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Abstract 

The analytical representation of intermolecular interactions combines dynamical and 

structural viewpoints, utilizing a spherical harmonics expansion based on high-level ab 

initio generated stereodirected configurations. The potential energy surface of the 

Cl2⋯Cl2 system is built by a number of selected cuts (leading configurations); the best 

fits of their dependence on the intermolecular distance are phenomenologically 

represented by the Pirani et al. potential functions. The quality of the representation is 

validated by accurate calculations of a property of the gaseous mixture, the second virial 

coefficient, in a range of temperatures, with good agreement with reference data. 

 
 

Introduction 

 

In the past few years we have been working 

in developing potential energy surface 

(PES) using the spherical harmonic 

expansion. A good application for this PES 

is calculating the second virial coefficient 

that is related with the state equation of a 

real system, given by: 
𝑝𝑉

𝑅𝑇
= 1 +

𝐵

𝑉
+
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where p is pressure, T temperature, V molar 

volume, R gas constant, B, C, D,  are the 

series of virial coefficients, second, third, 

fourth, respectively. 
The main point for these coefficients are 

that they are directly related to the 

interaction between molecules, the second 

virial coefficient comes from diatom 

interaction, third virial for triatomic 

interaction and so on.  
The second virial coefficient is given by: 

𝐵𝑐𝑙(𝑇) = −2𝜋𝑁𝐴 ∫(𝑒−𝑈(𝛺) 𝑅𝑇⁄ 1)𝛺2𝑑𝛺 

where 𝑈(𝛺) is the PES and  is the Jacobi 

coordinate for the molecules, in our case   

𝛺 = (𝑅, 𝜃1, 𝜃2, 𝜙), NA is the Avogadro 

number. The interval of temperatures of 

interest are such that we only need to 

calculate the classical correction of the 

second virial coefficient given by the 

expression above. 
  

 

 

Methodology  

 In previous papers for H2  H2 [1], 

F2  F2 [2], we use the five LC, leading 

configuration, minimum expansion and six 

LC extended expansion system, with the 

three angles (θ1,θ2,ϕ): H (/2,/2,0), 

L (0,0,0), T (0,/2,0), S (/3,/4,/2), 

Z (/4,/4,0),  and  X (/2,/2,/2), as we 

are going to use here. We use Molpro [3]  to 

calculate a set of 100 ab initio points at 

varying intermolecular distances 

3.0 ⩽ R ⩽20.0 ˚A, for each LC, at the 

CCSD(T)/aug-cc-pVXZ level, with X = D 

and T, and use the CBS expansion [4]: 

𝐸𝐶𝐵𝑆 = 𝑎 +
𝑏

𝐸𝑋
𝑛 

where a and b are fitting parameters, EX 

represents the energy at X level and n the 

number of basis set. 

The equilibrium distances were 

obtained at the same basis set level getting 
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2.008 ˚A at CBS level. These results are in 

good agreement with the experimental data, 

1.988 ˚A [5]. To fit the ab initio point we 

use the Pirani potential [6-7]: 

𝑉(𝑅, 𝛾) = 𝜀[
𝑚

𝑛(𝑅, 𝛾) − 𝑚
(
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𝑛(𝑅, 𝛾) = 𝛽 + 𝛼(
𝑅

𝑅𝑚
)2 

where R is the distance between the centers 

of the monomers and 𝛾 ≡ (𝜃1, 𝜃2, 𝜙), 

according to the well-known Jacobi 

coordinates.    The free parameter are m,  

and , while Req and  are minimum 

position of the well, and the depth of the 

well respectively.   

 The PES is given by: 

𝑉(𝑅, 𝜃1, 𝜃2, 𝜙)

= 4𝜋 ∑ 𝑣𝐿1,𝐿2,𝐿(𝑅)Υ𝐿1,𝐿2

𝐿,0 (𝜃1, 𝜃2, 𝜙)

𝐿1,𝐿2,𝐿

 

where R is the distance between the center 

of mass of Cl2, 𝑣𝐿1,𝐿2,𝐿(𝑅) represents the 

isotropic and anisotropic terms of the 

potential, Υ𝐿1,𝐿2

𝐿,0 (𝜃1, 𝜃2, 𝜙) is the bipolar 

spherical harmonics, and 𝐿1, 𝐿2 = 0,1,2, ⋯ 

with 𝐿1 − 𝐿2 ≤ 𝐿 ≤ 𝐿1 + 𝐿2. 

  

Result  

 The most stable LC is the X, with 

energy of 69.5 meV and distance of 

3.479 Å while the less stable is the L one 

with energy of 18.1 meV and distance of 

5.399 Å. The isotropic one is given by v000 

that can be measured experimentally and be 

compared with different system. For the 

system analyzed, here the isotropic distance 

are 4.893 Å with 23.2 meV energy. 

 Figure 1(a) shows the ab initio 

point and the fitting data, using the Pirani 

potential, while the figure 1(b) compares 

the ab initio/fitting points for the X – LC 

calculate considering the BSSE correction, 

there is a increasing in the distance of 1.5% 

and 29.5% in the energy. For the T – LC 

the increase in the distance is 0.41% and for 

the L – CL is 53.4% in the energy. It shows 

the importance of considering the BSSE 

correction for the system. 

  Figure 1(c) and 1(d) shows the 

PES cut in the isotropic distance and 

dihedral angle of 0 and /2, respectively. In 

figure, 1(c) shows the T as the most stable 

one while in figure 1(d) shows the X as the 

most stable one. Comparing figure 1(a) one 

can see the X as the most stable one and the 

T as de second most stable with a difference 

of 0.88Å in distance and -9.7meV in the 

energy. The L – LC is the less stable one. 

Figure 1(e) shows the isotropic and 

anisotropic terms of the potential. One can 

see the terms 220 and 222 have a repulsive 

character. 

Figure 1(f) compares the virial 

coefficient for the system using the 

minimum, with five LC, PES and the 

extended, with six LC one, with the 

experiment data [8]. For low temperature, 

the extended one is closer with the 

experimental data, while at high 

temperature the minimum one fits better. 

 
Conclusion 

 

 The second virial coefficient for the 

Cl2  Cl2 system are presented with good 

agreement with reference data. Using two 

different model, one with five LC and other 

with six LC. 
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Fig. 1: (a) ab initio points compared with Pirani Potential fitting, (b) X LC with and 

withou BSSE correction, (c) PES cutting with R=4.893Å and =0, (d) PES 

cutting with R=4.893Å and =/2, (e) isoprotic term of the potential, (f) virial 

coefficient compared with reference [8] 
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