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ABSTRACT

We analyze how the structure of complex networks of non-identical oscillators influences synchronization in the context of the Kuramoto
model. The complex network metrics assortativity and clustering coefficient are used in order to generate network topologies of Erdös–Rényi,
Watts–Strogatz, and Barabási–Albert types that present high, intermediate, and low values of these metrics. We also employ the total disso-
nance metric for neighborhood similarity, which generalizes to networks the standard concept of dissonance between two non-identical
coupled oscillators. Based on this quantifier and using an optimization algorithm, we generate Similar, Dissimilar, and Neutral natural
frequency patterns, which correspond to small, large, and intermediate values of total dissonance, respectively. The emergency of synchro-
nization is numerically studied by considering these three types of dissonance patterns along with the network topologies generated by high,
intermediate, and low values of the metrics assortativity and clustering coefficient. We find that, in general, low values of these metrics appear
to favor phase locking, especially for the Similar dissonance pattern.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0068136

The topology of networks of phase oscillators plays a very impor-

tant role on the synchronization of the system. The individual

dynamics of each oscillator, characterized by their individual fre-

quencies, also play a very important role, which is not completely

understood. What effect the emergency of cycles, the connection

of nodes with close or very distinct degree have on synchro-

nization? Furthermore, is this affected by the natural frequen-

cies of the oscillators being connected? These questions are also

important if we take into consideration the emergence of syn-

chronization phenomena in nature that leads the involved agents

from the disorder to order in a scenario in which the agent

interconnections are not all-to-all. Here, we investigate these

issues.

I. INTRODUCTION

Synchronization is a process in which dynamical systems
manage to coordinate some dynamical properties by being
connected among themselves or by being driven by a common
force.1 It is a universal behavior that takes place in many natural
and artificial multi-agent systems.2–7 In order to study synchroniza-
tion in systems of interacting dynamical units, it has been shown
to be useful to describe a system as a complex network of inter-
acting oscillators,8,9 where nodes represent the dynamical units and
the connections between them express their interacting mecha-
nisms, where nodes only interact with adjacent units. One of the
most widely used paradigmatic models of phase oscillators to study
synchronization in complex networks is the Kuramoto model.10,11
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A great number of natural phenomena where a system is com-
posed of interconnected dynamical units can be modeled by using
complex networks to capture its global and emerging properties.12–14

For example, it can be used in the study of non-linear dynami-
cal systems,15,16 of chemical and biological systems,17–21 of power
grids,22–25 and even in the study of social networks.26–28 The syn-
chronization of networks in a multi-layer network has also been the
subject of intense studies and can be used, for example, in the study
of epidemic models.29,30

Biological and social studies have shown that in some situa-
tions, like when it comes to choosing friends, people prefer to gather
with similar minded ones.31–34 On the other hand, when it comes
to mating preferences, some species prefer to mate with dissimilar
ones, which may provide the offspring with good genes.35–38 Freitas
et al.26 used an approach based on an interconnected network of
Kuramoto oscillators to analyze these scenarios. There, the former
kind of behavior is referred to as Similar (S ), while the latter one as
Dissimilar (D) neighborhood patterns. If an ensemble presents no
strong bias toward any of these extremes, it is called Neutral (N ).

In this work, we explore the idea of Similarity and Dissimilarity
described above by means of structure properties and synchro-
nization of complex networks of Kuramoto non-identical phase
oscillators. In order to quantify these patterns, we shall use a mea-
sure related to classical dissonance,1 which measures the difference
of the natural frequencies of a pair of oscillators.

With reference to related material on synchronization of com-
plex networks, Pinto and Saa39 employs a dimensional reduction
approach proposed by Ref. 40 and derive a sufficient analytical con-
dition, considering an ansatz, to optimize a topology of a network
in order to favor synchronization using the Kuramoto model. They
also showed that when this method is applied to a network with ran-
dom natural frequencies, the final topology presents a negative cor-
relation between the natural frequencies of adjacent vertices in a way
that we can call a network with a Dissimilar pattern, even though
the approach in Ref. 39 does not exhaust the problem, especially
for small and intermediate coupling values, which are commonly
found in nature.1 A numerical study made by Freitas et al.26 showed
that Similar patterns favor weaker forms of synchronization, but
Dissimilar ones exhibit explosive synchronization, reaching global
synchronization faster than the Similar pattern.41 We use an evolu-
tionary strategy to find a minimal network structure that guarantees
global synchronization and show that the heterogeneity in the nodes’
natural frequency is the driving force that determines the evolution
of the network structure.

We intend to extend the work done by Ref. 26 and add the
complex network measures assortativity and clustering coefficient
to investigate how the structure of complex networks influences the
synchronization of Similar, Dissimilar, and Neutral patterns of nat-
ural frequencies of oscillators. Assortativity is employed in order
to measure how connections between nodes with the same degree
influence the emergence of synchronization, while the clustering
coefficient measures the impact of loops of size three (small cycles).
Therefore, the topology of the networks is dictated by the assor-
tativity and by the clustering coefficient values, while the natural
frequency of their nodes is given by the dissonance patterns.

The authors in Refs. 42 and 43 used a modified version of
the Kuramoto model in order to study opinion formation and its

dynamics through synchronization of complex networks where the
phase of a node in this model represents the opinion of an indi-
vidual and the coupling represents the amount of the interaction
among them. To illustrate the meaning of the metrics used here,
the natural frequency patterns, and the synchronization of the net-
work, let us take as an example a large group of individuals having
an argument about a polemic subject where each individual has
its own initial opinion, and due to the number of people and the
limited time they have, they can only communicate with a lim-
ited number of people inside this group. Their discussion ends only
when all participants come to an agreement and, therefore, reach
a common opinion. We can model this situation by using a com-
plex network approach where each individual is represented by a
node whose behavior is dictated by a dynamical system model, the
interaction between them is represented by an edge, and the opin-
ion of each individual in relation to the subject being discussed is
given by the natural frequency of the nodes. Therefore, reaching a
common opinion is associated with a synchronized state. The nat-
ural frequency patterns Similar, Dissimilar, and Neutral here relate
to the level of homogeneity (Similar) or heterogeneity (Dissimilar)
of the opinion of communicating individuals, as, for example, if the
individuals only communicate with similar minded ones, the Simi-
lar pattern is used to model this dynamics. We also refer the reader
to Noorazar44 and Deffuant et al.45 for a more detailed discussion on
opinion dynamics.

The rules of who can communicate with whom are given by
the metrics assortativity and the clustering coefficient. If individuals
who interact with many people prefer to communicate with the ones
that are also popular and individuals who interact with a few peo-
ple prefer to communicate with ones that are also less popular, the
network is said to be assortative and has a high value of the metric
assortativity. The opposite can also happen; when popular individ-
uals tend to talk with less popular ones, the network is said to be
disassortative. Looking at another aspect of the rules of communica-
tion within this group of people, we can also allow two contacts of a
person to talk to each other, forming then a small cycle or a loop of
size three in the network topology. When there is a large number of
a couple of contacts of individuals communicating to each other, we
say that this network presents a high clustering coefficient, and, on
the other hand, it presents a low clustering coefficient if the opposite
happens.

In this scenario, one can ask the following: how strong the
interactions (represented here by the coupling of the Kuramoto
model) between individuals must be in order to reach an agree-
ment? Is it easier to be achieved if individuals only communicate
with similar minded ones or is it the opposite? Is it easier if popular
individuals only talk to each other or when they talk to less popular
ones? Or if contacts of individuals communicate with each other?

Our results show that the Similar pattern of a natural fre-
quency distribution favors weaker forms of synchronization, but, as
we increase the coupling constant, the Dissimilar pattern is the first
to reach the synchronized state. The Erdös–Rényi model presented
itself as the easiest to reach the phase locking state when compared to
Watts–Strogatz and Barabási–Albert network models. In relation to
the network metrics assortativity and clustering coefficient, one can
see that low values of both metrics favors the reaching of the syn-
chronized state. As for the questions raised about the best strategy
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to conduct an argument among a group of people, we find that the
best strategy would be to encourage individuals with different opin-
ions to communicate to each other and, at the same time, encourage
popular individuals to talk to less popular ones and discourage the
interaction among contacts of individuals in order to avoid small
cycles of interactions.

This paper is organized as follows: Sec. II presents the
Kuramoto model, characterize the Similar, Dissimilar, and Neu-
tral frequency patters, defines synchronization quantifiers, and
presents the network metrics used to generate the network topolo-
gies. Section III develops a discussion about the results, and the
conclusions are presented in Sec. IV.

II. MODEL AND METHODS

In this work, we consider complex networks of Kuramoto
phase oscillators whose dynamics is described by a simple but very
powerful model as it has proven to accurately approximate a great
class of coupled oscillators.46,47 The dynamics of the Kuramoto
model is described by

θ̇i = ωi +
λ

di

N
∑

j=1

Aij sin(θj − θi), (1)

where N is the number of oscillators, θi ∈ R is the phase variable of
each oscillator for i = 1, . . . , N, and ωi is its natural frequency. Com-
munication channels are defined through a coupling graph, a simple
and connected graph, which is expressed via its adjacency matrix
(Aij); i.e., Aij has value 1 if nodes i and j are connected and 0 oth-
erwise. The symbol di denotes the node degree of the ith oscillator,
while λ ≥ 0 is the overall coupling constant.

In order to characterize the Similar, Dissimilar, and Neutral
natural frequency patterns on complex networks, we make use of
the total dissonance measure26

ν =
1

N

√

√

√

√

N
∑

i,j=1

Aij(ωi − ωj)
2. (2)

For the Similar pattern, the natural frequencies of adjacent
nodes are close to each other such that the value of ν is small and
it is zero only if all oscillators have identical natural frequencies. If
the natural frequencies of adjacent nodes are very different from
each other, that is, the Dissimilar pattern, the value of ν is higher.
The Neutral pattern is characterized as intermediate values of ν.
To calculate these frequency patterns, the stochastic optimization
algorithm called simulated annealing48 is used. In order to optimize
the objective function ν, it makes permutations of the natural fre-
quencies set until it finds an optimal local value of the objective
function, in correspondence with the desired Similar or Dissimilar
patterns. Considering the outputs of this algorithm, the minimiza-
tion of ν corresponds to the Similar pattern, the maximization to
the Dissimilar one, and the random initial natural frequency set is
called Neutral. In practice, for each network topology considered
in this work, a set of natural frequencies is chosen from a random
uniform distribution in [−π , π] and the total dissonance νini is cal-
culated, this one is called the Neutral frequency pattern. Then, an
optimization algorithm is applied in order to maximize (νmax) and

minimize (νmin) the total dissonance of each network, giving rise to
the Dissimilar and Similar patterns, respectively.

A useful way to quantify phase synchronization of networks is
by using the order parameter R defined as

R(t) =

∣

∣

∣

∣

∣

1

N

N
∑

i=1

eiθi

∣

∣

∣

∣

∣

, (3)

where R(t) ∈ [0, 1] measures the amount of collective behavior of
the system. When R(t) = 1, the system is said to be in the state of
phase synchronization and all oscillators present the same phase. On
the other hand, when the system presents an incoherent behavior,
R(t) ≈ 0.

As done by Ref. 49, we introduce now an index to quantify the
appearance of another type of synchronization, called phase lock-
ing (PL) that indicates when a pair of oscillators presents a constant
phase difference and, therefore, moves as a rigid body. This measure
is called partial synchronization index Sij given by

Sij =

∣

∣

∣

∣

lim
1t→∞

1

1t

∫ tr+1t

tr

ei[θi(t)−θj(t)] dt

∣

∣

∣

∣

, (4)

where Sij ∈ [0, 1] and tr is a large enough transient time. When two
oscillators have the same instantaneous frequency, they are said to
be in phase lock and, in this case, Sij is equal to 1. In order to mea-
sure the degree of partial synchronization of the whole network, we
calculate the arithmetic mean

S =
1

N2

N
∑

i,j=1

Sij. (5)

Therefore, when the whole system is in phase lock, that is, when the
phase difference between all pair of nodes is constant in time, S = 1.
As for the order parameter in this case, R(t) is constant in time but
not necessarily equal to 1 as it is not mandatory that the phases are
the same. If S ≈ 0, the system presents a low coherent behavior.

Our aim is to analyze how network structure influences the
emergency of synchronization on complex networks. For this pur-
pose, the network measures called assortativity and clustering coef-
ficient are used in order to generate different network topologies.

Assortativity measures the similarity of connections in a net-
work with respect to a certain characteristics of a node. In this work,
the assortativity is determined by the degree of the nodes, and it is
given by the use of the Pearson correlation coefficient50,51

ρ =

∑

ij ij(fij − aibj)

σaσb

, (6)

where ai and bj are the fraction of edges that start and end at nodes
with degree values i and j, respectively, fij is the fraction of edges
between nodes of degree i and j, and σa and σb are the standard devi-
ations of the distributions a and b, respectively. ai, bj, and fij satisfy
the sum rules:

∑

ij fij = 1,
∑

j fij = ai, and
∑

i fij = bj.
The graph assortativity ρ ∈ [−1, 1] represents how nodes in a

network associate with each other; i.e., it shows whether nodes pre-
fer to connect to nodes of the same sort or of opposing sort. When,
on average, high degree nodes connect to high degree ones or low
degree nodes connect to low degree ones, ρ is close to 1 and the
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network is said to be assortative. On the other hand, if on aver-
age, high degree nodes connect to low degree ones, ρ is close to −1
and the network is said to be disassortative. If ρ is close to 0, the
connections are considered to be completely random.51 The reader
should notice that there are two different mechanisms of preferen-
tial attachment here: assortativity takes into account only the node
degree, while neighborhood patterns consider both graph structure
and node’s natural frequency.

Another basic network measure that is used in this work is the
clustering coefficient, which measures the presence of loops of size
three inside a network; i.e., it measures the tendency of two neigh-
bors of a certain vertex to also be connected to each other. In a real
world network, it can be seen as the likelihood of friends of a certain
person also to be friends with each other.52 The clustering coefficient
of a vertex is given by

ci =
2Ti

di(di − 1)
, (7)

where Ti is the number of triangles involving node i and di is the
degree of node i. Therefore, the clustering of a node ci ∈ [0, 1] is
the number of triangles that pass through that node normalized by
the maximum number of such triangles in a way that if none of the
neighbors of node i are connected to each other, ci = 0, and ci = 1
if all neighbors are connected.53 The average clustering coefficient of
the network is given by

C =
1

N

N
∑

i=1

ci. (8)

A large clustering coefficient indicates that there are many redun-
dant paths in the network and a low clustering indicates the
opposite.

The models of complex networks analyzed in this work are
Erdös–Rényi (ER),54 Watts–Strogatz (WS),27 and Barabási–Albert
(BA)55 as they are widely used in the literature.8,56 For the BA model,
the degree exponent is fixed as γ = 3. In the ER model, we set the
probability of edge creation to be 0.15, and for the WS networks,
the probability of rewriting each edge is 0.2. The number of nodes is
fixed as N = 50.

The main contribution of this work is to analyze the impact on
synchronization considering the assortativity and clustering coeffi-
cients in association with neighborhood patterns (S /N /D). To do
so, we proceed as follows.

Network configurations considered here are represented by the
pair (A, ω), where A stands for the adjacency matrix of the graph
and ω is the set of natural frequencies. For each network model (BA,
ER, WS), the three corresponding network topologies are consid-
ered for assortativity and clustering (representing low, intermediate,
and high values of each) Aρmin , Aρmiddle , Aρmax , ACmin , ACmiddleACmax ,
and three patterns of the distribution of natural frequencies are con-
sidered: Neutral ωN , Similar ωS , and Dissimilar ωD . In all, 27
configurations are studied for assortativity and 27 for the cluster-
ing coefficient. As an example, consider a BA network with low
value of assortativity Aρmin . For this network, a random set of nat-
ural frequencies is generated from a uniform distribution (Neutral
dissonance pattern), giving rise to the Configuration (Aρmin , ωN ).
Then, the simulated annealing algorithm is used to optimize the

values of the total dissonance with a low value, giving rise to the set
of natural frequencies of the Similar pattern and the configuration
(Aρmin , ωS ) and a high value generating the set of natural frequen-
cies of the Dissimilar pattern and the Configuration (Aρmin , ωD).
Recall that dissonance patterns do not alter the physical configura-
tion of networks, it only interchanges the natural frequencies. The
low and high assortativity/clustering values are the only ones that
come from a different network configuration. The choosing of Aρmin ,
Aρmiddle , Aρmax , ACmin , ACmiddle , and ACmax is discussed in Sec. III.

In order to measure how the total dissonance combined with
assortativity and clustering coefficients affect the global synchro-
nization of the networks, the Kuramoto model [Eq. (1)] is numer-
ically integrated and the mean value of the order parameter is
calculated R(t) over the integration time and is denoted by 〈R〉. We
call 〈R〉PL and λPL the values of the order parameter and the coupling
constant, respectively, at the emergence of phase locking (S = 1).
The initial conditions are the same for all networks used in this work
and were all set as θi(0) = 0.5 for i = 1, . . . , N, where N is the total
number of nodes. This choice was intentional because as shown in
previous works,3 the set of initial conditions can also play an impor-
tant role in the synchronization of the system, but this is not the
scope of this work. The distribution of the natural frequencies for
the Neutral patterns is drawn randomly by a uniform distribution
over [−π , π].

III. RESULTS AND DISCUSSION

ER, WS, and BA topology models are used in this work. Each
of them has specific topology, and in order to obtain networks with
low and high values of assortativity and clustering coefficient, we
chose to create 1 × 106 networks of each type and pick three of each
model, which present lowest, intermediate, and highest values of the
measures being considered. In this way, we make sure to keep the
topology of the network models. The histograms of all networks gen-
erated as a function of assortativity and clustering coefficients can be
seen in Fig. 1.

By construction, the BA model has a preferential attachment
rule when building the graph; therefore, the probability of a new
node to connect with an existing one is proportional to the existing
node degree. Therefore, these networks are characterized by having
a few nodes highly connected (called hubs) and the rest of the nodes
with few connections. It is by construction a network with a negative
value of assortativity where nodes with low degree tend to connect
to the ones with high degree. On the other hand, ER and WS do not
have a preferential attachment rule, and the vertices have a rather
random pattern of connections. Therefore, the average assortativity
is expected to be around zero. When it comes to the clustering coef-
ficient, the WS model is the one expected, in average, to have the
higher number of loops of size three as it is constructed by rewriting
some edges of a regular network, which are known to have a high
clustering coefficient.51,53,56

We then pick the adjacency matrices A that generate extreme
values of ρ and C from the histogram in Fig. 1 (ρmin and
Cmin are the smallest and ρmax and Cmax are the greatest values)
and ones that generate values approximately in the middle of
them (ρmiddle and Cmiddle). Therefore, we have the BA model with
ρmin = −0.7354, ρmiddle = −0.2898, ρmax = 0.1034; the ER model
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FIG. 1. Histograms of Erdös–Rényi (orange), Watts–Strogatz (green), and Barabási–Albert (blue) networks in relation to (a) assortativity (ρ) and (b) clustering coefficient
(C). 1 × 106 networks were generated to compute each histogram.

with ρmin = −0.3560, ρmiddle = −0.0505, ρmax = 0.2584; and the WS
model with ρmin = −0.5079, ρmiddle = −0.0515, ρmax = 0.4032.

The topologies related to the minimum and maximum val-
ues of ρ and C, along with the three dissonance patterns, can be
seen in Figs. 2 and 3. One can notice that for the Similar pattern,
nodes tend to be connected to ones that have a similar natural fre-
quency (similar node color) and that for the Dissimilar pattern, they
tend to be connected with nodes with different natural frequencies.
This is expected; therefore, we can confirm that our optimization
algorithm is working (the algorithm used to generate these patterns
converges to a local, not global, value of the objective function that
it is trying to maximize/minimize). The Neutral pattern stays in the
middle as some nodes connect with nodes with similar frequencies
and some connect with nodes with dissimilar frequencies. Recall that
dissonance patterns do not alter the physical configuration of the
networks, it only interchanges the natural frequencies. The low and
high assortativity/clustering values are the only ones that come from
a different network configuration.

The mean of the order parameter 〈R〉 and the total partial
synchronization index S as a function of the overall coupling for
networks with high and low assortativity and clustering coefficient
and all three dissonance patterns for the BA, ER, and WS models
are presented in Figs. 4 and 5, respectively. In relation to the pat-
terns Similar, Neutral, and Dissimilar, one can note that, for small
coupling, the Similar pattern favors weaker forms of synchroniza-
tion both to a phase locked state (higher value of S) and to a phase
synchronized state (higher value of 〈R〉) for the BA, ER, and WS
models since the growth of these measures is more protuberant at
first for small values of coupling. The dissimilar pattern appears to
be the harder to achieve synchronization, while the Neutral one stays
in the middle. As the coupling λ is increased, the Dissimilar pat-
tern presents a higher growth on both 〈R〉 and S and is the first of
the patterns to reach phase locking. As the coupling increases even
more, it is time of the Neutral pattern to reach the phase locking
state, and then for greater λ, the Similar pattern also synchronizes.
Therefore, the Dissimilar natural frequency distribution pattern is
the one that mostly favors the achievement of the synchronized state.
This behavior was also observed by Freitas et al.26 and Scafuti et al.41

In relation to the illustrative example given at the beginning of the
paper about the discussion of a polemic subject, we can conclude
that if mostly similar minded people talk to each other, an agree-
ment seems to be close by people making only a small effort, but
at some point, the discussion somehow does not advance anymore
and more effort is needed in order to reach an agreement. On the
other hand, when people tend to talk with the ones that have dis-
tinct opinions, there is a huge discussion at first, and, despite the
increasing effort of all individuals, it seems like an agreement is not
reachable, but, after more effort is made by the individuals, a com-
mon opinion can finally be reached and all individuals arrive at the
same conclusion.

Now, we investigate how the measures assortativity and clus-
tering coefficient along with the dissonance patterns affect synchro-
nization. In order to do this, we annotate the value of λ for which
all configurations in Figs. 4 and 5 reach phase locking, and we name
it λPL. This result is presented in the first column in Figs. 6 (related
to assortativity) and 7 (related to clustering). In the second column,
there is the value of the order parameter (RPL) for this λPL. The order
parameter RPL shows the amount of phase synchronization of the
system at this stage. By definition, the partial synchronization index
S at λ = λPL is equal to one; therefore, the system is synchronized.

In relation to the network models considered in this work, on
average, the ER model is the one that reaches phase locking with
lower coupling values (light yellow) when considering the mea-
sures assortativity and clustering coefficient in Figs. 6 and 7(a), 7(c),
and 7(e). The BA network topology needs on average a high cou-
pling constant to reach the phase locking state when considering
assortativity, being then the hardest to synchronize in relation to
this measure. WS networks are an intermediate between these two
in relation to assortativity but requires the highest values of coupling
to reach phase locking when the clustering coefficient is taken into
account.

In regard to the network structure, we can infer that disas-
sortative networks seem to favor synchronization for, in general,
networks with negative values of ρ require a lower coupling value
in order to reach phase locking. In this way, when high degree nodes
connect with low degree ones, it favors synchronization (this does
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(a) (b) (c)

(c) (e) (f)

FIG. 2. (a) and (b) BA, (c) and (d) ER, and (e) and (f) WS networks with low and high values of clustering coefficient C. The SimilarS (νmin), NeutralN (νini ), and Dissimilar
D (νmax ) patterns of dissonance ν are also showed for each network (from top to bottom, respectively). ωi is the natural frequency of the nodes, and the size of the nodes
is proportional to the degree.
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(a) (b) (c)

(c) (e) (f)

FIG. 3. (a) and (b) BA, (c) and (d) ER, and (e) and (f) WS networks with low and high values of assortativity ρ. The Similar S (νmin), Neutral N (νini ), and Dissimilar D
(νmax ) patterns of dissonance ν are also showed for each network (from top to bottom, respectively). ωi is the natural frequency of the nodes, and the size of the nodes is
proportional to the degree.
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(a) (b) (c)

(c) (e) (f)

FIG. 4. (a)–(c) Mean of the order parameter 〈R〉 and (d)–(f) the total partial synchronization index S as a function of the coupling for networks with low (dashed line) and
high (continuous line) values of assortativity ρ and patterns Neutral (black), Similar (blue), and Dissimilar (red) of the natural frequency distribution. Note that S converges
to 1 for a finite value of λ and 〈R〉 asymptotically tends to 1.

(a) (b) (c)

(c) (e) (f)

FIG. 5. (a)–(c) Mean of the order parameter 〈R〉 and (d)–(f) the total partial synchronization index S as a function of the coupling for networks with low (dashed line) and
high (continuous line) values of clustering coefficient C and patterns Neutral (black), Similar (blue), and Dissimilar (red) of the natural frequency distribution. Note that S
converges to 1 for a finite value of λ (except for the WS Similar Cmax ) and 〈R〉 asymptotically tends to 1.
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(a) (b) (c)

(e) (f) (e)

FIG. 6. Contour plot of the assortativity ρ and the neighborhood patterns in relation to the (a), (c), and (e) coupling λPL and (b), (d), and (f) order parameter RPL at phase
locking for the models BA, ER, and WS of networks.

not seem to apply to the BA model). As already mentioned before,
the Dissimilar natural frequency pattern tends to favor synchro-
nization, and we can think of the distribution of the nodes in a
disassortative network also as being a dissimilar topological distri-
bution as nodes with different degree tend to connect to each other.
Therefore, when analyzing our example, instead of having popular

individuals communicating among each other, it is best if popular
individuals talk to less popular ones.

In relation to the clustering coefficient, networks with fewer
loops of size three seem to favor synchronization as, on average, net-
works with the lowest value of C tend to be easier to synchronize.
When it comes to our example, this means that it is best to avoid the

(a) (b) (c)

(e) (f) (e)

FIG. 7. Contour plot of the clustering coefficient C and the neighborhood patterns in relation to the (a), (c), and (e) coupling λPL and (b), (d), and (f) order parameter 〈R〉PL
at phase locking for the models BA, ER, and WS of networks.
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contacts of an individual to communicate with each other, avoiding
then the creation of a small cycle of discussion as this may create
unnecessary debates and, therefore, increase the effort to achieve an
agreement.

In general, the measures assortativity and clustering coefficient
seem to have a stronger effect on the synchronization of the Similar
dissonance patterns (especially when considering the WS model),
having a modest effect on the Neutral pattern and a very low effect
on the Dissimilar one.

IV. CONCLUSIONS

The influence of the structure of complex networks of non-
identical oscillators on global synchronization was studied. The total
dissonance metric for neighborhood similarity was employed, and,
with the help of an optimization algorithm, three patterns of natural
frequency distributions were created, one where adjacent nodes have
similar frequencies (Similar pattern), one where they have different
frequencies (Dissimilar), and one that is a blend of both (Neutral).
Network topologies of the models Erdös–Rényi, Watts–Strogatz,
and Barabási-Albert with high, intermediate, and low values of the
network measure assortativity and clustering coefficient were cre-
ated and along with the frequency patterns were used to study the
synchronization of these systems.

In relation to the emergency of phase locking, at low val-
ues of the coupling constant, the Similar pattern clearly favors
weaker synchronization regimes, but, as the coupling is increased,
the Dissimilar pattern presents a rapid growth and is the first to
reach synchronization, which corroborates previous works.26,41 As
for the complex network models used in this work, the Erdös–Rényi
showed itself as the easiest to reach the regime of synchronization
when compared to Watts–Strogatz and Barabási–Albert, but this
has yet to be confirmed by future experiments by comparing, for
example, these three models where each one has the same values of
assortativity and/or clustering coefficient. In relation to the network
measures employed here, in general, both low values of assortativity
and clustering coefficient appear to favor synchronization, especially
for the Similar dissonance pattern.

In summary, answering the questions raised at the beginning
of this paper, based on our findings, we can state that the best way to
conduct a discussion on a polemic subject is by encouraging individ-
uals with different opinions to talk to each other and also encourage
popular individuals to talk to less popular ones. It is also a good idea
to avoid contacts of individuals to talk to each other, avoiding then
small cycles of discussions. This hypothesis has yet to be confirmed
by future experiments.

As for future work, we consider to use the BA model with dis-
tinct degree exponents. We also intend to investigate the role that the
average degree of the networks has on synchronization. The behav-
ior of the WS configuration (ACmin , ωS ), which does not reach the
synchronous state even for high values of λ, as shown in Fig. 2, has
also to be better analyzed.
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