
1.  Introduction
Equatorial Plasma Bubbles (EPBs) over South America have been studied extensively over the years. The EPBs 
are defined as plasma depletion formed by Rayleigh-Taylor Instability (RTI) processes (Kelley, 2009). Different 
instruments and methodologies can be used to detect these EPBs, such as Ionosondes (Abdu et al., 2003, 2012), 
All-Sky Imager (Pimenta et al., 2007; Vargas et al., 2020), total electron content (TEC) (Barros et al., 2018; 
Silva et al., 2019), Very High Frequency (VHF) radars (Abdu et al., 2009), scintillation index (S4) (De Paula 
et al., 2007; De Rezende et al., 2007), disturbance ionospheric index (DIX) (Denardini et al., 2020), and Rate 
Of TEC Index (ROTI) (Carmo et al., 2021; de Jesus et al., 2020). These irregularities are commonly generated 
after sunset (Abdu et al., 2003; Agyei-Yeboah et al., 2021; Magdaleno et al., 2012; Vargas et al., 2020). There 
are also studies reporting plasma bubbles occurring post-midnight (Arruda et  al.,  2006; Otsuka,  2018), and 
during magnetic storms (Abdu, 2012), while cases of pre-sunrise plasma bubbles are rare (Burke, 1979; Mrak 
et al., 2021; Sripathi et al., 2018; Wu et al., 2020; Yeh et al., 2001; Zakharenkova et al., 2019).

Sripathi et al. (2018) investigated an unusual generation of EPBs at dawn (until 05:30 LT), in the Indian sector, 
during a moderate magnetic storm (4–5 February 2011, Kp = 6). They attributed the triggering mechanism to 
a combination of Prompt Penetration Electric Field (PPEF) and Disturbance Dynamo Electric Field (DDEF), 
despite showing no evidence of these. Mrak et al. (2021) also noted EPB persistence after dawn (2 hr) but did 
not explain the possible mechanisms that make EPBs persist. Wu et al. (2020) observed an equatorial plasma 
bubble near sunrise (until 08:00 LT) during the recovery phase of a magnetic storm (6–8 November 2015). They 
suggested that the enhanced eastward electric field uplifted the F layer, triggering the RTI and generating an EPB. 
But all these events did not last long (hours) after sunrise, which makes the case presented in this study a unique 
one, where the EPBs lasted about 3:30 hr after sunrise. In addition, this study aims to investigate possible mech-
anisms by comparing similarities and differences in two longitude sectors separated about 30° for the persistence 
duration of these irregularities.
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Zakharenkova et al. (2019) studied plasma bubbles during the 2015 St. Patrick's Day magnetic storm within a 
global overview, and they observed EPBs in the pre-dawn in South America. They suggested that the DDEF was 
responsible for the generation of these rare EPBs. However, they did not explain the longitudinal characteristics 
of the plasma bubbles and did not report daytime EPBs. Our observations presented in this work address the 
dawn- and post-dawn time EPBs. Our analysis aims to study and understand the triggering, development, and 
longitudinal dependence as well as duration of the dawn- and post-dawn EPBs occurred in the recovery phase of 
the St. Patrick's Day magnetic storm on 18 March 2015. This study aims to present comprehensive observations 
of pre- and post-sunrise EPBs in the South American sector using multi-diagnostic observations from different 
instruments. The uniqueness of this study is our effort to understand the generation and evolution of these EPBs 
around dawn and daytime and the differences and similarities observed at different longitudes (west and east 
coasts).

2.  Available Datasets and Methodology
In the present study, we use a set of data from multi-diagnostic instruments, including Global Navigation Satellite 
Systems (GNSS) ground receivers, L-band GNSS ionospheric scintillation monitors, ionosondes, and Fabry-Perot 
interferometer on the South American sector. GNSS receivers are used for regional and local observations of 
irregularities seen in TEC. Ionosondes are used to observe the presence of Spread F, which is associated with 
EPB. A Fabry-Perot interferometer is used to observe wind characteristics. More information about measure-
ments from these instruments is described in Sections 2.1 and 2.2.

Figure 1 shows the station locations from which data are collected and used to analyze ionospheric irregularities 
in this study. Panel (a) gives the locations and names of stations of special interest (studied in detail), and panel 
(b) shows the locations of distributed GNSS receivers (blue points) and ionosondes (red triangles), from which 
GNSS data are processed to produce 2D regional TEC and ROTI maps and ionosonde data are presented to 
spread-F activity. The continuous red line in panel (b) across the map indicates the geomagnetic equator.

Table 1 contains information about eight specific GNSS receivers, including latitude, longitude, dip angle, and 
time of sunrise.

The data access information for Table 1 is presented in the Acknowledgments, Samples, and Data section.

2.1.  GNSS, TEC, and ROTI Calculation

Observables of GNSS signals are processed to generate Global Positioning System (GPS) TEC maps and ROTI 
maps, which are used to detect plasma depletions (e.g., EPB) and ionospheric irregularities.

TEC above each station was obtained by processing GPS RINEX data using a GPS-TEC Software Program 
(Seemala & Valladares, 2011, version 3.0). The program uses GPS navigation data and the satellite biases from 
Differential Code Bias (DCB) IGS data. Moreover, the software calculates the receiver biases and computes the 
slant TEC (STEC) and the vertical TEC (VTEC). These parameters are given in TEC units (TECU = 10 16 elec-
trons/m 2). In addition, data at elevation angles lower than 30° is excluded to avoid noisy data such as multipath 
errors at low elevation angles.

We also use the ROTI defined in Pi et al. (1997, 2013) using GPS and GLONASS constellations data. To calcu-
late the ROTI, the STEC is obtained using only the carrier-phase, that is,

STEC =

(
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𝐾𝐾
,� (1)

where c is the speed of light in the vacuum, and the parameter K is 40.3 m³/s 2, as presented in Cherniak et al. (2018). 
For GPS, the carrier frequencies 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 are 1,575.42 and 1,227.60 MHz, respectively. For GLONASS, the 
frequencies 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 are 1,602.0 MHz + 0.5625 * R and 1,246.0 MHz + 0.4375E6 * R, respectively, where R is 
the reference channel (the correspondent number for each Pseudorandom Noise [PRN], https://www.glonass-iac.
ru/en/GLONASS). At last, 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 are the phase measurements corresponding to 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴2 , respectively.
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The Rate Of TEC (ROT) is calculated by the difference between the consecutive sTEC data samples, and the 
difference is then divided by the time interval. The ROT is calculated using Equation 2 (Pi et al., 1997, 2013).

ROT =
sTEC

𝑖𝑖

𝑘𝑘
− sTEC

𝑖𝑖

𝑘𝑘−1

𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1
,� (2)

where i corresponds to a specific PRN of a given GNSS satellite, k is the epoch time, and k − 1 is the previ-
ous epoch. Using sTEC instead of vTEC for ROT calculation concerns the following factors: (a) using sTEC 
measurements does not require dealing with slant-to-vertical mapping, which introduces errors at low elevation 
angles, while using vTEC does; (b) using sTEC does not require removing satellite and receiver instrumental 
interfrequency biases, which makes it difficult when applying the algorithm to data from globally distributed 
thousands of stations or receivers, while using vTEC does. The slight difference between the two radio paths of 
the consecutive sTEC samples can cause a small geometric effect, which makes sTEC slightly larger at lower 
elevation angles. This effect is removed by detrending ROT. In the present work, we calculate detrended ROT 
for every 30-s.

Figure 1.  Maps showing the locations of the stations from which data are collected and analyzed to study the ionospheric irregularities. Panel (a) gives the locations 
and names of stations where data are analyzed in detail. Panel (b) shows the geographic locations of distributed instruments used in this study. The geomagnetic equator 
is indicated using a red line across the map in panel (b), with the marks of GNSS receivers (blue points) and ionosondes (red triangles). Additionally, a Fabry-Perot 
interferometer placed in Jicamarca (red square, panel a) is also used in this study.

Station Latitude (°) Longitude (°) Dip (°) Declination (°) Sunrise (LT) Sunrise (UT)

1-Ancon (LANC) −11.77 −77.17 0.1 −1.45 05:04 10:12

2-Jicamarca (JICA) −11.99 −76.0 −0.38 −2.21 05:02 10:06

3-Huancayo (LHYO) −12.07 −75.21 −0.61 −2.75 04:54 09:54

4-Pucallpa (LPUC) −8.39 −74.58 6.11 −4.05 04:52 09:50

5-São Luís (SALU) −2.53 −44.31 −6.66 −19.43 04:53 07:50

6-Teresina (PITN) −5.09 −42.80 −12.92 −19.97 04:46 07:37

7-Bacabal (MABB) −4.22 −44.78 −9.19 −19.63 04:54 07:53

8-Belo Horizonte (MGBH) −19.81 −43.95 −33.68 −20.56 04:45 07:40

Table 1 
Latitude, Longitude, Dip Angle, and Time of Sunrise of the Global Navigation Satellite System Stations Used in This Study
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The ROTI was defined as the standard deviation of the detrended ROT given by Equation 3 (Pi et al., 2013), 
and the detrending helps remove the nominal geometric effect, subtracting the absolute values from the running 
average for all line-of-sight.

ROTI =

√

< ROT
2
> − < ROT>2,� (3)

where <> is the symbol of the arithmetic average, and the ROTI time resolution is 2.5 min interval.

In more detail, Figure 2 shows relative slant TEC, detrended ROT, and ROTI data obtained by processing data 
from station MABB (left) on the east coast for PRN 28 observations and from station LANC (right) on the west 
coast for PRN 24. The plotted data include elevation angle (a and b), relative STEC (c and d), detrended ROT (e 
and f), and ROTI (g and h), on 18 March 2015.

In Figure 2, the depletions in STEC (c and d) are evident from 06:30 UT to 08:00 UT in MABB station and from 
10:30 UT to 11:30 UT in LANC station. The detrended ROT shows fluctuations at the same hours associated with 
these depletions, and ROTI increases simultaneously.

Additionally, with all the PRNs together an interpolation method is applied to produce ROTI and TEC maps to 
cover the whole South American continent. These TEC maps are generated from observation cells of 0.5° × 0.5° 
in latitude and longitude. The cell is built for 3 × 3 elements, corresponding to 1.5° × 1.5°. Then, if there is no 
Ionospheric Pierce Point (IPP) data in the area, the box is resized to 5 × 5 elements, corresponding to 2.5° × 2.5°, 
and so on. This method is applied up to 21 × 21 elements, corresponds to a maximum smooth of 10.5° × 10.5° 
(Carmo et al., 2021; Takahashi et al., 2016). The construction of ROTI maps follows the same procedure. The 
ionospheric shell height used in this work is set to 350 km.

Figure 2.  Elevation angle (a) and (b), relative slant total electron content (c) and (d), detrended Rate Of TEC (e) and (f), and 
Rate Of TEC Index (g) and (h) for MABB-PNR 28 and LANC-PRN 24 observations, respectively.
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2.2.  Digisonde Data

Digisonde is a multifrequency radar operating in the high frequency (HF) band. The digisonde sends electromag-
netic waves ranging from 1 to 30 MHz to the ionosphere that reflects the signal. As a result, the vertical profile of 
the ionospheric layers is measured and visualized in ionograms. In addition, some ionospheric parameters, such 
as the vertical electronic density ionospheric profile, the virtual height, the real height, and the ionospheric layer 
critical frequency, can be estimated using ionosondes (Reinisch et al., 2009).

In this paper, ionosondes at São Luís (SALU) and Jicamarca (JICA) were used to detect irregularities that 
are shown as Equatorial Spread F (ESF) echoes in ionograms, which are associated with EPB (Anderson & 
Mendillo, 1983). Locations of the ionosondes used in the study are shown in Figure 1b. ESF is detected in the 
ionosonde through signal scattering (Reinisch et al., 2009).

3.  Results
The ionospheric response to the St. Patrick's Day magnetic storm (17–18 March 2015) has been analyzed in 
many studies (e.g., Astafyeva et al., 2015; Denardini et al., 2020; Fagundes et al., 2016; Figueiredo et al., 2017; 
Venkatesh et al., 2017). However, in-depth analyses of pre- and post-sunrise plasma bubbles generated during the 
St. Patrick's geomagnetic storm in the South American sector have not been reported in the literature. Thereby, 
our analysis is focused on revealing the main characteristics of the generation and duration of plasma bubbles 
around local dawn in this sector.

Figure 3 shows the Interplanetary Magnetic Field (IMF) Bz and By component (panel a, in purple and orange, 
respectively), the Auroral Electrojet (AE) index (panel b, in orange), the Dst index (panel c, in blue), and the 
ROTI measurements from all the GPS satellites in view for SALU and JICA (panels d and e, in blue, respectively; 
NB: ROTI is obtained at Ancon, which is very close to JICA) for 2 days of the storm. The h'F curves and their 
quiet references (panels f and g, in red and black, respectively) for the same stations are shown. The h'F quiet day 
(Qd) refers to 14 March 2015. Here h'F denotes the virtual height of the ionosphere.

The Sudden Storm Commencement (SSC) was registered at 04:45 UT on 17 March 2015 (e.g., Astafyeva 
et al., 2015). Then, the IMF Bz turned southward at about 6:00 UT and remained this way for more than 18 hr 
with occasional northward turns (e.g., around 10:30 UT on March 17th). The lowest Dst value of −222 nT was 
recorded near 23:00 UT. There are other dynamical features in IMF, geomagnetic field, ionospheric F layer 
changes, etc., but here we focus on times when ionospheric irregularities and scintillation occurred around dawn 
at different longitudes in the South American sector.

Before 06:00 UT on March 18th, IMF Bz was weak though southward. F-layer at SALU increased after 3:00 UT 
compared with the quiet-time pattern, and ionospheric irregularities at the same site were observed in ROTI at 
about 07:00 UT (04:00 LT), which lasted until 11:30 UT (08:30 LT). During this period, a quick northward rever-
sal of IMF Bz was recorded at 06:00 UT. At this time, the F-layer over JICA rose relatively to the Qd curve (01:00 
LT). At nearby Ancon, the ROTI values increased between 10:00 UT and 13:00 UT (05:00 LT and 08:00 LT).

The upward plasma drift is observed with the elevation of the F-layer in the equatorial region in both longitudes. 
In the South America sector, the climatology of plasma drift is downward under quiet conditions (electric field is 
westward) before sunrise in March (Fejer, 2011). The observed F layer rise compared to the quiet time before the 
occurrence of irregularities during these hours (until 10:00 UT (07:00 LT) in SALU and 12:00 UT (07:00 LT) in 
JICA, see Figures 3f and 3g), appears to be an effect of the storm.

Statistics done by Scherliess and Fejer (1997) showed upward perturbations or turning of plasmas vertical drift 
during disturbed space weather periods in Jicamarca near dawn. This was attributed to the DDEF, which drives 
upward equatorial drifts with high amplitude near sunrise. This is consistent with the results presented here. 
Before dawn, our observations show that the F layer rises at 4 UT (∼1 LT) in SALU and at 6 UT (∼1 LT) in JICA, 
the same local time. The maximum layer elevation occurs at 7 UT (4 LT) in SALU and 11 UT (6 LT) in JICA 
when the EPBs started. Additionally, Fejer et al. (1999) observed irregularities at ∼4 LT when the vertical drifts 
of the disturbed dynamo showed greater amplitudes. This is also consistent with SALU observations.

We examine irregularities in these two longitude sectors on 18 March 2015. Three stations on the east coast and 
three stations on the west coast were selected for a more detailed analysis (see Figure 1a). Such analysis focuses 
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on evaluating TEC and ROTI's temporal evolution. Figure 4 shows the ROTI measurements from all the GPS 
satellites in view (blue points) and TEC (orange curves) time variations for the selected sites in the east coast 
(SALU, panel a, MABB, panel b, and PITN, panel c) and the west coast (LANC, panel d, LHYO, panel e, and 
LPUC, panel f) stations.

Figure 4 shows ROTI measurements at six stations. The upper three panels show data from the east longitude 
sector, and the lower three panels show data in the west longitude sector. For each station, the ROTI measure-
ments made from the single receiver to all satellites in view are over plotted together. An intensification of the 
ROTI occurred at the three east coast stations (panels a through c), starting at 6:30 UT on March 18 and lasted 
until approximately 11:30 UT at SALU and MABB, and until about 11:00 UT at PITN. The ROTI increases 
around 10:00 UT observed at the three stations on the west coast. In LANC, this increase lasted until 13:00 UT. 
On the other two stations (LHYO and LPUC) in the west, this increase lasted until 11:40 UT. According to 
Table 1, sunrise started at ∼8 UT on the east coast and ∼10 UT on the west coast. After sunrise, the irregularity 
persisted 3 and half hours on the east coast and ∼2 hr on the west coast. As a result, the plasma irregularities 
lasted longer on the east coast (∼5 hr) than on the west coast (∼3 hr). Under normal conditions, the photoioniza-
tion process generates plasma, and a decreased plasma density region can be filled by the newly created plasma 

Figure 3.  Interplanetary Magnetic Field Bz and By (panel a, in purple and orange, respectively), the Auroral Electrojet index (panel b, in orange), the Dst index (panel 
c, in blue) and Rate Of TEC Index for São Luís and Jicamarca/Ancon (panels d and e, in navy, respectively), along with the h'F curves and their quiet references (panels 
f and g, in red and black, respectively) for the same stations. The red line is the Sudden Storm Commencement, and the orange line is the sunrise.
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during the process. Some previous study has suggested that the early morning recovery-phase of storms can 
contribute to long-lasting plasma depletions even with photoionization (Otsuka et al., 2021).

Figure 5 shows the maps of TEC (first column), ROTI (second column), and ionograms for SALU (third column) 
and JICA (fourth column) at 07:00, 08:00, 10:00, and 11:50 UT. The red line on maps is the magnetic equator, 
and the white dotted line is the solar terminator. A movie of ROTI map during these hours is provided in the 
Supporting Information S1 that readers can view.

In Figure 5, we can see the signature of pre-sunrise plasma depletions or bubbles on the TEC map (an example 
is identified with the red arrow). Additionally, these plasma bubbles are more evident on the ROTI map. Their 
field-aligned structure is more explicit, forming a reversed and rather flattened c-shape (e.g., Kil et al., 2009). At 

Figure 4.  Temporal variations of vertical total electron content (TEC) (orange) above three stations (SALU, MABB, and 
PITN) in the east longitude sector and three stations (LANC, LHYO, and LPUC) in the west longitude sector on 18 March 
2015, are shown in this figure. Along with TEC data, Rate Of TEC Index measurements (blue dots) made from the same 
single receiver to all satellites in view are also shown for the six stations.
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8:00 UT, the passage of the solar terminator at 300-km altitude occurs on the east coast. The solar terminator is 
almost completely off the map around 11:50 UT. Even then, we still see plasma bubble structures on the maps. 
The ionograms from SALU and JICA help confirm the time of occurrence of these plasma bubbles within the 
appearance of ESF at both stations.

4.  Discussions
From the results by Kuai et al. (2016) on March 17th at 06:00 UT, an undershielding electric field was identified 
within the IMF Bz southward turning, in which the eastward prompt penetration electric field (PPEF) occurs on 
the dayside. At 10:00 UT, the presence of the westward equatorial electrojet was identified. In addition, a west-
ward electric field perturbation of the overshielding effect was identified, with northward IMF Bz. The focus of 
this work is the evolution of the plasma bubbles generated in the recovery phase of this storm. Other perturbations 
during this storm have been studied by several authors (e.g., Astafyeva et al., 2015; Denardini et al., 2020; Kuai 
et al., 2016; Venkatesh et al., 2017; Verkhoglyadova et al., 2016; Zhang et al., 2017). Zakharenkova et al. (2019) 
observed these pre-dawn plasma bubbles and related their generation to DDEF. However, Huang et al. (2013) and 
Tulasi Ram et al. (2015) studied in regions other than Brazil, and Zakharenkova et al. (2019) did a global study. 

Figure 5.  Total electron content maps (first column from the left), Rate Of TEC Index maps (second column), ionograms for 
São Luís (third column), and ionograms from Jicamarca (fourth column) at 07:00 UT, 08:00 UT, 10:00 UT, and 11:50 UT 
during 18 March 2015. The solid red line indicates the magnetic equator, and the dotted white line shows the solar terminator.
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These EPBs structures were so intense that even with sunrise and photoionization effects active were not enough 
for these structures to cease.

Here we discuss potential physical mechanisms responsible for the evolution and the dissipation of the plasma 
bubbles generated in the South American sector during the recovery phase of the St. Patrick's Day storm. We 
intend to emphasize three main points in this paper: possible DDEF effect, scintillation at or near minimum TEC, 
and longitudinal differences in scintillation and E layer.

4.1.  Possible DDEF Effect

A prompt penetration of an undershielding electric field in eastward/westward direction on the day/night (Fejer 
et al., 2008) can be associated with turning of the IMF Bz to southward with an AE intensification. Also, the 
overshielding electric field can occur in the reversed direction when Bz turns northward (Fejer, 1991; Kelley 
et al., 1979). The disturbance dynamo effect is in the same direction as overshielding (Kikuchi, 2021), but the 
effect takes a longer time because the effects of energy input at high latitude, which results in Joule heating that 
affect thermosphere, take some time to reach equatorial latitudes (Blanc & Richmond, 1980; Fejer et al., 2008; 
Richmond & Roble, 1997). Figure 3 shows negative Bz with high values of AE at about 6 UT on March 17, as 
reported by Resende et al. (2021). Also, Huang et al. (2016) studied this storm and concluded that the DDEF 
started on March 17 at about ∼4 hr after SSC and lasted about 31 hr. Carter et al. (2016) reported that a possible 
overshielding electric field started at about 0 UT on March 18. After around 0 UT, the Bz starts to recovery. The 
rising of h’F compared with quiet days at about 3 UT on SALU and before 7UT on JICA seems to be associated 
with the eastward electric field due to DDEF (e.g., Fejer et al., 1983), which can set the preconditions for RTI. 
There is also an AE increase after 8 UT while IMF Bz and By do not show apparent changes. It appears that the 
AE increase may be caused by substorms, which may play a role in affecting conditions in Jicamarca where EPBs 
occurred about 2 hours later.

One of the major dynamical effects during a geomagnetic storm is disturbance dynamo that generates electric 
field perturbations at low latitudes, due to neutral wind perturbations caused by the joule heating (Blanc & 
Richmond, 1980; Fejer & Scherliess, 1997; Fejer et al., 1983; Mazaudier & Venkateswaran, 1990; Wolf, 1995). 
It could occur in the nighttime sectors during storms and show longitudinal distribution effects (Huang, 2013; 
Huang et al., 2005; Maruyama et al., 2005). In the ionosonde data (Figure 3) we identify F layer rising from ∼3:00 
to 9:00 UT at SALU and from ∼7:00 to 12:00 UT at JICA. We see IMF Bz near zero during the plasma bubbles 
hours, but the AE increase indicates increased activity in the polar region that may have effect added to the 
pre-existing effects of the magnetic storm (e.g., Fejer, 1997; Fejer & Scherliess, 1997; Scherliess & Fejer, 1997). 
We then turn to look at the wind data taken using the FPI, which is plotted in Figure 6.

Figure 6 shows the neutral wind component, zonal in red and meridional in blue compared with the average of 
quiet days in gray. In the JICA FPI data we observe significant disturbances in the wind component. Unfortunately 
wind data in SALU longitude is not available, and no comparison can be made between wind in the two longi-
tudes though we also see the F layer rise in the ionosonde data in the east coast. Nevertheless the wind perturba-
tion measured by FPI between ∼8 and 10 UT at JICA appears coincident with the h’F rising, in the same hours, 
and the wind perturbation shows greater amplitudes at about 4 LT (e.g., Fejer, 2002; Fejer et al., 1999). North-
ward meridional wind generates a positive gradient in latitude that stabilizes the influence of the Rayleigh-Taylor 
instability (Huba & Krall, 2013), then increasing the F-layer peak (Fejer, 1993). The disturbed wind and the F 
layer rise brings up a possibility of DDEF effects at the equator in the Jicamarca longitude, due to global circu-
lation caused by energy input into the auroral region creating currents and causing the disturbed wind directed 
toward the equator and low latitudes (Blanc & Richmond, 1980). Then, plasma irregularities following the wind 
perturbation and F layer rising seem to indicate a possibility of DDEF effects at the equator in the Jicamarca 
longitude at the time.

Huang (2013) reported that in magnetic storms during equinoxes, at midnight, the zonal component of DDEF can 
be eastward at midnight or post-midnight sectors. Compared with the climatological pattern and IMF Bz as well 
as magnetospheric Ey observations (Figure 3), the disturbance wind dynamo seems to be a reasonable mechanism 
that can cause eastward zonal electric field enhancement and rise of the F layer. The storm-time dynamical effect 
can then help trigger the RTI at low latitudes and cause EPBs and irregularities.
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Hui and Vichare (2021) studied the effects of IMF By on the evening and morning pre-reversal enhancement 
(PRE) in the equatorial zonal electric field using TIE-GCM (e.g., Heelis et  al.,  1982; Weimer,  2005). They 
suggested that morning PRE may not be related to IMF By but may be related to the effects of a disturbed 
dynamo. Their modeling study also shows that IMF By's positive and negative conditions are oppositely related 
to the perturbations of meridional winds at the equator. Moreover, they suggested that this opposition is respon-
sible for the effects observed in the morning and post-sunset PRE as DDEF is present. Our observations show 
wind perturbations at dawn when IMF By is negative, which seems to agree with Hui and Vichare's (2021) study 
(Figure 3a). In addition, we also ran TIE-GCM to investigate the behavior of the vertical drift velocity, as shown 
in Figure 7. Our TIE-GCM model run take inputs of F10.7 cm solar radio flux and Kp index. The model output is 
examined at UT and locations (latitude, longitude, and altitude) of interest.

Figure 7 shows disturbances in the plasma vertical drift velocity starting before 5 UT (upward) in JICA and in 
SALU, which coincide with the h'F elevation times, shown in Figures 3d and 3e. TIEGCM is a self-consistent 
coupled thermospheric-ionospheric model, and for this model run its electric field perturbations are driven by 

Figure 6.  The zonal (red) and meridional (red) wind in Jicamarca derived from the FPI measurements, with the 
corresponding error bar, and the average of four quiet days (gray) in March according to GFZ-Potsdam (https://www.
gfz-potsdam.de/en/kp-index/) that is 10, 30, 5, and 14 March 2015.

Figure 7.  Plasma vertical drift velocity (Vup) versus UT in Jicamarca (black) and São Luís (blue), given by TIE-GCM model, 
on 18 March 2015.
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wind perturbation dynamo without the penetration mechanism or input. It appears that the electric field pertur-
bations of the TIEGCM modeling support the DDEF hypothesis, because in this model run TIEGCM does not 
include electric field penetration so that electric field perturbation is considered as a DDEF effect. Previously, 
Fejer et al. (2017) noted that the observational data are similar to the TIEGCM model in Jicamarca. The equato-
rial vertical drifts due to the disturbance dynamo presented by Fejer and Richmond show a similar perturbation 
pattern through the TIEGCM run. Furthermore, the modeled plasma drift velocity perturbations are consistent 
with ionosonde observations.

Su et al. (2009) suggested that the cause of the dawn scintillation is similar to that of the sunset, but they didn't 
explain why the irregularities last long hours after sunrise. In the case study here, we suggest that the disturbed 
dynamo electric fields at sunrise caused the rise of the layer. We also considered PPEF and possible overshielding 
effect, but the corresponding Bz southward turning followed by northward turning cannot be identified in IMF Bz 
data. Hence there is no apparent evidence to suggest PPEF and overshilding effects in this case.

4.2.  Scintillation at Minimum TEC

Occurrences of ionospheric scintillations were observed using GNSS scintillation receivers that provide S4 index 
measurements. S4, ROTI and TEC measurements are shown together for the MGBH and SALU stations in a 
similar longitude (Table 1) in Figure 8.

Figure 8a shows strong amplitude scintillation indicated by the S4 index, and intense ROTI are observed at the 
MGBH station at dawn and at the SALU station after sunrise. We notice that sunrise time was about 04:45 LT in 
MGBH and 04:53 LT in SALU (see Table 1), respectively.

Strong scintillation at dawn and post-sunrise when ionospheric electron density and TEC were minimum (accord-
ing to observations at MGBH station) and near the minimum (at SALU station) is not common. Our observations 
show that strong L-band scintillation can occur when the ambient TEC reaches minimum values, which makes 
numerical simulation of diurnal plasma bubbles in existing models difficult (e.g., Kil et al., 2015; Yokoyama 
et al., 2015). Our observations suggest that related modeling needs to address strong amplitude scintillation under 
a low or minimum TEC environment.

4.3.  Longitudinal Dependence and Its Differences in Scintillation and E Layer

We compare observations on the east and west coasts. As shown in Figure 4 and Table 1, on the east coast, the 
irregularities associated with plasma bubbles lasted on average 3.5 hr after sunrise (1.5 hr before sunrise) in 
SALU and MABB, and PITN. The irregularities on the west coast did not last long after sunrise. These observa-
tions show a distinguished longitudinal dependence: the post-sunrise durations of plasma bubbles are different 
between the two longitude sectors.

Figure 8.  S4 index (red) and Rate Of TEC Index (blue dots) measurements from multiple Global Positioning System (GPS) satellites are overplotted versus UT for the 
MGBH (panel a) and SALU (panel b) stations, respectively, along with total electron content (green) above the two stations derived from the GPS data.
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The upward drift of the equatorial F layer (E  ×  B) generates favorable conditions for the RTI development 
(Aarons, 1991; Fejer et al., 1999). The dissipation of these plasma irregularities occurs when the E layer appears. 
This is caused by the high density and conductivity of this region, as a consequence the electric fields would be 
short-circuited by the Pedersen conductivity, reducing the linear growth rate of the EPBs (Chou et al., 2020).

Burke (1979) investigated the disappearance of EPBs after sunrise using modeling. He explains that after sunrise, 
the conducting E region could discharge the electric field inside the plasma bubbles and prevent the growth of 
these irregularities. Zalesak et  al.  (1982) performed a numerical simulation and concluded that even without 
accounting for thermospheric neutral wind, the E region would be capable of extinguishing the plasma bubbles 
due to the above mechanism.

To investigate if the E region has an impact on the duration of these EPBs in the east coast and west coast longi-
tudes, we obtained the critical frequency of the E region (foE) in SALU (panel a) and JICA (panel b), shown in 
Figure 9.

Although the JICA foE data during the majority of hours of interest are not useable (Figure 9b), due to the pres-
ence of the sporadic Es layer (Taieb et al., 1975), the readable data show that the E layer appeared after about 
11:30 UT. On the other hand, the E layer at SALU (panel a) appeared after ∼10:30 UT, about 1 hour later than 
the Qd day. It is interesting to note that the E layer appears on the east coast later than that during the Qd, which 
may make the EPBs stay longer after sunrise in this region. Also, the data gap in the plot means the E layer is not 
detectable by the ionosonde at the time. The differences of E region occurrence and the duration of post-sunrise 
irregularities between the east coast and west coast appear to support the idea that the EPBs dissipated after the 
emergence of the E region, which occurred in the west coast sector, while the delay of the E region and the longer 
duration of irregularities in the east coast sector seem to be consistent with this idea.

In addition, besides the 33° longitude difference (3,600 km) and a different impact of the E-region effect between 
these two sets of GNSS stations (on the east and west coasts), there is also a significant difference in the decli-
nation of the magnetic equator between these two longitude sectors, being ∼−2° on the west coast while ∼−20° 
on  the east coast, as shown in Table 1.

Abdu et al. (1992) demonstrated that magnetic declination could control the development of EPBs. They showed 
that the efficiency of growth of plasma irregularity could decrease when there is an almost perfect alignment 

Figure 9.  Critical frequency of region E (foE) in São Luís (panel a), and JICA (panel b), on 18 March 2015 (red), compared 
to the calm day (Qd). The data gap in the plot means the E layer is not detectable.
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of the terminator with the magnetic meridian, and small angles contribute to the plasma irregularities devel-
opment. In addition, the F region dynamo generation is also affected by the magnetic field's declination (Abdu 
et  al.,  1981). Nevertheless, their studies suggest that magnetic declination may contribute to the differences 
found in the evolution of the EPBs observed in the east and west coasts, such as their emergence, duration, and 
dissipation, which may contribute to longitudinal difference between the duration of EPBs after sunrise in the 
two longitudes.

5.  Conclusions
Plasma bubbles over South America were detected around dawn (before and after sunrise) by using two-dimensional 
TEC and ROTI maps and ionosonde measurements during the recovery phase of the 2015 St. Patrick's Day storm 
on March 18. The plasma bubbles observed on the east coast of Brazil remained approximately 3 and half hours 
during the daytime after sunrise. Characteristics, duration, and generation of EPBs, and ionospheric irregularities 
were studied using GNSS, ionosonde, and FPI observations. The observed major features are summarized below:

1.	 �The generation of these dawn and post-dawn plasma bubbles appears to be triggered under a possible effect of 
wind disturbance dynamo in the recovery phase of the magnetic storm, when wind perturbations and equato-
rial F layer rising occur coincidently followed by the occurrence of plasma bubbles.

2.	 �The ionospheric plasma bubbles and associated irregularities remained 3.5 hr during the daytime after sunrise 
on the east coast of Brazil.

3.	 �Analysis of observations suggests a longitudinal dependency in the duration of post-sunrise scintillation 
within 33° in longitude difference (∼3,000 km).

4.	 �Strong ionospheric scintillation is observed when TEC is minimum and after sunrise in the context of iono-
spheric diurnal variation.

5.	 �After sunrise, the duration of plasma bubbles seems to be consistent with the delay in the emergence of the 
E layer.

Data Availability Statement
Website required login—South America receivers Rinex files are available on the Embrace/INPE Space Weather 
Program website (http://www2.inpe.br/climaespacial/SWMonitorUser/faces/adm/tec/downloadFiles.xhtml). The 
Website required login—Peru receivers Rinex (http://lisn.igp.gob.pe/jdata/database/). Complementary Rinex 
data (UNAVCO, https://www.unavco.org/data/gps-gnss/gps-gnss.html). The Website required login—Orbit 
data website (https://urs.earthdata.nasa.gov/home). The Website required login—Wind data from Fabry-Perot 
Interferometer (http://cedar.openmadrigal.org/single). Ionosonde data (https://lgdc.uml.edu/common/DIDB-
FastStationList). The parameters By, Bz, AE (https://omniweb.gsfc.nasa.gov/form/omni_min.html). The Dst 
index (http://wdc.kugi.kyoto-u.ac.jp/dst_provisional/201503/index.html). The Website required login—S4 index 
(https://ismrquerytool.fct.unesp.br/is/ismrtool/retrieval/download_ismr.php). The declination and dip angle 
for each station (http://geomag.bgs.ac.uk/data_service/models_compass/igrf_calc.html). Sunrise information 
(https://www.timeanddate.com/sun/). HWM-14 on the support information by Drob et al. (2015), and Software 
TEC (https://seemala.blogspot.com/). TIE-GCM model (https://ccmc.gsfc.nasa.gov/requests/IT/TIE-GCM/
tiegcm_user_registration.php).
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