
sid.inpe.br/mtc-m21d/2023/01.21.03.35-TDI

LAND USE AND LAND COVER MAPPING AND
SPATIOTEMPORAL SEGMENTATION BASED ON

IMAGE TIME SERIES CLUSTERING

Baggio Luiz de Castro e Silva

Master’s Dissertation of the
Graduate Course in Applied
Computing, guided by Drs. Karine
Reis Ferreira Gomes, and Gilberto
Ribeiro de Queiroz, approved in
January 30, 2023.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34T/48DF32P>

INPE
São José dos Campos

2023

http://urlib.net/8JMKD3MGP3W34T/48DF32P


PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Coordenação de Ensino, Pesquisa e Extensão (COEPE)
Divisão de Biblioteca (DIBIB)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Coordenação-Geral de Ciências da Terra
(CGCT)
Members:
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação (CPG)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia, Tecnologia e
Ciência Espaciais (CGCE)
Dr. Rafael Duarte Coelho dos Santos - Coordenação-Geral de Infraestrutura e
Pesquisas Aplicadas (CGIP)
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Divisão de Biblioteca (DIBIB)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)
ELECTRONIC EDITING:
Ivone Martins - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)



sid.inpe.br/mtc-m21d/2023/01.21.03.35-TDI

LAND USE AND LAND COVER MAPPING AND
SPATIOTEMPORAL SEGMENTATION BASED ON

IMAGE TIME SERIES CLUSTERING

Baggio Luiz de Castro e Silva

Master’s Dissertation of the
Graduate Course in Applied
Computing, guided by Drs. Karine
Reis Ferreira Gomes, and Gilberto
Ribeiro de Queiroz, approved in
January 30, 2023.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34T/48DF32P>

INPE
São José dos Campos

2023

http://urlib.net/8JMKD3MGP3W34T/48DF32P


Cataloging in Publication Data

Silva, Baggio Luiz de Castro e.
Si38l Land use and land cover mapping and spatiotemporal

segmentation based on image time series clustering / Baggio Luiz
de Castro e Silva. – São José dos Campos : INPE, 2023.

xx + 66 p. ; (sid.inpe.br/mtc-m21d/2023/01.21.03.35-TDI)

Dissertation (Master in Applied Computing) – Instituto
Nacional de Pesquisas Espaciais, São José dos Campos, 2023.

Guiding : Drs. Karine Reis Ferreira Gomes, and Gilberto
Ribeiro de Queiroz.

1. Satellite image time series. 2. LULC Classification.
3. Spatiotemporal segmentation. 4. Inland water bodies.
5. Clustering methods. I.Title.

CDU 519.246.8:528.8

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/


INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

DEFESA FINAL DE DISSERTAÇÃO BAGGIO LUIZ DE CASTRO E SILVA
BANCA Nº 006/2022, REG. 309710/2021

No dia 30 de janeiro de 2023, as 09h, por teleconferência, o(a) aluno(a) mencionado(a) acima defendeu
seu trabalho final (apresentação oral seguida de arguição) perante uma Banca Examinadora, cujos
membros estão listados abaixo. O(A) aluno(a) foi APROVADO(A) pela Banca Examinadora, por
unanimidade, em cumprimento ao requisito exigido para obtenção do Título de Mestre em Computação
Aplicada, com a exigência de que o trabalho final a ser publicado deverá incorporar as correções
sugeridas pela Banca Examinadora, com revisão pelo(s) orientador(es).

Novo título: “Land use and land cover mapping and spatiotemporal segmentation based on image
time series clustering”.

Membros da Banca:

Dr. Thales Sehn Körting – Presidente – INPE
Dra. Karine Reis Ferreira Gomes – Orientador(a) – INPE
Dr. Gilberto Ribeiro de Queiroz – Orientador(a) – INPE
Dr. Rafael Duarte Coelho dos Santos – Membro Interno – INPE
Dr. Alana Kasahara Neves – Membro Externo – CEF/ISA/ULisboa

Documento assinado eletronicamente por Karine Reis Ferreira Gomes, Tecnologista, em
02/02/2023, às 08:15 (horário oficial de Brasília), com fundamento no § 3º do art. 4º do Decreto
nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Rafael Duarte Coelho dos Santos, Coordenador de
Pesquisa Aplicada e Desenvolvimento Tecnológico, em 03/02/2023, às 09:00 (horário oficial de
Brasília), com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Gilberto Ribeiro de Queiroz, Tecnologista, em
03/02/2023, às 09:13 (horário oficial de Brasília), com fundamento no § 3º do art. 4º do Decreto
nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Thales Sehn KorƟng, Pesquisador, em 03/02/2023, às
09:24 (horário oficial de Brasília), com fundamento no § 3º do art. 4º do Decreto nº 10.543, de 13
de novembro de 2020.

SEI/MCTI - 10782304 - Ata de Reunião https://sei.mcti.gov.br/sei/controlador.php?acao=documento_imprimi...

1 of 2 19/04/2023, 14:40



Documento assinado eletronicamente por Alana kasahara NEVES (E), Usuário Externo, em
03/02/2023, às 18:26 (horário oficial de Brasília), com fundamento no § 3º do art. 4º do Decreto
nº 10.543, de 13 de novembro de 2020.

A autenƟcidade deste documento pode ser conferida no site hƩps://sei.mcƟ.gov.br/verifica.html,
informando o código verificador 10782304 e o código CRC 329C01A3.

Referência: Processo nº 01340.000615/2023-42 SEI nº 10782304

SEI/MCTI - 10782304 - Ata de Reunião https://sei.mcti.gov.br/sei/controlador.php?acao=documento_imprimi...

2 of 2 19/04/2023, 14:40



"Feliz aquele que transfere o que sabe e aprende o que ensina".
[Cora Coralina]

v





ACKNOWLEDGEMENTS

First, I would like to express my deep gratitude to God for giving me the health and
strength to complete my master’s degree.

I sincerely thank my advisors, Ph.D. Karine Reis Ferreira and Ph.D. Gilberto Ribeiro
de Queiroz, for all the teachings, patience, and affection over these years. It is a
pleasure to have them not only as technical advisors, but also as life mentors. Thank
you very much!!

I am forever grateful to my parents, Marley El da Silva Castro and Sérgio Luiz de
Castro e Silva, for their unconditional support and sacrifices to raise their children
in the best way possible; I love you all!

I thank my sister Bárbara de Castro e Silva for her friendship and companionship
at all times; I love you!

Thanks to all my friends at INPE for all the conversations, funny moments, and
support. I would also like to thank my friends from apartment 406, Adriano Pereira
Almeida, Jesús Alberto Nuñez, and Vinicius Schmidt Monego.

Special thanks to my friends Felipe Carvalho de Souza and Wesley Augusto Cam-
panharo, who were essential in developing this work. Thanks for the discussions,
reviews, and valuable suggestions.

Thanks to Ph.D. Valdivino Alexandre de Santiago Júnior for the invitation to partic-
ipate in the Image classification project via Deep neural networks and large databases
for aeroSpace applications - IDeepS is supported by the Laboratório Nacional de
Computação Científica (LNCC/MCTI, Brazil) via resources of the SDumont super-
computer that was computational support for the development of the work.

And to everyone who is not explicit here, know that I remember well all the good
people who shared my academic life.

Finally, I would like to thank the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES) and the Support Fundação de Apoio para Projetos de
Pesquisa de Ciência e Tecnologia Espacial (FUNCATE) for their financial support.

With these words of gratitude, I celebrate the completion of this significant step in
my life and look forward to the future with enthusiasm. Thank you very much!

vii





ABSTRACT

Land use and land cover mapping is fundamental in various applications such as en-
vironmental monitoring, public policy support, territorial management, and many
others. The quality of this mapping directly affects its applications, reflecting the
quality of the product and the methods used. Many images have been produced with
different spatial, temporal, and spectral technologies through technological advances
in remote sensing. In addition to producing these resources, open access policies fa-
vored the mapping and dissemination of various national and international land use
and land cover products. One of the oldest and most widely used techniques in this
mapping process is segmentation, which aims to find homogeneous regions in the
image based on some attribute. However, this technique only considers information
from a single image, which can be affected depending on the cloud cover. One such
technique is spatiotemporal segmentation, which aims to find homogeneous regions
in space and time. Therefore, this dissertation proposes a spatiotemporal segmen-
tation method and a land use and land cover classification method using clustering
methods with a "time-first, space-later" approach. These methods are based on un-
supervised algorithms: Self-Organizing Map (SOM) and the Hierarchical Clustering
Algorithm (HCA), where the input data are time series extracted from the satellite
images to be mapped. Finally, a method for interpolating clouds in the time series
of satellite images using Deep Learning was proposed since this is a crucial step
in clustering methods that use distance as a similarity requirement. The three pro-
posed approaches were examined, adhering to visual and quantitative assessment
principles. In the spatiotemporal segmentation, the methodology was applied to a
heterogeneous region southeast of Mato Grosso state. For land use and land cover
classification, six distinct regions with varied characteristics of inland waters were
selected, which served as a training base and were later applied in four other regions
for mapping inland waters. Regarding cloud interpolation in time series, time series
distributed throughout Brazil were chosen, using the Sentinel-2/MSI cloud mask
(Scene Classification Layer - SCL) as the basis for reference interpolation.

Keywords: Satellite image time series. LULC Classification. Spatiotemporal segmen-
tation. Inland water bodies. Clustering methods.
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MAPEAMENTO DO USO E COBERTURA DO SOLO COM BASE
EM SEGMENTAÇÃO E AGRUPAMENTO DE SÉRIES TEMPORAIS

RESUMO

O mapeamento de uso e cobertura da terra tem papel fundamental em diversas apli-
cações como no monitoramento ambiental, no suporte à políticas públicas, na gestão
territorial, entre outras. A qualidade desse mapeamento impacta diretamente nas
suas aplicações, sendo este o reflexo da qualidade do produto e das metodologias uti-
lizadas. Graças ao avanço tecnológico na área de sensoriamento remoto nos últimos
anos, grandes volumes de imagens vêm sendo produzidos com diferentes resoluções
espaciais, temporais e espectrais. Aliadas à produção destes recursos, as políticas de
acesso aberto favoreceram o mapeamento e a disseminação de diferentes produtos de
uso e cobertura da terra nacionais e internacionais. Uma das técnicas mais antigas
e difundidas neste processo de mapeamento é a segmentação, que visa encontrar
regiões homogêneas na imagem com base em algum atributo. Entretanto, esta téc-
nica considera apenas informação de uma única imagem, que pode ser prejudicada
dependendo da cobertura de nuvem. Uma variante desta técnica é a Segmentação
espaçotemporal, que tem como objetivo não só encontrar regiões homogêneas no
espaço mas também no tempo. Desta maneira, esta dissertação propõe um método
segmentação espaçotemporal e um método de classificação de uso e cobertura da
terra, baseados em métodos de clusterização utilizando uma abordagem “time-first,
space-later”. Estes métodos têm como base os algoritmos não supervisionados: Self-
Organizing Map (SOM) e o Hierarchical Clustering Algorithm (HCA), em que os
dados de entrada são séries temporais extraídas das próprias imagens de satélite a
serem mapeadas. Por fim foi proposto um método de interpolação de nuvens em
séries temporais de imagens de satélite utilizando deep learning visto que esse é um
passo crucial em metodologias de clustering que usam a distância como critério de
similaridade. As três abordagens propostas foram examinadas, aderindo aos princí-
pios de avaliação visual e quantitativa. Na segmentação espaçotemporal, aplicou-se
a metodologia em uma região heterogênea localizada no sudeste do Estado de Mato
Grosso. Para a classificação de uso e cobertura, selecionaram-se seis regiões distin-
tas com características variadas de águas interiores, as quais serviram como base
de treinamento e foram posteriormente aplicadas em quatro outras regiões para
o mapeamento de águas interiores. No que concerne à interpolação de nuvens em
séries temporais, foram escolhidas séries temporais distribuídas por todo o Brasil,
utilizando-se a máscara de nuvem Sentinel-2/MSI (Scene Classification Layer - SCL)
como base para interpolação de referência.

Keywords: Séries temporais de imagem de satélite. Classificação de uso e cobertura.
Segmentação espaço temporal. Corpos d’água interiores. Métodos de agrupamento.
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1 INTRODUCTION

Land use and land cover (LULC) maps are important indicators of the human
footprint and are essential to support the development of efficient and effective
environmental and territorial policies. These maps are crucial data sources for mea-
suring global indicators such as the United Nations’ Sustainable Development Goals
(SDGs), including land degradation, freshwater ecosystems, or urban development
(GIULIANI et al., 2020). LULC maps are mainly produced from Earth Observation
(EO) satellite imagery (SAAH et al., 2020).

Nowadays, different missions are launching EO satellites and producing big open
data consistently calibrated over time and space. Open data policies adopted by
many space agencies worldwide make accessible petabytes of EO satellite images of
different spatial, spectral, and temporal resolutions (SOILLE et al., 2018).

To produce LULC maps from these big data sets of EO satellite images, image time
series analysis and machine learning methods are being widely used with promising
results (GÓMEZ et al., 2016; BELGIU; CSILLIK, 2018; PICOLI et al., 2018; SIMOES et

al., 2020; SIMOES et al., 2021). Distinct methods have been applied to different kinds
of satellite image time series to produce LULC maps, including Time-Weighted
Dynamic Time Warping (TWDTW), Random Forest (RF) and Support Vector Ma-
chine (SVM). These methods are based on supervised learning, that require training
samples labeled a priori.

To mainly support image time series analysis, big data sets of EO satellite images
have been modeled as EO data cubes (APPEL; PEBESMA, 2019; KOPP et al., 2020).
The concept of a data cube refers to structuring a multidimensional data set to
organize it, simplify manipulation, and improve search and analysis (KOPP et al.,
2020). EO Data Cubes are multidimensional arrays with space and time dimensions
and spectral derived properties created from EO satellite imagery (APPEL; PEBESMA,
2019). These arrays improve data manipulation and make them available for analysis
and consequently support studies in the field that is increasingly concerned with
models instead of processing the data correctly.

Recent initiatives to create EO data cubes for specific countries or regions include
the Australian Data Cube (LEWIS et al., 2017), the Swiss Data Cube (GIULIANI et

al., 2017), the Africa Regional Data Cube (KILLOUGH, 2019) and the Brazil Data
Cube (FERREIRA et al., 2020b). Meanwhile, novel software platforms have been de-
veloped to access, prepare, index, and handle big amounts of remote sensing images
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and EO data cubes, such as Open Data Cube (ODC), Processing and Analysis for
Land Monitoring (SEPAL) and Google Earth Engine (GEE) (GOMES et al., 2020).
These initiatives and platforms are paving the way for broadening the use of EO
data to larger communities of users, supporting decision-makers with information
converted into meaningful geophysical variables, and ultimately unlocking the infor-
mation power of EO data (GIULIANI et al., 2019).

Brazil Data Cube is a project that is being developed by INPE (National Institute
for Space Research) and that aims to create multidimensional data cubes of spatial
medium-resolution remote sensing images for all Brazilian territory and to produce
Land use and land cover information from these data cubes using machine learning
and satellite image time series analysis.

1.1 Motivation and objectives

Time series extracted from EO satellite images over the same areas, modeled as data
cubes, improve our understanding of environmental patterns and processes. Instead
of selecting individual images from specific dates and comparing them, researchers
can track changes continuously. Satellite image time series analysis captures subtle
changes in ecosystems and improves the quality of land classification (SIMOES et al.,
2021).

Considering a dense sequence of EO satellite images, Camara et al. (2016) define the
term space-first, time-later to refer to approaches which apply methods separately
to the entire image of this sequence and later join the results over time; and the
term time-first, space-later to approaches which apply methods to the time series
associated to individual pixels of this sequence. They argue that time-first, space-
later approaches use the full potential of remote sensing image time series, and
that temporal autocorrelation is stronger than spatial autocorrelation for change
detection. According to Pasquarella et al. (2016) time series derived from remote
sensing images allow detecting complex underlying processes that would be difficult
to identify using bi-temporal or other traditional change detection approaches.

The main objective of this dissertation is to explore image time series clustering
methods for spatiotemporal segmentation and Land use and land cover mapping,
following the time-first, space-later approach. In this work, Self-Organizing Maps
(SOM) neural network combined with Hierarchical method is used to produce clus-
ters of image time series. SOM maps the input data (high dimensionality) onto
a bi-dimensional grid (low dimensionality), keeping the topology of the neighbor-

2



hood; that is, similar time series tends to be close in 2D space (KOHONEN, 1990).
Due to these properties, SOM has been widely used for image time series clustering
(ZURITA-MILLA et al., 2013) (SANTOS et al., 2021).

Also, in the context of this dissertation, deep learning approaches were evaluated
to interpolate cloudy pixels in Sentinel-2 image time series. Optical remote sensors
are extremely susceptible to clouds. Clouds and their shadows affect remote sensing
image processing methods to automatically identify and classify Land use and land
cover types. In image time series analysis, interpolation techniques are used to pro-
duce valid values when pixels are covered by clouds or shadows. In this dissertation,
we evaluated deep learning approaches to interpolate cloudy pixels.

1.2 Dissertation contributions

The main contributions of this dissertation are:

• A methodology for spatiotemporal segmentation of satellite image time
series using Self-Organizing Maps (SOM). This methodology is described
in Chapter 2, based on the article published by Silva et al. (2022);

• A methodology for Land use and land cover mapping based on image time
series clustering. This methodology was applied to classify inland water
bodies, that is a specific type of land cover. It is described in Chapter 3;

• An evaluation of deep learning approaches to interpolate cloudy pixels in
Sentinel-2 image time series. This study is described in Chapter 4, based on
the article accepted to be published in the XX Brazilian Remote Sensing
Symposium (SBSR 2023) proceeding by Silva et al. (2023).

The following academic and technological contributions are part of this dissertation:

a) Authorship or co-authorship in scientific articles:

• Spatiotemporal segmentation of satellite image time series using self-
organizing map (SILVA et al., 2022);

• Deep Learning as tool to interpolate cloudy pixels in sentinel-2 time
series (SILVA et al., 2023);

• Uso de séries temporais para classificações de uso e cobertura da terra
em Petrolina, Pernambuco (BRITO et al., 2023).
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b) Free and open source code:

• Spatiotemporal Segmentation (GitHub: https://github.com/brazil-
data-cube/st-segmentation);

• LULC Classification (GitHub: https://github.com/BaggioCastro/dissertation-
content).
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2 SPATIOTEMPORAL SEGMENTATION OF SATELLITE IMAGE
TIME SERIES USING SELF-ORGANIZING MAP

1

2.1 Introduction

Remote sensing imagery is essential for monitoring environmental changes, natu-
ral disasters, population growth, and many other applications. Nowadays, a large
number of Earth observation satellites have generated big volumes of images with
different spatial and temporal resolutions every day. In 2019, the volume of open
data produced by Landsat-7 and Landsat-8, MODIS (Terra and Aqua units), and
the three first Sentinel satellites (Sentinel-1, -2 and -3) were around 5 PB(SOILLE et

al., 2018). This scenario poses a great challenge for storing, processing, and analyzing
this large amount of data and also promotes the use of satellite image time series
for spatiotemporal analysis (SIMOES et al., 2021).

Spatiotemporal segmentation consists in finding homogeneous regions in space and
time from remote sensing images based on spectral features (PETITJEAN et al., 2012).
Remote sensing image segmentation is widely used in object-based approaches to
produce homogeneous geographical objects (XI et al., 2019). Despite being an im-
portant step in remote sensing image processing, there are few methods proposed in
the literature that consider the space and time dimensions to produce homogeneous
segments (PETITJEAN et al., 2012; COSTA et al., 2018b; XI et al., 2019; GARNOT;

LANDRIEU, 2021)

Petitjean et al. (2012) proposed an approach that segments each image of the se-
ries and then combines these segments to provide a classification map. Costa et al.
(2018b) propose a method for segmentation applied to image time series, adapt-
ing the traditional region growing algorithm and using the Dynamic Time Warping
(DTW) similarity measure to detect homogeneous regions in space and time. Xi et
al. (2019) describe a multiresolution segmentation to generate multiscale spatiotem-
poral cubes. Garnot e Landrieu (2021) present a method that processes a sequence
of images in parallel by a shared convolutional encoder. At the lowest resolution, a
temporal encoder produces a set of temporal attention masks for each pixel, then
spatially interpolated at all resolutions.

1This chapter is an adaptation of SILVA, B.L.C.; SOUZA, F.C.; FERREIRA, K.R.; QUEIROZ,
G.R.; SANTOS, L.A. Spatiotemporal segmentation of satellite image time series using self-
organizing map. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 255–261,
2022
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Different from the existing methods, this document presents a spatiotemporal seg-
mentation of satellite image time series using a self-organizing map (SOM) and
hierarchical clustering algorithm. SOM is an unsupervised artificial neural network
based on competitive learning that reduces a high dimensional feature input space
onto a lower-dimensional feature output space (KOHONEN, 1998). It also preserves
the neighborhood topology; that is, similar input data are mapped to the same neu-
ron or a nearby one. SOM has been widely used for image time series clustering and
spatiotemporal patterns discovering (ZURITA-MILLA et al., 2013) and (SANTOS et al.,
2021).

The proposed approach is unsupervised and applied to satellite image time series;
that is, time series associated with pixels of a satellite image sequence ordered in
time. Based on a given threshold or a number of distinct clusters, it computes the
similarity among all image time series to produce homogeneous regions in space and
time. The proposed method was implemented and tested in a region in the Mato
Grosso state, Brazil. The code and data sets used in this work are available on
Github to promote reproducibility2.

Satellite image segmentation is an important step for various remote sensing tasks,
such as analysis, data exploration, and classification. Currently, there are some meth-
ods that use only one image in time for segmentation. Methods that explore time
and space can use different approaches. Basically, there are methods that use snap-
shots that compare individually segmented images in time, and there are methods
that use time series for integration of regions.

This proposed approach uses time series to integrate regions. The main difference
with methods that use only one image in time for segmentation is the ability to
distinguish segments based on their spatiotemporal dynamics. Compared to the
model of Costa et al. (2018b), which uses the same basis, i.e. homogeneous regions in
space and time using time series, the proposed method uses the clustering approach,
where it is not necessary to define seeds, defining the parameters for clustering
methods, such as the number of neurons for the Self Organizing Map (SOM). In the
proposed approach, an unsupervised classification map is also created, which shows
the temporal profiles of each segment and can be used in other applications.

An approach to finding homogeneous regions in space and time using satellite image
time series is very useful for identifying some types of land use and land cover

2https://github.com/brazil-data-cube/st-segmentation
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classes. Some classes, such as one-cycle and two-cycle agriculture types, are correctly
identified when we consider the temporal variation of satellite image spectral values.
Regions that are used for one-cycle and two-cycle crops are homogeneous during an
cropping year. Thus, it is important to consider the spatial and temporal dimensions
to extract these classes from satellite image sequences ordered in time.

2.2 Clustering methods

The method is based on two unsupervised clustering algorithms: SOM and agglom-
erative hierarchical clustering. The following describes each method in detail.

2.2.1 Self Organizing Map (SOM)

SOM is an unsupervised learning method based on competitive learning that reduces
a high-dimensional feature input space to a low-dimensional feature output space. A
dataset can be mapped and represented by a set of neurons by using weight vectors.
Preserve neighborhood topology is a key feature of SOM so that similar input data
is mapped to the same or a neighboring neuron.

Each output space neuron j has a weight vector (codebook vector) associated
wj = [wj1, . . . , wjn] that contains the same dimension n of the input data x(t) =
[x(t)1, . . . , x(t)n]. The algorithm consists of two main steps. First, the distances Dj

between a sample and each neuron in the SOM grid are calculated. The neuron with
the smallest distance value db is selected as the best matching unit (BMU) for that
sample. The equations for calculating distance and BMU are

Dj =
√√√√ n∑

i=1
(x(t) − wji)2 (2.1)

db = min(D1, ..., Dj) (2.2)

The second step is to adjust the weight vectors of the BMU and its neighbors so
that the neurons have similar properties. The equation for the adjustment is

wji = wji + α × hb,j[x(t)i − wji]. (2.3)

Where α is the learning rate and hb,j is the neighborhood function.
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These steps are repeated T times to ensure that the neurons organize themselves
into a similar neighborhood. Then, one neuron is assigned for each sample in the
dataset (KOHONEN, 1998).

The grid size defines the number of neurons in the SOM, which consequently rep-
resents the number of clusters to be formed and the distribution of the input data
(KöRTING et al., 2011).

2.2.2 Hierarchical clustering

Hierarchical clustering is a method that partitions data sequentially, creating a hi-
erarchy of clusters (EVERITT et al., 2011). This representation makes it easier to
visualize each step where level similarity occurs. Hierarchical clustering is classified
into two types: agglomerative and divisive. The divisive algorithm begins with the
entire dataset in one cluster and then divides it into two more similar clusters. The
agglomerative method starts with each weight vector in its own cluster, computes
a similarity matrix, and identifies the two most similar groups. The clusters are
merged at each step, and the hierarchy is built using linkage criteria (KAUFMAN,
1990).

Hierarchical algorithms construct a binary tree called a dendrogram. This structure
represents the order in which the clusters were merged. A dendrogram divides the
data into groups that are homogeneous within themselves. The variability of the
data can be visualized using the tree hierarchy. The objective of the dendrogram
is to explore and define the appropriate number of clusters based on the level of
analysis.

2.3 Material and methods

Figure 2.1 shows the proposed methodology for spatiotemporal segmentation using
SOM and agglomerative hierarchical clustering. The input data are a time series of
satellite images obtained over a data cube, consisting of one or more spectral bands.
After applying the SOM method, the algorithm’s output provides weight vectors,
also called codebook vectors, which have the same size as the input time series.
The number of codebook vectors depends on the grid size defined for the SOM,
where each vector represents a set of time series. In the agglomerative hierarchical
clustering step, the codebook vectors are the input data, in which the data are
clustered into levels based on a similarity score. After the final number of clusters
is determined, the unsupervised map is created in the spatiotemporal segmentation
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Figure 2.1 - Methodology for spatiotemporal segmentation of satellite image time series.

Source: From author.

tasks. However, smoothing is performed on this map, which is used as the basis for
segmentation.

2.3.1 Earth observation data cubes

Earth observation (EO) data cubes can be defined as multidimensional arrays with
space and time dimensions and spectral derived properties created from remote
sensing images mainly to support image time series analysis (APPEL; PEBESMA,
2019). The Brazil Data Cube (BDC) project is producing EO data cubes from
analysis-ready data of CBERS-4, Sentinel-2, and Landsat-8 satellite images for the
entire Brazilian territory (FERREIRA et al., 2020a).

This document used the EO data cubes of Sentinel-2 images with a spatial resolu-
tion of 10-meters and temporal aggregation of 16 days using the best-pixel approach
produced by the BDC project. For the experiments, we used these EO data cubes
for the study area considering one agricultural year, 2019-08-29 to 2020-08-12, cor-
responding to 23 images.
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To be as general as possible, only the Normalized Difference Vegetation Index
(NDVI) was used for this study. However, if the goal is to segment a specific land
cover, different bands can be used to segment the target better.

2.3.2 Satellite image time series processing

In the step of time series processing, we apply a cloud-free filter using the classes
"No data", "Saturated or defective", "Dark areas", "Cloud shadow", "Cloud medium
probability", "Cloud high probability", "Thin cirrus" and "Snow" contained in the
SCL (Scene Classification Layer) mask, and interpolate the missing values, using
using linear interpolation. Figure 2.2 shows a time series of NDVI extracted from
the EO data cube of Sentinel-2 images and associated with a spatial location of the
study area.

After interpolation, the image time series were formatted to serve as input to the
SOM. Based on the size of the area to be studied, the scene will have N × M pixels
where N is the width of the image and M is the height. The input format of the
model is an array [N ×M, T ×B], where the first component is the total size image’s
pixels, and the second depends on the temporal resolution T and spectral bands B.

Figure 2.2 - Example of an interpolated NDVI time series.

Source: From author.
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2.3.3 Clustering and segmentation

Each time series represents one image pixel in the time domain and serves as input
for the SOM algorithm. After the clustering step, each time series is assigned to a
neuron, which in turn has an associated codebook vector, i.e., the codebook vector
represents all-time series associated with the respective neuron, that characterizes
the dimensionality reduction since an image with N × M pixels is represented by
the number of neurons that make up the model.

Note that the number of patterns found in the image depends on the grid size chosen
for SOM. How they are grouped also depends on the selected distance, the shape of
the grid, and the neighborhood function.

After clustering with the SOM, the codebook vectors resulting from the first step
are used as input for agglomerative hierarchical clustering. This is a clustering of
the entire image represented by the codebook vectors, which would be impractical
if all pixels were used, depending on the size of the image. After the new clustering,
it is possible to create a visualization of the different levels of the clusters formed
using a dendrogram. As in the previous step, the clusters are formed depending on
some parameters such as the distance to be computed, the linkage criterion, and the
number of the new clusters.

After creating the unsupervised classification map, which serves as the basis for
creating the segments, spatial smoothing was applied to reduce noise. Because de-
pending on the spatial resolution, there may be various disturbances due to the
quality of the images, the presence of clouds, and spectral mixing models, since
a pixel may contain more than one ground information that affects its reflectance
value. Since it is a pixel-based approach, a pixel or a small set of noisy pixels may
interfere with forming polygons more representative of the actual area (KöRTING et

al., 2011).

Finally, a very simple but effective method was implemented to improve the final
segments. Based on the unsupervised classification map result, a method was used to
calculate the mode of a pixel neighborhood in which the value is replaced. Depending
on the experiment, different window sizes such as 3×3, 5×5, or 7×7 produce different
results with greater or lesser smoothing.
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2.4 Results and discussion

2.4.1 Study area

This document used the EO data cubes of Sentinel-2 images with a spatial resolu-
tion of 10-meters and temporal aggregation of 16 days using the best-pixel approach
produced by the BDC project. For the experiments, we used these EO data cubes
for the study area considering one agricultural year, 2019-08-29 to 2020-08-12, cor-
responding to 23 images.

To be general as possible, only the Normalized Difference Vegetation Index (NDVI)
was used for this study. However, if the goal is to segment a specific land cover,
different bands can be used to segment the target better.

The study area is in the Mato Grosso state, located in the mid-west of Brazil. Mato
Grosso is one of the largest states in Brazil; its territory is composed of three biomes:
Cerrado, Amazon, and Pantanal. Therefore, it presents a high spatial and temporal
heterogeneity. Figure 2.3 shows the study area that is located in Rondonópolis,
a city in the Mato Grosso state. The image on the right side corresponds to the
satellite/sensor Sentinel-2/MSI from an agricultural composition (Swir16, Nir, and
Blue) with a 10-meter spatial resolution.

The selected study region has several interesting land use and land cover elements
for the segmentation task. For example, an extensive urban center, the watershed of
the Rio Vermelho that extends throughout the state, native vegetation, agricultural
areas, and exposed soil regions.

2.4.2 Configuration

Based on the study area section, the images used in this work have 1954×2188 pixels.
The input format of the model is an array[4275352, 23], where the first component is
the total size image’s pixels and the second one depends on the temporal resolution
and spectral bands. For this experiment, 23 time series images with only one band
were used. Another configuration, for example, if we had a temporal resolution of 25
images and three spectral bands, would be the array [4275352, 75], since multiplying
25 by 3 gives 75, which corresponds to the concatenation of spectral bands.

For this experiment with the following results, only two parameters were selected
for the SOM, the grid size and the number of epochs, and two parameters were also
selected for the hierarchical algorithm, the final number of clusters and the linkage,
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Figure 2.3 - The study area where the experiments were conducted. The image on the right was taken
from Sentinel-2/MSI with a 10-meter spatial resolution. The composition (Swir16, Nir,
and Blue) was used.

Source: From author.

the other parameters were set by default for XPySom (MANCINI et al., 2020) and
sklearn (PEDREGOSA et al., 2011) Agglomerative Clustering, respectively. The size
of the SOM grid was determined based on the temporal and spectral variability of the
image, and empirically some grid configurations were tested. Visually satisfactory
results were obtained with size 12 × 12, totaling 144 neurons, and 20 epochs for
training. For the hierarchical algorithm, 4 and 12 final cluster numbers with the
average linkage were defined to check different spatiotemporal segments level.

The results were evaluated using qualitative and quantitative approaches. In the
qualitative approach, a visual analysis of the satellite image of a Sentinel-2 image
and a comparison with the reference provided by the TerraClass Cerrado project
for the same period. In the quantitative approach, supervised and geometric metrics
were used to analyze the quality of the produced segments. The following describes
the qualitative and quantitative results, respectively.

2.4.3 Qualitative evaluation

At the first moment, a qualitative assessment compares the segments with a Sentinel-
2 image and the TerraClass Cerrado map based on visual interpretation. TerraClass
Cerrado project produces land use and land cover maps for the Cerrado biome in
Brazil with spatial resolution between 20 and 30 meters (ALMEIDA et al., 2016). This
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project’s methodology for producing the land use and land cover map is based on
several steps, mainly visual analysis by remote sensing experts. The experts use
MODIS time series and high-resolution imagery to distinguish the different agri-
cultural cycles in each Brazilian biome. These data sets are available through the
TerraClass portal3.

The unsupervised result for the entire scene is shown in Figure 2.4. In this Figure,
we present the thematic map of the TerraClass project for the 2020 year and the
unsupervised maps with 4 and 12 clusters. Note that each map has its legend, and
the colors of the unsupervised maps do not correspond to the TerraClass map classes.

Figure 2.4 - Results obtained with the settings with 4 and 12 groups.

Source: From author.

In general, the two configurations were able to capture the main features of the re-
gion, namely: urban area, native vegetation, and water bodies. In the configuration
with 4 groups, it was possible to identify urban areas and waters more homoge-
neously. However, regions with different vegetation types, cropland, and pasture
land obtained a greater integration but a good separation from the other classes.

To support visual analysis and understand the dynamics of the model with 4 groups,
Figure 2.5 shows the dendrogram created by the hierarchical clustering method,
where 144 (12x12 SOM grid) codebooks vectors were integrated into 4 final clusters

3https://www.terraclass.gov.br/
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defined only by the time series distance. Figure 2.6 shows the NDVI profiles for each
codebook vector with the respective colors assigned to each final cluster.

Figure 2.5 - Dendrogram Results.

Source: From author.

Figure 2.6 - NDVI Codebooks vector of SOM.

Source: From author.

In the model with 12 groups, it was possible to detect more nuances in land use and
land cover classes. For example, the model captured different types of roofs, con-
tainers, and roads in the urban region. Another example is the detected vegetation
types, where it was possible to distinguish between dense and shallow vegetation.
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Figure 2.7 shows an average of the patterns integrated into 4 clusters in the hierar-
chical clustering step, which can be used as representatives of each cluster for the
unsupervised classification map with 4 clusters in Figure 2.4. In this way, it is possi-
ble to add more information to each segment, which can be used for other purposes
such as classification, data mining, or even to determine the number of final clusters
for segmentation.

Figure 2.7 - Time series representing each cluster.

Source: From author.

Analyzing some regions of the study area in more detail, we can observe in Figure
2.8a - Figure 2.8b a heterogeneous region, sharing the space with urban areas, shal-
low vegetation, dense vegetation and water bodies. Note that Figure 2.8a, which
corresponds to an image dated 2019-12-19 image, does not have a local pivot point,
unlike Figure 2.8b dated 2020-04-06, which has a pivot point in the center of the
region.

If we look at the unsupervised maps generated with 4 groups in Figure 2.8c without
smoothing and Figure 2.8d with smoothing, we can notice some points. The first
one is the loss of details such as trails and the smoothing of edges in some regions,
especially in urban areas and along the river. Despite the great heterogeneity of
the region, it was possible to make a macro delineation of the region by dividing it
into four major groups, such as water bodies, dense vegetation, roofs with exposed
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Figure 2.8 - Example of a scene with images with two different dates and segmentations with and
without smoothing with different number of clusters. In (a) we have a scene in the RGB
composite of 2019-12-19 (b) we have a scene in the RGB composite of 2020-04-06 (c)
segmentation of the scene with 4 clusters without smoothing (d) segmentation of the
scene with 4 clusters with smoothing (e) segmentation of the scene with 12 clusters
without smoothing (f) segmentation of the scene with 12 clusters with smoothing.

Source: From author.

soil, and the last group that integrated regions with temporal variations, such as the
region of the pivot. In Figure 2.8e and 2.8f, we see the same loss of detail of trails and
edges. With 12 clusters, it was able to see greater detail than with 4 clusters, where
regions were subdivided into two or more segments and produced more segments
as a result. Each segment has a distinct interpretation depending on the number
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of clusters selected. Each segment has a distinct interpretation depending on the
number of clusters selected.

Figures 2.9a and 2.9b were selected to observe the temporal change of some land use
and land cover areas and to see how the presence of the cloud in the river region did
not affect the final segmentation. Note that there is still a loss of detail in Figure
2.9c and Figure 2.9d due to smoothing. Even after smoothing in Figure 2.9d, it is
possible to see some orange segments in the middle of the blue river that would be
sandbars in this region. In Figure 2.9e and 2.9f, there is a black region that may
be an agricultural region, meaning that each segment has contextual information
associated with its dynamics in time.

Figure 2.10 shows another example that has a great heterogeneity drawing attention
by the good separability between vegetation, urbanized area, and the others for the
map with 4 clusters. In Figure 2.10e and 2.10f, where there are 12 clusters, one
can observe a greater diversification for this region with several different patterns
in time, note the good delineation of the segment in the upper right corner in pink,
representing temporal agriculture by TerraClass.

Temporal dynamics with characteristic patterns such as agriculture, vegetation that
remains constant over time, and patterns that generally remain constant over time
are easy to identify and distinguish from others.

After each step and the creation of unsupervised maps and subsequent smoothing,
Figure 2.11 shows the result of the segments with 4 clusters, it is possible to see how
the rivers and regions with dense vegetation are well-delineated.

2.4.4 Quantitative evaluation

In remote sensing image segmentation applications, determining the accuracy of seg-
mentation undertaken quantitatively is still at an early stage of maturation (COSTA

et al., 2018a). Since much of the evaluated work uses a qualitative approach to
measure the quality of its results, this document used supervised metrics for quan-
titative analysis to determine segmentation accuracy to perform the quantitative
analysis. Supervised metrics measure the similarity of generated segments to refer-
ence polygons by shape similarity. These metrics are divided into area-based and
location-based. The area-based metrics evaluate the overlap region between the seg-
mentation object and the reference polygon. The location-based metrics evaluate
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Figure 2.9 - Example of a scene with images with two different dates and segmentations with and
without smoothing with different number of clusters. In (a) we have a scene in the RGB
composite of 2019-12-19 (b) we have a scene in the RGB composite of 2020-04-06 (c)
segmentation of the scene with 4 clusters without smoothing (d) segmentation of the
scene with 4 clusters with smoothing (e) segmentation of the scene with 12 clusters
without smoothing (f) segmentation of the scene with 12 clusters with smoothing.

Source: From author.

the distance between the centroids of the segmentation objects and the reference
polygon (CLINTON et al., 2010).

Costa et al. (2018a) recommends the use of area-based metrics for applications in
which geometric representation is more important than the thematic information
associated with segment objects. Therefore, in this document, we used the metrics
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Figure 2.10 - Example of a scene with images with two different dates and segmentations with and
without smoothing with different number of clusters. In (a) we have a scene in the RGB
composite of 2019-12-19 (b) we have a scene in the RGB composite of 2020-04-06 (c)
segmentation of the scene with 4 clusters without smoothing (d) segmentation of the
scene with 4 clusters with smoothing (e) segmentation of the scene with 12 clusters
without smoothing (f) segmentation of the scene with 12 clusters with smoothing.

Source: From author.

Precision (RIJSBERGEN, 1979; ZHANG, 1996), Recall (RIJSBERGEN, 1979; ZHANG,
1996), F_measure (RIJSBERGEN, 1979; ZHANG, 1996), and Match (M ) (JANSSEN;

MOLENAAR, 1995; FEITOSA et al., 2010). The Precision metric measures the pre-
cision of the segment object, with the reference polygon being sensitive to under-
segmentation. The Recall metric measures how similar the reference polygon is to the
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Figure 2.11 - Spatiotemporal segmentation results (red outlines).

Source: From author.

segment object and is more sensitive to over-segmentation. The M metric measures
the average match between polygons and segments, measuring under- and over-
segmentation. Finally, F_measure is a combined metric representing the balance
between Recall and Precision, which also measures under- and over-segmentation.
These metrics range from 0 and 1, with the optimal value being 1.

The vegetation polygons were extracted based on the TerraClass thematic map
and compared with the 4 clusters map to perform the quantitative assessments.
Figure 2.12 shows the reference polygons extracted from the TerraClass Cerrado
project and used as reference polygons. The segmentation results compared to the
reference polygons can be seen in the same Figure, where the red area represents the
reference polygons, and the white lines represent the segment’s object. To calculate
the metrics, we used the R package segmetric (SIMOES et al., 2021).

The results of the metrics evaluated to determine the accuracy of the generated seg-
mentation are shown in Table 2.1. It can be noted that the Recall metric presented
the best result (0.87), indicating a small over-segmentation error. The M metric ob-
tained the worst result since this metric calculates the average between the match of
the two geometries. This value is due to some shapes that obtained a low value. The
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Figure 2.12 - Reference Polygons with fill-in red and the segments with black borders produced by the
model used for quantitative evaluation with a Sentinel-2 composition (Swir16, Nir, and
Blue)..

Source: From author.

Table 2.1 - Quantitative results of the spatiotemporal segmentation.

Metric Value
Recall 0.87

Precision 0.83
F_measure 0.85

M 0.64
Source: From author.

results obtained were satisfactory and showed a good agreement with the reference
polygons.

2.4.5 Comparison of approaches

Figure 2.13a shows the Rondonopolis region segmented using the region-growing
algorithm (ADAMS; BISCHOF, 1994) for a 2020-04-06 NDVI image. The adjustments
were made empirically in the Terraview 4 application developed by the National

4http://www.dpi.inpe.br/terralib5/
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Institute for Space Research (INPE) image processing division, with thresholds de-
fined so that the number of segments was similar to the result of the model proposed
in this document for comparison purposes.

Note that in Figure 2.13a, the colors of the segments contain no information other
than what distinguishes them from the other segments, while in Figure 2.13b, the
colors contain the temporal information of each segment.

In addition to these differences, the segments themselves may have different shapes.
Remember that in Figure 2.13a we are only looking at surface reflectance for a single
image in time, so it is not possible to extract features that do not change over time.
For example, if there are temporal dynamics within the chosen temporal resolution
that may depend on the number of clusters chosen, it is possible for a polygon
to represent these dynamics over time. In a single image of the same region, this
depends only on the change in reflectance.

Figure 2.13 - Study area segmented by two different techniques. In (a) we have the segmentation
of an single image using Region growing (b) we have our proposal of spatiotemporal
segmentation.

Source: From author.

2.5 Conclusion

This document presents a spatiotemporal segmentation based on two clustering
algorithms. Two configurations were used to present the model, and qualitative
and quantitative evaluations were made to analyze the segments generated by the
algorithm.

Note that due to the nature of spatiotemporal segmentation, some polygons repre-
sent land use and land cover classes that are often difficult to evaluate with a single
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image. On the other hand, land use and land cover types that have characteristic
temporal profiles, such as agriculture, deforestation, and forest fires, can be repre-
sented by a segment. Thus, with the knowledge of experts, it is possible to generate
segments of semantic information analyzing these temporal profiles.

As successive integrations of clusters are performed, the final segments may have
a large extent that can interfere with processing. However, creating rules to divide
these segments into subsegments is possible for better preprocessing.

The model was run on a Google Collab virtual machine with the following specifi-
cations: Intel(R) Xeon(R) CPU @ 2.20GHz with 2 cores, 12GB ram and 25GB disk
space, Nvidia K80 / T4 GPU with 12GB/16GB GPU Memory, which obtained the
times of 15 to 20 seconds for training with 20 epochs and approximately 5 seconds
for prediction for the SOM algorithm which had the longest execution time. Further
study will be done to take into account neighboring pixels for contextual informa-
tion and explore different spectral bands, temporal resolutions, and other spatial
resolutions for different land use and land cover applications.
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3 LAND USE AND LAND COVER MAPPING BASED ON IMAGE
TIME SERIES CLUSTERING

3.1 Introduction

Land use and land cover (LULC) map is a product, mainly derived from remote
sensing images, with several critical applications such as urban planning, natural
resource management, deforestation monitoring and food security analysis (BROWN,
2016) (SAAH et al., 2020). The quality of LULC mapping directly impacts the success
of its applications. Therefore, new prospects for LULC mapping have emerged with
the technological development in remote sensing and the increase in computational
power (SAAH et al., 2020).

With the availability of a large amount of remote sensing data with different spatial
resolutions, temporal and spectral models, and artificial intelligence models, LULC
mapping is becoming increasingly robust (SOILLE et al., 2018). Data structuring,
storage, and distribution technologies have enabled access to large volumes of data,
such as satellite image time series, which have been widely used for land use, cover
analysis, and classification (SIMOES et al., 2021). Due to their temporal characteris-
tics, these time series are crucial for understanding dynamics such as deforestation,
wildfires, flooded areas, and agriculture (PASQUARELLA et al., 2016).

To produce LULC maps from big data sets of remote sensing images, image time
series analysis and machine learning methods are being widely used with promising
results (GÓMEZ et al., 2016; BELGIU; CSILLIK, 2018; PICOLI et al., 2018; SIMOES et

al., 2020; SIMOES et al., 2021). Satellite image time series analysis captures subtle
changes in ecosystems and improves the quality of land classification (SIMOES et

al., 2021). Approaches that use satellite image time series analysis are defined as
time-first, space-later by Camara et al. (2016).

Some methods in the literature use clustering methods for classification, for example.
Gonçalves et al. (2008), which also uses SOM and HCA for classification but does
not use temporal information for classification and only uses an image in time and
samples. Bagan et al. (2005) uses SOM for classification using time series and land
use and land cover samples. However, the classification of each neuron is based on
the majority of the samples contained in each neuron.

Amitrano et al. (2017) proposes a feature extraction method from SAR images that
uses SOM to create segments based on the color homogeneity of a single image and
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uses the concept of Geographic Object-Based Image Analysis (GEOBIA) to extract
features from the segments and create a classification.

Most of the machine learning methods used to classify image time series and to
produce LULC maps are supervised and thus they require a training phase using
a significant number of samples labeled a priori. The quality of training samples is
crucial in the classification process. Good samples lead to classification results with
better accuracy (SANTOS et al., 2021).

This document evaluates image time series clustering methods to produce training
samples and to classify land use and land cover types. The main idea it to produce
these samples from the image time series and their clusters, mainly to identify land
use and land cover types that have characteristic spectral and temporal behavior
such as inland water bodies.

We propose a methodology for land use and land cover mapping using image time
series clustering. This document presents an experiment using this methodology to
map inland water bodies, a specific type of land cover, using six study areas as
training grounds for the Random Forest model.

Random Forest is a robust model that predicts using many decision trees. It works
by randomly selecting subsets of characteristics and training samples for each tree,
reducing variation and increasing accuracy. It aggregates predictions from each tree
into a final prediction, further enhancing model accuracy. Furthermore, essential
variables in the categorization can be recognized, aiding in interpreting the results.
It has been frequently utilized and proven in LULC classification based on time
series(SIMOES et al., 2020; BELGIU; DRăGU, 2016; PELLETIER et al., 2016).

The goal is to apply this model to four other regions to create a map of water bodies.
This mapping has several important applications, such as urban planning identifying
areas vulnerable to flooding where the temporal premise of the model facilitates the
identification of use and cover, as these areas are strongly characterized by their
temporal behavior. The experiment relies on two evaluation methods: qualitative
and quantitative.

The main water inland map available for Brazilian territory are those mapped by
the National Water Agency (ANA) (AGÊNCIA NACIONAL DE ÁGUAS (ANA), 2020;
AGÊNCIA NACIONAL DE ÁGUAS (ANA), 2022) and by the Brazilian Institute for Ge-
ography and Statistics (IBGE) (INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍS-
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TICA (IBGE), 2011; INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE),
2022), which can be described as official water map. However, both are made by
a mixture of different compositions of satellite images, field camps, historical map-
ping, and supervised delimitation. On the other hand, we can find products of land
use and land cover from which we can extract water bodies, as those provided by
MapBiomas (SOUZA et al., 2020; MAPBIOMAS, 2022) with 30m spatial resolution, and
ESA WorldCover (ZANAGA et al., 2021) with 10m spatial resolution, or even global
datasets which we can filter for Brazilian territory as the case of the JRC Global
Surface Water Mapping (PEKEL et al., 2016).

Despite the main water products using a set of annual images in a classification, those
procedures reprocess the images to get a better pixel, or reduce time information on
indexes, or even classify each time step and then include a new processing tool to
reduce it to a single image.

Both procedures lose information on the process or do not use all the time series
potential. According to Fu (2011) (FU, 2011) a time series "is a collection of ob-
servations made chronologically" and is always considered as a whole instead of an
individual numerical field. This chronological nature gives the time series compo-
nents such as trends, seasonality, and cycles (MORETTIN; TOLOI, 2008), providing
more data about the event.

3.2 Material and methods

Figure 3.1 shows the proposed methodology in the document, which can be de-
scribed in four stages: The first stage is the preparation of the data, where the time
series of images are extracted, and their interpolation to serve as input data for
clustering, which consists of two clustering methods, Self Organized Map (SOM)
and Hierarchical Clustering Algorithm (HCA).

The clustering step is performed on time series from the data cube of the area of
interest and results in an unsupervised classification map and the information of each
cluster formed by the SOM grid and the dendrogram. The third stage consists of the
training phase for land use and land cover classification. For each data cube to be
classified, an unsupervised classification map and a SOM grid consisting of neurons
with associated weight vectors are generated. These are commonly called codebook
vectors, which are considered a time series. Each codebook vector represents a set of
time series that characterize the dimensionality reduction. Each neuron is interpreted
as a different cluster with its associated time series. For each time series associated
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Figure 3.1 - Metodology for Proposed Method.

Source: From author.

with a neuron, this means that it has the shortest distance to the codebook vector
compared to all others.

Each neuron is associated with a segment/cluster in the unsupervised classification
map. For an expert, it is possible to assign a semantic meaning to each segment by
labeling each neuron. Depending on the size of the study area and the number of
neurons, it can be very costly to label each neuron. For this, the dendrogram can
be used to adjust the number of final groupings, which is not necessarily the same
as the number of land use and land cover classes.

The specialist determines the number of study areas for the training phase, and
the neurons for each area are labeled with the classes that make up the map. As
mentioned earlier, each neuron is associated with a segment on the map; therefore,
after labeling all neurons, the classified land use and land cover map are created.
And then, a validation process of these maps is done using Samples of land use land
cover time series. After validation, and if the results are satisfactory, a supervised
classification model is trained with the labeled neurons as input data, with the task

28



of labeling new neurons not seen by the model so that an expert is no longer needed
to classify new maps.

In the fourth step, new regions are selected from the training set, which has also
gone through the data preparation process and the clustering phase. The result is
unsupervised maps and the SOM grid with associated neurons. Unlike the previous
step, the new neurons are labeled by the trained model, where the model labels the
neurons, and then the classified land use and land cover map is generated.

3.2.1 Data preparation

It is necessary to define some parameters for extracting the time series, such as the
sensor to be used, the period to be mapped, whether data cubes with or without
aggregation should be used, and which spectral bands should be used.

After defining these parameters, the time series is extracted from the data cube
and subjected to a treatment to remove noise that could interfere with clustering.
Based on a cloud mask, the classes to be removed are selected, and then a linear
interpolation is performed using the last valid observation.

This process is of great importance in the clustering task, considering that only the
distances between the time series are used as clustering criteria, i.e., the influence
of a cloud in a period of the time series can be deterministic in clustering quality. It
can be that two time series that are spatially close to each other remain in different
clusters even though they have similar temporal and spectral dynamics because of
these noises, causing salt and pepper effects in the final map.

3.2.2 Time series clustering task

Two clustering models are used for this process: the Self Organized Maps (SOM)
and the Hierarchical Clustering, where depending on the computational power, it is
possible that the input of the SOM is all the time series of the image, that is, an
array [N × M, T × B ], where N is the width of the image and M is the height of
the image and T is the temporal resolution and B is the spectral resolution, if it is
not possible to use all the time series, a strategy can be used that does not harm the
final result as long as it does not change the distribution of the input time series.

Considering the nature of the extracted time series from the image, neighboring
pixels behave very similarly, so it is possible to make a stride skipping a few pixels
and thus reduce the number of time series in the model.
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It is worth noting that the more time series of the image used in the model input,
the more the codebooks will represent their time series sets, mitigating outlier effects
and making it easier to interpret the neurons in later processes. Remember also that
after the training phase of the SOM to generate the map, it will be necessary to
apply the model to all the time series of the image.

The SOM is an elastic network, i.e., the weight vectors are updated as a function
of the input data. If a non-ideal number of input time series is selected, the outliers
can shift this network by moving away from the center of the clusters. As a result, a
codebook vector is not faithful to the set it represents, affecting later interpretation
of the time series.

Determining the ideal size for the SOM grid can be challenging, given each region’s
different spectral and temporal dynamics, which can characterize different distribu-
tions. Again, depending on computational power, different grid sizes can be specified.
One argument that can be used to set the upper limit of neurons at 2700 is that
MapBiomas (MAPBIOMAS, 2022) has 27 land use and land cover classes, and Terra-
Class1 has 18 classes. Setting 100 different dynamics for each class seems reasonable,
considering that not all regions have a maximum of 27 classes.

The number of neurons may be much larger than necessary. In the Hierarchical Clus-
tering step, two strategies can be used. The first is defining a distance threshold for
integrating neurons that removes the excessive number of neurons smaller than the
defined threshold. Depending on the region, multiple neurons may not be activated,
and groups formed by the hierarchical clustering may also contain null time series,
so a filter can be created to remove these clusters.

A second strategy is to define a fixed number of final clusters into which several
similar neurons are integrated. It should be remembered that this step is entirely
changeable depending on the expert’s interpretation for a better classification. Af-
ter selecting the best approach, the unsupervised classification map and the final
clustering of neurons are created.

1https://www.terraclass.gov.br/
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3.2.3 LULC classification

3.2.3.1 Training task

In the classification training phase, a remote sensing specialist analyzes and labels
the neurons. The results of the previous stage, such as the unsupervised classification
map and the clustering SOM map, are used. Information such as the average of the
clustering weight vectors considered like a time series and the shape of the concerned
segments on the map are some information that the specialist can take into account
in the classification, in addition to the support from satellite images and other
resources.

After labeling each final cluster or neuron, the unsupervised map is also labeled
to create the land use and land cover map, which in turn undergoes a validation
process determined by the specialist to verify the quality of the map created. This
step is repeated for each map selected for the training step.

Now that the specialist has labeled the neurons, they are divided into different
training and validation sets. The weight vectors assigned to the neurons are the input
of a supervised classification model (Random Forest) and are trained in different
configurations of hyperparameters. The best model is selected and later used in the
prediction step to classify new neurons to reproduce the results of the labeling done
by the expert.

3.2.3.2 Predicting task

With the best model trained, new regions go through the clustering process, gener-
ating SOM maps with their respective weight vectors. The model labels each neuron,
generating land use and land cover maps.

3.3 Results and discussion

3.3.1 Water inland study area

We choose six places (Figure 3.2) that capture the different facet in the inland water
mapping.

• The first place is located in the Parque Estadual do Rio Negro in Mato
Grosso do Sul, Pantanal biome, local of a vast variation in the water sur-
face, including wetland zones and seasonal floods;
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Figure 3.2 - Location of the six areas tested in the study with tile number in brackets.

Source: From author.

• The second place is located inside the Floresta Nacional Jamanxim in Pará
state. The place contains several mining spots, which dump large amounts
of particulate matter into the river, causing confusion with soil during
classification;

• The third place is Curaí lake in Pará state. This lake has a significant
variation in its borders and affluent, changing its shape continuously;

• The fourth place is the Castanhão dam, located in the Caatinga biome,
more specifically in Ceará state. The place was chosen by its variation in
shape and the max flood area;

• The fifth place is located in the Serra da Canastra, Minas Gerais, inside
the Cerrado biome. The place concentrates a variety of agriculture, and
constant use of water can saturate the soil causing a misclassification of
inland water. Was also found some glint in the major lake;

• Last place is also located in the Serra da Canastra, Minas Gerais, and was
chosen by the proximity to high mountains and cliffs that makes shadows
in the terrain, causing misclassification;
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Figure 3.3 - The figure shows the four regions for model prediction. Image A corresponds to the RGB
image of tile 80086, B to tile 94096, C to 89101, and D to tile 84108.

Source: From author.

After the training phase the four regions were selected for prediction by the model
Figure 3.3:

• A: tile 80086 is located in the north of the country in the Amazon region,
its main body of water is the Balbina reservoir;

• B: tile 94096 is located in the northeast of Brazil between the cities of
Salvador and Aracaju and explores the coastal region;

• C: Tile 89101 is located in southeastern Brazil in the Cerrado biome. The
main river that flows through the region is the São Francisco River;

• D: Tile 84108 is located on the border between Mato Grosso do Sul and
Paraná and has the Paraná River as its main river.

3.3.2 Configuration

Each study area has images with the format 10986 × 16806 pixels, corresponding
to a BDC grid tile. For the input format of the model, it is an array [92315358,69],
where the first component has half the number of pixels in the image; since a stride
of one pixel was made due to computational constraints, that will not harm the
development of the model. The second component represents three spectral bands
of the Sentinel-2 sensor "B04" (red), "B08" (nir), and "B11" (swir16), which were
resampled to 10m and concatenated for 23 observations per band during the period
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from 2020-01-01 to 2020-12 -31. These three spectral bands were selected for this
objective because they extract different components from the water, allowing for
better characterization.

The correlations between the spectral bands of water samples extracted from ESA
map were analyzed, finding three large blocks with different correlations and select-
ing one band from each block. The first block consists of bands B01 to B05, the
second block of band B06 to B09, and the third is composed of bands B11 and B12,
which can be seen in Figure 3.4. With this configuration, we have good spectral and
temporal characterization.

The methodology proposed by ESA is found in (ZANAGA et al., 2021), which es-
sentially uses samples from Sentinel-1 and 2 time series, and extraction of various
features, performs supervised classification, and finally applies expert rules. Because
the central part of the methodology works exclusively with time series distances, it
is critical to have spectral enrichment, either using indices or more than one band,
because two pixels can have a very similar response in one spectral band but a
more significant difference in another, which can be crucial to stay in two different
clusters, with the addition of temporal features increases furthermore differences.

For this experiment, the size of the SOM grid was defined as 20×20 with 400 neurons
and 40 training epochs. For the hierarchical algorithm, 14 final cluster numbers with
the average linkage were used, and the Euclidean distance was defined, e the other
hyperparameters were defined by default as in the first experiment.

The land cover legend was based mainly on the temporal attribute of the feature.
Thus, the three main classes used to describe the inland water map were:

• Water - Include natural or anthropogenic water bodies, water courses, and
water drainage channels. Composed of any features with more than 70% of
water persistence during the year. Including lakes, rivers, reservoirs, ponds,
lagoons, and estuaries;

• Flooded area - Perennial or periodic water. Composed of features with less
than 30% of water persistence during the year includes wetlands, reservoirs,
ponds;

• Not Water - Any other land use or land cover. Including, forest, agriculture,
pasture, and urban areas.
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Figure 3.4 - Correlation Map for band selection.

Source: From author.

The expert analyzed the final clusters resulting from the clustering step, classifying
each cluster as "water," "flooded area," or "not water." After this step, a land use
and land cover classification map are created based on these classes.

The validation process was based on two schemes. First, we use the class water from
the ESA WorldCover v100 product, to get the area of intersection and concordance.
This product is based on Sentinel-1 and 2 data, available at 10 m spatial resolution
for 2020 (ZANAGA et al., 2021), and its global accuracy for South America is around
76% (EUROPEAN SPACE AGENCY (ESA), 2020).

Secondly, we use a pointed random sample, to estimate the accuracy of the clas-
sification map. In this scenario, a total of 250 points by each tile were randomly
generated considering the area of each class as a stratum.

Those random points were uploaded in the BDC-TerraCollect (BRAZIL DATA CUBE

(BDC), 2022b), to identify the class of each one. This platform is an online system
that provides tools to check spatially and temporally the values for each point using
the same data cube that was used in the classification process.
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Finally, the validation points were compared to the classified map, generating the
confusion matrix and its indexes, such as global accuracy, user accuracy, and product
accuracy. To understand the quality of the map the same set of points was also used
to check the accuracy of the ESA product.

After the classification and validation of the six areas of study, the already labeled
neurons will be input to the Random Forest model, which through a tunning with
RandomizedSearchCV with a slipt of 6 folders and 1000 interactions for each fold,
used a total of 6000 different trained models and as default score, the estimator
itself. The best hyperparameters (Table 3.1) were found with a final score of 97.4
percent.

Table 3.1 - Values used for each hyperparameter during the tunning process.

Hyperparameter Value
n_estimators 1200

min_samples_split 12
min_samples_leaf 2

max_features log2
max_depth 150
bootstrap True

Source: From author.

3.3.3 Visual analysis

In this section, a visual analysis will be made of two results, the first of the maps
generated by the specialist and the second of the maps used for the automatic
classification.

In Figure 3.5, there is a crop of the results of the approach proposed by this document
in the second line, in the first line are their respective Sentinel-2 RGB composition
images, and in the third line, the result of the ESA product of 10m spatial resolution.
Note that under each result is the proportion of each class present in each tile.

A visual comparison will be made between the ESA product and the proposed
method results for a small region within the six tiles of the training study area,
pointing out the main differences. Differences in crop region will be evaluated, and
differences that occurred in the tiles in general, which are not necessarily present in
the image, considering that each tile has a length of about 18000km2.

On tile 082104 Figure 3.5, located in the Pantanal biome, one of the most hetero-
geneous biomes in Brazil (ALHO, 2008), with a significant variation of flooded areas
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Figure 3.5 - The first line consists of a crop of the Sentinel-2 image in RGB of the six regions defined
for training, the second line of the corresponding result for Proposed Method, and the
third line for the ESA 10m product. Below the images, the proportion of classes for each
tile.

Source: From author.

at different times of the year, and therefore there is great difficulty in mapping this
area. We can see a considerable difference in the flooded area between the two maps,
the main difference being the legends of these maps for each class. The ESA con-
siders natural herbaceous vegetation (cover of 10% or more) that is permanently or
regularly flooded by fresh that are predominant in this tile.

An important thing to observe is that rivers of small widths are more captured and
usually grouped with some regions of flooded areas, so they received this classifica-
tion. A possible cause is the pixels that contemplate vegetation area and water in
its mixing model, causing the Influence on the pixel reflectance, where this behavior
can also be seen on the edges of rivers.

In tile 082090 Figure 3.5, rivers with a small width were captured in the proposed
method result. Another significant difference was that, unlike the ESA product, the
result of the proposed method covered mining regions and classified them as flooded
areas.

In Tile 83086, which has rivers with a large extension, we notice a big difference
between the two classifications of this area: the flooded area and permanent water.
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However, we can notice in the proposed method result a detailing of permanent
rivers in the middle of the flooded region.

In Tile 94090 of Figure 3.5, the proposed method result was better at capturing
flooded areas for this region, especially in the river branches. However, these areas
had a little confusion with irrigated crops, remembering that the hierarchical step
clusterized these areas clustering with 14 clusters. One way to improve this sepa-
rability is to increase the number of neurons or final clusters. The vast majority of
regions are easily separable with 400 neurons, but similar behaviors with different
classes may look at the same neuron in this process.

Tiles 88014 and 88105 in Figure 3.5 also maintained the characteristic of capturing
more rivers with a small width. In tile 88105, for the proposed method, he mixed
the flooded area with mountain shadows, which have a spectral behavior very close
to flooded regions since these shadows have a similar response to water. With the
seasonal variation in the satellite’s passage, the shadows vary in size and location
due to the variation in solar incidence, and the behavior resembles flooded areas.

Figure 3.7 shows more detail a behavior that occurred in all tiles where rivers with
a small width were mapped by the proposed method and ESAs were not.

Figure 3.6 - The figure consists of four components. The first is the Sentinel-2 RGB image of the
region; the second one is the unsupervised map resulting from the SOM step; the third
is the unsupervised map resulting from the Hierarchical Clustering step; and finally, the
SOM map with 400 neurons and Clustering by hierarchical Clustering with 14 clusters
corresponding to the colors of the map.

Source: From author.
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Figure 3.7 - The Figure compares the proposed method and ESA map from tile 80086 of two zoomed
regions with the Sentinel-2 RGB image corresponding to the center region.

Source: From author.

After training and selecting the best model, four new region was selected, Figure
3.3, including the Balbina Dam in the state of Amazonas . There, the time series
were extracted, and interpolation was performed for SOM input, resulting in a SOM
map with unlabeled neurons, which in turn generates the unsupervised map with
400 neurons like as in Figure 3.6 applied for tile 80086, along with the map with
clustering of neurons by HCA, which generates the map with 14 clusters also find
in Figure 3.6.

The unsupervised map (400 neurons) in Figure 3.6 consists of SOM clustering, i.e.,
the image has 400 distinct temporal and spectral patterns. A new clustering is
performed over the neurons represented by the codebook vectors. Figure 3.9 shows
the SOM map with Hierarchical clustering, where colors represent the clustering of
neurons. The 400 patterns represented by neurons have been reduced to 14, and it
is now possible again to create an unsupervised map with (14 clusters).

Figure 3.8 shows the SOM map labeled by the trained model that labels the neurons
individually based on their vector codebook. Note that the classification of neurons
for water and flooded area is concentrated in one part of the SOM map due to the
topology conservation property. In Figure 3.8, it is also possible to see the classi-
fication of each vector codebook with visually different standards for Nir. Neurons
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classified as water remained below 0.2 of reflectance, those classified as flooded had
midyear fluctuation, and not water remained near or above 0.2.

Note that for not water patterns, some codebook vectors for a given date exhibited
some noise and reached reflectance values close to 1. This occurrence is due to the
cloud mask not being 100% and not filtering the time series perfectly, so the map
SOM captures these noisy time series in a given neuron.

Figure 3.9 shows the map with the proposed method result for the whole tile for
four regions defined for training.

The tile 89101 in Figure 3.10 captured well the regions of flooded areas on the
banks of the main river in the region. At the same time, tile 84108 showed the
most significant differences in mapping small regions with irrigated agriculture as a
flooded area and also captured smaller-diameter rivers.

On tile 94096, a better resolution by proposed method prevails, especially for the
water tanks in the south of Figure 3.10 and for part of the river branches that were
better delineated. Another difference was that ESA products near the rivers mapped
more flooded areas.

Figure 3.8 - On the left is the SOM map with the classification of each neuron; on the right is the
classified vector codebook corresponding to each neuron.

Source: From author.
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Figure 3.9 - The figure presents the Proposed Method results for the four regions selected for predic-
tion, the tiles 80086, 94096, 89101, and 84108.

Source: From author.

It is noteworthy that all the areas mapped in Figure 3.10 were not worked on by
the specialist. The trained model labeled the neurons with the respective class later
used to create the map of use and coverage.

Figure 3.10 - Visual comparison between the proposed method and the ESA product for the tile 94090,
82104 and 83086.

Source: From author.
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3.3.4 Quantitative analysis

For each region with water bodies, maps of use and coverage were produced with
three classes: "water", "non-water" and "wetland area" to check the quality of each
map, and later it was quantitatively compared with the map of the corresponding
ESA classes. The validation process was conducted by an expert who randomly
generated 250 samples for each land use and land cover class based on the ESA
map. The samples were selected with a minimum distance between each other. Each
sample was classified blindly using only time series and satellite images.

The quantitative result of the validation can be seen in Figure 3.11, where tile
82090 for Proposed Method achieved 77.2% and ESA product 82.8% and tile 88105
Proposed Method achieved 74% with 78.8% of ESA, with ESA products having an
advantage and in the other tiles Proposed Method had an advantage over ESA with
tile 82104 Proposed Method achieving 85.2% compared to 72.4% for ESA, the other
tiles 83086 and 94090 achieved 80% and 91.2% for Proposed Method with 73.2% and
83.3% for ESA, respectively; overall, the proposed approach achieved on average 9%
more accuracy for the tiles where it was better and the ESA product achieved 5.2%
more in the tiles where it was better.

Figure 3.11 - Global Accuracy for each tile based in the time-series approach (SOM) and the ESA
land use and land cover product (ESA).

Source: From author.
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Table 3.2 shows the concordance matrix of the reference samples and the Proposed
Method equivalent class. As with the ESA product, the class with the lowest accu-
racy is the flooded class that caused the most confusion, as seen in the table.

To compare the mapped area, Table 3.3 shows a confusion matrix in km2 for each
tile between Proposed Method and ESA. Tile 82104 has a 6610 km2 flooded area
between the two mappings, expressing the slight difference between the definition of
the two classes in the two areas mapped, where this region of Pantanal has a large
area of natural herbaceous vegetation, whether flooded or not. The tile 83086, which
has the highest water cover, obtained a difference of 1062.8 km2 between the maps
with a greater coverage for the ESA product; in contrast, the flooded area had a
greater mapping area for the Proposed Method with 738.19 km2 difference, in the
end, approximately the same proportion remained in the classes that contain water.

Table 3.2 - Confusion matrix for each tile considering the SOM result.

Tile Predicted Proposed Method Reference
Not water Water Flooded Total

082090
Not water 106 0 1 107
Water 0 72 1 73
Flooded 30 25 15 70
Total 136 97 17 250

082104
Not water 121 3 34 158
Water 0 53 8 61
Flooded 1 10 20 31
Total 122 66 62 250

083086
Not water 96 5 14 115
Water 0 70 10 80
Flooded 4 17 34 55
Total 100 92 58 250

088104
Not water 137 5 0 142
Water 0 26 0 26
Flooded 6 26 50 82
Total 143 57 50 250

088105
Not water 124 14 0 138
Water 0 35 1 36
Flooded 25 25 26 76
Total 149 74 27 250

094090
Not water 101 1 4 106
Water 0 88 3 91
Flooded 10 4 39 53
Total 111 93 46 250

Source: From author.

3.4 Conclusions

A method for classifying land use and land cover using clustering methods were
presented. The method can be divided into two stages, the first to the creation of
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Table 3.3 - Cross validation between the ESA product and the SOM mapped approach.

TILE Proposed Method ESA Total Proposed MethodNot Water Water Wetland

082090
Not Water 18059.53 10.12 0.03 18069.68
Water 1.64 306.42 0.00 308.07
Wetland 62.63 22.60 0.09 85.32

Total ESA 18123.80 339.15 0.12

082104
Not Water 10191.95 9.79 6599.25 16800.99
Water 28.34 142.60 261.34 432.28
Wetland 208.00 42.84 978.47 1229.31

Total ESA 10428.28 195.23 7839.06

083086
Not Water 13923.03 48.28 398.32 14369.63
Water 19.22 2224.39 33.46 2277.07
Wetland 102.78 1067.20 646.40 1816.37

Total ESA 14045.03 3339.87 1078.18

088104
Not Water 18108.96 10.47 4.22 18123.66
Water 1.52 223.32 0.04 224.87
Wetland 34.44 68.92 11.18 114.54

Total ESA 18144.92 302.71 15.45

088105
Not Water 17910.75 13.49 3.02 17927.26
Water 0.07 309.80 0.00 309.87
Wetland 159.87 59.10 6.96 225.94

Total ESA 18070.69 382.39 9.99

094090
Not Water 17535.85 23.12 4.28 17563.24
Water 18.31 147.98 12.23 178.52
Wetland 643.73 40.34 37.24 721.31

Total ESA 18197.88 211.44 53.74
Source: From author.

the land use and land cover map by the specialist, which was used as training for
a supervised model (Random Forest), and the second part, where the specialist’s
results were reproduced for other regions.

There is a growth towards using deep learning models for land use and land cover
classification, which give excellent results. On the other hand, these models are
highly dependent on training data, which must be large and of high quality. Apart
from that, the first process of the proposed model could also be used to create
maps for deep learning models, considering that large maps can be easily created
by specialists, which have better accuracy than fully automated methods.

On the other hand, the proposed model also obtained good results for the classi-
fication of inland water bodies in the prediction process, even if only neurons are
classified, which also depends on the quality of the segments generated by spatiotem-
poral segmentation.

A limitation of the model is the classification of land use and land cover classes that
involves context, such as shrubland pasture, where a pixel-by-pixel approach would
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not solve this problem. For this reason, information from neighboring pixels can be
added in segmentation to delete and reduce effects such as salt and pepper and allow
the classification of classes that take context into account. In LULC classification,
some classes that require context could even be classified considering the geographic
features of the input segments. However, it would only be possible to reproduce by
extracting features for other regions and use as input to Random Forest.

In a general evaluation, the proposed method performed well in classifying inland wa-
ter bodies. However, problems such as miss classification in regions such as mountain
shadows could be solved with an elevation filter. For problems such as classifying
rivers with a small width, using spectral indices for water and adding contextual
information could also be evaluated to improve the results. The specialist could
consider the shapes of the segments and disassociate the classification to only the
neuron, solving type this problem, including mountain shadows.

As for processing, each tile requires a large amount of RAM and VRAM since
preprocessing is done with RAM and model training is done with VRAM. A large
structure is required for this extensive processing.

The LNCC/SDumont supercomputer was used to create the unsupervised map. The
image download phase took an average of 1,100 s per tile, with the most significant
overhead of the model occurring in the preprocessing portion, which takes an average
of 2,250 s to complete. With the GPU, the execution of the SOM is high-speed, using
92, 315, 358 of time series for training, which took an average of 300 s to complete.
For the other processes, an average of 500 s was spent, so the entire pipeline for each
tile takes an average of 1h and 20m. The SDumont queue sequana_gpu_shared was
used for this processing.

The second part of the method was performed on a conventional computer with an
Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz with 8 cores, 16GB Ram, and 250GB
hard disk space. After the Random Forest was trained, it was speedy in prediction,
and then the new pixel labeling was done based on the new classification.
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4 DEEP LEARNING AS A TOOL TO INTERPOLATE CLOUDY PIX-
ELS IN SENTINEL-2 TIME SERIES

1

4.1 Introduction

Passive sensors, such as the Multi-Spectral Instrument (MSI) onboard Sentinel-2, are
extremely susceptible to clouds. Even with this highly temporal recurrence, around
five days considering both satellites (EUROPEAN SPACE AGENCY (ESA), 2022), clouds
affect the ability to identify land covers, decreasing the accuracy of surface param-
eters as they interfere in the solar and terrestrial radiation (JENSEN; EPIPHANIO,
2011; COLUZZI et al., 2018).

In Brazil, due to its continental proportion, the cloud cover follows an irregular tem-
poral and spatial distribution. For instance, the Pampa biome presents a constant
number of clear imagery regions throughout the year. At the same time, the Amazon
suffers from a lack of clear images, more frequently available during the dry season
but not too successfully in the Northwest of the biome (MAS et al., 2020).

Most optical imagery already uses cloud detection algorithms to correct the radiance,
indicate cloudy areas, and indirectly help users work properly with remote sensing
imagery. In this sense, we can point out the Fmask(QIU et al., 2019) used in the
Landsat collection; Sen2Cor(LOUIS et al., 2016) used by the European Space Agency
(ESA) in their Sentinel-2 satellite products, and; s2cloudless(SENTINEL HUB, 2022)
used by the Sentinel Hub’s in its derivation products from known satellites.

However, those techniques can overestimate cloud areas harming temporal analyzes.
A study performed by Sanchez et al. (2020)(SANCHEZ et al., 2020) in the Ama-
zon tropical forest shows that using the FMask 4 in Sentinel-2 images results in
an overall accuracy greater (90%) than the regular Sen2Cor (79%). While Coluzzi
et al. (2018) (COLUZZI et al., 2018) shows that globally the Sentinel-2 cloud mask
underdetect systematically, reaching a maximum difference (70%) in the Amazon
basin.

In analyses that use temporal information, such as deforestation, forest degradation,
and phenology, the lack of valid data due to cloud periods is crucial, making the
interpolation technique required. There are many available methods to interpolate

1This chapter is an adaptation of SILVA, B.L.C.; CAMPANHARO, W.A.; SOUZA, F.C.; FER-
REIRA, K.R.; QUEIROZ, G.R. Deep learning as a tool to interpolate cloudy pixels in Sentinel-2
time series. In: SBSR, 20° Simpósio Brasileiro de Sensoriamento Remoto, 2023.
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time series, since more simple such as nearest-neighbor interpolation, until stochastic
methods, such as machine learning methods (LEPOT et al., 2017).

In this sense, this document aims to verify if the use of deep learning is capable to
improve visually and temporally the values of an image without the use of a cloud
mask, and adopting all-time series as input.

4.2 Material and methods

We use the Sentinel-2 images from the Brazil Data Cube (BDC) project.
The project generates multidimensional analysis-ready data cubes. We use
S2-SEN2COR_10_16D_STK-1 product that contains MSI surface reflectance at full
spatial resolution (10m) and 16 days Temporal Compositing considering the SCL
cloud mask. The temporal composite is generated from the images with less clouds
over the 16 days (FERREIRA et al., 2020c; BRAZIL DATA CUBE (BDC), 2022a).

The Multilayer perceptrons (MLP) were chosen to test a new interpolate approach.
This method is a feedforward neural network that indicates that the information
flows through layers always forward until it approximates to the determined function
and finally reaches the output (GOODFELLOW et al., 2016). The MLP implementation
used is from the scikit-learn MLPRegressor library (PEDREGOSA et al., 2011).

The methodology follows five main steps, as shown in Figure 4.1. First, we collected
102 random patches across Brazilian territory, selecting areas that encompass each
class of clouds following the Sentinel cloud mask (Scene Classification Layer - SCL).
Each patch has a 500 x 500 pixels size, encompassing 250,000 time series, which will
represent a total of 25,500,000 samples.

Secondly, we extract the time series of one year (01-01-2019 to 12-31-2019) from the
Sentinel-2 data cube, including three bands (B04-Red, B08-Nir, B11-Swir). Next,
those time series were interpolated using the interp function by the numpy li-
brary (HARRIS et al., 2020), based on the classes "No data", "Saturated or defective",
"Dark areas", "Cloud shadow", "Cloud medium probability", "Cloud high probabil-
ity", "Thin cirrus" and "Snow" contained in the SCL mask. Later, those time series
were used to train the MLP model, and then the model was applied in different
areas with different cloud cover structures and land use and land cover patterns.

The strategy of this document is to interpolate the time series without using a cloud
mask. In this sense, the model input consisted of two-dimensional arrays. The first
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Figure 4.1 - The methodological scheme used in this study, with the main tasks: 1-random points
generation; 2-extraction of the time series; 3-linear interpolation; 4-training the MLP
model; 5-predicting the cloud-free values for a year of images.

Source: From author.

dimension is the number of samples, and the second is the time resolution of the
time series, resulting in an output with the same time dimension as the input.

Two hidden layers were defined with six variations in the number of neurons: [8,4],
[16,8], [32,16], [64,32], [128,64], and [256,128], where the first value is the number
of neurons in the first layer and the second value is the number of neurons in the
second layer.

Another configuration used is related to the total training samples. From the
25,500,000 random time series extracted for the whole Brazilian territory, we set
two different networks, one with a step size of 10 pixels and another with a step
size of 100 pixels, summarizing 2,550,000 and 255,000 time series, respectively. The
activation function used was relu with the solver adam, the alpha was set to equal
to 0.001, batch size to 1000, learning rate init to 0.001, validation fraction of
20%, and the other parameters as default.

We use two methods to validate the deep-learning approach. First, a visual procedure
was applied, this method consist in to indicate if the patterns, texture, and features
were modified, and all those features were indicated by a specialist.
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The second procedure was to check if the physical value (superficial reflectance)
changes at the point to invalidate the intrinsic characteristic of the object. We collect
random points and compare our approach with linear interpolation. The root mean
squared error (RMSE), the mean squared error (MSE), and the mean absolute error
(MAE) were used to check the divergences between both approaches.

4.3 Results

Figure 4.2 shows the application of the 12 models for one pixel of the NIR band along
with the raw time series and the linear interpolated time series based on the cloud
mask. The gray highlighted background represents the pixels identified as clouds
and needs interpolation.

Table 4.1 shows the reference values for each model with their respective MSE,
RMSE, and MAE values calculated using linear interpolation as the baseline. An
improvement between the set with 255,000 and 2,550,000 samples is seen in the
Table 4.1. On the other hand, in the model with fewer neurons, such as 8_4, 16_8,
and 32_16, the time series becomes flatter and loses all the variation. In contrast,
the model with more neurons, such as 64_32, 128_64, and 256_128, is more similar
to linear interpolation, as can seen in Figure 4.2.

Figure 4.2 - Result for the six models of each training set, comparing it to the linear interpolation and
the raw data. The bars represent the cloud class extract from the SCL band.

Source: From author.
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Table 4.1 shows the reference values for each model with their respective MSE,
RMSE, and MAE values calculated using linear interpolation as a baseline.

Table 4.1 - Metrics comparing the six models of each training set with linear interpolation.

Model S255,000 S2,550,000
configuration MSE RMSE MAE MSE RMSE MAE

8_4 0.0121 0.1100 0.0866 0.0100 0.1000 0.074
16_8 0.0100 0.1000 0.0758 0.0038 0.0616 0.0526
32_16 0.0049 0.0701 0.0577 0.0480 0.0694 0.0461
64_32 0.0038 0.062 0.0431 0.004 0.0629 0.0426
128_64 0.0014 0.0374 0.0281 0.0022 0.0466 0.0299
256_128 0.0026 0.0510 0.0335 0.0007 0.0258 0.0177

Source: From author.

Figure 4.3 shows two scenarios of cloud cover selected. In the first, there is the
presence of Cirrus clouds and large shadows, indicated by the red and blue polygons.
While in the second, there are dense clouds and well-defined shadows. In the baseline
section, the raw image and the linear interpolated method result are displaced.

To track the visual efficiency generated by the MLP method, we distribute the
images by the number of samples (column) and the number of neurons (lines).

The image reconstructions show a higher variance between the 12 results from the
MLP model. Visually the low number of neurons highlighted the features more than
the linear interpolations, increasing the contrast and the visual acuity.

However, the cloud’s shadow is a persistent artifact in the MLP model, mainly in the
model set up with more neurons. From 32_16 the cloud’s shadows start to appear as
an artifact of the MLP, presents only in the 2,550,000 sample set. After this point,
the presence of cloud artifacts was more present, including the insertion of bare soil
in the middle of an agricultural area.

4.4 Discussion

Table 4.1 shows a small error, with some configurations performing better quanti-
tatively. Looking at Figure 4.3, we can observe some characteristics of each model.
The models with fewer neurons were smoother and removed most of the temporal
breaks. This characteristic is also evident when we reconstruct the image, as in Fig-
ure 4.3. The configurations with fewer neurons removed both the cloud and shadow
influence. However, as a result, the temporal variability of use and coverage was lost.
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Figure 4.3 - Visual comparison between the original image (Raw), the linear interpolated, and the MLP
results. The column shows the results with the different numbers of samples, and the lines
show the variation of neurons in each layer. Composite Color Image: Red-B04, Nir-B08 e
Swir-B11.

Source: From author.
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At the same time, the other images showed little variability, tending to remove, for
example, the crop rotation.

The models with more neurons behaved more like linear interpolation. As a result,
where the cloud mask has more errors, the model also "learned" the same errors,
making it very difficult to interpolate cloud shadows. Although, it can even inter-
polate some types of clouds well, with the advantage of preserving some temporal
variability in the other images.

The Linear Interpolation (LI) uses the SCL cloud mask to orientate where the
algorithm should be interpolated. In this sense, in places where the mask made a
misclassification, the pixel still shows the influence of the cloud. In those areas, the
imagery presents a very characteristic cloud noise.

As pointed out by some authors (COLUZZI et al., 2018; SANCHEZ et al., 2020), the
SCL mask under-detects systematically clouds. Thus, even with the best method of
filling a gap, the fact of needing the mask as a guide still makes remains noisy in
the images.

There are some deep-learning approaches to dealing with clouds. However, they are
more interested in indicating where they are and passing the users the process to fill
the gap. This is the case of the S2cloudless (SENTINEL HUB, 2022). However, even
this algorithm uses a cloud mask as training data.

Depending on the number of neurons used in each layer, the MLP model resembles
linear interpolation. However, in those scenarios, the model shows difficulties in
dealing with cloud shadow, not smoothing the valley as visible in the models with
fewer neurons.

The size and quality of the samples are very important in machine learning applica-
tions (MAXWELL et al., 2018; SENTINEL HUB, 2022). The two sets did not disagree
too much visually and physically in our approach.

4.5 Conclusions

Optical remote sensors are extremely susceptible to clouds, leaving it up to the user
to remove them and deal with possible failures. The use of deep-learning models
brings an advantage because, simultaneously, the presence of clouds is removed,
and the data are already interpolated and smoothed, two essential steps usually
performed when working with time series.
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Our study shows that the Multilayer perceptron (MLP) has great potential to per-
form the basics process leaving the image ready to use in time series as pixel data
or imagery composition. However, the choice of the number of neurons must be
considered since, when reducing this parameter to remove more cloud artifacts, the
final interpolation excludes significant variations of features, such as wetlands, crop
rotation, and vegetation growth.

While configurations with fewer neurons have been shown to improve the reduction
of clouds and cloud shadows, they may also result in a loss of temporal variability at
other times, which is not desirable for most applications. Therefore, configurations
with more neurons tend to be more useful, even if they do not improve cloud-
shadow interpolation, because they preserve the temporal structure of the images.
Consequently, it is evident that the training set must have the smallest possible
error for the model to learn more effectively.

This study was limited to comparing, at the first moment, the MLP model as an
alternative to the linear interpolation technique. Further studies need to be devel-
oped to check the factual accuracy of the interpolation, the depth of the model more
suitable considering all Brazilian territory, and its potential use to rebuild a cloud
mask.

In future work, we intend to use visual interpretation, not the SCL cloud mask,
to identify clouds and shadows in the random time series used to train the MLP
method. Thus, we will be able to evaluate the deep learning approach regardless of
the SCL cloud mask errors.
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5 CONCLUDING REMARKS

This document is organized as a collection of articles. Chapter 2 is based on the
article published at the Proceedings of the The International Society for Photogram-
metry and Remote Sensing (ISPRS) congress Silva et al. (2022). Chapter 3 is an
article that will still be submitted to some journal. Chapter 4 is an article accepted
to be published in the XX Brazilian Remote Sensing Symposium (SBSR 2023) pro-
ceeding by Silva et al. (2023). These articles contains the main contributions of this
dissertation.

Chapter 2 presents a spatiotemporal segmentation based on two clustering algo-
rithms. Two configurations were used to present the model, and qualitative and
quantitative evaluations were made to analyze the segments generated by the pro-
posed methodology. Note that due to the nature of spatiotemporal segmentation,
some polygons represent land use and cover classes that are often difficult to eval-
uate with a single image. On the other hand, land use and cover types that have
characteristic temporal profiles, such as agriculture, deforestation, and forest fires,
can be represented by segments. Thus, with the knowledge of experts, it is possible
to generate segments of semantic information analyzing these temporal profiles.

The methodology and experiments presented in Chapter 2 run on a Google Col-
lab virtual machine with the following specifications: Intel(R) Xeon(R) CPU @
2.20GHz with 2 cores, 12GB ram and 25GB disk space, Nvidia K80 / T4 GPU
with 12GB/16GB GPU Memory, which obtained the times of 15 to 20 seconds for
training with 20 epochs and approximately 5 seconds for prediction for the SOM
algorithm which had the longest execution time. For the development of the work,
neighboring pixels are considered for contextual information and different spectral
bands, temporal resolutions, and other spatial resolutions are investigated for dif-
ferent land use and cover applications.

Chapter 3 presents a method for classifying inland water bodies based on clustering
satellite image time series. Some maps produced by specialist achieved an accuracy of
more than 80%, even 90%, even with the difficulty of mapping flooded areas. A visual
interpretation was made comparing the proposed method and the ESA product in
the prediction maps. Several comments were made, especially in capturing low-width
rivers by the proposed method.

The incorporation of methods such as GEOBIA will be explored for future works,
using the segmentation map as the basis for the specialist to extract various features
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of the segments, including the segment’s temporal information. Including contextual
information in the clustering, phase can help classify classes that need contextual
information.

Chapter 4 discussed a methodology for interpolating clouds, cloud shadows, and
other noises using Deep Learning, even if still in an early stage. However, time series
interpolation is a critical issue for the quality results of the proposed models, which
are based on clustering methods that use time series distance as a clustering criterion.
The experiments showed a large variability of results concerning the parameters used
in the model. Most of the errors were passed on due to the errors contained in the
training data itself.

Deep learning models require a large number of training data, in part due to the
nature of the problem, where satellite image time series exhibit large variability. The
ideal would be to have more accurate training data to evaluate the model results
better, and even with low-accuracy data, great potential has been identified. New
parameters with more accurate training data will be evaluated for future work, and
a better extract of samples will be proposed.
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