Interface Gráfica para Simulação da Perda por Reflexão de Materiais Absorvedores de Radiação Eletromagnética

Lucas Barbosa Nascimento^{1,2}, Glauber Rogério Lanziloti Alves^{1,2}, Braulio Haruo Kondo Lopes², Guilherme Nader Kawassaki², Maurício Ribeiro Baldan², Divani Carvalho Barbosa¹

¹Centro Paula Souza, Faculdade de Tecnologia de Taubaté, Taubaté/SP – Brasil ²Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos/SP – Brasil

Resumo - O parâmetro de perda por reflexão dos Materiais

Absorvedores de Radiação Eletromagnética (MARE) é de grande interesse científico, tanto do ponto de vista de medidas de desempenho quanto de aplicações práticas em diversas áreas como telecomunicações [1], ciência de materiais [2], saúde [3], segurança militar e de defesa [4]. A obtenção desse parâmetro em laboratório envolve a análise do material por meio de um instrumento de medição denominado Analisador de Rede Vetorial (VNA). Este trabalho tem como objetivo desenvolver uma interface gráfica na internet (GUI web) para ajudar os pesquisadores a calcular e simular a perda por reflexão dos materiais analisados pelo VNA. A interface proposta permite que os pesquisadores envolvidos na fabricação de MARE visualizem os resultados do cálculo da perda por reflexão em função da frequência de forma interativa e intuitiva, mediante gráficos estáticos e dinâmicos, utilizando simulação computacional.

Palavras-Chave - MARE, VNA, Perda por Reflexão.

I. INTRODUÇÃO

Os MARE desempenham um papel crucial em uma variedade de aplicações científicas e tecnológicas, sendo a obtenção do parâmetro de perda por reflexão um aspecto central de seu desempenho. Este parâmetro não apenas impacta diretamente na eficiência e na funcionalidade desses materiais em áreas como telecomunicações, ciência de materiais, saúde e segurança militar, mas também é fundamental para a sua caracterização precisa em laboratório [1]-[7].

A análise detalhada da perda por reflexão em MARE requer o uso de tecnologias avançadas, como o equipamento VNA, amplamente utilizado em ambientes laboratoriais. No entanto, facilitar o acesso a essas medições e interpretações é crucial para otimizar processos de pesquisa e desenvolvimento, além de promover avanços significativos na fabricação e na aplicação prática desses materiais.

Este trabalho visa suprir uma lacuna importante no campo, oferecendo uma interface gráfica na internet que simplifica e torna mais acessível o cálculo e a simulação da perda por reflexão em MARE. Ao proporcionar uma plataforma intuitiva e interativa, os pesquisadores poderão não apenas visualizar, mas também explorar dinamicamente os resultados dessas análises em função da frequência, utilizando recursos avançados de simulação computacional

II. MATERIAIS E MÉTODOS

A. ANALISADOR DE REDE VETORIAL

Um Analisador de Rede Vetorial (VNA, do inglês *Vector Network Analyzer*) é um equipamento usado para medir as propriedades de redes de radiofrequência e micro-ondas. Neste trabalho, foi utilizado o modelo N5232A PNA-L da empresa *Keysight Technologies*, como apresentado na Fig.1. O VNA é fundamental para a caracterização e testes de materiais que compõem antenas, filtros, amplificadores e circuitos de alta frequência. Por meio do VNA obtêm-se as medidas de parâmetros como a magnitude e a fase das ondas refletidas e transmitidas, permitindo ao pesquisador a análise detalhada da performance e do comportamento dos dispositivos sob teste. Este equipamento é amplamente utilizado em indústrias de telecomunicações, defesa, eletrônica e pesquisa científica.

Fig. 1. Foto do equipamento VNA.

Na Fig. 2 apresentam-se duas fotos. A primeira do VNA acoplado aos cabos transmissores e ao guia de onda retangular, apresentando o local onde fica o Offset (porta amostra). A segunda foto apresenta-se vista frontal, mostrando onde o pesquisador coloca o material que deseja analisar (Offset) e a placa metálica que fica posicionada atrás da amostra.

Este trabalho foi financiado pelo PIBIC/CNPq, por meio do processo 101700/2024-5, que compôs o projeto Desenvolvimento de Interface Gráfica para Simulação de Perda por Reflexão de Materiais Absorvedores de Radiação Eletromagnética na Banda X.

Fig. 2. Foto da vista frontal do porta amostra (Offset) e da placa metálica utilizada para medida no VNA.

A forma como a análise dos MARE no VNA é feita é demonstrada na representação esquemática da Fig.3. A placa metálica posicionada atrás da amostra tem um papel essencial, pois, é responsável por refletir toda a onda incidente. O equipamento montado nessa configuração, Fig.1, quantifica, por intermédio do parâmetro S₁₁, quanto dessa onda foi atenuada pela amostra que se encontra posicionada à sua frente. Essa quantificação está relacionada com propriedades eletromagnéticas da amostra, permissividade elétrica e permeabilidade magnética do material.

Fig. 3. Representação esquemática da obtenção dos parâmetros utilizados neste trabalho por meio do equipamento VNA. O d representa a espessura da amostra.

As propriedades eletromagnéticas, permissividade elétrica e permeabilidade magnética são obtidas com o auxílio do VNA na configuração mostrada na Fig. 2. Estes parâmetros são utilizados para a caracterização do comportamento elétrico e magnético de diferentes meios materiais, definidos desta forma como propriedades intrínsecas dos materiais. Aqui nesse trabalho eles são os parâmetros experimentais de entrada a serem utilizados no cálculo da perda por reflexão.

B. CÁLCULO DA PERDA POR REFLEXÃO

No cálculo da perda por reflexão utiliza-se, então, os parâmetros experimentais de entrada fornecidos pelo VNA. A permissividade elétrica e a permeabilidade magnética são propriedades de um determinado meio material e representam o quanto o meio é influenciado por um campo elétrico, magnético ou eletromagnético. Desta forma ambas as propriedades devem descrever fenômenos capacitivos e dissipativos que podem ocorrer no interior de um material [5].

O cálculo da perda por reflexão em decibéis (dB) [5-7], denominada aqui de *RL* (do inglês *Reflection Loss*), é apresentado na equação (1) onde *Z* e Z_0 são a impedância do meio material, Z é calculado pela equação (2) e Z_0 seria a impedância intrínseca do cabo usado na medição, nesse trabalho consideramos $Z_0 = 50$ Ohms.

$$RL(dB) = -20\log_{10} \left| \frac{z - z_0}{z + z_0} \right| \tag{1}$$

Onde:

$$Z = Z_0 \sqrt{\frac{\mu_r}{\varepsilon_r}} \tanh\left[j\left(\frac{2\pi fd}{c}\right)\sqrt{\mu_r\varepsilon_r}\right] \quad (2)$$

Na equação (2) o valor de *c* seria a velocidade da luz, e *d* é a espessura da amostra sob teste. Os valores de *f*, $\mu_r \in \varepsilon_r$ são os parâmetros que o VNA mensura, sendo eles a frequência da onda emitida, a permeabilidade relativa e a permissividade relativa, respectivamente. $\mu_r \in \varepsilon_r$ são descritos por componentes reais e imaginários como demonstrado em (3) e (4).

$$\mu_r = \mu' - j \ \mu'' \tag{3}$$

$$\varepsilon_r = \varepsilon' - j \, \varepsilon'' \tag{4}$$

Nas equações (3) e (4), μ_r seria a permeabilidade elétrica relativa e possui componentes real (μ') e imaginário (μ'') e ϵ_r seria a permissividade elétrica relativa que também é calculada por parte real (ϵ') e imaginária (ϵ''). Todos os quatro valores reais e imaginários dessas equações são mensurados em função de frequência.

C. INTERFACE GRÁFICA

A interface gráfica (GUI web) foi elaborada para usar o arquivo de saída fornecido pelo VNA como *input* para o programa. Tal arquivo contém em seu cabeçalho informações da amostra sob teste, bem como uma tabela com 1601 linhas e 5 colunas com os valores da frequência, componente real e imaginária da permissividade elétrica e componente real e imaginária da permeabilidade magnética, respectivamente.

Logo após o *input*, a equação (1) é então calculada por um código em linguagem de programação Python. A opção por essa linguagem de programação se deu tendo em vista a existência da biblioteca Numpy, ideal para lidar com cálculos envolvendo tangente hiperbólica e números complexos. Ademais, o Python também possui a biblioteca Matplotlib, que permite plotagem de gráficos tanto em modo estático quanto dinâmico.

O endereço web do site desenvolvido nesse trabalho é <u>https://lucasbnas435.pythonanywhere.com/</u> [8]. A interface gráfica aqui desenvolvida foi disponibilizada na internet (GUI web) visando facilitar o acesso por parte dos pesquisadores. Desse modo, o site pode ser acessado em qualquer dispositivo com internet e possui layout simples, o que lhe confere melhor usabilidade.

III. RESULTADOS E DISCUSSÕES

Com fins de obter um design simples e atraente, fato capaz de aumentar o engajamento dos pesquisadores no uso, a interface foi elaborada conforme apresentada na Fig. 4. Nela, apresenta-se a página principal com botões de acesso a cada funcionalidade proposta: Análise de amostras com uma, duas e três camadas, análise de amostra coaxial e gerador de arquivo do tipo xml.

Analisador de Amostras VNA tom I cama a camata construitada e a construitada e	>	0	-										+	×		loma	0	÷
<section-header><section-header> Analisador de Amostras VNA 1 email 2 canada 2 ca</section-header></section-header>			Ð	☆	Q	20						where.com	onany	lucasbnas435.pyth	(G	>	ŧ
<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	20	Fate	I		xial	Coa	3 camadas	idas	2 cama	mada	1 cai	Home	A	Amostras VN	· d	ador	alis	¥.
							A	as VN	mostr	r de A	isado	Anal						
<page-header></page-header>							nostra:	à sua ar	ondente	corresp	opção	lecione a	Sel					
Andrian countil Certa regulary DML Difference of the countil						amadas	alise com 3 ca	Aná	camadas	ise com 2	Anál	camada	om 1	Análise o				
A prime or source and a prime of a prim of a prim of a prime of a pr								uivo XML	Gerar arqu	ial	lise coax	Aná						
Formation can 1. Derus promit 1618 findum candepathon 3. Derus promit 1618 findum candepathon 3. Cherge promit 1618 findum candepathon 3. Cherge promit 1618 findum candepathon 3. Cherge promit 1618 findum candepathon 4. Cherge promit 1618 findum candepathon 5. Cherge promit 1618 findum candepathon 6. Cherge promit 1618 findum candepathon 7. Agatem Technologies, NS2002, MY409000690, A. 09.42, 22 8. Cherge promit 1618 findum candepathon 9. Sample Holder Lengthic, 6,00000 mm 10. Description, Findup candepathon 11. Sample Holder Lengthic, 6,000000 mm 12. Jengener, CMATSI 03 Holder 13. Brower, 0,00000 dBm 14. Description, Findup candepathon 15. Frequency(CHALSI's d'.str.) 16. Datacce, 16. Agrida, 0, 14480, 0.09581, 0.0059 17. 12.4033, 4.4734, 0.1448, 0.0978, 0.0017 18. Technologies, 4.6735, 0.1448, 0.09561							reta:	atação cor	tá na form	ranivo es	se o seu a	Verifique						
Borre posuir 1415 linka (indire categotha) Categotha care any executive as a careful a sinka Categotha care any executive as a careful									lo .csv	1. Forma								
A B C D E F 1 Transmission the And Free Space Methods 15. L1002010. 2 Agelen Technologies.NS230C.MY45900680.A.08.42.22 3 2 Ch1 5 Ports: 1.8.2 6 Messaurement ModelReflection/Transmission Ms and Epsilon 7 Sample Holder Dise. Wassaurement ModelReflection/Transmission Ms and Epsilon 7 Sample Holder Dise. Wassaurement ModelReflection/Transmission Ms and Epsilon 7 Sample Holder Dise. Wassaurement ModelReflection/Transmission Ms and Epsilon 7 Sample Holder Dise. Wassaurement ModelReflection/Transmission Ms and Epsilon 10 Distance In Sample: Actional Disease 200000 mm 11 Sample Holder Disease.2.000000 mm 11 Sample Holder Disease.2.0000000 mm 11 12 Power 14 12 Power.1.0.00000 disease.2.000000 mm 12 14 Power 15 13 Sample Holder Disease.2.0.00000 mm 15 15 15 16 12.4000.46746.0.01426.0.0196 17 14 Power								sbeçalho)	as (incluso ce	ir 1616 lin l	Deve possi	2. 3						
A B C D E F 1 TransmissionLine And Free Space Method 15.1.16021801 2 Addiment Chromosyn Mc2020 CVM6000000.0.0.42.22 3 3 C 1 5 Ports. 1.1 5 4 Oh1 5 Ports. 1.42 6 Measurement Model, Pellevicin/Transmission Mu and Epsilen 7 7 Simule Hoder Pope, Wavegale 6 Measurement Model, Pellevicin/Transmission Mu and Epsilen 7 9 Simule Hoder Registric, 5.0000 nm 10 Distance 16 Sample: 0.00000 nm 11 10 Distance 16 Sample: 0.000000 nm 12 IPBW, 300.000000 dm 12 12 IPBW, 300.000000 dm 15 IPBW, 300.00000 dm 15 12.0033, 46751, 0.1480, 0.9698 14 12.0033, 46751, 0.1480, 0.9698 15 IPBW, 300.00000 dm 15 12.0033, 4.6751, 0.1480, 0.9698 17 12.2.0033, 4.6751, 0.1480, 0.9698 17 12.2.0034, 4.6751, 0.1446, 0.9678 18 18 18 18 18 18 18 18 18 18 18 18								uplo abaixo	tado no exem	mo apreser	ibeçalho co	3. Ci						
1 Transmission Line And There Space Method 13.1.10021801 2 Aglent Technologies, NS2300, MY49000690, A.09.42.22 3 Ch 1 5 Ports, 14.2 6 Maximum Model, Reflection/Transmission Mu and Epsilon 7 Simple Holder Type, Waveguide 8 Conf Technologies, S02000 mm 9 Sample Holder Length, 6.500000 mm 10 Distance to Sample, 0.000000 mm 11 Sample Thickness, 2.00000 mm 12 Jewer, 0.00000 dfm 13 Power, 0.400000 dfm 14 Dewer, Tohou0000 hr 15 fraget, Nazy 01, 1989 0.004.00* 16 12.400.004 AF74, 0.1428, 0.3948, 0.0095 17 12.4033, 4.6735, 0.1448, 0.3978, 0.0017 18 T2.4070, 4.6775, 0.1446, 0.3961, -0.0069							F	E	D	с	В	A						
2. Aglent Technologies, NS230C, MY4900689, A. 08, 42, 22 3. Ch 5. Parts, 1. 8.2 6. Measurement Model, Reflection/Tanomission Mu and Epsilon 7. Sample Holder Diper, Wavage 8. Cutoff Frequency, 9, 437103 Oth 9. Sample Holder Length, 6, 50000 mm 10. Distance to Sample, 0, 000000 mm 10. Tasmet, Fischer Length, 6, 50000 mm 10. Tasmet, Fischer Length, 6, 50000 mm 10. Distance to Sample, 0, 000000 mm 10. Distance to Sample, 0, 000000 mm 10. Distance to Sample, 0, 00000 mm							D1	5.1.160218	ce Method 1	Free Spa	on Line And	Transmissio	1					
3 Ch 1 5 Potts:, 1.8.2 6 Measurement Model, Reflection/Transmission Mu and Epsilon 7 Sample Holder Typer, Wavegade 8 Cunff Transmission Mu and Epsilon 9 Sample Holder Length:, 6.00000 mm 10 Dataset: ets Sample:, 0.00000 mm 11 Sample Thickness, 2.00000 mm 12 Jerew:, Toing), Janary 01, 1988 0:0:0:08" 14 Date:, Teing, Janary 01, 1988 0:0:0:08" 15 frequency(CHL); et x'' u'' 16 12.4000, 4:674, 0, 1248, 0, 0:978, 0.0017 18 12.4073, 4:675, 0, 1446, 0.3961, 0.0069								A.09.42.22	Y49000690,	N5230C,M	inologies,	Agilent Tech	2					
5 Ports.:, 14.2 6 Measurement Model:, Beline ctronf framemission Mu and Epullon 7 Sample Holder Type:, Woingalde 9 Sample Holder Type:, Woingalde 10 Dataser: 15: 630000 mm 11 Sample Holder, Jamey G. (1980000 mm) 12 Jersey: - Monooon He 13 Pore:, - Topooon He 14 Dates:, - Trade, Jamary G. (1980 4:0:40 6*) 15 Irequency(KHz) et 'u'u'' 16 12:4000, 46754, 0:1428, 0.0948, 0.0058 17 12:4033, 46735, 0:1438, 0.9978, 0:0017 18 12:4007, 4:6775, 0:1448, 0.9961, 0:0069												01.1	3					
6 Massurement Model, Define cloud Transmission Mu and Epullon 7 Simple Holder Type: Waveguide 8 8 Cutof Frequence; 3.497103 0142 9 9 Sample Holder Length, 6.50000 mm 10 10 Datarie: 6.50000 mm 11 11 Sample Thickness, 2.00000 mm 12 12 Jerew, 7.000000 dte 14 13 Poere; 0.000000 nte 12 14 Date;, Trively,, Marry 01, 1988 04:04:08* 15 15 frequency, OFLik e ¹ , e ¹ , u ¹ , u ¹ 16 16 12.4000, 4.6754, 0.1248, 0.0958, 0.0058 12 17 12.4033, 4.6754, 0.1448, 0.3978, 0.0017 18 18 12.4070, 4.6775, 0.1446, 0.3961, 0.0059 12											,	Porte: 185	4					
7 Sample Holder Typer, Waveguide 9 Canof Frequency, B427103 01H2 9 Sample Holder Length: 6.500000 mm 10 Datasce to Sample: 0.000000 mm 11 Sample Thickness.2. 200000 mm 12 Jeff Wh. 30.0000 He 13 Power: 0.00000 He 14 Dete: "freqUe, March Value B80.004.08" 15 frequency(CHL) et a''.u'' 16 L24.000, 64764, 0.142, u'.u'' 17 L24.003, 4.6735, 0.1446, 0.3948, 0.0019 18 L24.007, 4.6775, 0.1446, 0.3961, 0.0069							Fosilon	ion Mu and F	Transmiss	Reflection	mt Model:	Measureme	6					
8. Condf Frequency, 9. 497103 OHC 9. Sample Holder Length: 6. 50000 mm 10. Distance to Sample: 0. 000000 mm 11. Sample: Trickness, 2. 000000 mm 12. Firsty,									1	Waveguid	der Type:.	Sample Hol	7					
9 Sample Holder Length. 6, 500000 mm 10 Distance to Sample. 0, 000000 mm 11 Sample Thickness.; 2, 00000 mm 12 Jeffab.; 300000 He 13 Power, 0, 000000 He 14 Destr.; Triday, Instanzy 01, 13980 40:04:08° 15 Irequency(CHL); et «'.u'.u' 16 12,4000, 46745, 0, 1248, 0, 0998, 0,0019 17 12,4033, 46751, 0, 1448, 0, 0996, 0,0017 18 12,4070, 4,6775, 0, 1446, 0, 0961, -0,0069									iz	87103 GH	uency:, 9.4	Cutoff Frequ	8					
10 Distance to Sample: 0.000000 mm 11 Sample Th: 0.000000 mm 12 IFRM. 300.00000 dbm 13 Paver: 1.000000 dbm 14 Dear: Friday, January 01, 1588 04:04:08" 15 Interact: Friday, January 01, 1588 04:04:08" 15 Interact: Friday, January 01, 1588 04:04:08" 15 Interact: Friday, January 01, 1588 04:04:09" 16 12.4073, 4.6775, 0.1446, 0.9896, 0.0059 17 12.4073, 4.6775, 0.1446, 0.9896, 0.0059									0 mm	., 6.50000	der Length	Sample Hole	9					
11 Sample Thickness.; 200000 nm 12 FIRW.: 300.0000 the 13 13 Power: 0.00000 the 14 Date: Fridsynmary 01.1988 04:04.08" 15 frequency(OFL)e ¹ e ² x ² x ² x ² 16 12.4000, 4674, 0.1280, 0.0948, 0.0058 17 12.4033, 4.6735, 0.1483, 0.3978, 0.0017 18 12.4070, 4.6775, 0.1446, 0.3961, 0.0069									nm	0.000000 r	Sample:, 0	Distance to	10					
12 FEW., 300.00000 dbm 13 Power, 5.00000 dbm 14 Date: "Friddy, ismury 01, 1080 40:44.00" 15 Freedow, 700, 104, et "Jul" 15 Freedow, 700, 104, et "Jul" 16 12, 2003, 4, 4751, 0, 1481, 0, 3978, 0, 0059 17 12, 2003, 4, 4575, 0, 1446, 0, 3978, 0, 0017 16 12, 4070, 4, 4575, 0, 1446, 0, 3961, 0, 0059									m	000000 m	:kness:, 2.	Sample Thio	11					
13 Power, D.00000 dilm 14 Dawr, Trively, Junary 01, 1388 04:04:08* 15 frequency (OFL); e [*] , e [*] , V.M* 16 12,4000, 4574, 0,1428, 0,0548, 0,0068 17 12,4003, 4,5751, 0,1438, 0,3978, 0,0017 18 12,4073, 4,6775, 0,1446, 0,3961, 0,0069										8	000000 Ha	IFBW:, 300.	12					
1 2 344 7760 7760 7760 7760 7760 7760 7760 77									1.04.001	n 01 1000	30000 dBn	Power:, 0.0	13					
15 (1996) 16 (12400), 4574, 0.1428, 0.9448, 0.0056 17 (12400), 4575, 0.1483, 0.9478, 0.0017 18 (12407), 4.6775, 0.1468, 0.9691, 0.0069									14:04:00	01, 1900	ly, January	Date:, Frida	19					
17 12.4003, 4.6751, 0.1483, 0.9678, 0.0017 18 12.4070, 4.6775, 0.1446, 0.9961, 0.0059								058	9948 0.0	0.1428	4.6784	12.4000	16					
18 12.4070, 4.6775, 0.1446, 0.3961, 0.0669								017	.9978. 0.0	0.1483.	4.6751.	12,4035	17					
								069	0.9961, -0.0	0.1446,	, 4.6775,	12,4070	18					
a de la companya de l																		
Applocomento: PLDICA, NPO processo nº 101 /04/2/2410 * (psychia) de Percusas						meiais	de Promises For	uto Nanional	024-5 - Institu	* 101700-2	CITOCOLINA C	PIBIC/CNP	immte	Annales				

Fig. 4. Interface da página principal do site online.

Ainda na página principal, Fig. 4, antes do pesquisador iniciar sua análise, ou seja, antes de interagir com os botões, é passada uma mensagem contendo uma imagem que descreve a formatação padrão na qual o arquivo de *input* deve estar. Essa formatação segue o padrão do arquivo de saída fornecido pelo VNA. Ao clicar no botão de análise em uma camada, a tela da Fig. 5 é apresentada, onde é possível escolher o ficheiro, ou seja, selecionar o arquivo de *input* que se deseja analisar e, então, acionar o botão de enviar arquivo.

Para começar a análise siga este passo:

Qual é o arquivo .csv da sua amostra analisada no VNA?

Escolher ficheiro Nenhum ficheiro selecionado Enviar arquivo

Fig. 5. Tela de carregamento de arquivo de saída do VNA para análise de uma única amostra, ou seja, com uma camada.

Ao enviar o arquivo, o pesquisador é redirecionado para a página apresentada na Fig.6, que contém um menu de botões de ação dividido em quatro passos. O primeiro deles destina-

se à verificação das informações do arquivo enviado, permitindo que o pesquisador verifique se elas condizem com a amostra que ele de fato deseja analisar. Com fins ilustrativos, nesse trabalho, utilizamos o arquivo de saída do VNA de uma amostra de dimetil polissiloxano (PDMS) aditivada com ferrita Mn-Zn, uma cerâmica magnética muito utilizada em aplicações de absorção de radiação eletromagnética, considerando sua capacidade de minimizar a reflexão e transmissão de ondas, devido às suas propriedades magnéticas e dielétricas. Maiores detalhes acerca da obtenção desse material podem ser conferidos na referência [5].

Analisador de Am	ostras VNA	Home		Fatec
Passo 1: Verifique se as info	rmações da amostra	condizem com sua a	nalise:	
Nome do arquivo: F_MnZn				
Informações da amostra ana	lisada			
Frequência de Corte:	6.56001 GHz			
Comprimento do suporte da amost	ra (Offset): 9.77 mm			
Distância da amostra:	0.0 mm			
Espessura da amostra:	5.0 mm			
IFBW:	1500.0 Hz			
Power	0.0 dBm			
Banda:	Banda X			
Passo 3: Plotar gráfico R.L. espess Passo 4: Plotar gráfico de Po	ura fixa erda por Reflexão ve	rsus frequência con	i espessura in	vriável
Espessura inicial em mm		•		
Espessura final em mm:				
Variação em mm:				
Clique aqui para gráfico R.L. espess	ura variável			
Passo 5: Plotar gráfico de Po	erda por Reflexão di	nâmico		
Espessura mínima em mm				
Espessura máxima em mm:				
Clique aqui para gráfico R.L. dinâmic	0			
Agradecimento: PIBIC/CN	Pq processo nº 101700/20 Todos os direito)24-5 - Instituto Naciona s reservados	l de Pesquisas E	spaciais
	rodos os direito.	STOSOFTANOO		1 1

Fig. 6. Página de apresentação das informações da amostra analisada e dos botões que permitem quatro diferentes tipos de plotagens gráficas.

O segundo passo seria a plotagem gráfica dos parâmetros de permeabilidade e permissividade, com apresentação das partes reais e imaginárias oferecidas pelo VNA, onde a tela da Fig. 7 é acessada. Nessa tela o pesquisador pode visualizar o comportamento dos parâmetros em função da frequência. Essa plotagem gráfica é de suma importância, pois, caso a medida tenha sofrido algum erro durante sua aquisição, nesse gráfico ficará visível ao pesquisador e ele pode decidir entre continuar sua análise ou realizar uma nova medida experimental no VNA. No caso da amostra aqui analisada, os parâmetros estão coerentes com o esperado para ferrita Mn-Zn.

Fig. 7. Tela de plotagem gráfica da permissividade elétrica e permissividade magnética em função da frequência.

O terceiro passo seria a plotagem gráfica da perda por reflexão (RL), que é calculada fazendo uso da Eq. 1, onde a tela da Fig. 8 é acessada. Além da plotagem do gráfico, essa tela apresenta um botão com ação de baixar dados do gráfico, permitindo que o pesquisador faça download de um arquivo com extensão txt, contendo duas colunas: uma representando a frequência, e a outra, a perda por reflexão em dB calculada pelo programa. Com isso, o usuário pode trabalhar posteriormente com esses dados de acordo com sua demanda.

Fig. 8. Tela de plotagem gráfica da perda por reflexão calculada.

Uma informação importante que é fornecida na tela da Fig. 8 é a espessura da amostra, nesse caso, a RL é calculada considerando a espessura de 5 mm, que é a espessura real da amostra ferrita Mn-Zn analisada. Dado que a espessura é um coeficiente da equação (2), é então sugerido sua variação, o que nos daria uma ideia do comportamento desse gráfico em função da espessura da amostra.

O quarto passo seria a plotagem do gráfico da RL onde é permitido ao pesquisador simular diferentes espessuras de amostras, nesse caso ele pode definir a espessura inicial, final e a variação da espessura em mm. A tela da Fig. 9 foi plotada considerando a espessura inicial como o valor três, a final com dez mm e com um passo, variação de espessura, de 1 mm. Essa tela apresenta também qual das curvas possui o menor RL, informação obtida de forma automatizada pelo programa aqui desenvolvido. Assim, a partir da definição desse valor, o pesquisador pode produzir em laboratório a amostra real com a espessura indicada, minimizando a quantidade de amostras

produzidas, fato que otimiza o custo laboral e o tempo de trabalho. Além disso, o pesquisador pode avaliar o desempenho das suas amostras em função da frequência, largura de banda e o potencial de atenuação.

Fig. 9. Tela de plotagem gráfica da perda por reflexão calculada e simulada para diferentes espessuras do material.

Na tela da Fig. 9, também é fornecido um botão com ação de baixar dados do gráfico, o que permite ao usuário fazer download de diversos arquivos com extensão txt. Eles contêm a frequência versus o RL calculado para cada uma das espessuras selecionadas, além de um arquivo único apresentando todas as informações plotadas.

Tendo em vista a quantidade significativa de espessuras que podem ser simuladas pelo pesquisador e que, portanto, não podem ser exibidas de uma só vez em um único gráfico, o que tornaria inviável sua leitura, neste trabalho foi desenvolvido uma interface de tela para plotagem dinâmica do gráfico. Sendo assim, temos o quinto passo, que envolve a plotagem do gráfico dinâmico de RL versus frequência, apresentado na tela da Fig. 10. Nessa tela, é fornecido ao pesquisador o controle interativo da interface gráfica, ou seja, permite-se sua "navegação" pelos dados exibidos no gráfico.

Retornar ao menu

Fig. 10. Tela de plotagem gráfica dinâmica da perda por reflexão, o botão de ação permite ao pesquisador mudar o valor da espessura somente com um arrastar do mouse.

A interação do pesquisador com o gráfico é realizada por meio de um botão de rolagem com controle deslizante, onde ele pode manipular da esquerda para direita, aumentando ou diminuindo a espessura, ou seja, permite um controle e ajuste dos dados que está sendo visualizado no gráfico em tempo real, sem a necessidade de redesenhar o gráfico inteiro cada vez que se deseja ver uma nova seção dos dados. Ademais, são fornecidos ao pesquisador a definição do valor de limite mínimo e máximo do botão de controle deslizante (espessura mínima e máxima), e assim como nas outras telas gráficas apresentadas, a interface de tela apresenta um botão que permite ao pesquisador realizar *download* dos dados do gráfico que ele está visualizando na tela.

IV. CONCLUSÕES

Em suma, a criação desta interface gráfica (GUI web) representa um passo significativo na otimização da análise de perda por reflexão em Materiais Absorvedores de Radiação Eletromagnética (MARE). Ao integrar ferramentas avançadas de simulação computacional com uma interface intuitiva e acessível, nossa plataforma não apenas simplifica o processo de visualização dos dados em função da frequência, mas também capacita pesquisadores a explorar de maneira mais dinâmica e eficiente os resultados de seus experimentos.

Com essa iniciativa, esperamos não apenas facilitar o trabalho dos cientistas e engenheiros envolvidos na fabricação de MARE, mas também promover novos *insights* e descobertas que impulsionem ainda mais o desenvolvimento tecnológico nas áreas de telecomunicações, ciência de materiais, saúde e segurança. Além disso, a possibilidade de compartilhar e colaborar com o auxílio desta plataforma pode abrir novas perspectivas para a comunidade acadêmica e industrial, fomentando um ambiente de inovação contínua e colaborativa.

Em última análise, a GUI web aqui desenvolvida não é apenas uma ferramenta técnica, mas um recurso que visa transformar a maneira como os materiais absorvedores de radiação eletromagnética são estudados e aplicados, contribuindo, assim, para avanços significativos em diversas disciplinas científicas e tecnológicas.

REFERÊNCIAS

- A. Fionov, I. Kraev, G. Yurkov, V. Solodilov, A. Zhukov, A. Surgay, I. Kuznetsova, V. Kolesov, "Radio-Absorbing Materials Based on Polymer Composites and Their Application to Solving the Problems of Electromagnetic Compatibility", Polymers, vol. 14, n. 3026, p. 1-59, 2022.
- [2] D. Gutierrez, P. Doshi, H. Y. Wong, D. Nordlund, R. P. Gandhiraman, "Printed graphene and its composite with copper for electromagnetic interference shielding applications", Nanotechnology, vol. 35, n. 13, p. 135202, 2024.
- [3] R. A. Michaels, "Telecommunications, Electromagnetic Fields, and Human Health", Environmental Claims Journal, vol. 31, n.2, p. 93-132, 2019.
- [4] N. A. S. Gomes, R. M. Richter, B. H. K. Lopes, M. R. Baldan, "Capacidade de Detecção da Aeronave UAV X-47B em Função da Predição da RCS Estática", Conference: Simpósio de Aplicações Operacionais em Areas de Defesa - SIGE, vol. ISSN 19837402, p. 26-28, 2023.
- [5] B. H. K. Lopes, R. C. Portes, M. A. J. Amaral, D. E. Florez-Vergara, A. M. Gama, V. A. Silva, S. F. Quirino, M. R. Baldan, "X Band electromagnetic property influence of multi-walled carbon nanotube in hybrid MnZn ferrite and carbonyl iron composites", JMR&T, v. 9, p. 2369-2375, 2020.

- [6] J. Ma, X. Wang, W. Cao, C. Han, H. Yang, J. Yuan, M. Cao, "A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures", vol. 339, p. 487-498, 2018.
- [7] W. Xu, G. Wang, P. Yin, "Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding", Carbon, vol. 139, p. 759-76, 2018.
- [8] Desenvolvimento de Interface Gráfica para Simulação de Perda por Reflexão de Materiais Absorvedores de Radiação Eletromagnética na Banda X Disponível em: < <u>https://github.com/Lucasbnas435/ReflectionLossWeb</u>> Acesso em: 28/06/2024