface roughness of this cover crop. In conjunction with changes in foliage
pigments captured by optical data, the inclusion of microwave information can enhance
the accuracy of Rye AGB estimates.

In this study, addressing the challenge of managing cover crops in agriculture and the
need for improving monitoring systems, we hypothesized that integrating SAR and optical
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data could significantly improve the accuracy of cover crop AGB estimates. Therefore, the
objective of our investigation was to explore potential gains in AGB estimates for Rye in
southern Brazil through the integration of PS attributes (including reflectance values from
four visible and near-infrared spectral bands, NDVI, and EVI) with Sentinel-1 SAR metrics
(encompassing dual-polarization C-band data, co-polarization bands VV and HH, and the
backscatter coefficient). These variables, derived from four synchronized dates of PS and
Sentinel-1 SAR acquisitions, served as input data for multiple linear regression utilizing
individual and combined satellite datasets. The relationships between AGB measurements,
meteorological data, and spectral variables were also explored through the generation of
Pearson’s correlation matrix, scatterplots, and histograms.

2. Materials and Methods
2.1. Study Area

The study was conducted at Vila Morena farm with an area of 32 hectares, situated
in the municipality of Boa Vista das Missões in southern Brazil, with central coordinates
of 27◦44′10.30′′S and 53◦21′5.00′′W (Figure 1). The local topography is undulating with
an elevation amplitude of 44 m. The predominant soil type in the region is Oxisols (Typic
Hapludox), characterized by a clay content exceeding 60% [14,46]. This farm experiences
a subtropical climate (Cfa in the Köppen–Geiger classification), with an average annual
temperature of 18 ◦C and an annual precipitation of 1919 mm [47]. Precipitation is evenly
distributed throughout the year. Local temperatures generally range from 4 ◦C in the local
winter to 30 ◦C in the summer. The site was chosen because of (i) the granted access to
a robust dataset of reference ground AGB, which is crucial to validate our methodology;
(ii) the accessibility in field campaigns; and (iii) the availability of PS and SAR data.

2.2. Field AGB Measurement, Satellite Data Acquisition, and Related Attributes

Over the past nine years, Rye (Secale cereale L.) has been consistently planted at the
farm as part of the cash crop cycles. Rye is a winter crop known for its high adaptability and
resilience. In Brazil, it is primarily cultivated in the southern states, where its production is
linked to animal feed and as a forage cover. Typically, a seeding density of 300 to 350 seeds
per square meter is used for cover crops [48].

In 2017, this cover crop, known for its predominantly erectophile architecture, was
sown on May 17th. To measure AGB in the field (detailed by [14,15]), encompassing
initial (lower measurable biomass) to advanced phenological stages (flowering) of Rye
development, we designed a field experiment utilizing regular grids. Regularly spaced
sample grids, measuring 0.5 m by 0.5 m, were positioned at half-hectare intervals, totaling
50 sampling points (Figure 1). Across the four dates of the field campaigns that coincided
with orbital remote sensing data, a total number of 200 samples were then considered in the
analysis. The Rye samples were harvested, collected, and subsequently transported to the
laboratory for analysis on each collection date. Dry biomass determination was conducted
by oven-drying the samples at 60 ◦C to eliminate moisture content. The experiment
comprised four field campaigns conducted from 21 July to 2 September 2017, as indicated
at the bottom of Figure 2 and Table 1.

The satellite data were acquired on dates closely matching the field campaigns
(±3 days’ deviation), as indicated by the hatched area in Figure 2. The influence of time
lags between satellite overpasses and field measurements was taken into account in the
interpretation and discussion of the results. A time series comprising 19 cloud-free images
captured by the PS satellite constellation was assessed, as indicated at the top of Figure 2,
from which four were chosen to align with Sentinel-1 SAR data and the field measurements.
The selection criteria involved a thorough visual evaluation, with only high-quality surface
reflectance images being retained. The Planet Surface Reflectance product used in this
work employs the 6S radiative transfer model for atmospheric correction, supplemented
by ancillary data from the Moderate Resolution Imaging Spectroradiometer (MODIS), to
correct for atmospheric scattering and absorption effects on the satellite signal. Estimates
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for water vapor, ozone, and aerosol are provided in the MOD09CMA, MOD09CMG, and
MOD08D3 products, respectively.
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Figure 1. Location of the study area, cultivated with Rye, in southern Brazil (Vila Morena farm). A 
total of 50 samples were systematically distributed across every half-hectare. Throughout the exper-
iment, seven field campaigns were conducted in 2017. Tri-dimensional perspectives of UAV RGB 
dense-cloud are shown for the early and late growing season. The UAV-derived DEM is also de-
picted. 
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Figure 1. Location of the study area, cultivated with Rye, in southern Brazil (Vila Morena farm).
A total of 50 samples were systematically distributed across every half-hectare. Throughout the
experiment, seven field campaigns were conducted in 2017. Tri-dimensional perspectives of UAV RGB
dense-cloud are shown for the early and late growing season. The UAV-derived DEM is also depicted.
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Figure 2. The timeline illustrates the field data campaigns conducted for Rye Aboveground Biomass
(AGB) measurements, positioned at the bottom of the figure (blue). PlanetScope (black) and Sentinel-1
SAR (red) data acquired during the 2017 cover crop winter cycle are depicted at the top and middle of
the figure, respectively. The hatched area indicates the matching periods of satellite data acquisition
adopted for analysis.

Table 1. List of the dates of fieldwork campaigns and satellite data acquisition by PlanetScope and
Sentinel-1 SAR.

Date Fieldwork PlanetScope Sentinel-1 SAR

Campaign 1 21 July 2017 22 July 2017 21 July 2017
Campaign 2 4 August 2017 5 August 2017 4 August 2017
Campaign 3 18 August 2017 14 August 2017 18 August 2017
Campaign 4 26 August 2017 26 August 2017 26 August 2017

From the sown date onwards, PS images from a Sun-synchronous orbit were obtained
in 2017 (20 July to 2 September). These images were acquired with a view zenith angle
below 5◦ (nadir viewing) in four spectral bands: blue (455–515 nm), green (500–590 nm),
red (590–670 nm), and near-infrared (NIR) (780–860 nm). The nominal spatial resolution
was 3.7 m. To align with the spatial resolution of the Sentinel-1 SAR data, the PS data were
resampled to 10 m using the nearest neighbor resampling method. Additionally, a buffer
of at least three pixels away from the crop border was implemented to take into account
the spectral mixture. Two commonly used vegetation indices were computed from the PS
data: NDVI [16] and EVI [17]. NDVI correlates more closely with pigment concentration,
whereas EVI is more sensitive to vegetation structure, minimizing atmospheric and soil
influences [46,47].

The SAR Sentinel-1 data were acquired via the Google Earth Engine platform (GEE),
using the Sentinel-1 SAR GRD product, Interferometric Wide (IW) swath mode and de-
scending orbit. Data from the C-band at a spatial resolution of 10 m for the four matching
dates of PS were selected for analysis (middle of Figure 2). The Sentinel-1 SAR mission pro-
vides dual-polarization C-band data collected at 5.405 GHz (C band). Single co-polarization
bands, namely VV and HH, were utilized, and the backscatter coefficient was converted to
dB using the formula 10 × log10σ◦. Prior to analysis, the data underwent preprocessing
steps including border noise removal, elimination of thermal noise, radiometric calibration,
Lee speckle filtering (5 × 5), and terrain correction. Additionally, band ratios and polariza-
tion indices were also computed. The GEE’s JavaScript code is available at the end of this
manuscript for consultation.

Ancillary data included reanalysis of meteorological data to provide temperature and
rainfall data during the experiment. Daily rainfall data were extracted from the daily accu-
mulated precipitation (combined microwave–IR) estimate—Early Run (GPM_3IMERGDE
v06) product [49,50]. The temperature was obtained from a 2 m air temperature—daily
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min (M2SDNXSLV v5.12.4) product [51]. Furthermore, Unmanned Aerial Vehicle (UAV)
multispectral images were acquired during the growing season to complement the analysis.

2.3. Data Analysis

Initially, we assessed the relationships between AGB measurements, from each of
the four fieldwork dates and meteorological data. We tracked the Rye AGB develop-
ment over the growing cycle by comparing the changes in measured cover crop biomass
with local variations in precipitation and temperature. To delve into the interrelations
among variables, we generated Pearson’s correlation matrix, scatterplots, and histograms.
Subsequently, we utilized multiple linear regression models to predict cover crop AGB,
leveraging three distinct sets of satellite data: PS optical, SAR, and a combination of both
(PS plus SAR) [40]. All variables were incorporated into a model using 50 samples per
date, yielding a total of 200 samples. The sets of PlanetScope and Sentinel-1 SAR data
without corresponding ground biomass were used for training and prediction purposes
of the model. To match the ground samples with satellite data, we utilized the central
coordinates obtained for each field point using a GNSS system with a positional accuracy
of 3 m. Using these coordinates, we retrieved the PS and SAR data.

We computed out-of-sample error estimates to derive an unbiased and accurate pre-
diction of error estimates. This involved randomly dividing the dataset into a training set
(80%) for model fitting and a validation set (20%) for calculating absolute and relative Root
Mean Square Error (RMSE). This process was iterated 100 times to obtain averages and con-
fidence intervals for RMSE, facilitating dataset performance comparisons. To strengthen the
validation of the model, we also employed k-fold cross-validation, dividing the 100 samples
into five folds, resulting in 500 simulations.

Additionally, to capture the variables’ importance in the model, we implemented
a stepwise Akaike Information Criterion (AIC) procedure. This autonomous selection
method identified the optimal variables across 100 simulations. In sequence, it allowed us
to obtain the frequency of variable selection in the final model. Finally, the best multiple
linear regression models were inverted to show the spatial distribution at the farm of the
predicted AGB of Rye on each one of the four dates of matched image acquisition by the PS
and Sentinel-1 satellite constellations.

To highlight areas of the farm with low AGB increase over time (potential low produc-
tivity of cash crop), predicted values below the median biomass per date were computed.
This analysis was also supported by using true color composites captured by the UAV in
the early and late stages of Rye development.

3. Results
3.1. Relationships between Cover Crop Development and Reanalysis Data from Precipitation
and Temperature

From 65 days after sowing and onward, field measurements depicted a consistent rise
in Rye’s AGB, starting from 25 kg·ha−1 during the early stages of cover crop development
(21 July) and peaking at 2700 kg·ha−1 during the flowering phenological stage (beginning
of September, as illustrated in Figure 3). The prolonged period post-sowing (65 days)
experienced minimal germination due to scant precipitation between June and July, partially
shown by the blue columns in Figure 3. A notable rainfall event (90 mm) in mid-August
marked the onset of a phase characterized by substantial AGB increments, as indicated by
the green curve in Figure 3. Within a 20-day span starting August 16, green dashed arrow,
Rye’s AGB surged markedly from 1000 to 2700 kg·ha−1, attributed to the combined effects
of precipitation and temperature, which rose to approximately 25 ◦C transitioning from
local winter to spring, as depicted by the red curve in Figure 3.
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Figure 3. Relationships between field measurements of Aboveground Biomass (AGB) of Rye, gathered
from seven campaigns in 2017 (represented by symbols in the green curve ± standard deviation),
and reanalysis data of daily rainfall (depicted by blue columns) and mean temperature (illustrated
by the red line). At the Vila Morena farm, there was a notable surge in cover crop AGB following
significant rainfall in mid-August, coupled with the general rise in temperature transitioning from
local winter to spring. The sowing date is also indicated for reference.

3.2. Relationships between Measured Rye AGB and Attributes from PlanetScope (PS) and
Sentinel-1 SAR

As previously discussed, the AGB of Rye exhibited a notable increase from the
initial measurement on 21 July (25 kg·ha−1) to the final measurement on 3 September
(2700 kg·ha−1). Upon analyzing the variability in mean AGB values across the four corre-
sponding dates of PS (Figure 4) and Sentinel-1 SAR (Figure 5) image availability, distinct
patterns emerged in their respective attributes with the progression of cover crop devel-
opment. Notably, all attributes displayed considerable variability, as evidenced by the
standard deviation bars, reflecting the diverse responses observed across the 50 samples
analyzed on each date.

Following the observed increase in mean AGB over time (Figure 4a), the mean re-
flectance in the visible bands (blue, green, and red as illustrated in Figure 4b–d) captured
by the PS satellite constellation generally declined as the cover crop developed. In contrast,
the NIR reflectance exhibited an upward trend toward the latter part of August (Figure 4e).
Consequently, vegetation indices utilizing these spectral bands in their calculation (e.g.,
NDVI and EVI) demonstrated a progressive increase over time, aligning with the observed
AGB gains in Rye (Figures 4f and 4g, respectively). Tracking the progressive increase in
mean AGB over time (Figure 5a), the Sentinel-1 SAR attributes VV (Figure 5b) and VH
(Figure 5c) exhibited an initial rise from the first date of measurement (21 July) to the second
date (24 August) of paired satellite acquisitions, followed by a decline as biomass increased
toward 26 August. Conversely, the SAR Ratio (Figure 5d) and Pol (Figure 5e) demonstrated
a consistent decrease as cover crop development progressed from July to August.
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Figure 4. Per-sample point values variations in (a) field-measured Aboveground Biomass (AGB)
of Rye and in the reflectance of the (b) blue, (c) green, (d) red, and (e) near-infrared (NIR) bands
of PlanetScope. Results for the Normalized Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI) are shown in (f,g), respectively. All results are shown across the four dates
coinciding with the availability of both PS and Sentinel-1 SAR images.
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Figure 5. Per-sample point values variations in (a) field-measured Aboveground Biomass (AGB) of
Rye and in the Sentinel-1 SAR attributes (b) VV, (c) VH, (d) ratio, and (e) polarization. All results are
shown across the four dates coinciding with the availability of both PS and Sentinel-1 SAR images.

Among the suite of PS attributes (Figure 4) and Sentinel-1 SAR attributes (Figure 5),
NDVI and EVI demonstrated inverse correlations with Ratio and Pol, with Pearson’s
correlation coefficients (r) ranging from −0.57 to −0.59 at a significance level of 0.001
(Figure 6). Furthermore, with the exception of VH, all optical and SAR attributes exhibited
some level of correlation with Rye AGB.

The strongest correlations with AGB were observed for EVI and NDVI (r = +0.67),
revealing non-linear relationships with this biophysical parameter, as evident from their
respective scatterplots (Figure 6). Consequently, EVI and NDVI exhibited non-linear
increases with increasing AGB or cover crop development. In Figure 6, attributes are
displayed on the X and Y axes to depict correlations among them. AGB is represented in
kg/ha, while SAR data are presented as backscattering coefficients. Optical data pertain
to surface reflectance. Vegetation indices and SAR ratios are dimensionless. Scatterplots
illustrating relationships between variable pairs are also included. Among the Sentinel-1
SAR metrics, the highest correlations with Rye AGB were found for Ratio (r = −0.56) and Pol
(r = −0.58), both of which also displayed non-linear relationships with this field-measured
parameter (Figure 6).
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3.3. AGB Modeling Using Optical and SAR Attributes

The prediction of AGB Rye, using multiple linear regression and integrating both opti-
cal and SAR variables, revealed a notable enhancement in the coefficient of determination
(R2 = 0.62), which was statistically significant (p < 0.01). This improvement contrasts with
the individual models based solely on optical (R2 = 0.51) or SAR (R2 = 0.42) variables, as
outlined in Table 2. Moreover, the combined use of these metrics demonstrated a significant
reduction (p < 0.01) in the out-of-sample prediction error (%RMSE), diminishing from 64.2%
to 57.9% (Figure 7). Complementarily, k-fold cross-validation reached the same results
(Supplementary Table S1 and Figure S1).
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Table 2. Performance of the multiple linear regression models in predicting Above Ground Biomass
(AGB) of Rye, along with the corresponding root mean square error (RMSE) for individual datasets
and their combined attributes. The reported values represent the average outcome of 100 simulations,
with RMSE calculated out-of-sample.

Dataset R2 RMSE (kg·ha−1) RMSE (%)

Combined Optical + SAR 0.63 579.1 57.9
Combined Optical + SAR_Step 0.62 582.0 58.2
Sentinel-1 SAR 0.42 696.9 69.7
Sentinel-1 SAR_Step 0.42 695.1 69.5
Optical PS 0.51 642.4 64.2
Optical PS_Step 0.50 637.1 63.6
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Figure 7. Relative root mean square error (RMSE in %) to estimate Aboveground Biomass (AGB) of
Rye using Sentinel-1 SAR attributes, PS optical metrics, and the combination of both sets of variables.

Incorporating both PS optical and Sentinel-1 SAR data in the model, the most influen-
tial variables comprised VV, the reflectance of the green, NIR, and blue bands of PS, and
the EVI (Figure 8). These variables featured prominently in the majority (>50%) of the
simulated models examined. Conversely, in the optical dataset, blue, EVI, and red (reddish
tones in Figure 8) emerged as the primary variables of importance. For the SAR dataset,
VV, VH, and Pol assumed precedence as the most crucial variables (cyan in Figure 8). Even
using k-fold cross-validation, the results did not change (Supplementary Table S2).

The scatterplot depicting predicted versus observed values reveals a trend where
uncertainty escalates with higher predicted biomass values, as illustrated in Figure 9. No-
tably, no predicted values exceeded 3000 kg·ha−1, despite a few instances where observed
biomass reached up to 4000 kg·ha−1. These atypical values can be attributed to a drought
experienced during the early stages of the growing season.

The predicted AGB from multiple linear regression, using the combined optical-SAR
model, confirmed the anticipated rise in biomass from the initial (21 July) to the final
date (26 August) of coincident satellite data acquisition, as depicted in Figure 10a–d.
Notably, the central and western portions of the studied area displayed comparatively
lower AGB values compared to the eastern parts, a trend already evident from the first
date (Figure 10a). Comparison of these results with the elevation data of Figure 1 and
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Supplementary Figure S2 reveals the topography dependence of this pattern. Low-elevation
portions of the farm generally have greater amounts of Rye AGB than high-elevation
areas. The consistency of these spatial differences in Rye AGB at the farm was confirmed
through visual inspection of multi-temporal false color composites of UAV data. Such UAV
composite images highlighted the visible disparities in areas with higher and lower cover
crop development, as illustrated in Figures 11a and 11b, respectively. Finally, the blue linear
stripe in the study area in Figure 10d coincides with a chemical treatment applied locally to
dissect plants.
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multiple regression model, for the four coincident satellite data acquisition dates: (a) 21 July 2017;
(b) 4 August 2017; (c) 18 August 2017 and; (d) 26 August 2017. Differences in the spatial occurrence
of the predicted AGB are discussed in the text. Hatched areas correspond to areas with AGB that
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portion of the farm submitted to chemical treatment.

Focusing on the last two dates, the difference in AGB estimates was calculated (AGB
of 26 August minus AGB of 18 August) (Figure 12). In eight days, the eastern portion of
the study area incorporated over one ton of AGB per hectare. Meanwhile, the dissected
vertical patch area presented an AGB reduction as expected. Also, some patches in the
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western portion presented a reduction in AGB possibly due to the early development of
Rye in such areas and because of the presence of weeds with different growth stages.
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Figure 11. UAV true-color composites for (a) the early stage of Rye development on 10 August
2017 and (b) the late stage of maximum biomass development on 31 August 2017. RGB channels
correspond to UAV bands centered at 660 nm, 550 nm, and 450 nm, respectively (X3 camera). The
magenta rectangle refers to the location in Figure 1.
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Figure 12. Difference map of Aboveground Biomass (AGB) estimates of 18 August 2017 (Figure 10c)
and 26 August 2017 (Figure 10d). Reddish tones indicate AGB increase and blue tones indicate AGB
decrease. White areas indicate low AGB variation (±100 kg·ha−1). The background is a Google
satellite true color composite image.
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4. Discussion

The synergistic utilization of PS optical and Sentinel-1 SAR datasets represents a
significant advancement in biomass estimation for cover crops such as Rye in southern
Brazil. Our results were generally consistent with previous findings in the literature. For
instance, by integrating optical and SAR (InSAR coherence) data to assess cereal grass
biomass, Jennewein et al. [23] observed an 11% improvement in model performance for
cereal Rye, yielding an R2 of 0.34. The same authors highlighted the season and species
dependencies of model accuracy. Focusing on a specific season and cover crop species, we
achieved an R2 of 0.625 (with an RMSE of 579.1 kg) through a combined optical-SAR model
derived from multiple linear regression. Roth and Streit [52] utilized UAS optical data to
estimate cover crop canopy height, subsequently predicting diverse cover crop biomass,
resulting in an R2 of 0.58, consistent with the results of Wang et al. [53].

Our model shifted the saturation limit from 2000 kg·ha−1 reported by Jennewein
et al. [23] to nearly 3000 kg·ha−1 for similar erectophile species, despite encountering
underestimates at higher biomass levels (Figure 8). It is plausible that biomass estimates
become saturated for values exceeding 3000 kg·ha−1. Additionally, several integration
strategies targeting cash crop AGB estimates have achieved comparable accuracy levels,
albeit with varying primary focuses across studies [37,38,40,44].

In composing the hybrid optical-SAR model, the SAR variable predominantly selected
as a key predictor was VV backscattering, underscoring the significant contribution of
SAR data to Rye AGB estimation. Interestingly, in the literature, this same predictor was
emphasized in estimating rapeseed biomass by Mercier et al. [40]. These findings could
be linked to the vertical structure of Rye, which enhances backscattering as the growing
cycle progresses, as the vegetation density increases [54]. The prevalence of VV backscat-
tering during the grow cycle could reduce the optical saturation concerns. Interestingly,
Wang et al. [55] evaluated winter wheat phenology using additional polarimetric param-
eters based on the covariance matrix and a dual-pol-version H-α decomposition that are
unfortunately not feasible from GRD Sentinel-1 products.

Among the optical PS attributes, blue and NIR were the primary spectral bands
selected by the model as key predictors. Blue is typically associated with the photosynthetic
activity of the plants (secondary photosynthesis system), while NIR is sensitive to variations
in Rye canopy structure throughout the growing cycle and the subsequent increase in LAI.
From the two vegetation indices considered here, EVI was more frequently captured than
NDVI as a predictor variable in the simulated regression models. However, both indices
were positively correlated with AGB (r = +0.67), as expected. These results suggest that the
lower dependence on NIR saturation due to the greater transmittance of the canopy in this
range of the electromagnetic spectrum is an important parameter to be considered.

In their integration of Sentinel-1 and 2 data, Jennewein et al. [23] identified red-
edge-related vegetation indices and SAR interferometric coherence as the most important
predictors. Similarly, other authors have recognized NDVI as a significant predictor of
grass biomass [40,56], which is consistent with our spectral scenario analysis. However,
our analysis was constrained by the absence of a red-edge band in the first generation
of PlanetScope data. Fortunately, this limitation has been recently addressed with the
launch of the third generation of Planet’s CubeSats (SuperDove), equipped with eight
bands [16]. The SuperDove bands enable determination not only of conventional NDVI
and EVI but also of other vegetation indices associated with red-edge, new foliage, and
light use efficiency [57].

Our evaluation of the spatial distribution of Rye AGB throughout the growing cycles
revealed zones with varying biomass levels, inversely correlated with topographic eleva-
tion, as deduced from the comparison between Figures 1 and 9. Greater amounts of Rye
AGB were observed at low-elevation areas of the farm compared to high-elevation terrains.
Therefore, the AGB map delineation facilitated the identification of regions with differing
productivity levels, aligning with earlier studies on management zone delineation [14,15].
Time-series analysis of biomass can prove instrumental in timely crop management. Our
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findings indicated that just 65 days after planting, the biomass map already highlighted
areas with lower biomass content in the central and western regions, ultimately yielding
less than those in the eastern areas. Conducting such analyses immediately after plantation
can guide farmers in land management decisions, such as the judicious use of fertilizers and
fostering more cost-efficient and sustainable land management practices. Our proposed
methodology can deliver this support by taking advantage of the combined use of SAR
and PS optical data to provide observations approximately every two weeks.

Thus, as canopy development progresses, multiple scattering intensifies, underscoring
the significance of cover crop gaps in biomass modeling. The hatched areas in Figure 10
delineate distinct management zones within the experimental area. Leveraging AGB to
define management zones enables more informed decisions prior to cash crop planting.
Notably, regions with lower development are predominantly situated at higher elevations
(Figure 1) and well-drained sections of the field. Additionally, these areas exhibit higher
soil compaction and pH values [14].

In our study, it is important to address some constraints and opportunities associated
with the experimental design. Firstly, only four dates were available for building the
regression model, limiting the temporal scope of cover crop development. The time gap
of up to three days between satellite overpasses and field AGB measurements may not
capture rapid vegetation changes during Rye development. This could potentially lower
the predictive accuracy of the AGB model, particularly over terrains more favorable to
cover crop growth. Additionally, the study solely focused on evaluating an erectophile
canopy (Rye). Although the approach can be extended to other cover crops, the selected
predictors will probably differ in AGB estimates of cover crops with planophile architecture.
Moreover, although our experiment utilized preprocessed GRD Sentinel-1 products, it is
important to note that other SAR parameters can be derived from Single Look Complex
(SLC) Sentinel-1 data, thereby refining the retrieval of biophysical information from the
microwave range. Furthermore, linking SAR and optical responses to the roughness con-
centration index [58] derived from UAV-dense cloud data could offer valuable insights [59].
It is also advisable to conduct future research on the potential of using multi-frequency
SAR data to retrieve AGB. In addition to employing multiple linear regression, alternative
models could have also been explored for estimating Rye AGB. Nevertheless, prior research
utilizing methods like Support Vector Machine (SVM), Cubist, and Random Forest (RF) has
demonstrated comparable performance to multiple regression in this regard [14,15]. In our
study, the cross-validation RMSE errors closely paralleled those reported for mixed-field
mustard biomass estimation using various vegetation indices derived from Sentinel-2
optical images [12]. Integrating Sentinel-1 SAR, Sentinel-2 optical data, and temperature
data within an ensemble-based framework notably enhanced the accuracy of the random
forest (RF) model for crop time series [60].

Additionally, it is crucial to highlight the importance of studies exploring the integra-
tion with other optical data sources such as Sentinel-2, Landsat-8/9, and hyperspectral
missions such as EnMAP (Environmental Mapping and Analysis Program) and PRISMA
(PRecursore IperSpettrale della Missione Applicativa). Lastly, future studies should investi-
gate the resampling of PS data from 3.7 m to 10 m spatial resolution to align with Sentinel-1
SAR data. A straightforward resampling procedure was applied here to the PS data for this
purpose. This process minimizes spatial variability among adjacent pixels but may impact
the accuracy of AGB estimates with field data.

5. Conclusions

The accuracy of cover crop AGB estimates experienced a notable improvement with
the integration of PS optical and Sentinel-1 SAR data. Focusing on Rye, the hybrid model
produced reductions of 11.8% and 5.5% in RMSE compared to using only SAR or optical
models individually, respectively, resulting in an overall RMSE of 579.1 kg·ha−1 (R2 = 0.62;
p < 0.01).
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Upon independent variable importance evaluation, key predictors emerged, including
spectral vegetation indices such as NDVI and EVI, alongside SAR parameters like VV
backscattering, SAR Ratio, and polarimetry. In multiple simulations of the hybrid model,
VV backscattering, NIR, and blue reflectance were the most frequently selected predictors.

The spatial distribution of estimated Rye AGB facilitated the identification of portions
of the terrain exhibiting both lower and higher biomass levels, which have behaved as
agricultural management zones for cash crop yield. This may aid in efficient fertilizer use,
enhancing sustainable land management, and supporting pre-planting decisions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16152686/s1, Figure S1: Relative root mean square error (RMSE
in %) to estimate Aboveground Biomass (AGB) of Rye using Sentinel-1 SAR attributes, PS optical
metrics, and the combination of both sets of variables using K-fold cross-validation procedure, with
5 folds of 100 samples (500 simulations); Figure S2: Transect comparing elevation and the Rye AGB
estimates in the four dates. The inlet figure shows the transect line over DEM in the spatial domain;
Table S1: Performance of the multiple linear regression models in predicting Aboveground Biomass
(AGB) of Rye, along with the corresponding root mean square error (RMSE) for individual datasets
and their combined attributes. The reported values represent the average outcome of 500 simulations
with RMSE calculated from k-fold cross-validation after splitting the 100 samples into five folds
(500 simulations); Table S2: Variable importance per dataset was assessed based on the frequency of
selection in the best model using a stepwise procedure across k-fold cross-validation, conducted with
5 folds over 100 samples. This approach involved a total of 500 simulations.
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