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Estimativa da demanda de irrigação baseada em previsões climáticas sazonais

Beatriz S. Ranke2* , Lineu N. Rodrigues3  & Sin C. Chou4

ABSTRACT: In regions with water shortages, detailed planning on water resource use is essential. The use of climate 
models for short- and medium-range forecasts is an important strategy for obtaining early information on the water 
requirements of crops and the water regime of a particular basin. This study aimed to assess the performance of 
seasonal climate forecasts and their applicability in estimating irrigation needs. To that end, the Simulation Model 
for Irrigation Strategies and climate forecast data derived from the Eta model were used. To analyze simulations, five 
members (days 13, 14, 15, 16 and 17) of the seasonal forecasts of rainfall and reference evapotranspiration for every 
month between 2001 and 2012 were used. The spread for reference evapotranspiration demonstrated that the model 
was unable to reproduce the behavior of this variable during the dry period. Comparison between forecasts months 
in advance showed no significant differences between the rainfall and the reference evapotranspiration forecasts. 
However, the results obtained for a one-month lead-time forecast exhibited superior performance.

Key words: water resources, irrigation planning, Eta regional climate model, seasonal forecast errors

RESUMO: Em regiões com baixa disponibilidade hídrica é de grande importância um planejamento mais detalhado 
sobre o uso de recursos hídricos. A utilização de modelos climáticos destinados às previsões de curto e médio 
prazo se apresenta como uma estratégia importante para se obter informações antecipadas acerca da demanda 
hídrica de culturas e do regime hídrico de determinada bacia. Objetivou-se, neste estudo, avaliar o desempenho 
das previsões climáticas sazonais e sua aplicabilidade na estimativa da demanda de irrigação. Para tanto, utilizou-se 
o Modelo de Simulação de Estratégias de Irrigação e dados de previsão climática derivados do modelo Eta. Para 
análise das simulações, foi utilizado um conjunto de cinco membros (dias 13, 14, 15, 16 e 17) de previsão sazonal de 
precipitação e evapotranspiração de referência para cada mês entre o período de 2001 a 2012. O espalhamento para 
a evapotranspiração de referência demonstrou que o modelo não foi capaz de reproduzir o comportamento desta 
variável durante o período seco. Comparação entre previsões com os meses de antecedência não demonstraram 
diferenças significativas entre previsões da precipitação e da evapotranspiração de referência. Contudo, os resultados 
obtidos para as previsões com um mês de antecedência apresentaram melhor desempenho.
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HIGHLIGHTS:
There is potential use of the seasonal climate forecasts for irrigation planning.
Reference evapotranspiration in the watershed has low seasonal forecast skill.
Total monthly precipitation is underestimated in most of the river basin.

1 Research developed at Universidade Federal de Viçosa, Viçosa, MG, Brazil
2 Universidade Federal de Viçosa/Departamento de Engenharia Agrícola, Viçosa, MG, Brazil
3 Empresa Brasileira de Pesquisa Agropecuária/Embrapa Cerrados, Planaltina, DF, Brazil
4 Instituto Nacional de Pesquisas Espaciais/Centro de Previsão de Tempo e Estudos Climáticos, Cachoeira Paulista, SP, Brazil

Original Article

http://dx.doi.org/10.1590/1807-1929/agriambi.v29n4e284685
http://www.agriambi.com.br
http://www.scielo.br/rbeaa
https://orcid.org/0000-0003-1113-3397
https://orcid.org/0000-0001-5971-3441
https://orcid.org/0000-0002-8973-1808


Beatriz S. Ranke et al.2/11

Rev. Bras. Eng. Agríc. Ambiental, v.29, n.4, e284685, 2025.

Introduction

Irrigated agriculture has important benefits for the 
region, given that it increases yields, stabilizes production, 
and allows year-round farming (Souza et al., 2023). However, 
recent droughts in the area, increasing water use conflicts, 
and lack of knowledge on water availability have significantly 
compromised social well-being and economic development, 
demonstrating the urgent need to improve water management 
practices (Althoff et al., 2021; Ferreira et al., 2021).

Climate is one of the factors that has the greatest impact 
on agriculture, and forecasting is essential to any planning 
strategy. Seasonal climate forecasts seek to predict future 
statistical properties of a given climate period, from one month 
to an entire season, and this is possible due to the predictability 
provided by the sea surface temperature (Shukla, 1998). 

Several literature studies have assessed climate forecasting 
performance in estimating irrigation needs, for example 
Villani et al. (2021) used the iCOLT system, which integrates 
satellite data, probabilistic seasonal climate forecasts, observed 
data, and the soil water balance model to perform irrigation 
forecasts. Lalić et al. (2018) applied the AquaCrop model for 
climate forecasts using the ensemble provided by the European 
Centre for Medium-Range Weather Forecasts (ECMWF). They 
concluded that, despite the uncertainties observed, seasonal 
climate forecasts could help agricultural decision-making. 

These forecasts provide prior information on extreme 
climate events that may damage crops (for example, droughts 
or heat waves) or irrigation water management in order to 
establish regional policies (Grigorieva et al., 2023). In this 
respect, the main aim of this study was to assess seasonal 
climate forecast performance and its applicability in estimating 
irrigation needs.

Material and Methods

Seasonal climate forecasts and their applicability in 
estimating irrigation demands were assessed in the Paracatu 
River Basin (Figure 1). With a drainage area of 45,600 km², 
parts of the river basin are located in Minas Gerais and Goiás 
states and the Federal District (Andrade et al., 2020).

With a rainy season between October and April and an 
annual average rainfall of 1,338 mm, the climate of the Paracatu 
River Basin is predominantly tropical humid. Annual mean 
reference evapotranspiration and temperature are 1,140 mm 
and 23 °C, respectively (Andrade et al., 2020). The following 
soils are found: Quartzipsamments, Oxisols, Inceptisols and 
Entisols (USDA, 2014).

Irrigation accounts for the primary water demand, 
comprising 86.6% of total water usage. The basin has 1,238 
irrigation pivots, located mainly in the sub-basins of the Entre 
Ribeiro creek and Preto river, which together constitute 53% 
of the basin’s total irrigated area (Melo et al., 2020).

Future rainfall (FR) and reference evapotranspiration (ETo) 
forecasts were derived from the Eta model (Chou et al., 2020). 
Pre-processing was carried out using the R programming 
language (R Core Team, 2022). 

Model performance was assessed considering raster and 
level five ottobasin data from the Paracatu River Basin. As part 
of pre-processing, Eta model forecasts were converted from 
40 to 10-km spatial resolution using the raster package on 
RStudio (R Core Team, 2022). This step was needed to make 
the simulated and observed data scales compatible.

ETo was calculated based on forecast data using the 
Pennman-Monteith-FAO method (Souza et al., 2023). For 
latitude and elevation data, the ASTER Global Digital Elevation 
Model NetCDF V003 was used (NASA, 2019), obtained online 
through Application for Extracting and Exploring Analysis 
Ready Samples (AρρEEARS) (AppEEARS Team, 2022).

The soil data used in the present study were obtained from 
the raster of available water capacity (EMBRAPA, 2021).

The Eta model generated seasonal runs, always starting 
on days 13, 14, 15, 16, and 17 of every month, and ended four 
months later. The run starting on January 13, for example, 
ended on May 30. In February, a model run started on days 
13, 14, 15, 16, and 17 and ended on June 30, and so on. The 
five runs, with different starting dates, comprise one seasonal 
forecast produced in ensemble mode. 

For forecast assessment purposes, ETo-Brazil (Althoff et 
al., 2020) was used for reference evapotranspiration, and the 
MERGE product (Rozante et al., 2010) for rainfall data. Both 
databases exhibit a 10 km x 10 km spatial resolution.

Climate forecast performance was assessed in two ways:
i. By comparing the forecasts, in the same months at 

different monthly lead times; and,
ii. By comparing weekly forecast values initiated in one 

month with weekly forecasts in the next three months, whereby 
forecasts from the first week of August, with an average of five 
members, were compared with the first weeks of September, 
October, and November, with an average of the five members 
of these months.

Forecast performance was assessed by estimating the mean 
absolute error (MAE), the Nash-Sutcliffe efficiency (NSE) 
percentage bias (PBIAS), and Wilmott’s index of agreement 
(d) (Silva et al., 2020a). 

Figure 1. Paracatu River Basin
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Table 1 presents the range of PBIAS classification 
values.

Table 2 presents the range of Nash-Sutcliffe Efficiency 
classification values and Willmott’s index. NSE varies from -∞ 
to 1. Willmott’s index varies from 0 to 1. For the two metrics, 
the ideal value is 1.

An analysis of the Eta model rainfall forecast was conducted 
based on the categories that are incorrect or correct forecast 
criteria according to the occurrence or not of a rain event. 
To that end, the following indices were used to assess the 
occurrence or not of rainfall, as described by Moon & Kim 
(2020): proportion correct (PC), Eq. 1, critical success index 
(CSI), Eq. 2, probability of detection (POD), Eq. 3, and false 
alarm ratio (FAR), Eq. 4.

Irrigation needs were simulated for the soybean crop, 
with a 100-day cycle and a maximum rooting depth of 60 cm. 
Simulations were carried out for 2005 and 2012, and the sowing 
occurred on October 15 of every year.

Results and Discussion

Analysis of the difference between monthly rainfall 
forecast by the Eta model and the MERGE monthly rainfall 
is demonstrated in Figure 2. The results showed that the 
forecasts underestimated monthly rainfall in most of the basin, 
especially in the rainy months of November and January, 
when the maximum forecast error was -781.9 and -495.7 mm, 
respectively.

The estimated monthly ETo showed that the Eta model 
overestimated ETo for most of the Paracatu River Basin, mainly 
for November and January, as shown in Figure 3. In November, 
the model overestimated ETo for the entire basin, when forecast 
errors ranged between 13.8 and 141.5 mm.

However, a historic series of climate modeling with 
established lead times questions whether forecast error patterns 
change with an increase in forecast lead time. According to 
Chou et al. (2020), the forecast errors in the one-month are 
smaller than the two-month lead trimester. This was also 
observed in this analysis, where, for all metrics, the first month 
of lead time demonstrated more satisfactory results compared 
to the others.

Figure 4 shows the values for percent bias over the study 
area. In general, PBIAS varied between 5 and 75% for the fourth 
month, 6 and 71% for the third, 40 and 77% for the second, and 
3 and 66% for the one-month lead. The largest PBIAS values for 
each lead time were obtained in June and July. It is important 
to note that there was no bias correction.

Avila-Diaz et al. (2020) obtained similar bias percentages for 
the São Francisco River basin when evaluating the Eta-BESM 

Table 2.  Classification range of Nash-Sutcliffe Efficiency results

Table 1. Classification range of percent bias results
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where:
a - the number of points at which the model forecast rain, 

and it occurred;
b - the number of points at which the model forecast rain, 

and it did not occur;
c - the number of points at which the model did not forecast 

rain, and it occurred; 
d - the number of points at which the model did not forecast 

rain, and it did not occur; and,
n - the number of forecasted days.

The proportion correct (PC), Eq. 1, is considered the most 
direct and intuitive measure of accuracy. The proportion of hits 
meets the principle of event equivalency, given that it credits 
“yes” and “no” forecasts equally.

Irrigation needs in the Paracatu River Basin were simulated 
using the Irrigation Strategy Simulation Model (ISSM) (Souza 
et al., 2023). 

(1)

(2)

(3)

(4)

Figure 3. Difference between total monthly rainfall simulated 
by Eta and ETo-Brazil in the Paracatu River basin

Figure 2. Difference between total monthly rainfall simulated 
by Eta and MERGE in the Paracatu River basin
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Figure 4. Spatial distribution of bias percentage coefficient values for rainfall in the study area

and Eta-MIROC5 climate models. The authors also found 
underestimation during the dry period and overestimation in 
the rainy period.

Based on MAE, the worst model performance occurred 
between October and March, when MAE values are the largest. 
Figure 5 shows that forecasts for the dry months exhibited 
superior performance, regardless of lead time. In general, the 
best results were found during the dry months in all lead times, 
with minimum values occurring between May and September, 
with a minimum MAE of 0.9 mm in the first lead time month 
(July). The maximum MAE values were estimated primarily 
in November and December, ranging between 168.7 and 228.5 
mm per month.

NSE revealed that the values furthest from 1 are located in 
the northern part of the basin, mainly between the two and 
four-month lead time, primarily in July. In this metric, negative 
values mean that the data observed are better predictors of 

reality than their simulated counterparts, which occurred in 
all the years of the historical series. Numerically, the three-
month lead time obtained the best results since NSE varied 
between -6.8 and 0.5. On the other hand, the one-month 
lead time exhibited the best behavior, given that there were 
fewer negative pixel values. However, in all cases, there were 
more values below 0, which were classified as unsatisfactory 
according to NSE.

Willmott´s index obtained the values closest to 0 in the 
central and southeast regions of the basin, indicating that 
agreement is low in these areas. In general, according to this 
index, the results were quite unsatisfactory most of the year. 
However, in some months, the results were close to 1, such as 
January (0.76) and February (0.83) with a one-month lead time 
and January (0.77) and July (0.84) with three months. Similar 
results were obtained by Pinheiro et al. (2020) for Rio de Janeiro 
state, based on estimates generated by the HADCM3 model, 
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Figure 5. Spatial distribution of mean absolute error values for rainfall in the study area

ranging from 0.16 to 0.74. The authors reported difficulty 
simulating this variable, given that it is influenced by different 
atmospheric phenomena. 

All the metrics demonstrated that rainfall calculated with a 
one-month lead time obtained the best results, corroborating 
Chou et al. (2020), who analyzed a 10-year historical series of 
rainfall in Brazil. Based on the results, seasonal forecast skill is 
low in the Center-West and Southeast regions, are located in a 
low predictability regime (Nobre et al., 2006). It is a transition 
zone between the tropical and extratropical regimes and is 
affected by both atmospheric conditions (Reboita et al., 2022).

In the present analysis, a rain event was considered any 
occurrence where total rainfall was greater than or equal to 10 
mm per month. In general, the values were similar in all the 
lead months of each index, with minimum variations. 

Analysis of the results based on the probability of detection 
(POD), which measures the accuracy of the forecasting 

model, showed that the Eta model was less than 50% accurate 
in forecasting daily rainfall for the Paracatu River Basin in 
all the lead months. FAR, which assesses false alarm rate, 
obtained 0.48, meaning that at least 48% of rain forecasts 
were inaccurate. However, the critical success index (CSI) 
demonstrated a solid performance, achieving 70%. In addition, 
the proportion correct (PC) showed that at least 89% of 
forecasts were correctly attributed to real occurrences for both 
rain events that occurred and did not occur. 

Figure 6 shows that, in general, reference evapotranspiration 
showed a pattern similar to that of the monthly rainfall. The 
evapotranspiration results indicated that the performance of 
the model was worse in the north of the basin, with a PBIAS 
between 0 and 1, suggesting overestimation in this region. 

MAE ranged between 11 and 93 mm per month, with values 
varying from 0.35 to 3 mm per day, which is similar to the 
results obtained by Gomes et al. (2022) for the Madeira River 
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Figure 6. Spatial distribution of bias percentage coefficient values for evapotranspiration in the study area

Basin, based on intraseasonal simulations generated by the 
Eta model. March and September obtained the lowest values, 
varying from 12 to 17 and 11 to 19 mm per month, respectively. 
Maximum error values were found for June and July, varying 
from 67 to 93 and 60 to 85 mm per month, respectively. No 
significant differences were found for lead time, as show in 
Figure 7. Gomes et al. (2022) obtained substantial estimate 
improvements for evapotranspiration after correcting for bias. 

NSE also demonstrated low model accuracy in dry months, 
with the worst results obtained from May to July, concentrated 
in the southeast region of the basin, where the source of the 
Paracatu River is located. In all forecasts, June exhibited the 
worst performance. Pixel-by-pixel analysis revealed that the 
one-month lead time obtained the most acceptable results, 
where NSE reached 0.2 in March. However, it also exhibited the 
worst results, with NSE reaching -1,258.3 in June. The findings 
indicated that for all the forecast scenarios, the reference data 

are better ETo forecasters for all the months of the year, given 
that all the results are classified as unsatisfactory. 

In general, Willmott’s index obtained unsatisfactory 
estimation results for the entire study area, primarily in the 
dry months, reinforcing the fact that the model was unable to 
adequately reproduce reference evapotranspiration values for 
the study area during this period. The d index varied from 0.04 
to 0.6, 0.04 to 0.5, 0.04 to 0.5, and 0.04 to 0.05 for one, two, 
three, and four-month lead times, respectively.

Given the uncertainties of Zhao et al. (2019) in estimating 
Eto, the authors found that the global circulation models 
are unable to represent climate conditions on a small scale. 
However, this can also be observed in regional circulation 
models, which may be attributed to systematic errors inherent 
to the Eta model, resulting from the representation of physical 
processes, boundary conditions, and initial conditions (Silva 
et al., 2020b).
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Figure 7. Spatial distribution of mean absolute error values for rainfall in the study area

The water requirement of the 100-day cycle soybean 
crop, planted on October 15, for the 2005/06 and 2010/11 
growing seasons, was estimated using the ISSM model. For 
the simulated data, a one-month lead time forecast was used 
because it obtained the most acceptable results. 

The spatial distribution of the irrigation depth predicted 
in each ottobasin is presented in Figure 8. In 2005, the 
highest demand levels occurred in Baixo Paracatu, with a 
range between 414.8 and 497.7 mm. In 2010, once again, the 
maximum values were in the same region, ranging between 
481.2 and 557.0 mm, in the corresponding sub-basin. In 2005, 
the minimum values occurred in the Rio Prata Basin, in the 
Alto Paracatu region, varying between 250.1 and 361.3 mm, 
while in 2010, the minimum values were found in the Rio Preto 
Basin, ranging from 383.4 to 463.1 mm.

Figure 8 presents the observed (Figures 8A and C) and 
forecasted (Figures 8B and D) irrigation demand values. The 

maximum values were also found in Low Paracatu for both 
2005 and 2010, varying from 91.1 to 183.2 mm in the latter 
and 126.4 to 268.1 mm in the former. In 2005, the minimum 
values in the Rio Prata Basin ranged from 53.6 to 146.9 mm. 
The minimum values in 2010 were observed in the Médio-Alto 
Paracatu, varying from 41 to 101 mm. 

Figure 9 shows the statistical analysis results for PBIAS 
(Figures 9A and B), MAE (Figures 9C and D), d index (Figures 
9E and F), and NSE (Figures 9G and H). The percentage bias 
indicates an overestimation of irrigation demand, following 
the trend observed in reference to evapotranspiration during 
the rainy season. Total PBIAS for the 100 days of demand 
reached exorbitant error values, concentrated in the Rio Preto, 
with minimum values of 223 and 286% in 2005 and 2010, 
respectively, classifying them as unsatisfactory. 

Moreto et al. (2020) used rainfall data generated by the Eta 
model to support sugarcane production decision-making. They 
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Figure 8. Spatial distribution of irrigation demand (mm) for the soybean crop

Continued on next page
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Continued from Figure 9

Figure 9. Water demand forecast errors for 2005 and 2010, based on the error metrics described
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concluded that, despite the fact that the model overestimated 
rainfall in the study area, the results may still help producers in 
irrigation decisions and water management practices. As such, 
the results need refinement in the irrigation management phase.

The mean absolute error for 2005 was between 111.38 and 
319.72 mm, indicating that the predicted and observed values 
differ considerably. It is important to note that this represents 
an average of 100 days of irrigation, which, distributed across 
the period assessed here, is equivalent to an irrigation depth 
of approximately 3 mm per day. For 2010, mean error values 
were higher for the period, varying between 264.6 and 443.1 
mm over 100 days.

In a pixel-by-pixel analysis for the two years analyzed, the 
index of agreement and NSE were 0 for the entire basin. It is 
believed that this was caused because there was no large group 
for clustering except for the pair of coordinates related to 
each pixel. In order to produce results for the aforementioned 
metrics, the ottocode of each sub-basin was used for value 
clustering. In a general assessment, the data exhibited low 
agreement. 

 These results showed the need to correct seasonal forecast 
biases, as demonstrated by Pushpalatha & Gangadharan 
(2020). These authors reported that simple bias corrections 
significantly changed yield forecasts and water requirements 
in the soybean crop.

Conclusions

1. Although the Eta model was able to forecast the spatial 
pattern of rainfall and reference evapotranspiration relatively 
well during the period analyzed, their quantitative values should 
be improved, primarily for reference evapotranspiration.

2. Despite the uncertainties in predicting irrigation using 
the climate model, the results can be considered, from the 
standpoint of management and decision-making support in 
the planning phase. 

3. Bias corrections of climate forecasts are required to make 
them suitable for irrigation management.
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